
!

REMZI YILDIRIM
SİNİR MANTIĞI

REMZI YILDIRIM
Prof. Dr.Remzi YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM
2016-AYBÜ-ANKARA

REMZI YILDIRIM
(ÖDEV)

REMZI YILDIRIM

SİNİR MANTIĞI: TOERİ ve UYGULAMASI

2006 - Ankara

 2

Kullanılan Kısaltmalar

LT: Doğrusal Eşik Elementi
LTD: Doğrusal Eşik Fonksiyonu
LTM: Çok Eşikli Doğrusal Eşik Elementi
S[f]: En Düşük Ağırlıklı Doğrusal Eşik Fonksiyonu

:ˆTL Düşük Ağırlıklı Doğrusal Eşik Fonksiyonları

T dL ()ˆ : ndfS ≤][için Doğrusal Eşik Fonksiyonlarının Kümesi
VLSI: En Geniş Ölçekli Entegrasyon

:ˆ
2TL Düşük Ağırlıklı kapılardan oluşan Devre

LT[D]: D büyüklüğündeki Ağırlıklardan oluşan LT Fonksiyonları Kümesi
AND: Ve Fonksiyonu
OR: Veya Fonksiyonu
PRODUCT: Çarpım Fonksiyonu
COMP: Karşılaştırma Fonksiyonu
NOT: Değil Fonksiyonu
MAJ: Çoğunluk Fonksiyonu
AON: Ve, Veya, Değil gibi Kapılara Verilen Genel İsim
:Δ Determinant

 3

Özet

İnsan beyinleri temel yapı blokları olarak bilgisayarlara göre birkaç kat daha
yavaş olmasına rağmen birleşik iyileştirme ve görüntü ses tanımlama gibi zor
problemlerin çözümünde bilgisayarlara göre çok daha üstündür. Bu gözlem
yapay nöron alanındaki ilgiyi arttırmaktadır. Sonraki biyolojik sinirlerin
hareketinden esinlenen yapay sinirleri bağlayarak kurulmuştur. Bu tezde n ikili
girdilerin nörona benzer doğru yanlış fonksiyonlarını hesaplayan doğrusal
başlangıç elemanının(LT) olarak adlandırılan yapay nöronun doğru yanlış
versiyonunu düşüneceğiz. LT elemanı onun doğru yanlış girdilerinin ağırlıklı
toplamının işaretini çıkar. LT devreleri olarak adlandırılan LT elemanlarından
oluşan ağ devrelerindeki çalışmanın ana konusu hesaplanabilir kapasitelerinin ve
limitlerinin tahminini ve VE, VEYA, DEĞİL(AON devreleri) kapılarına
dayandırılmış geleneksel doğru yanlış mantık devrelerinin özelliklerinin
kıyaslanmasıdır. Örneğin LT devreleri AON devrelere göre tamsayıların
toplaması, çarpması, bölmesi gibi önemli fonksiyonların uygulamasında daha
verimlidir.

LT elemanının AON kapısından daha güçlü olduğunu görmek kolay, basitçe
birinin ağırlığı seçmedeki özgürlüğü yüzünden. Gerçekten ağırlıkların farklı
seçimleri farklı doğru yanlış fonksiyonları üretir. Bu nedenle, basit bir LT elemanı

ile tanımlanabilecek n-girdili doğru yanlış fonksiyonlarının sayısı 2
2n ’dir. Bu ek

üs eklenti karışıklığı ile orantılıdır. Bazı LT fonksiyonları büyüklük olarak farklı
ağırlıklar gerektirir karşılık gelen LT elemanlarının zor donanım ve yazılım
uygulamalarında yardımcı olarak. Bundan dolayı LT devrelerinin alanında teorik
araştırma ağırlıklar üzerine odaklanmıştır kısıtlı ağırlıklarda LT elemanlarının
kısmi kuvvetlerinde. 1971’lerde Muroga doğrusal başlangıç elemanının tamsayı
ağırlıklarla ifade edilebileceğini ispatladı. Ağırlıkların büyüklüklerini doğal
sayılarla kısıtlayarak orijinal LT elemanının gücü kaybedilmiş olmaz. Bu durumu
reel sayıların alt kümelerine genelleyebiliriz. Örneğin, ağırlıklar tamsayıların
karesi olarak sınırlandırılabilir ve tüm LT fonksiyonları tanına bilinir. Şu soruyu
soracağız. Kendi ağırlıklarıyla çizilen ağırlıkları bütün LT fonksiyonlarıyla ifade
edilebileceğini garanti eden D ∈ R üzerindeki altkümelerin şartları nelerdir?
Ağırlıkların karışıklığının diğer bir bakış açısı da girdi sayısı arttıkça büyümesidir.
Sayfa [17], [33], [38], [43] de gösterildiği gibi üslü olarak büyüyen ağırlıklarıyla
tek bir eşik elementiyle ifade edile bilinen doğrusal eşik fonksiyonları vardır ama
daha küçük polinom olarak büyüyen ağırlıklardaki eşik elementleriyle ifade
edilemez. Sonucun ışığı doğrultusunda küçük (polinom olarak büyüyen) ağırlık
fonksiyonlarının sınıfı sayfa [43]’te doğrusal eşik fonksiyonları setiyle LT adında
bir sınıf tanımlayarak yukarıdaki soruyla ilgilenilmiş oldu. Biz tek bir LT elementi
üzerine odaklanacağız. Polinom ve üs ağırlıkları arasında ayırımı daha da rafine
ederek aradaki boşlukları doldurmaya izin veren en düşük ağırlıklar ile eşik
fonksiyonları kurmak için iki yeni metodumuz olacak. Yani, polinomun derecesi
d’ye göre LT alt sınıflarına bölünen polinom boyutlu ağırlıklarla doğrusal eşik
fonksiyonlarının sınıfını ispat edeceğiz. Aslında daha genel bir sonuçla herhangi
sayıda girdi ve ağırlık için doğrusal eşik fonksiyonu olduğunu ispatlayacağız.
 Bazı LT fonksiyonları girdi değişkenlerinin sayısıyla üslü olarak büyümeyi
gerektirmektedir sayfa [13], [18], ‘de gösterildiği gibi bu tip fonksiyonlar küçük
boyutlarda polinom olarak büyüyen LT kapılarının iki katmanlı devreleriyle
değiştirilebilir. Sayfa [18]’de büyük katsayılarla belli fonksiyonlara odaklanarak
gösterildiği gibi devrenin boyutu üzerindeki en iyi bilinen sınırı geliştireceğiz.

 4

Ayrıca açık iki katmanlı devre üreteceğiz. İki katmanlı LT devreleri farklı doğrusal
elementlerden oluşmuştur ama bazı doğru yanlış fonksiyonları için eşitlik,
toplama ve çarpma gibi, birinci tabakanın kapıları aynıdır. Bu durumun
avantajından faydalanmak için yeni bir doğru yanlış hesaplayan bir element
tanıtacağız. İşaret fonksiyonu yerine girdilerinin ağırlıklı toplamlarının doğru
yanlış fonksiyonlarını hesaplar. Çoklu geçişli doğrusal eşikler anlamına gelen
LTM hesaplama elementi diyeceğiz. VLSI uygulamasında bağlamında LTM’nin
avantajları daha belirgin olacaktır. Gerçekten bu yeni model simetrik fonksiyonun
yerleşim alanını 0(n2)’den 0(n) ‘e düşürmektedir. LT ve LTM elementlerinin VLSI
uygulamalarını göstereceğiz. Programlanabilir ve donanımsal olarak bağlanabilir
iki çeşit element yapılmıştır. Programlanabilir elementler ağırlıkların değerlerinin
depolamak için yüzen kapıların şarjını kullanmaktadır.

 Uzun yıllar boyunca doğrusal eşik mantığı konusuna, hesaplanabilir devre
karışıklığı, sayfa [38], [56], ve donanım uygulamasını, sayfa [40], [48] iki farklı
yolla yaklaşılmıştır. Şaşırtıcı olarak, bu iki yaklaşım arasında çok küçük bir
iletişim vardır. Bütün olarak, bu tez eşik devrelerin uygulamasını ve teorisi
arasında bir bağlantı kurmaya yönelik bir adımdır. Bu durumun katkısı üç
seviyelidir. Teorik seviyede, LT ve LTM gibi fonksiyonların yeni sınıfları
tanımlandı ve hesaplama güçleri tahmin edildi. Algoritmik seviyede, reel
ağırlıkların keyfi reel sayıların, tamsayı ağırlıklarından çizilen ağırlıklara nasıl
dönüştüğünü göstereceğiz, ayrıca en düşük ağırlıklarda LT fonksiyonlarını nasıl
kuracağımızı ve son olarak LT2 devreleri(düşük ağırlıklı kapılardan oluşan devre)
üreten ve COMP denilen kıyaslama fonksiyonunu hesaplayan bir algoritma
göstereceğiz. Ayrıca XOR, toplama, çarpma fonksiyonları gibi yararlı
fonksiyonları yapan LTM devreleri sunacağız. Uygulama safhasında tasarımı,
yerleşimi ve LT ve LTM’nin VLSI uygulamasının testini göstereceğiz. Eşik
mantığının teorik ve pratik yönü arasında bir bağlantı kurmak pratik problemler
için çözüm sağlamaya ve uygulama konularından esinlenen yeni teorik soruların
tanımına faydalı olacak.

 5

İçindekiler

Özet
1 Giriş 3
1.1 Tanım ve Örnekler LT Fonksiyonu..................3
1.2 Doğrusal Eşik Elementi..................7
1.3 Çoklu Eşikler ve VLSI Uygulaması..11
1.4 Katkı ve Tezin Organizasyonu..............14

2 Ağırlıkları Kısıtlamak 16
2.1 Giriş.................................16
2.2 Motivasyon.................................17
2.3 Başlangıç ve Gerekli Çalışma........................17
2.3.1 0(2n) n-değişkenli LT fonksiyonları............21
2.4 Reel Tamsayılara Ağırlıkları..............22
2.4.1 Eşik Fonksiyonları Ağırlıkta 0(nlog2 n) bit Gerektirmektedir...................22
2.4.2 Eşik Fonksiyonları Ağırlıkta 6(nlog2 n) bit Gerektirmektedir...................25
2.4.3 Reel Sayıları Tamsayılara Dönüştüren Bir Algoritma.............................25
2.5 Ağırlıkları Keyfi Bir Kümeye Dönüştürme...29
2.6 Sonuç................................37

3 En Düşük Ağırlıklar 39
3.1 Giriş................................39
3.1.1 Motivasyon............................40
3.1.2 Organizasyon.......................41
3.2 Başlangıç ve Gerekli Çalışma..42
3.2.1 Ağırlıkları Asgari Yapma......................42
3.2.2 {0,1} Karşı {-1,1}...43
3.3 Genelleştirilmiş Çoğunluk Fonksiyonu...............44
3.3.1 Matematiksel Ayar.......................44
3.3.2 Ağırlık Vektörleri..........................46
3.3.3 Yapış...........................47
3.4 {0,1} Arasında Keyfi Ağırlık Fonksiyonu.................49
3.4.1 Yaklaşım.............................50
3.4.2 Temel Yapı........................52
3.4.3 Keyfi Sayıda ve Büyüklükte Değişkenler....55
3.5 Sonuçlar................................56

4 Devre Derinliği için Ağırlık Boyutu Satışı 57
4.1 Giriş................................57
4.2 Kıyaslama için LT2 Devresi........................58
4.3 Bilgisayar Simülasyonu........................... ...62
4.4 LTd ⊂ LTd+1’e Genelleme.....................63
4.5 Sonuç.................................64

5 Çoklu Eşiklerle Doğrusal Eşik Elementi 66
5.1 Giriş................................66
5.1.1 Tanımlar ve Örnekler.....................67
5.1.2 Organizasyon..........................69
5.2 LTM Yapıları............................69

 6

5.3 LTM’in Sınıflandırılması..........................72
5.4 Sınıflandırma Teoreminin İspatı....................73
5.4.1 İlaveler.............................73
5.4.2 Ayrım.............................74
5.5 Sonuçlar................................76

6 VLSI Uygulaması ile Programlanabilir Sinir Mantığı 78
6.1 Giriş................................78
6.2 Sinir Mantığı ve Geleneksel Mantık.................. ...80
6.3 Programlanabilir ve Donanımsal Bağlı Ağırlıklar................81
6.4 Uygulama ve Sonuçlar................................. ...82
6.5 VLSI Yerleşimi....................................85
6.6 Sonuç................................88

7 Sonuçlar 90

Kaynaklar 94

 7

Şekil Listesi
1.1 Doğrusal Eşil Elementi)sgn(

1∑ =
+−= n

i ii xwty ..3

5.1 LT’nin şematik Görünümü ve SYM, LTM Hesaplama Elementleri.............67

5.2 Her bit için tek LTM kapısında iki dört basamaklı tamsayının toplamı........69

5.3 0(n) boyutta LT Devresi ve Tek LTM Kapısı...70

5.4 MADD: 3-bit Üç Tamsayının Toplamı X, Y and Z – LTM Elementlerinin
Katmanının Kullanarak..72

5.5 Sınıflar Arasında İlişkiler...72

6.1 Sinir ve Geleneksel Mantık. XOR Hesaplayan İki Devre............................80

6.2 İki 4-bit Tamsayıların Karşılaştırması...82

6.3 Programlanabilir Doğrusal Eşik Elementinin Şeması.................................83

6.4 ∑ =

+− 16

10 i ii xww Doğrusal Toplamın Yerleşimi- Dört Eşik Elementi
gösteriliyor, ikisi programlanabilir, ikisi programlanamaz, ikincisi birim ağırlıkta.
Gösterilene alan µµ 360168 X . Çip MOSIS’ten gelen The chip µ2 teknolojisi
kullanılarak yapılmıştır...84

6.5 Vdd — Eşik’e karşı girdideki 1'lerin sayısı..85

6.6 Simetrik fonksiyonlar için LTM(Sağ)’nin LT (sol)’e göre avantajları. Ağırlıklı
toplam ilk katmandaki her kapı yerine bir kez
uygulanmıştır...86

6.7 LTM kapısının yüksek seviyedeki şeması...87

6.8 16-girdili LTM elementinin yerleşimi. Çıktı 4-bit hafıza hücresi adresleyen 4-
bit bustan oluşmuştur. Ağırlıklı toplam voltajların kapasite toplam olarak Nöron
MOS’ta implemente edilmiştir. Çip µ2 teknolojisi bulunan MOSIS’ten
yapılmıştır..89

 8

Tablo Listesi

1.1 2-değişkenli bağlantı, OR(x1, x2) = sgn(-1 + x1 + x2)....................................4

1.2 2-değişkenli ayraç, AND(x1, x2) = sgn(-2 + x1 + x2)......................................4

1.3 3-değişkenli çoğunluk, MAJ(x1, x2,x3) = sgn(-2 + x1 + x2 + x3).....................5

1.4 2-değişkenli eşitlik, XOR(x1,x2) ≠ sgn(w0 + w1x1 + w2x2).............................6

 9

Bölüm 1

Giriş

İnsan beyninin temel yapı blokları birkaç kat daha yavaş olmasına rağmen
birleşik optimizasyon, resim ve ses tanıma gibi zor problemlerin çözümünde
bilgisayarlara göre çok daha fazla üstündür. Bu gözlem yapay sinir ağları sayfa
[20], [37] alanına daha fazla eğilmeyi tetikledi. İkincisi biyolojik nöronlardan
esinlenerek yapay sinirler birbirine bağlayarak kurulmuştur. Bu tezde n ikili
girdilerin sayfa [32] sinire benzer doğru yanlış fonksiyonlarını hesaplayan
doğrusal başlangıç elemanı(LT) olarak adlandırılan yapay nöronun doğru yanlış
versiyonunu düşüneceğiz. Bir LT elementi doğru yanlış girdilerinin ağırlıklı
toplamının işaretini dışarıya çıkarır. LT devreleri denilen LT elementlerinden
oluşan ağların çalışma alanındaki ana konu onların hesaplama kapasitelerindeki
tahmini, sınırları ve VE, VEYA, DEĞİL (AON devreleri denilmektedir) kapılarına
dayandırılmış geleneksel doğru yanlış mantık devrelerinin özelliklerinin
kıyaslanmasını içermektedir. Örneğin LT devreleri AON devrelere göre
tamsayıların toplaması, çarpması, bölmesi gibi önemli fonksiyonların
uygulamasında daha verimlidir.

Sinirsel ve doğrusal eşik mantığına iki yaklaşım bulunmaktadır: Teori ve
uygulama. LT elementlerini uygulama yapan elektronik devreler altmışlı yıllarda
önerilmişti. Bu alandaki çalışmalar halen devam etmektedir. Diğer yandan LT ile
ilgili son yapılan teorik araştırma hesaplanabilir devre karmaşasının çatısı, sayfa
[38], [56] kurulmuştur. Exclusive-OR (XOR) gibi belli doğru yanlış fonksiyonların
sabit derinlikteki polinom büyüklükteki LT devresiyle ifade edilebileceği
gösterilmiştir ama eğer klasik AON uygulaması kullanılırsa üslü olarak büyük bir
devre gerektirmektedir. Toplama, çarpma, bölme gibi birçok faydalı fonksiyonun
temeli olarak XOR, araştırmacılar hesaplamanın doğrusal eşik modelinin sınır ve
gücünü araştırması üzerine yoğunlaşmışlardır. Bu görev şaşırtıcı olarak zor
olmuştur. Gerçekten alandaki yalnız güçlü alt sınır polinom ağırlık gibi küçük LT
elementlerin polinom boyut devrelerinin iki katmanlı olarak uygulanabileceği
fonksiyonların sınıfı LT2 ile ilgilidir. Diğer bir deyimle LT2 gibi keyfi ağırlıklarda LT
elementlerinin kullanımına izin verilirse LT2 ‘de olmayan bir fonksiyon bulunabilir,
o zaman alt sınır olmaz, keyfi ağırlıklarda LT devrelerinin polinom boyutta
devreleriyle iki katmanlı uygulama yapılabilecek fonksiyon yoktur.

Sinir mantığın teorik ve pratik bakış açıları arasında çok küçük bir ilişki vardır. Bu
tezin amacı teorik ve uygulama arasındaki bu boşluğu azaltmaktır. Bu bölümün
geri kalanında tezde ifade edilen ana fikri adresleyeceğiz. Bölüm 1.1’de LT
modellerini kullanarak ortak doğru yanlış fonksiyonlarını uygulama yapan
örnekleri sunacağız ve doğrusal eşik fonksiyonlarını sınıflayan LT’yi
tanımlayacağız. Bölüm 1.2 LT elementlerinin ağırlıklarının çalışması üzerine ana
fikirleri işlemektedir, bölüm 2, 3 ve 4 de sonuçları anlatmaktadır. Bölüm 1.3.5. ve
6. bölümlerle ilgilidir, VLSI uygulaması kadar iyi olan LT elementinden türetilen
yeni bir hesaplama elementi olan LTM’yi anlatmaktadır. Son olarak da bölüm
1.4’te tezin katkılarını özetlemektedir.

 10

1.1 Tanım ve Örnekler ile LT Fonksiyonu

Bu bölümde doğrusal eşik kapısıyla hesaplanan fonksiyonun resmi bir tanımını
vereceğiz. Tek bir LT elementiyle uygulama yapılabilen doğru yanlış
fonksiyonları örnekleri göstereceğiz, özellikle VE, VEYA, MAJ ve COMP olarak
aşağıda belirtilen hesaplamaları göstereceğiz.

Bu tez doğrusal eşik kapılarından oluşan LT devreleri veya doğrusal eşik
devreleri çalışması üzerine odaklanmıştır. Bunlar ikili sayı düzeninde girdiler ve
çıktılar içermektedir. Doğrusal eşik fonksiyonlarıyla matematiksel olarak
anlatılmaktadır.

Tanım 1.1 (Doğrusal Eşik Fonksiyonu)

n- değişkenli doğrusal eşik fonksiyonu şu tipte bir doğru yanlış fonksiyonudur:
 f : {0, l}n —> {0,1}

Şekil 1.1: Doğrusal Eşik Elementi)sgn(

1∑ =
+−= n

i ii xwty .
 Herhangi x Є {0, l}n için

⎩
⎨
⎧ ≥

==
Diger
xF

xFxf
0

0)(1
))(sgn()(

∑
=

+==
n

i
ii xwwxwxF

1
0),1.()(

w Є Rn+1 ile sabitlenerek yazılabilecektir. Şekil 1.1 fikri göstermektedir. Aşağıdaki
örnekleri düşünün.

Örnek 1.1 (OR’un LT Gösterimi)

Basit bir doğru yanlış fonksiyonu

 11

⎩
⎨
⎧ =

=
Diger

xn
.......1

)0,...,0(),...,(if 0
) ,...,OR(xxx 1

n1

n-değişkenden oluşan OR bağlantısıdır.

Eşik kapısıyla uygulanabilir, her n için

∑
=

+=∈∀
n

i
iion

n

xwwxxORx
1

1)sgn(),...,(,1,0{ }

(w0, ...,wn) ağırlık vektörü bulunmaktadır.

OR’u implement etmek için birim ağırlıklara ve w0 değeri -1 olan bir eşik değere
ihtiyaç vardır.

 W=(-1,1,...,1)

X1 X2 -1 + X1 + X2 sgn(-1 + x1 + x2) OR(x1,x2)
0 0 -1 0 0
0 1 0 1 1
1 0 0 1 1
0 0 1 1 1

Tablo 1.1: 2-değişkenli bağlantı, OR(x1, x2) = sgn(-1 + x1 + x2)

X1 X2 -2 + x1 + x2 sgn(-2 + x1 + x2) AND(x1,x2)
0 0 -2 0 0
0 1 -1 0 0
1 0 -1 0 0
0 0 0 1 1

Tablo 1.2: 2-değişkenli ayrılma, AND(x1,x2) = sgn(-2 + x1 + x2)

∑
=

+−=
n

i
ix

1
n1)1sgn(),...,OR(xx

Tablo 1.1 n = 2 durumunu göstermektedir.

 12

Örnek 1.2 (AND Є LT)

AND ayrımı da

)sgn(),...,(
1

1 ∑
=

+−=
n

i
in xxx nAND

doğrusal bir eşik fonksiyonudur.

Tablo 1.2 n = 2 için olan durumu göstermektedir.

Çoğunluk fonksiyonu olan MAJ girdi değişkenlerinin yarısından çoğu 1 ise çıktı
olarak 1 veren fonksiyondur.

Örnek 1.3 (MAJ Є LT)

Aşağıda çoğunluk fonksiyonunun tanımı vardır.

⎪⎩

⎪
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡≥

= ∑ =

Diger

n
Eger

MAJ
n

i i
n

xxx
0

2
..1

),...,(1
1

X1 x2 x3 -2 + x1 + x2 + x3 sgn(-2 + x1 + x2 + x3) MAJ(x1, x2, x3)
0 0 0 -2 0 0
0 0 1 -1 0 0
0 1 0 -1 0 0
0 1 1 0 1 1
1 0 0 -1 0 0
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 1 1

Tablo 1.3: 3-değişkenli çoğunluk, MAJ(x1, x2, x3) = sgn(-2 + x1 + x2 + x3).

Eşik fonksiyonu için doğal bir adaydır, ağırlıkların bir seçimi,

)1,...,1,
2

(⎥⎥
⎤

⎢⎢
⎡−= nw

 13

∑
=

+⎥⎥
⎤

⎢⎢
⎡−=

n

i
ixXX

n
MAJ

1
21 2

sgn(),...,(

tablo 1.3 n = 3 olan durumu göstermektedir.

Örnek 1.1, 1.2 ve 1.3 simetrik olanlar için doğru yanlış fonksiyonlarını
göstermektedir. Çıktı pozisyonlarından bağımsız olarak girdi vektöründeki 1’lerin
sayısına bağlı olan fonksiyonlardır. İyi bilinen simetrik fonksiyon eşitlik ya da
XOR fonksiyonudur.

Örnek 1.4 (XOR ∉ LT)

n-değişkenli eşitlik fonksiyonu

⎪⎩

⎪
⎨
⎧

= ∑ =

Diger

isetekEger
XOR

n

i ixXX
0

.......1
),...,(1
21

şeklindedir.

n=2 olsun ve XOR’u implement eden bazı ağırlıklar vardır.

),,(210 wwww =

)sgn(),(221121 xwxwwXX oXOR ++=

X1 x2 -2 + x1 + x2 + x3 XOR(x1,x2) gösterir
0
0
1
1

0
1
0
1

w0
w0 + w2
w0 + w1

w0 + w1 + w2

0
1
1
0

w0 < 0 (1)
w0 + w2>0 (2)
w0 + w1>0 (3)
w0 + w1 + w2 < 0 (4)

Tablo 1.4: 2-değişkenli eşitlik, X0R(x1,x2) ≠ sgn(w0 + w1x1 + w2x2)

Tablo 1.4 x değiştikçe F(x)’in değerlerini göstermektedir. Fonksiyonun değerleri
Wi’nin çözümünün olmadığı eşitsizli sistemi üretmektedir. Gerçekten eşitlik (1) +
(4) 2 w0 + w1 + w2 + w3 < 0 iken,eşitlik (2) + (3) 2 w0 + w1 + w2 + w3 > 0
değerlerini üretmektedir. O nedenle n = 2 için XOR ∉ LT. Herhangi n için de aynı
durum geçerlidir. Gerçekten herhangi n için XOR Є LT düşünün ve XOR
fonksiyonu

 14

)sgn(),(
1

21 ∑
=

+=
n

i
iio xwwXXXOR

şeklindedir.

O zaman

)sgn()0,...,0,,(221121 xwxwwXX oXOR ++=

ancak n=2 için XOR(x1, x2, 0,..., 0) = XOR(x1, x2), XOR Є LT,doğru olmayacak
şekilde.

Doğrusal eşik fonksiyonları için de simetrik tüm fonksiyonlar için w1=w2=...=wn.
Bu durum oldukça uygun çünkü ağırlıkların tümü 1’e eşitlenebilir. Alttaki doğru
yanlış fonksiyonları simetrik olmazsa ne olur? Ağırlıklar ne kadar büyük olabilir?
Takip eden örnek ağırlıkları farklı olmayı gerektiren bir LT fonksiyonunu
göstermektedir ve böylece diğerleriyle kıyaslandığında bazılarının büyük
olmasını gerektiriyor. Gerçekte ağırlıklar girdi değişkenlerinin sayısıyla üslü
olarak büyümektedir.

Örnek 1.5 (COMP Є LT)

Karşılaştırma fonksiyonu X ve Y olan ve ikilik sistemde gösterimleri (x1,..., xn) ve
(y1,..., yn) olan iki tamsayı kabul etmektedir. Birinci değişken olan X

xi
n

i

iX ∑
=

−=
1

12

iken ikinci değişken Y

yi
n

i

iY ∑
=

−=
1

12

şeklindedir ve onları kıyaslamaktadır. Ve her ikisini

⎩
⎨
⎧ >

=
diger

YXeger
COMP yyxx nn 0

1
),...,,,...,(

11

fonksiyonu ile karşılaştırıyor. COMP’un LT uygulaması

 15

∑∑
=

−

=

− −=
n

i
i

i
n

i
i

i

nn yxyyxxCOMP
1

1

1

1

11)sgn(),...,,,...,(22

yukarıda tanımlı olduğu gibidir. Aşağıdaki

),...,2,1,,...,2,1,0(22 nnw −−−=

ağırlık vektörüne dönüştürmektedir.

1.2 Doğrusal Eşik Elementinin Ağırlıkları

Bu bölümde LT elementlerinin ağırlıklarına ilişkin ana konularına değineceğiz.
Farklı ağırlıktaki kümelerin aynı LT fonksiyonunu türetebileceğini göstereceğiz ve
asgari ağırlıkları tanımlayacağız. 2, 3 ve 4. bölümlerin konuları tanıtıldı, sırasıyla
ağırlıkları sınırlama, asgari ağırlıklarla fonksiyonlar kurma ve büyük ağırlıktaki tek
bir elementi düşük ağırlıklı kapılardan oluşan bir devreye dönüştürme. Doğrusal
eşik elementi gibi bir elementin verim hesabı nasıl yapılır? Tek bir LT kapısı farklı
doğru yanlış fonksiyonlarının kalabalığını uygulama yapabilir. Bu ağırlıklarını
değiştirerek yapılabilmektedir. Gerçekten her bir ağırlık seçimi ayrı bir fonksiyona
tekabül etmektedir. Bazı farklı ağırlıktaki kümeler aynı doğru yanlış fonksiyonunu
üretirken genel olarak ağırlıklar için iki farklı seçim iki farklı fonksiyon
vermektedir. N girdili bir LT elementi 2n farklı doğru yanlış fonksiyonu uygulama
edebilir, bölüm 2.3.1’de bu durumu göreceğiz. LT’nin AON’a göre karşılaştırılmış
bu ilave gücü ilave bir karışıklığı beraberinde getirmektedir. Bu noktada şu soru
sorulabilinir: doğrusal bir eşik kapısının bilgi içeriği nedir özellikle bu bilgiyi
depolamak için ne kadar bit gerekmektedir?

Tek bir LT elementinin ağırlıkları üzerine odaklanalım. Şunu not edin, bir I
fonksiyonu olsun, ağırlık vektörü w benzersiz olmasın. Farklı ağırlıklar aynı
fonksiyonu uygulama yapsın.

Örnek 1.6 (Ağırlıkları düşürmek)

Aşağıdaki f fonksiyonu

)42642sgn(),...,(432141 xxxxxxf +−+−=

aşağıdaki gibi yazılabilir:

)2321sgn(),...,(432141 xxxxxxf +−+−=

 16

Çünkü sgn(2a) = sgn(a) her a > 0 için geçerlidir. Şu fonksiyonu düşünün:

)42642sgn(),...,(5432151 xxxxxxxf ++−+−= .

X5‘e bağlı olmadığı için aşağıdaki gibi yazılabilir.

)2321sgn(),...,(432151 xxxxxxf +−+−= .

Çünkü xxxx 4321 42642 +−+− ikinin katı olduğu için ya ≤2 ya da ≥0 ‘dır. Her iki

durumda da x5 ’i eklemek işareti değiştirmez.

Benzer bir fikir aşağıdaki iki örneğe de

xxxxxxxf 4432141)44sgn(),...,(=++++−=

1)23sgn(),...,(32131 =−−+= xxxxxf

uygulanabilir.

Ama genel olarak daha düşük veya en düşük ağırlıklar bulmak daha zor bir
problemdir. Ağırlıkları asgari yapmak için

)4321sgn(),...,(32131 xxxxxf +−+−=

aşağıdaki fonksiyonunun implement edilmesi gerekmektedir.

)sgn(),,(321321 xxxxxxf += .

Aşağıdaki fonksiyonu implement eden asgari ağırlıkları türetmektedir.

)21sgn(),...,(32131 xxxxxf +−+−= .

Örnek eşitlik 1.6 aynı LT elementini implement etmek için farklı ağırlıktaki
vektörler kullanılabileceğini göstermektedir. Bu düşüncenin resmi bir tanımı
aşağıdaki gibidir.

 17

Tanım 1.2 (Ağırlık Uzayı)

F eşik fonksiyonu verilmiş olsun, Tanım 1.1’i sağlayan tüm ağırlıkların kümesini

⎭
⎬
⎫

⎩
⎨
⎧ =+∈∀∈= ∑

=

)()sgn(,1,0{:
1

} xfxWW
n

i
iio

nn xwwR

W olarak tanımlayalım.

Ağırlıkları çalışmak istiyoruz, özellikle aşağıdaki ortogonal sorular üzerinde
duruyoruz.
1. Eğer ağırlıklar sadece tamsayılar olsun şeklinde sınırlandırılırsa ne olur ya da
genel olarak ağırlıklar R’nin herhangi bir alt kümesine sınırlandırılacak olursa?

2. Ağırlıkların tam sayı olduğunu ve boyutlarının verildiğini varsayarsak, en
düşük ağırlık vektörünü nasıl bulunur?

3.Verilen fonksiyonda, f, minimum ağırlığın büyük olduğunu faz edersek,
örneğin girdilerin sayısı ile katlanarak artıyorsa bu fonksiyonu küçük ağırlıklı
girişlerden oluşmuş iki-katlı LT devresiyle tamamlayabilir miyiz?

1970’lerin başlarında gösterilmiştir ki herhangi bir LT fonksiyonu tamsayı olarak
işaretlenen ağırlık ile tamamlanabilir. Burada müspet olamayan bir ispat
yapılmıştır yani tamsayı olan ağırlığı bulmadan tamsayı ağırlıklar kümesinin var
olduğu gösterilmiştir. Bölüm 2’de şu soruları soruyoruz: Sonuç elemanının
kuvvetini etkilemeden verilen sayı kümesinde isteğe bağlı bir değer olarak
ağırlıklar nasıl kısıtlanabilir? Bu sayı kümesinin koşulları nelerdir? Etkili bir
dönüştürme algoritması var mıdır?

Bölüm 3 ve Bölüm 4’te ise tamsayı ağırlıkların boyutuna değinilmektedir.
Ağırlıkların boyutunun ölçülmesi için L1 normu kullanıyoruz.

Tanım 1.3 (En Düşük Ağırlık Boyutu)
Bir ağırlık vektörünün boyutunu ağırlığın mutlak değerlerinin toplamı olarak
tanımlıyoruz.

Minimum ağırlık boyutunun doğrusal eşik fonksiyonu

⎡ ⎤ ∑
=∈

=
n

i
iWw wfS

0
|)|(min

şeklinde tanımlanır.

En düşük değeri sağlayan belirli vektöre en düşük ağırlık vektörü denir.

 18

Doğal olarak, S[f] n’in fonksiyonudur.

Çeşitli bilgilerin aynı anda işleme tabi tutulduğu bilgisayar işlev türlerinde yapılan
birçok deneyin sonucu göstermiştir ki doğrusal eşik değerlerindeki katsayıların
değerleri, girdilerin boyutlarıyla birlikte çok hızlı bir şekilde artmıştır. Bu nedenle
bilgisayar işlev türlerinin pratikte kullanımı sınırlanır ve bu durumu bir olağan
soru takip eder: Eğer biri katsayılarında sadece “küçük” artışları olan eşik
değerleri için kendini sınırlıyorsa bu bilgisayar işlev türlerinin bilişimsel gücü nasıl
sınırlanabilir? Katlanarak artan ağırlıklı tek bir eşik değeri tarafından
tamamlanabilen fakat polinom olarak artan ağırlıklı bir eşik değeri tarafından
tamamlanamayan fonksiyon yani sayfa [17], [33], [38], [43]’te gösterilmiştir. Bu
fonksiyon COMP’tur. Örnek 1.5.’te benzer fonksiyon gösterilmiştir. Bu sonuçların
ışığında LT’nin altsınıfları küçük ağırlıklı fonksiyon sınıfı: LT olarak
tanımlanmıştır. n’in katlanarak artması ve n’in polinom olarak artması için küçük
ve büyük değer girdi sayılarında kalır. LT nasıl bir yoğunluktadır, başka bir
deyişle küçük ağırlıkla fark edilmeyen fakat polinom derecesi d olan11 gibi artan
ağırlıklar ile tamamlanabilen fonksiyonlar var mıdır? LT ağırlıklarının
polinomunun derecesinin artışına endeksli fonksiyon sınıflarına bölünebilir mi?
Bölüm 3’te verilen ağırlık boyutlarında LT fonksiyonlarının algoritmik oluşumu
gösterilerek bu sorular cevaplanacaktır.

İstenen büyük ağırlıklı LT fonksiyonlarına nasıl değinilebilir? Siu ve Bruck ([43]),

TT LL ˆ
21⊂ ‘i göstererek ve isteğe bağlı derinliği genelleştirerek TT dd LL ˆ

1+
⊂

[13] , TT dd LL ˆ
1+

⊂ sınırında geliştirilebileceğini kanıtlamıştır. Metot her ne

kadar karmaşık olsa da ve [18]’de ispatı takip etmek güçleşse de [13]’ün
sonuçları olan basitleştirilmiş versiyon sunuluyor. Burada TT LL ˆ

21⊂ ‘nin

gösterilmesine odaklanılıyor. Ağırlığı düşürmek için kullanılan iki yöntem ikinin
kuvveti olarak bölmek ve prime modüle göre bölmektir. Eğer yeteri kadar prime
kullanılıyorsa ”küçük”- ağırlık girişleri doğru çıktıyı üreten devre ile birleştirilir.
Belirli büyük ağırlık fonksiyonunun benzetimini kısıtlayarak sayfa [13] ve [18]’de
gösterilen sonuçları daha basitleştirilebilir: COMP. Netice itibariyle sayfa [18]’deki
0(n12log11 n)’un genel sınırları üzerindeki önemli gelişme olan 0(n4logn)
düzenindeki devrenin kapılarının sayıları sınırlandırılır.

1.3 Çoklu Eşik ve VLSI Uygulaması

Bu kısımda bölüm 6’da tanımlanacak olan donanım uygulamalarının sonuçlarını
ana hatlarıyla inceleyecek ve bölüm 5’deki LT’yle ilgili yeni bir fonksiyon sınıfı
olan LMT gösterilir.

60’larda ve 70’lerde ortaya atılan eşik devreleri uygulamaları sayfa [4], [48], [53]
ve daha yakın sayfalarda [28], [39]’dur. Bilgi birikimimiz için eşik devrelerindeki
teorik sonuçlar, silikonlu uygulamaları içeren işlere eklenmiyor. Programlanabilir
nötron bazlı donanımlarda sayfa [39], [41] öneriliyor.

LT uygulamalarının özellikle birbirinden ayrıldığı iki nokta var: Ağırlıklı toplamı
hesaplamak için kullanılan metot ve ağırlığın saklanmasında kullanılan usul. Her
biri ağırlıklı girdilere denk akımlar seçildi. Buna göre doğru yanlış girdileri

 19

kullanıldı ve kesin çarpmaya gerek duyulmadı.

Girdi mantıksal 0 ve akım wi mantıksal 1 olduğunda sıfır akım üretildiğinden emin
olunur. Böyle bir “çarpım” girdi pimi giriş terminaliyle bağlantılı olan tek bir
transistor tarafından yapılabilir. Ağırlığı depolama ve girdileri ölçeklendirme tek
bir transistor de birleştirilmiş olması bu şekilde bir yaklaşımın avantajıdır. Fakat
ağırlıklar nasıl tamamen depolanıyor? Bu problemi iki yönden ele alabiliriz:
Fiziksel bağlantılı ve programlanabilir ağırlıklar. Fiziksel bağlantılı Ağırlıklar
devrenin planlandığı anda tanımlanır ve bir kere monte edildikten sonra
değiştirilemez. Fiziksel bağlantılı ağırlıklar ile ilgili birçok ilginç soru vardır.
Gerçekten çoğu uygulamalarda farklı ağırlıklar farklı planlara karşılık gelirler. Bu
farklılıklar LT devresi planlamayı zor bir iş haline getirir. Çünkü farklı elemanların
farklı şekilleri vardır. Ancak önceki bölümde gördüğümüz üzere hesaplanan
fonksiyonu etkilemeden LT elemanının ağırlığı değiştirilebilinir. Bu son faktör
elemanların birbirine tamamıyla uyabilecek şekilde planlanmasına yardımcı olur.
Öte yandan programlanabilir ağırlıklar böyle zorluklar çıkarmaz. Tüm LT
elemanları benzer görünür. Programlanabilir ağırlıkların birçok uygulama şekli
vardır. Dijital RAM olarak depolanabilir ya da girdi hattından beslenebilir. Bölüm
6’da LT elemanının iki uygulama yolu gösteriliyor. Birincisinde transistorun boy
en oranında depolayan fiziksel bağlantılı ağırlıklar kullanılıyor diğerinde ise geçici
olamayan yük olarak dalgalı giriş transistoru yerleştirilmiş programlanabilir
ağırlıklar kullanılıyor. İkinci durumda ağırlığın değeri tünelin açılmasına ya da
sıcak elektron püskürmesine bağlı olarak değişebilir. Eşitlik gibi genel LT2
fonksiyonu için bir LT devresi planlandığında LT gösteriminin gerekenden fazla
olduğunun farkına varılabilir. Genelde LT2 devresi farklı eşik elemanlarından
oluştuğunda, eşitlik, toplama ve çarpma gibi bazı kullanışlı fonksiyonlar halinde
birinci katmanın girişi eşikleri açısından farklı olurlar. Bu faktörün avantajlarından
yararlanmak için bölüm 5’e giriş yapmak gerekir. LTM, çarpım eşikleri olan
doğrusal eşik elemanı, yeni bir hesaplama elemanıdır ve şu hesaplama da
kullanılır: Doğru yanlış girdilerin ağırlıklı toplamının tek bir eşikle karşılaştırmak
yerine eşik kümeleriyle karşılaştırıla bilinir. Geometrik olarak ikiye bölünmüş
hiper küp şeklinde kullanılan paralel hiper düzlemler kümesi olarak görülebilir.

Tanım 1.4 (Çoklu Bağlantılı Doğrusal Eşik Girişi – LTM)
Fonksiyon f LTM’ dedir eğer ağırlıklar kümesi Zwi∈ ,1≤i≤n ve a var ise
Fonksiyon h : Z —> {0,1} öyle ki

)()(
1
∑
=

=
n

i
ii xwhxf her }1,0{ n

x∈ için.

Sadece h’de kısıtlanır öyle ki polinom olarak girdileri tarayacak birçok
[]|||,

11| ∑∑ ==
− n

i i

n

i i ww bağlantılara uğrar.

Fark ediliyor ki bağlantı sayılarındaki kısıtlama olmadan LMT girişi hiçbir doğru
yanlış fonksiyonunu hesaplayabilir durumda değildir. Aslında verilen keyfi
fonksiyon, / , kümesi 2 1−= i

iw ve),...,()(11

12 xxx ni

n i fh =∑ − .

Şimdiki örnekte tek LTM elementi ile nasıl eşitlik fonksiyonunu, XOR,

 20

hesaplayabileceğimiz gösterilecektir. Örnek 1.4’te XOR’ yi hesaplamak için tek
bir LT elemanının yeterli olamadığı gösterilmişti.

Örnek 1.7 (XOR ∈ LTM)
XOR(X) çıktıları 1 eğer |X|, X’deki 1’lerin sayıları tektir. Diğer türlü çıktıları 0 olur.

Uygulamak için 0 ≤ k ≤ n aralığında wi = 1 ve)1(1(
2
1)()kkh −−= seçilir. h(k)’nın k

< 0 ve k > n olarak tanımlanmasına gerek yoktur ve birçok polinom şeklinde
bağlantısı vardır.

Diğer bir kullanışlı fonksiyon ise iki tam sayının toplanmasıdır. LTM
elemanlarının tek katmanı tarafından hesaplanır.

Yukarıda da bahsedildiği gibi eşitlik fonksiyonunun planında gerekli olan alanın
geliştirilmesi için LTM araştırması pratik düşünceler üzerine geliştirilmiştir. LT
teorik çerçeve içinde kalsa da, bu yeni hesaplama elemanı birçok zor problemin
çözülmesini sağlar. Tek bir LMT elemanının tek bir LT elemanından daha güçlü
olduğunu görmek çok basittir. Fakat LT2 ya da TL ˆ2 karşılaştırmasında nasıl

güçlü olabilir?

1.4 Tezin Yazımı ve Organizasyonu

Tezin yazımı üç aşamada gerçekleşmiştir:
• Teorik aşamada T

d
L ˆ)(

 ve LTM gibi yeni fonksiyon sınıfları tanımlanmış
ve bunların hesaplama güçleri tahmin edilmiştir.
• Algoritmik aşamada tam sayı ağırlıklarda olduğu gibi her hangi bir reel
sayılar kümesinde gerçek ağırlığın ağırlığa nasıl dönüşeceği ve minimum ağırlıklı
LT fonksiyonlarının nasıl oluşturulacağı gösterilmiştir. Ayrıca COM P
fonksiyonunu hesaplayan TL ˆ2 devresinin oluşturulduğu algoritma gösterilmiştir.

Son olarak XOR, ADD, PRODUCT gibi kullanışlı fonksiyonların LTM ile
hesaplanması gösterilmiştir.
• Uygulama aşamasında ise LT ve LMT ‘in uygulamaları olan VLSI‘nın
tasarım, planlama ve test basamakları gösterilmiştir. Ağırlık değerini depolamak
için dalgalı giriş kullanılan programlanabilir LT elemanı tasarlanmıştır.

Tez şu şekilde organize edilmiştir: Bölüm 2’de eşik devresi teorisinin bilinen
sonuçları gösterilmiştir. Özellikle herhangi bir doğrusal eşik elemanı tam sayı
ağırlık ile tamamlanabilir. Makalemiz bu sonucun herhangi bir reel sayılar
kümesinde genelleştirilmesidir. Ağırlığın dönüştürüldüğü algoritma boyunca
koşullar tamamlanmış LT fonksiyonunun türetilmesine izin verir. Bölüm 3’te
minimum ağırlıkta doğrusal eşik fonksiyonlarının oluşturuluş metodu
gösterilmiştir. Bu metot d’ye bağlı T

d
L ˆ)(

 sınıflarının birbirinden ayrılması için

kullanılır. d tamsayısı verildiğinde T
d

L ˆ)(
 sınıfı ağırlığın 0(nd) ile tamamlayabildiği

 21

fonksiyon kümesi olarak tanımlanır. Bölüm 4’te örnekteki gibi belli başlı sonuçlar
gösterilmiştir: Büyük ağırlıklı tek LT elemanı iki katlı devreden oluşmuş TL̂
elemanı yani küçük ağırlıklı doğrusal eşik elemanı ile tamamlanabilir. Bölüm 5’te
LMT yani çoklu bağlantılı doğrusal eşik girişi tanıtılmıştır. XOR, ADD, PRODUCT
15’den LT’ye ilgili LTM’nin kuvvetinin tahmini ve türev sınıfları gibi TL̂ , TL ˆ2 ve

LT2 gibi kullanılan doğru yanlış fonksiyonlarının yapıları gösterilmiştir. Son
olarak bölüm 6’da LT ve LMT’nin tamamlayıcısı VLSI tanıtılmıştır. Fiziksel
bağlantılı ve programlanabilir sonuçlar gösterilmiştir. Ağırlıklar dalgalı girişteki
yükte depolanır ve elektron püskürmesi ve tünel açılmasıyla değiştirilir.

 22

Bölüm 2

Ağırlıkların Kısıtlanması

2.1 Giriş

Şimdiki bölümde tek LT elemanının ağırlığı ile ilgili sorulara odaklanılıyor. Verilen
herhangi bir n tane değişkenli eşik fonksiyonunda ağırlığı depolamak için kaç
tane bite ihtiyaç vardır. Bu sorunun cevabı herhangi bir LT fonksiyonunun tam
sayı ağırlıklar ile tamamlanmasının gösterilmesi ve boyutlarının kısıtlanmasının
sağlanması ile 1970’lerin başında Murago, sayfa [32], tarafından verilmiştir.
Bölüm 2’de bu düşünde şu sorulara cevap verilerek genelleştirilecektir:

• Ağırlıkların büyüklüğü tam sayılar yerine tamsayıların kareleriyle
sınırlandırılırsa ne olur?
• Eğer yalnızca 2’nin kuvvetlerine izin verilirse ne olur?
• Genelde D, pozitif reel sayıların alt kümesi, D ∈ R+ ağırlıkların büyüklüğü
D’den olan LT fonksiyon seti LT[D] olarak tanımlanır.

DffDLT wxwwxx i

n

i
iion

∈+== ∑
=

||)...sgn(),...,(:{][
1

1 olduğu yerde.

LT[D] = LT ‘deki D koşulları nelerdir? (örneğin tüm LT fonksiyonlarını
tamamlamak için büyüklüğü D’den olan ağırlıklar yeterlidir.

Bölüm 2.2’de bu tip soruların bazı motivasyonları gösterilecektir. 2.3’te ise şu
başlıklar altında toplanabilecek ispatlar ve örnekler verilecektir:

• n değişkenli kaç tane LT fonksiyonu vardır?
• Herhangi bir eşik fonksiyonunda ağırlıkların depo edilebilmesi için gerekli
bitlerin üst sınırı nedir?
• Tamamlanan fonksiyonu değiştirmeden her hangi bir reel ağırlığı nasıl bir
tam sayıya dönüştürebiliriz?

Bölüm 2.5’te ise temel sonuç sunulacaktır: Tamamlanabilen LT fonksiyonları
tarafından garanti edilen D kümesinin koşulları.

2.2 Motivasyon

Eşik devrelerine değinildiği zaman, genellikle mesele belirli ağırlık değerinin aynı
girişte ya da değişik girişlerde farklı bölgelerde görülmesidir. Ağırlık değerini
depolamanın pahalı olduğu verilen sistemde öncelikle değer depolanmak istenir
ve aynı değeri birçok bölgede depolamak yerine ilişkin ağırlıklar ile bağlanır. Bu

 23

kavram eşik devrelerinin uygulamalarındaki hem donanım hem de yazılımda
tatbik edilebilir. Öğrenilmiş algoritmaların sonuçları ya da verilen fonksiyonda
basit bir ön hesaplama olarak verilmiş ağırlıklar için yukarıdaki yaklaşım
edilgendir. Yalnızca çift ağırlıklar değerleri elenir. Daha fazla çift ağırlıklar ortaya
çıkartmak için ilgili eşik fonksiyonlarını etkilemeden değiştirilmiş belli ağırlıkların
depolama yerlerini muhafaza etme amacımıza ulaşmamıza bir basamak daha
kaldı. Bölüm 1.2’de farklı ağırlıklar kümeleri aynı eşik fonksiyonu ile
tamamlanabildiği için yukarıdaki durumun yapılabildiğini gördük. Bu bağlamda şu
soru sorulabilir: Verilen reel sayılar kümesi tüm LT fonksiyonlarının gösterilmesi
için yeterli midir?

2.3 Taslaklar ve ilgili çalışmalar

Farklı bir ağırlık aynı LT fonksiyonu ile tamamlanabilir. Ağırlıklar kümesini
karakterize etmenin bir yolu ağırlığın sınırları olarak neyi tanımladığımızdır.

Tanım 2.1 (Ağırlığın sınırları)
(w0,...,wn) ağırlığın seti olsun ve f de bunların tamamladığı fonksiyon olsun.
Kümenin sınır çifti

)(max
1

00)(|
∑
==

+=
n

i
iixfx xwwl

ve

)(max
1

01)(|
∑
==

+=
n

i
iixfx xwwh

olsun.

Burada (l, h) sınırın iki açık özellik

• I < 0 ve h ≥ 0
• her x Є {0, l}n için,] [hln

i ii xww ,
10 ∉+∑ =

görülmektedir.

Aşağıda gösterilen ispatı yapmak için (-1, 1) sınırlarına ihtiyacımız olacak.
Verilen herhangi bir ağırlıklar setini algoritma 2.1 şöyle bir sete çevirir.

Algoritma 2.1 ((-1, 1) sınırı)
(u0,...,un) kümesi (l,h) sınırı ile veriliyor ve

)
2

(2
00

lh
lh uw +−

−
=

 24

lh
uw i

i −
=
2

 her i için, 1≤i≤n

algoritma 2.1’in geçerli ağırlıkları ürettiğini gösterelim öylek ki orjinal olanlarla
aynı değerleri ürettiğini ve sınırlarının (-1,1) aralığında olduğunu gösterelim.

Yardımcı Teorem 2.1 (Ağırlıkların çevirimi)
 (uo,...,un) (h,l) sınırlı ağırlıkların keyfi bir kümesi olsun ve f ifade ettiği fonksiyon
olsun. Algoritma 2.1 ile elde edilen ve (-1,1) sınırında bulunan fonskiyon olsun ve
f fonksiyonunu ifade etsin.

Kanıt:

)sgn()(
10 ∑ =

+= n

i ii xuuxf)sgn()(
10 ∑ =

+= n

i ii xwwxg

)sgn()(
10 ∑ =

+= n

i ii xuuxf ve g fonksiyonu yeni ağırlıklarla ifade edilen

(wo,...,wn),)sgn()(
10 ∑ =

+= n

i ii xwwxg . Her x için g(x)=f(x) olduğunu
göstereceğiz. İki duruma bakacağız:

f(x) = 0 olsun. Tanım 2.1 ile sınır (l,h) ile ve h-l>0 ile sınır

l
n

i
ii xuu ≤+∑

=1
0

şeklindedir. Eşitliğin her iki tarafına aşağıdaki yöntemi

22 1
0

hllh n

i
ii xuu

−≤++− ∑
=

Uygularsak ve daha sonra
hl −
2 ile

)
2

(2)
2

(2
1

0

hl
lh

lh
lh

n

i
ii xuu

−
−

≤++−
− ∑

=

çarparsak,

1
1

0 −≤+∑
=

n

i
ii xww

sonucuna ulaşırız.

 25

g(x)=0

• f(x)=1 yapan x için aynı işlemleri tekrarlarsak

h
n

i
ii xuu ≥+∑

=1
0

22 1

0

lhlh n

i
ii xuu

−≤++− ∑
=

)
2

(2)
2

(2
1

0

lh
lh

lh
lh

n

i
ii xuu

−
−

≤++−
− ∑

=

 1
1

0 ≤+∑
=

n

i
ii xww

elde ederiz.

 g(x)=1

ve g=f olduğunu gösterdik ve öyle 1||

10 ≥+∑ =

n

i ii xww bir eşitsizlik olan

∑ =
+ n

i ii xuu 10 noktalarında h veya l’ye eşit olan bir eşitlik olduğunu gösterdik.

Bu durumu bir örnekle gösterelim.

Örnek 2.1 ((—1,1) Sınırı)
2-değişkenli LT fonksiyonunu düşünelim.

f(x1,x2) = sgn(-1.2 + 0.5x1 + 1.1x2)

Ağırlık vektörü (-1.2,0.5,1.1). Sınırı olan (l,h)’yi hesaplayalım. Ağırlıklı toplam
aşağıdaki değerleri tahmin etmektedir.

X1 x2 -1.2 + 0.5 x1 + 1.1x2 f(x1, x2)

0 0 -1.2 0

 26

0 1 -0.1 0

1 0 -0.7 0

1 1 0.4 1

Tanım 2.1’e başvurarak

1.0)1.15.02.1(max
210)(|

−=++−=
= xxxfx

l

4.0)1.15.02.1(max
210)(|

−=++−=
= xxxfx

h

L ve h’yi elde ederiz.

Algoritma 2.1 ile yeni ağırlıklar

4.5
2

)1.0(4.02.1(
)1.0(4.0

2)
2

(2
00 =−+−

−−
=+−

−
lh

lh uw

0.2
)1.0(4.0

5.02
1 =

−−
= x

w

4.4
)1.0(4.0

1.12
2 =

−−
= x

w

şeklindedir. Yeni ağırlık vektörü aşağıdaki değerleri tahmin etmektedir.

X1 x2 -5.4 + 2.0 x1 +4.4x2 sgn(-5.4 + 2.0 x1 + 4.4x2)

0 0 -5.4 0

0 1 -1.0 0

1 0 -2.4 0

1 1 1.0 1

Beklendiği gibi yeni ağırlıklar aynı fonksiyonu ifade etmektedir ve sınırı (-1,1)’dir.

Tek elemanlı LT’nin çalışmasıyla ilgili iyi bilinen bazı sorunları belirtelim.

 27

2.3.1 n-Değişkenli 0(2n) LT Elemanı Vardır

n tane değişken verildiğinde toplam doğru yanlış fonksiyonunun 22

n

 olduğunu
belirlemek kolaydır. Ayrıca genel doğru yanlış fonksiyonu 2n çiftli girişli gerçek
tablosu tarafından özel olarak belirlenir. Bu fonksiyonların kaç tanesi gerçekten
eşik fonksiyonlarıdır? Bu soru 1950’lerde birçok yazar tarafından düşünülmüştür.
Şu sınırlama sayfa [36] ‘da türetilmiştir.

2
2

|| nLT <

|LT| n tane değişkenli eşik fonksiyonları için sabit kalır. Daha sonra 1850’de L.
Schlafli, sayfa [42], tarafından |LT| deki en iyi üst sınırı

22)(

0

log1
2|| 2

2 nOnn
n

i

n
n

i
LT +−

=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −< ∑

olarak bulunmuştur.

Sayfa [54] ‘de |LT| deki ilk alt sınır yayınlandı fakat aynı dergide gösterilmiş
benzer bir ispat olan [46] ’nın sunuş tarihi nedeniyle önceliği oldu. Bu alt sınır
şudur:

2 2
)1(

||
−

>
nn

LT

Yalnızca 1989’da Zuev tarafından bu sınırlar geliştirildi. Sayfa [34] ve [57] ‘deki
sonuçların kullanıldığı sayfa [58] görülebilir ve

2)ln(
ln
10 2

2

|| nnO
n
nnLT −−>

şeklinde bu sınırı tanımlayabiliriz.

Son zamanlarda üst sınır daha da geliştirilmiştir, bunun için sayfa [21] ve [23]’e
bakınız:

2)(log|| 2

2 nOnnnLT −−>

 28

Ve son olarak sayfa [22]’de ispatlandığı gibi

2)(log|| 2

2 nOnnnLT −−>

olarak gösterilebilir. Sonuç olarak üst ve alt sınır aralığı daraldı. 2n çevresinde n
değişkenli eşik fonksiyonları olduğundan teorik argümanlardaki kullanılabilir. Bu
argümanlar en az n2 olması gereken ağırlığı (eğer bu değerde değilse bazı
fonksiyonlar diferansiyelleşemiyor.) göstermek için ihtiyaç duyulan toplam bit
sayısını belirlemek amacıyla kullanılabilir. Ayrıca 1.2 kısmında gördüğümüz gibi
farklı ağırlık vektörleri aynı fonksiyonu tamamlıyor. LT sunumunun depolama
açısından en uygun sunum değildir çünkü ağırlığı sunmak için n2 fazla bite
ihtiyaç vardır.

2.4 Reelden Tamsayı Ağırlıklara

Bu bölümde tamsayı ağırlıklarla yazılabilen reel ağırlıklar gibi herhangi bir ağırlık
kümesini ile yazılmış fonksiyonu göstereceğiz. İki argüman sunuyoruz:
• Ağırlıkların boyutlarını sınırlamayı sağlayan müspet olmayan, varoluş
temelli argüman.
• Ağırlıkların boyutlarını sınırlamayan fakat verilen ağırlık kümesini tam
sayıya dönüştüren müspet argüman.

2.4.1 Her Bir 0(nlog2n) Bit için Ağırlık Sağlayan Eşik

Fonksiyonları

Yukarıda bahsedildiği gibi verilen eşik fonksiyonu tahminine göre tek bir ağırlık
en az 0(n) bit sağlar. Çünkü LT sunumu dağınıktır. Muroga ,sayfa [32] ‘nin
1970’lerin başlarında gösterdiği gibi gerçek sayı 0(nlog2n) ‘dur. Tam olarak
olamasa da LT sunumu biraz yoğundur; 0(n2) arasındaki 0(n2log2n) fark daha
küçüktür ve eşik izlenerek yapılan ağırlık toplamının kullanılmasıyla uygun
hesaplama avantajı elde edilir. Muroga’nın sınır tanımını kavrayabilmek için
aşağıda ispatı gösterilmektedir.

Theorem 2.1 (Ağırlıkta 0(nlog2n) bits) Keyfi bir n-değişkenli LT fonksiyonu
için,ağırlık wi aşağıdaki

ninnOwi ≤≤∀< 0)(|| log
2

durumu sağlamaktadır.

 29

Kanıt:
l, LTf ∈ koşulunu sağlayan bir eşik fonksiyonu olsun. Ağırlıkları (u0, ...,un)
olarak bilinmesin. l’nin doğruluk tablosundan 2n adet doğrusal eşitsizlikler
çıkartılabilir.

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<+++

≥+++

02...2

...

...

0...

)()(

110

)1()1(

110

xuxuu

xuxuu

nn

nn

nn

}2{
1

)(
n

k

kx =
 hiper küpün üst noktalarıdır ve eşitsizliğin yönü fonksiyonun ilgili

noktadaki değerine (alt tercih ihtiyaridir.) bağlıdır. (l,h) ağırlıkların (u0,...,un)
sınırlarıdır ve (-1, 1) sınırlarında yeni ağırlıkların (u0,...,un) elde edilmesi için
algoritma 2.1 uygulanır. Eşitsizlik sistemi

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=−<+++

−=≥+++

+ 1)(212...2

...

...

1)(21...

)1()()(

110

)1()1()1(

110

xxwxww

xxwxww

n

nn

nn

f

f

nn

şekline gelir.

Doğrusal eşitsizlik teorisinde, sayfa [26], [27] , belli başlı sonuçlar kullanılarak; 2n
eşitsizliği dışında n + 1 ‘in alt kümesinin var olduğunu öne sürebiliriz. Örneğin
eğer eşitsizlik işareti eşitlik işareti ile yer değiştirir ise eşitliğin sonuç sisteminin
çözümü aynı zamanda eşitsizlik sistemini de çözer. İlgili işaretlenmiş n + 1
eşitsizliğinde } 1

1

)({
+

=

n

k

kz {0, 1}" noktalarının bir kümesi olsun.

Aşağıdaki 24 eşitlikler sistemini

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=+++

−=+++

+++ 1)(2...

...

...

1)(2...

)1()1()1(
110

)1()1()1(
110

zzwzww

zzwzww

nn
nn

n

nn

f

f

elde ederiz.

 30

Yukarıda da değinildiği gibi eşitliklerin sağ tarafı f fonksiyonuna bağlıdır. Cramer
metodu kullanılarak

Δ
= Δi
iw

sonuç bulunabilir.

Burada A determinant iken

zz

zz

n
n

n

n

)1()1(
1

)1()1(
1

...1

...

...

...1

++

=Δ

ve Ai eşitlik sisteminin sağ tarafında i. kolonun değiştirilmesiyle elde edilmektedir.

Fark ediliyor ki

zzzzz

zzzzz

n
n

n
i

nn
i

n

nii

f

f

)1()1(
1

)1()1(
1

)1(
1

)1()1(
1

)1()1(
1

)1(
1

...1)(......1

...

...

...1)(......1

++

+

++

−

+

+−

−

−

=Δ

yukarıdaki matrisler Is, Os ve -1s ‘den oluşmuştur. Böyle bir matrisin
determinantı aşağıdaki sınırı

Bn
nXn ≤Δ)(

sağlar.

Bn sınırlama sırası aşağıdaki durumu

BB nn n≥+1

sağlamaktadır.

Daha sonra aşağıdaki durumu

 31

)!()(nOnXn ≤Δ

ifade etmektedir.

Burada tamsayı ağırlıkların boyutu üzerinde ilgileniyoruz, dolayısıyla

)log()!(
||

|| 2 2
' nn

iii OnOww =≤
Δ
Δ=Δ= Δ

tek bir ağırlığı depolamak için 0(nlog2n) bite ihtiyaç vardır.

2.4.2 Her Bir 0(nlog2n) Bit için Ağırlık Sağlayan Eşik

Fonksiyonları

Bölüm 2.4.1’de herhangi bir LT fonksiyonunda boyutlarında yukarıdan sınır
koyarak ağırlığı depolamak için O(nlogn) bit’in yeterli olduğunu kanıtladık.

1961’in başlarında her bir f2(n) bit için ağırlık gibi)(22
n

O boyutlarını sağlayan
fonksiyon bulundu. Son dönemlerde sayfa [17] ‘de Hastad boyutu 6(nlog2n) olan
gibi her bir ağırlık için fi(nlogn) ‘u sağlayan fonksiyonu gösterdi. Bölüm 2.3.1’de
gördüğümüz gibi her bir ağırlık için en az n bit deposuna ihtiyaç duyulan yaklaşık
2n LT fonksiyonu vardır. Daha önce de değinildiği üzere LT sunumu depolama
açısından en uygun sunum değildir. Bu sunum eşik fonksiyonunu depolamak için
ilave bitlerle log n faktörünü sağlar. Bununla beraber LT sunumu yoğundur ve
kompleksliği hesaplamak için ekstra depolanma arayı kapatır. Depolama için LT
fonksiyonlarının spektral sunumu en uygun olanıdır. Aslında sayfa [9] ‘da yazar
ilk n + 1 spektral katsayılarının özel bir şekilde belirlendiğini göstermiştir.

2.4.3 Reel Sayılardan Tamsayılara Çeviren Bir
Algoritma

İspatın geçerliliği boyunca süren algoritmayı göstermeden önce, birkaç örneğe
bakalım.

Örnek 2.2 (Reel sayılardan tamsayılara) Aşağıdaki fonksiyon verilmiş olsun.

)3.02.05.0sgn(),(21211 xxxxf ++−=

Tam sayı ağırlıkları elde etmek için açık olan yol bunları 10 faktörü ile
çarpmaktır. Olguyu kullanarak

 32

)325sgn(),(21212 xxxxf ++−=

denklem aşağıdaki gibi

)235.2sgn(),(21212 xxxxf −Π+−=

olsun.

Bu durumda derecelendirme işe yaramıyor çünkü irrasyonel ağırlıklar var. Bu
ağırlıklarla uzlaşmanın bir yolu yer fonksiyonlarını, ⎣ ⎦ , kullanmaktır ve

)233sgn(),(21212 xxxxf −+−=

aşağıdaki fonksiyonda ise

)
3
21.05.0sgn(),(21213 xxxxf ++−=

şeklindedir.

Ne x10 ne de ⎣ ⎦ doğru cevabı verdi. Doğru cevabı bulmak için çarpma işlemini
ve yer fonksiyonunu birlikte uygulamalıyız ve aşağıdaki örnek

)45sgn(),(21213 xxxxf ++−=

reelden tamsayı ağırlıklara dönüştürmek için kullanılan algoritmanın arkasında ki
ana fikri gösteriyor. Derecelendirme ve her ağırlık için yer uygulama.
Algoritmanın işleyebilmesi için herhangi bir ağırlık vektörünün yeterince büyük ve
derecelendirilmiş katsayılarının var olduğunun kanıtlanması gerekir.

Algoritma 2.2 (Reelden tamsayı ağırlıklarına) verilen reel ağırlık kümesi
(u0,...,un).
1. (-1,1) sınırında yeni ağırlıkları (v0,...,vn) ‘de etmek için algoritma 2.1 ‘i uygula.
2. ⎣ ⎦vw ii n)2(+= ‘i yerleştir.

Yardımcı Teorem 2.2 (Reelden tamsayı ağırlıklarına)

 33

Algoritma 2.2 ‘de oluşturulan ağırlıklar orijinal ağırlıklarla aynı fonksiyonu
tamamlar. Şöyle ki,

)sgn()sgn()(
1

0
1

0 ∑∑
==

+=+=
n

i
ii

n

i
ii xwwxuuxf .

İspat:
(u0,...,un) reel ağırlıklar kümesi olsun.Yeni ağırlıklar kümesini (V0,...,vn) elde
etmek için algoritma 2.1‘i uygulayalım Gösterimi basitleştirmek için (1,x1 x2,...,xn)
genişletilmiş vektörü yerine x diyelim sonuç olarak ∑ =

+= n

i ix1 i0 vv x v. . Yardımcı
teorem 2.1 ‘e göre yeni ağırlıklar da aynı fonksiyonu tamamlar ve sınırları (-1, 1).
Örneğin

).sgn().sgn()(xvxuxf ==

1|.| ≥xv her }1,0{ n
x∈ .

Yukarıdaki eşitsizliği k ile çarpıyoruz,

kxkw ≥|).(| her }1,0{ n
x∈

⎣ ⎦kw vektörü ifade etsin.

⎣ ⎦ ⎣ ⎦ kxkwxkwxkw ≥+− |..).(|

⎣ ⎦ ⎣ ⎦ kxkwxkwkw ≥+− |.).(| .

Üçgen eşitsizliği ile,

⎣ ⎦ ⎣ ⎦ kxkwxkwkw ≥+− |.||).(|

⎣ ⎦ ⎣ ⎦ xkwkwkxkw).(||.| −−≥

⎣ ⎦ ⎣ ⎦ ||)(||1|.| kwkwnkxkw −+−≥

 34

⎣ ⎦ ||1,...,1(||1|.| +−≥ nkxkw

⎣ ⎦ 11|.| ++−≥ nnkxkw

⎣ ⎦ 1|.| −−≥ nkxkw

elde ediliyor.

Bu noktada k = n + 2 yapıyoruz ve aşağıdaki denklemi

⎣ ⎦ 1|.)2(| ≥+ xwn

elde ediyoruz.

Yeni ağırlıkların orijinal fonksiyonu f tamamladığını nasıl belirtebiliriz? Verilen
herhangi bir x girdi vektörü yukarıdaki basamakları tekrarlar, lxu ≤. durum f(x)=0
ya da hxu ≥. durum f(x) =1 için ile başlar ve ⎣ ⎦ 1.)2(−≤+ xwn ya da

⎣ ⎦ 1.)2(≥+ xwn türetir. Mutlak değerin ispatta kullanılması iki durumu birlikte
tehdit eder.

Aşağıdaki örnekte algoritma 2.2 uygulanıyor.

Örnek 2.3 (Algoritmayı kullanarak)
Örnek 2.1’de kullanılan aynı 2-değişkenli fonksiyonu

)1.15.02.1sgn(),(2121 xxxxf ++−=

kullanalım.

Örnek 2.1’de yapılan Algoritma 2.1’i yapmaya ihtiyaç duyuyoruz. Yeni ağırlık
vektörü v,

)4.40.24.5sgn(),(2121 xxxxf ++−= .

Bu noktada ağırlıkları n + 2 = 4 ile çarpıyoruz ve

 35

)17822sgn(),(2121 xxxxf ++−=

tabanını alıyoruz.
Yeni tamsayı ağırlıkları aşağıdaki tabloyu veriyor.

X1 x2 -22 + 8 x1 + 17 x2 sgn(-22 + 8 x1 + 17x2)

0 0 -22 0

0 1 -5 0

1 0 -14 0

1 1 3 1

Beklenildiği gibi fonksiyon değişmedi. Fakat bulunan ağırlıklar biraz büyük.
Özellikle asıl fonksiyon AND(x1,x2)‘dir ve çok daha küçük eightlerle

)2sgn(),(2121 xxxxf ++−=

şeklinde tamamlanabilir.

Bölüm 3’te olası en küçük tamsayı ağırlıklar değerini bulma problemine
yönelinecektir.

2.5 Ağırlıkların Herhangi Bir Sayı Kümesine
Dönüştürülmesi

Ağırlıkların mutlak değerini D kümesi, D ∈ R olarak kısıtlanır. D’ye ağırlıkların
tanım kümesi denir.

Tanım 2.2 (LT(D) – D tarafından spawned edilen LT fonksiyonları kümesi)
Verilen D’ye göre, R’nin alt kümesi, LT(D) mutlak değeri yalnız D’den çekilmiş
ağırlıklar ile tamamlanabilen LT fonksiyonlarının kümesi olarak tanımlanır.

Resmen

,{)(1RnwLTfDLT +∈∃⊆= öyle ki }1,0{)sgn()(
1

0

nn

i
ii
xxf xww ∈∀+= ∑

=

 ve || Dwi∈ 0≤i≤n için.

Hedefimiz D’nin özelliklerini ve LT(D) üzerindeki etkilerini irdelemektir. Birkaç
kesin durumu eleyerek öncelikle D için aday listesini daraltalım.
• D sonsuzdur.

 36

Aslında eğer D sonlu ise yeterince büyük n bulunabilir. Bu sebeple n değişkenli
LT fonksiyonu vardır. Bu fonksiyon D’nin asallığından daha büyüğüne ihtiyaç
duyan ayrı ağırlıkların sayısı sebebiyle
D’den çekilen ağırlıklarla tamamlanamaz. Örneğin COMPARISON fonksiyonu,
ağırlıkların yarısı ayrık olması için değişken sayısına n > 2|D|.diyelim.
• D sayılabilir.
Bölüm 2.3’te belirtildiği gibi LT(N) = LT ‘dır. Herhangi bir LT fonksiyonu tam sayı
ağırlıkları kullanılarak tamamlanabilir. N’den daha yüksek asallığı olan bir küme
kullanılması ekstra fonksiyonellik sağlamaz. Aslında eğer küme] [ε,0 aralığını
içeriyorsa tam sayı ağırlıkları LT(D) = LT ‘ye uygun olmak için küçültülebilir. Diğer
yandan D =[100,101], olduğu düşünülürse fonksiyonların kümesi fazla sayıdaki
üretimi çok limitlidir. Bu OR ve birkaç yakından ilgili fonksiyon içerir. Genel
sayılamayan D kümesi durumunda D’nin “en iyi” sayılabilen alt kümesine
odaklanırız.
• D tam anlamıyla sıralanmıştır.
D sayılabilir olduğu için sıralanabilir. Ayrıca tüm elemanları ayrı olmalıdır. Bu
alfabenin rolünü oynar.

D sayılabilir ve sıralanabilir olduğu için endekslenebilir.

 { }NİiD di ∈= ve idd ii ∀≤

+
...1 .

Aşağıda “değiştirilmiş yer” fonksiyonu d(.) tanımlanıyor:

d: R → R

di
xdxd =→)(......:

Öyleki dd ii

x 1+≤≤

Örnek 2.4 (Kare ve üstel ağırlıklar)
Gördük ki reel ağırlıklar tamsayı ağırlıklara dönüştürülebilir. Ağırlıkları mükemmel
karelere dönüştürmek mümkün müdür?

 id i

2= her iЄN için.

 37

5-değişkenli AND fonksiyonunu

⎩
⎨
⎧ ===

=
diger

eger
AND xxxx 0

1...1
),...,(51
51

düşününüz.

LT’nin bir fonksiyon olduğunu gördük ve aşağıdaki gibi

)5sgn(),...,(5432151 xxxxxxxAND +++++−=

yazılabilir.

Tam kare formunda ağırlıklarla

)9444425sgn(),...,(5432151 xxxxxxxAND +++++−=

şeklinde yazılabilir mi?

Ya 2’nin katları şeklinde yazılabilir mi?

 2iid = her iЄN için

)2228sgn(),...,(5432151 xxxxxxxAND +++++−=

eşitliğinden görülüyor ki, örnek 2.4’de di’nin devamının ne olduğunu
önemsemeden D’den çekilen ağırlıklarla AND tamamlanabilir. Bu durum her
hangi bir LT fonksiyonu için doğru değildir. Takip eden teorem gösteriyor ki eğer
di polinom olarak artıyorsa LT(D) = LT fakat bunlar üstel ise bazı LT fonksiyonları
tamamlanamaz. 32, eğer D 0(id) ise tüm LT fonksiyonları tarafından
tamamlanabilirler. Fakat D Q(2an) ise bu durum gerçekleşmez. Nitekim daha
genel sonuçları gösteriyoruz. Mesela bazı süper- polinom artışları serbest
bırakılır eğer di O(nlogn) ise, LT(D) = LT.

Teorem 2.2 (Ağırlıkların Kısıtlanması)
Ağırlıklar sıralanmış D = {di, i ∈ N}, D ∈ R+ kümesi tarafından kısıtlanmış olsun.

 38

1. LT(D) = LT eğer verilen büyük sabit C ∈ R+ için herhangi bir i > i0 de I0,
var ise

C(di+1 - di) < di.

2. LT(D) ⊂ LT eğer di)(2 nαΩ ve

),,(0iK ∞∃ Her i > i0 için di
iK ≤∞2 .

İspat:
Birinci bölümü gösterelim. (l,h) sınırlarıyla verilen orijinal ağırlık vektörü u, ile
algoritma 2.1 ‘i uygulayarak (-1, 1) sınırlarında yeni ağırlıklar v elde ederiz.

 1|.| ≥xv her }1,0{ n

x∈ için.

Yukarıdaki eşitsizliği k ile çarpıyoruz,

 kxkw ≥|).(| her }1,0{ n

x∈ için

aşağıdaki eşitsizliğe

 kxkwdxkwdxkw ≥+− |).().().(|

dönüşür.

Yukarıda tanımlandığı gibi d(kw), (d(kw0),...,d(kwn)) vektörünü gösteriyorken, d
fonksiyonu D kümesi için yer fonksiyonu aşağıdaki gibi

 kxkwdxkwdkw ≥+− |).().(|

 genelleştiriliyor.

Üçgen eşitsizliği ile,

 kxkwdxkwdkw ≥+− |).(||).(|

 |)).(|).(| xkwdkwkxkwd −−≥

 39

 ∑
=

−−≥
n

j
ii ww kdkkxkwd

0
|)(|).(|

))(1().(| 1 dd ii

nkxkwd −+−≥
+

i d(k|wmax|) = di, iken, wmax ağırlık en büyük mertebeye ulaşır |kwi — d(kwi)|
D’nin koşullarına göre

 ddd iiiC <−

+
)(1

i0 vardır.

Tüm i > i0 ve herhangi bir seçim için C’yi C = wmax(n + 1) alalım.

 dddw iiin <−+

+
))(1(

1max

eşitsizliği ile d fonksiyonunun tanımı ile di < kwmax

 kwddw iin

max1max
))(1(<−+

+

 0))(1(1 >−+−

+ dd iink .

Daha sonraki eşitsizliği kullanarak aşağıdaki denklem

 0|).(| >xkwd

ortaya çıkmaktadır.

Yeni ağırlık vektörünün d(kw), orijinal fonksiyon tarafından tamamlandığını
göstermek için bu kadar yeterlidir. Teoremin ispatının ikinci bölümüne gelmeden
önce iki örneğe bakalım.

Örnek 2.5 (Kareler) D, örnek 2.4’te tanımlanan tam kareler kümesinde
tanımlanan

D = {1,4,9,16,25,...}

 40

küme olsun.

Teorem 2.2’ye göre tüm LT fonksiyonları her C eR+ için

 iiidd iCiCC ii

222

1)12()12()(<+=−++=−
+

olarak tanımlanabilmektedir.

Her i > i0,

 12 2

0 +⎥⎦
⎥

⎢⎣
⎢ ++= CC Ci

teorem 2.2’nin ispatı

))(1().(| 1 dd ii

nkxkwd −+−≥
+

eşitsizliğinde görüldüğü gibidir.

Olarak,

)12)(1().(| ++−≥ inkxkwd

)12)(1().(|

max
++−≥ kknkxkwd

seçiyoruz

 232 2 ++++= nnk n

ve aşağıdaki eşitsizliği

 0|).(| >xkwd

elde ediyoruz.

Yeni ağırlıkların orjinal fonksiyonu ifade ettiğini göstermektedir.

 41

Örnek 2.6 (Sayısal örnek)

Örnek 2.7 (2’nin Kuvvetleri) Üstteki ispat 2’nin üsleri için kullanılırsa ne olur:

D = {1,2,4,8,16,...}

Teorem 2.2’deki ifade kullanılırsa

 ddd i

iii
ii CCCC <=−=− +

+
)()()(222 1

1

durum dddiR iiiCC <−∃∈∀

+

+)(/, 10 her ii 0≥ için sağlanamaz. Teorem
kullanılamaz. İspat nerede başarısız olmaktadır?

 kxkw ≥|).(| her }1,0{ n

x∈ için

 kxkwdxkwdxkw ≥+− |).(||).().(|

 kxkwdxkwdkw ≥+− |).()).((|

 kxkwdxkwdkw ≥+− |).(||)).((|

 |)).((||).(| xkwdkwkxkwd −−≥

))(1(|).(| 1 dd ii

nkxkwd −+−≥
+

Bu noktada şu ifade kullanılarak di+1 – di = di < k

 knkxkwd)1(|).(| +−≥

 nkxkwd −≥|).(|

ispatımız burada işe yaramadı ancak 2’nin kuvvetleri için sonuçları kanıtlamanın
başka bir yolu olmalıdır. Karşıt bir örneğe ihtiyacımız var. Ağırlık vektörü
(-5,1,1,2,3,4) olan 5 değişkenli LT fonksiyonu

 42

)4325sgn(),,,,(5432154321 xxxxxxxxxxf +++++−=

düşünelim.

2’nin üsleri olarak ifade edebileceğimiz ağırlıkları bulduğumuzu

)222sgn(),,,,(5

5

4

4

3

3

2

2

1

10

54321 222222 xxxxxxxxxx aaaaaaf +++++−=

farz edelim.

aj ∈ N iken. f tanımında yeni ağırlıkların ilişkisine göre şu gözlemleri

 0)11100(=f ama 22 431)11010(aaf <⇒=

 0)10010(=f ama 22 541)10001(aaf <⇒=

0)00001(=f ama 222 4351)00110(aaaf +<⇒=

yaparız.

Bu eşitsizlik sisteminin tam sayı sonucu olmadığının görülmesi çok basittir.

İspat: (devam)
Teorem 2.2 deki 2. savı ispatlamak için örnek 2.7 deki fikir izlenir. 2 iK α ‘nin
ağırlıları ile tamamlanamayan fonksiyonu

 wwww

a
l

a
lll 12111

+⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

<<<<<

bulunmak isteniliyor. Bunu sağlayan herhangi bir ağırlık kümesi seçeriz.
Ağırlıkların farklı olmasını garanti ederiz ayrıca fonksiyonu düzenlenir.

İlk eşitsizlik kümesi

 www

a
l

a
ll ⎥⎦

⎥
⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

>+ 21

 43

gösterir.

İlk eşitsizlikler kümesi aşağıdakileri

 www
a

l
a

ll ⎥⎦
⎥

⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

<< 21
4
1

2
1

ifade etmektedir.

İkinci ile birlikte gerekli çelişki sağlanır. Bu örnek 2.7 de K = a = 1 olarak
yapılmıştır. Fonksiyonları herhangi bir sabit olan K ve a ‘ya göre nasıl
yapılandırabiliriz? Geliştirme için bölüm 5’te elemanlar kullanırız.

Yardımcı Teorem 2.3 (yoğun ağırlıklar ile fonksiyon kurma)
K ve A sabitleri verilmiş ve aşağıdakileri sağlayan herhangi bir ağırlık kümesi
olan fonksiyonumuz

 wwww

a
l

a
lll 12111

+⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

<<<<<

vardır.

Ve

 www

a
l

a
ll ⎥⎦

⎥
⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

>+ 21

İle yardımcı teorem 2.3’ün ispatı Bölüm 3.4.3’te verilmiştir.

2.6 Sonuç

Bölüm 2’de LT fonksiyonlarının tam sayı ağırlıklarla tamamlanması gibi belli başlı
sonuçların genelleştirilmesi yapılmıştır. Yoğunluğu yeterli D tarafından çekilen
ağırlıkları olan LT fonksiyonlarının verilen herhangi bir alt küme, D ∈ R ile
tamamlanabileceğini gösterdik. D’nin polinom olarak ya da süper polinom olarak
artması gerekir fakat üstel olarak artıyorsa bazı fonksiyonlar reelleştirilemez.
Teorem 2.2 D’nin doğru şartlarını gösterir. İspatlar müspettir, ağırlıkların
oluşumundaki ya da karşıt örneklerin oluşumundaki algoritmalar gösterilmiştir.
Sayfa [49] ‘da 38 de tamamlanan doğrusal düşünce listesi ile 2 katlı LT devreleri
tanıtılmıştır. İkinci kat girişindeki ağırlıkların büyüklükleri 2’nin kuvvetleridir.

 44

Bölüm 3

Minimum Ağırlıklar

3.1 Giriş

Bu bölümde tam sayılı ağırlıklar gibi ikili girdi ve çıktılı tek doğrusal eşik girişi
incelenecektir. Bu girişler matematikte doğrusal eşik fonksiyonu olarak
tanımlanır.

Tanım 3.1 (Doğrusal Eşik Fonksiyonu) n değişkenli doğrusal eşik fonksiyonu
doğru yanlış fonksiyonudur f : {0,1}n —> {0,1} her x için ∈ {0,1}n ve w ∈ Rn+1

olarak

⎩
⎨
⎧ ≥

==
Diger

içinxF
xFxf

,0
0)(,1

))(sgn()(

 ∑
=

+−=−=
n

i
ii xwwxWxF

1
0),1.()(

sabitlenmiştir.

Bölüm 2 de görüldüğü gibi LT fonksiyonları tamsayı ağırlıkları ile reelize edilebilir.
Bu bölümün devamında genelliği kaybetmeden ağırlıkların tam sayı olduğunu
varsayacağız.

Ayrıca doğrusal eşik fonksiyonu

 }1,0{1,1{: } →−

n
f

tamamlanabilir.

{0 ,1} ve { -1, 1} sunumlarına yönlendireceğiz.

Verilen f fonksiyonda ağırlık vektörü özel değildir.

Tanım 3.2 (Ağırlık alanı) Verilen eşik fonksiyonu f ve W tanım 3.1 i karşılayan
tüm ağırlıkların kümesi olarak tanımlanıyor.

 45

)}()),1.(sgn(,1,0{:{ } xfxWxwW
nnZ =−∈∀∈=

Aşağıda ağırlıkların boyutunun bir ölçümü vardır.

Tanım 3.2 (En Düşük Ağırlık Boyutu) Ağırlık boyutunun vektörü ağırlıkların
mutlak değerlerinin toplamı olarak tanımlanır. En düşük ağırlık boyutunun
doğrusal eşik fonksiyonu şu şekilde

)||(min][
0
∑
=∈

=
n

i
iWw wfS

tanımlanır.

Asgariyi sağlayan belirli vektöre minimum ağırlık vektörü denir. Doğal olarak
S[f]’nin fonksiyonudur.

3.1.1 Motivasyon

Neden eşik devresindeki ağırlıkların boyutuyla ilgileniyoruz?

Eşik devresi şaşırtıcı derecede güçlü görünüyor. Örneğin polinom boyutunun
sabit derinlikli eşik devresi tarafından tam sayı bölmesi tamamlanıyor. AC0deki
her fonksiyon polinom benzeri ekseri devrelerin3 derinlikten hesaplanabilir
olması [1] ayrıca sağlanmıştır. Bu tüm ACC° için gerçektir. Etkili üst sınırlar
verildiğinde alt sınırları bulmak elde etmek için güçlüklerle karışılması sürpriz
değildir. Aslında eşik devresi için en iyi alt sınır derinlik2 için gerekli olan Inner-
Product-Mod-2 (IP2) ‘nin sonucudur. Fakat bu alt sınır devrenin küçük ağırlıklar
içerdiğini varsayar ve IP2 herhangi bir ağırlıklı 2 derinlikli polinom eşik devresi
tarafından hesaplanabilir. Şöyle ki, eşik devreleri için alt sınırların gelişmesinin
edinilmesi, büyük ağırlıkların rolünün anlaşılması ilgili olduğu görülüyor. Eğer
yalnızca küçük gelişme boyutlarının katsayılarıyla eşik elemanları
kısıtlanabiliyorsa, devrenin hesaplanabilir gücü nasıl kısıtlanabilir? Bu durum
sayfa [17], [33], [43] de gösteriliyor. Üstel şekilde artan ağırlıklı tek eşik elemanı
S[f] ~ 2n tarafından tamamlanabilen doğrusal eşik fonksiyonları bulunuyor. Fakat
bu fonksiyonlar daha küçük polinom olarak artan ağırlıklı eşik elemanı S[f] ~ nd, d
tarafından tamamlanamıyor. Bu sonuçların ışığında yukarıdaki soru ile doğrusal
eşik fonksiyonlarının kümelerinin bulunduğu sınıfı (“küçük” polinom olarak artan
ağırlıklı fonksiyon sınıfı) açıklayarak uzlaşabiliriz. Yakın zamandaki
araştırmaların çoğu küçük ağırlıklı devrelerin gücüne ve keyfi ağırlıklı devreyle
ilişkilerine odaklanmıştır. Özellikle bunlar gösteriyor ki devredeki derinliği bir
arttırmak tüm polinom boyuttaki ağırlıkları düşürmek için yeterlidir. Bu bölümde
değişik yaklaşımlar ediniyoruz. Devrelerle uğraşmak yerine tek eşik girişine
odaklanılıyor.

3.1.2. Organizasyon

 46

Söz konusu bölümün geri kalanının özet bir çerçevesini vermekteyiz. Bölüm
3.2’de biz etkiyi en aza indirirken karşı karşıya kalınan bazı zorlukları ve çıktı
alanı tarafından nasıl etkilendiğini göstermekteyiz. Bölüm 3.3’de biz {-1,1}’de
tanımlanan fonksiyonları dikkate alıyoruz. Eşikte olmayan fonksiyonlar
sınırlandırılıyor (genelleştirilmiş ana fonksiyon) ve en düşük ağırlığa sahip bu
tür fonksiyonların nasıl yapılacağını gösteriyoruz. Bölüm 3.4’de biz {0,1} üzerinde
tanımlanan her hangi bir eşik fonksiyonu ile temas etmemizi sağlayan minimal
fonksiyonları oluşturmanın başka bir yolunu veriyoruz.

3.2 Başlangıçlar ve Örnekler

Bu bölümde bir eşik fonksiyonunun ağırlığını en aza indirmeye çalışırken karşı
karşıya kalınan bazı zorlukları açıklamaktayız. Biz ayrıca çıktı alanının etkileme
ölçülerinden nasıl etkilendiğini gösteriyoruz. (Örneğin {-1,1}’e karşılık {0,1})
Bununla ilgili sonuçlara sayfa [25] ‘ten bakınız.

3.2.1 Etkileri En Aza İndirme

Bir eşik unsurunun etkilerini ölçme konusunda analiz yaparken ana zorluk,
aşağıdaki örnekte gösterildiği gibi farklı bir etki seti tarafından tek bir doğrusal
eşik fonksiyonu gerçekleştirilmesinden kaynaklanmaktadır.

Örnek 3.1 (En Düşük Etkiye Sahip Bir Eşik Fonksiyonu) Aşağıdaki iki etki
setini değerlendirelim.(etki vektörleri)

 w = (4 1 2 5), xxxF x 3211 524)(+++−=

 w' = (8 2 4 10), xxxF x 3212 10426)(+++−=

Her ikisi de aynı eşik fonksiyonunu

))(sgn())(sgn())(sgn()(112 2 xxxxf FFF ===

vermektedir.

Yakından bir bakış f(X) = sgn(-1 + x3), yukarıdaki etki faktörlerinin hiç birisinin
minimal ölçüde olmadığını göstermektedir. Gerçekten de en düşük etki
wN=(1 0 0 1) ve S[f] = 2’dir.

Verilen bir etki setinin minimal düzeyde olup olmadığını belirlemek genel olarak
bir sorundur. Bizim tekniğimiz etki vektörlerinin yapılmasından ibarettir ve onun
en düşüğü kolaylıkla sağlanabilir. Biz daha sonra daha büyük bir fonksiyonlar
seti elde etmek için onları en düşük düzeyde muhafaza ederken nasıl

 47

değiştirileceği gösteriliyor.

3.2.2 {0,1} karşılık {-1,1}

Bizim aynı fonksiyonu (0,1) ve (-1,1) üzerinde gerçekleştirdiğimizi farz edin.
Etkilenme nasıl olacaktır? Bir örneğe göz atalım.

Örnek 3.2 (OR Fonksiyonu)

1. xi Є {0,1} için

)...1sgn(),...,(11 xxxx nnOR +++−=

olsun.

Ağırlıkların boyutu S = n + 1. Bu ağırlıklar en düşük olanıdır.

Kanıt: Ağırlıklar tamsayıdır. Boyutlarını düşürmek OR’un tanımını delecek
şekilde 0’lamak demek oluyor.

2. Şimdi, xi Є {-1,1} için

)...2sgn(),...,(11 xxxx nn nOR +++−=

olsun.

Ağırlıkların boyutu S = 2n - 1. Bu ağırlıklar da en düşük olanıdır.

Kanıt: OR’u ifade eden tüm ağırlıklar pozitif olmalıdır. Any weights that
implement OR have to be positive. S' < 2n-2 boyutunda ağırlıkların olduğunu
düşünün. Hiçbir ağırlık 0 olamaz, böylece nwn ≥∑1

' , -w0 < (2n - 2) - n = n - 2 eşik
fonksiyonunu ifade eder.wi’ en düşük ağırlık olsun. Xi =1 olsun ve diğer tüm
girdiler -1 olsun.)2('

1
−< −∑ nw wi

n böylece F(X) < 0 OR’un tanımını delerek.

Bu örnekten de görülebileceği gibi {0,1} ifadesi {-1,1} ifadesinden daha küçük
ağırlıktadır. Bu genel olarak doğru mudur?

Örnek 3.3 ((MAJ Fonksiyonu) n değişken sayısı tek olsun. Girdilerin
yarısından fazlası doğru olursa MAJ fonksiyonu doğru dönmektedir.

• xi Є {0,1} için

 48

)...
2
1sgn(),...,(11 xxxx nn

n
MAJ ++++−=

olsun.

Ağırlıkların boyutu
2
13 += nS . Durum 2’dekine benzer bir ispatla bunların en

küçük olduğunu gösterebiliriz.

• Şimdi xi Є { -1,1} olsun,

)...sgn(),...,(11 xxxx nn

MAJ ++=

Onların ölçüsünün indirilmesi, bir veya daha fazlasının 0’ya getirilmesini ifade
ettiği içi bu etkiler minimaldir. Bu ise MAJ’ın tanımını değiştirecektir. Etki ölçüsü
S = n dir.

Bu ikinci örnek genel olarak {0,1} mi yoksa {-1,1}’nın mı daha küçük ağırlıkta bir
fonksiyon üreteceğini söyleyemeyeceğimizi göstermektedir.

3.3 {-1,1} Üzerinde Genelleştirilmiş Çoğunluk Fonksiyonu

Bu bölümde aşağıdaki modele

 }1,0{}1,1{: →−f

)sgn()(
1
∑=
n

ii xwxf

çalışılacaktır.

Eşik olmadığına dikkat edin, biz belirli etkilere sahip bir çoğunluk fonksiyonuna
göz atıyoruz. Biz minimal etkilere sahip fonksiyonların oluşturduğu fonksiyonlara
cevap veriyoruz. Özellikle amacımız belirli bir çıktı n ve ölçü S elde etmek
içindir.

3.3.1 Matematiksel Kurgular

Biz minimal etkinin kolaylıkla kurulabileceği fonksiyonlar ile ilgilenmekteyiz.
Minimal etkiyi bulma bir araştırmayı kapsar; Biz bu nedenle sınırlı bir etki alanına
sahip fonksiyonları bulmak için çabalıyoruz. Aşağıda yazılı olanlar bize w üzerine

 49

sınırlamalar koymamıza izin vermektedir. (Bu bölümün geri kalan kısmında,
karışıklığa meydan vermemek için biz açık bir şekilde vektörleri anlatılacaktır.)

Tanım 3.4 (Bir Doğru Yanlış Fonksiyonun Temel Alanı) Bir vektör G { — 1, l}n
f(v) = f(-v) gibi f’nin temeli olarak adlandırılır. Biz temel alan R’yi f’nin tüm temel
setleri olarak tanımlarız.

Tanım 3.5 (Temel Generator Matriks) Verilen bir etki vektörü w ∈ W ve bir
temel v G R için, temel generator matriks, G = (gij),bir a (nxk)-matriksidir,
{-1,0,1} kapsamındadır, g dizileri w’ye doğru düz açılı ve diktir ve tüm sıfır
olmayan koordinatlarda v’ ye eşittir, yani,

1. 0=wG  Gw = 0
2. 0=gij veya vg jij

= her i ve j için.

Örnek 3.4 (Temel Generator Matriks) Bir etki vektörü tarafından belirlenen bir
linear fonksiyon verildiğini var sayalım. w = (1,1,2,4,1,1,2,4). Araştırırken
v=(1,1,1,1, -1, -1, -1, -1) olduğunu tespit ederiz. Dikkat edin w1 + w2 – w7= 0 ve
g.w = 0 olarak yazılabilir, orada g = (1,1,0,0,0,0,-1,0) G setidir r= v - 2g. g tüm
sıfır olmayan koordinatlarda v’ye eşit olduğu için f ∈ {-1,1}"dir. Ayrıca
r.w=v.w+g.w = 0 dır. Biz yeni bir temel ortaya atıyoruz. r= (-1, -1,1,1, -1, -1,1, -1).

Lemma 3.1 (G ve W’nin Dikeyliği) Verilen bir etki vektörü w ∈ W ve bir temel
v∈R, uGT = 0 her hangi bir etki vektörü u ∈ W için düzenlenmiştir.

Kanıt: u ∈ W ve bir dizi için, G’nin gi, v = v - 2gi olsun <fj, eğer G {—1,1}™
tanımlarken ve if ■ w = 0 ise. Bu f(if) = f(—if) anlamına gelir: Her hangi bir temel
vektör için u ∈ W, sgn{u.v) = sgn(-u.v). Bu nedenle, u ■ (v - 2gi) = 0 ve sonuç
olarak , v . u = 0 olduğu için, u . cji = 0 kabul ederiz.

Yardımcı Teorem 3.2 (Minimalite) w ∈ W ağırlık vektörü için ve kök v ∈ R için,
eğer, rank(G) = n - 1 (i.e., G n - 1 bağımsız satıra sahip) ve |wi| = 1 bazı i’ler için,
o zaman w en düşük ağırlık vektörüdür.

İspat: Yardımcı teorem 3.1 ‘den her u ağırlık vektörü uGT = 0 eşitliğini sağlar.
rank(G) = n - 1 dim(W) = 1 olduğunu gösterir. Örneğin tüm muhtemel ağırlık
vektörleri kendi içinde çarpılan tam sayılardır. |wi| = 1 olduğu için tüm vektörler
u=kw k>1 değeri için eşitliğinde vardır.

Örnek 3.4 ‘ü yardımcı teorem 3.2 ‘nin uygulamaları ile tamamladık.

Örnek 3.5 (Minimalite)

)4,2,1,1,4,2,1,1(=w

)1,1,1,1,1,1,1,1(−−−−=v

verilmiş olsun.

 50

Aşağıdaki gibi bir yapı kurabiliriz:

G=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

-10000111
0-1000011
00-100001
-10001000
0-1000100
00-100010
000-10001

Rank(G)’nin minimum olduğunu göstermek oldukça kolay ve S[f] = 16.

3.3.2 Ağırlık Vektörleri

Örnek 3.5’te nasıl verilen vektörün minimum olduğunun gösterildiğini işlemiştik.
Bu kısımda keyfi girdi değerleri ile minimum ağırlıklı boyutunu içeren doğrusal
eşik fonksiyonunun örneklerini gösterilir.

Ağırlık vektörü oluşturmak ve en düşük olduğunu göstermek istiyoruz. Girdilerin
sayısına n diyelim ve n çift olsun. w de iki denk bloktan oluşsun:

(w1,w2,..., wn/2, w1, w2,..., wn/2)

Açıkça, v = (1,1,..., 1, -1, -1,..., -1) bir kök ve G ilgili karşılık gelen matristir.

G=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1-00....0000100...0000
01-0....0000010...0000

...

...

...
000....01-00000...0100
000....001-0000...0010
000....0001-000...0001

 51

3.3.3 Yapım

S tamsayısı ve n değişken ile n değişkenli ve s boyutunda minimum ağırlıkta bir
fonksiyon olduğunu göstermektedir.

Teorem 3.1 (Ana Sonuç) (s,n) ikilisi için aşağıdakileri sağlayan

1. n ≤ s ≤
⎪⎩

⎪
⎨
⎧

+
−−

isetekn

iseçiftn
nn

n

22
2

2
3

2
1

2

2. s çift

[f] = s boyutunda en düşük ağırlıklı n değişkenden oluşan doğrusal bir eşik
fonksiyonu vardır.

Kanıt: Verilen (s,n) çifti yukarıdaki şartları sağlar. sn

i iw =∑ =1
|| koşulunu

sağlayan ağırlık vektörü w, yapılandırılır. Daha sonra f(x) = sgn(xw
.)

fonksiyonunun minimum ağırlık vektörü gösterilir. İspat sadece n ‘in çift olduğunu
gösterir.
 YAPIM.

1. (ai, a2,..., an/2) = (1,1, •••, 1) tanımlanır.
2. Eğer 2/2/

1
sn

i ia <∑ =
 ise ai < 2i-2 gibi en küçük ai alınarak arttırılır.(Bağlantı

olayında olduğu gibi en küçük i’ye endeksli wi alınır.)

3. 2/2/

1
sn

i ia <∑ =
 veya (a1, a2,...,aN) = (1,1, 2, 4,..., 2 2

2
−
n

)
4. Set w = (a1, a2,...,an/2, a1, a2,..., an/2) olana kadar , bir önceki basamağı
tekrar ederiz.

Çünkü boyutu zamanla arttırarak algoritmada n < s < 2n/2 eşitsizliğini sağlayan
her s tamsayısı için istenilen sonuca yaklaşılır. w’nin en düşük olduğunu
gösterelim.

MİNİMALİTE verilen w = (a1,a2, ..,an/2,a1,a2, ..,an/2) ‘den kökü
u=(1,1,...,1, -1, -1,..., -1) ve wi = wi+n/2. eşitliği ile ilgili genelleştirici G matrisinin
n/2 satırını buluruz. Eklenilen satırlardan anlaşılıyor ki ilk k ai'leri ikinin kuvvetleri
(k s ve n ‘ye bağlıyken). Bunlar ai = ∑ =

k

j jij aa1 şeklinde yazılabilir ve k-1 satır

üretilebilir. Son olarak diğer bütün ai’ler i>k iken 2k+1 den’ küçüktür. Bunlar ikili

açılım olarak yazılabilir, (α ij
 ∈ {0,1} iken a, kn −

2
gibi ağırlıklar vardır. G’nin

bağımsız toplam n-1 satırı vardır. rank(G) = n - 1 ve w1 = 1; yardımcı teorem
3.2’ye göre w minimumdur ve S[f] = s’dir.

 52

Örnek 3.6 (10 Değişkenli ve 26 Büyüklükteki Bir Fonksiyon) İle başlıyoruz

a= (1,1,1,1,1)

Öteleme yapıyoruz,

(1,1,2,1,1)

(1,1,2,2,1)

(1,1,2,2,2)

(1,1,2,3,2)

(1,1,2,3,3)

(1,1,2,4,3)

(1,1,2,4,4)

ve sonuç olarak algoritma

a= (1,1,2,4,5)

sonsuza gitmektedir.

 w =(a ,a)= (1,1,2,4,5, 1,1,2,4,5)

en düşük olduğu iddia edilir.

Gerçekten, v = (1,1,1,1,1, -1, -1, -1, -1, -1) ve

 53

G=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

-1000001001
0-100000111
00-10000011
000-1000001
-1000010000
0-100001000
00-10000100
000-1000010
0000-100001

9 rankında bir matristir.

Örnek 3.7 (Polinom Boyutlarında Fonksiyonlar) Bu örnekte Teorem 3.1 ‘in
uygulamasını göreceğiz. S[f] < nd için doğrusal eşik fonksiyonları olan T

d
L ˆ)(

 ‘yi
tanımlıyoruz. Teorem gösteriyor ki her çift n için n değişkenli ve minimum ağırlıklı
S[f] = nd bir f fonksiyonu vardır. Buradan yapılacak çıkarım tüm d’ler için T

d
L ˆ)(

uygun bir LT alt kümesidir.

3.4 {0,1} de Keyfi Eşik Fonksiyonu

Bu kısımda en düşük ağırlıklı eşik fonksiyonunun oluşturulabilmesi için değişik
teknikler gösterilecek. Her bir yükün boyutu değişkenlerin sayısı ile fonksiyonları
oluşturabiliriz. Fonksiyonları {0,1} girdi tanım kümesinde düşünebiliriz fakat keyfi
girdi uzayı{a,b} için argüman hala vardır. Bölümün geri kalanında karışıklığı
önlemek amacıyla vektörleri belirtmek için büyük harfler kullanacağız.

3.4.1 Yaklaşım

Kullandığımız metotlar sayfa [52]’nin sonuçlarını taban almaktadır.
Genelleştirmenin dışına çıkmadan ağırlıkların tamamıyla pozitif tamsayılar
olduklarını var sayalım. Hedefimiz ∑∑ == n

i

n

i wwS
00

|| .

Eşitliğini küçültmektir. Eşitlik [32]’den bildiğimiz gibi aynı fonksiyon tarafından
tamamlanan diğer ağırlıklar, U, tamamen pozitif olmalıdır.

W, ∑∑ ≥ n

i

n

i uw 00
 şartları altında göstereceğiz.

Aşağıdaki eşitliklerde olan girdi vektörlerini X ve Y

 54

 0)(
1

0 =+−= ∑
n

ii xwwXF

 0)(
1

0 =+−= ∑
n

ii ywwYF

olarak düşünelim.

Matrisin satırlarını A olarak belirleyelim,

 A=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−

−−−

−

−

−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

−

−

−

−

−
−

yyy

yyy
yyy
xxx

xxx
xxx

Y

Y
Y
X

X
X

q

n

qq

n

n

n

n

n

q

p

)()(

2

)(

1

)2()2(

2

)2(

1

)1()1(

2

)1(

1

)1()1(

2

)1(

1

)2()2(

2

)2(

1

)1()1(

2

)1(

1

)(

)2(

)1(

)(

)2(

)1(

...1

......

......

......

...1

...1

...1

......

......

......

...1

...1

1

......

......

......
1

1

1

......

......

......
1

1

satırların tekrarına izin verdik: X(i) = X(j) = ... = X(k)’ı elde ettik.

Örnek 3.8 (Matris A) Elimizde aşağıdaki ağırlıkların olduğunu varsayalım.

W = (13 6 6 3 3 2 2 1 1)

Hedefimiz minimum olduğunu göstermektir. Öncelikle matris A’yi oluşturmalıyız.

A=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−−
−−−−

−
−

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

−

−
− 010101011

101010101
110101011
111010101

1

1

1

1

)2(

)1(

)2(

)1(

Y
Y
X
X

 55

A için pek çok seçenek mevcuttur. Yukarıda gösterilen daha sonra
göreceklerimiz kadar iyi bir örnek değildir.

Teori 3.2 (En Düşük Değeri Sağlama Koşulu) : Ağırlık vektörü W olarak kabul
edildiğinde, A’yı aşağıda belirtilen şekilde açıklarız. Eğer a > 0 ve A aşağıdakini
sağlamaktaysa

(1 ...1)A= (a ... a)

ağırlık vektörü W minimum değere sahiptir.

Kanıt: X’lerin ve F’lerin tanımına göre, A matris’i aşağıdakileri

qp

T

nwwwwA
→−−−←→−−−←

= 11...100...00....()210 (3.1)

sağlar.

sgn(0) = 1 ve sgn(-1) = 0 olduğundan, aynı fonksiyonu uygulayan herhangi bir
ağırlık vektörü, U, yukarıdaki eşitlikleri “=” yerine “>” ile yerine getirmelidir.

qp

T

nuuuuA
→−−−←→−−−←

= 11...100...00....()210 (3.2)

V = U - W olsun ve (3.1)deki eşitlikleri (3.2)deki eşitsizliklerden çıkaralım. Sonuç
olarak şunları

qp

T

nvvvvA
+

→−−−←
= 00...00....()210 (3.3)

buluruz.

Şimdi öyle bir A alalım ki

nqp

aaaA
→−−−←→−−−←

=
+

....11...11 (3.4)

A pozitif bir tamsayı olduğunda eşitlik (3.3)’teki tüm eşitsizlikleri soldaki tüm 1
vektörüyle çarpıp şu sonucu

 56

elde ederiz.

Tüm i = 0,..., n için, a > 0, wi ≥ 0, ui ≥ 0 olduğundan, şunu

∑∑ ≥ n

i

n

i wu 00

bilmekteyiz.

Girdi kümesinin {0,1} olduğu gerçeğini, kanıtın hiç bir aşamasında
kullanmadığımıza dikkat ediniz. Hatta yukarıdaki kanıt herhangi bir {a, b} girdi
kümesi için geçerlidir. Görebileceğiniz gibi kanıt, eşitlik (3.4)’ü sağlayacak bir
A’nın yapılandırılması üzerine kurulmuştur. Bir A oluşturabilmek için W seçimine
bağlı olan uygun X’lere ve F’lere ihtiyaç vardır.

3.4.2 Basit Oluşum

Bu bölümde W ile, genel oluşum için ağırlık vektörü, karşı karşıya geleceğiz, ve
uygun bir A matrisi bularak W’nin en düşük değerde olduğunu kanıtlayacağız.
Eşik değeri W0’yu isteğe bağlı bir değer olarak kabul edelim. Şunları seçelim:

1,...,
2

,
2

,
2 1

310
5

10
31 =

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −−
=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
=

−wwwwwwwwww n
n ve w2i=w2i-1 i=1,..,n

için. Öyle bir “n” seçiyoruz ki 101 12 −≥∑ − wwn i olsun. Bir örnek inceleyelim.

Örnek 3.9 (w0 = 13) Yukarıda tekrarlanan tanımı uygulayarak, Örnek 3.8’deki
ağırlık faktörünü elde ediyoruz: W = (13 6 6 3 3 2 2 1 1). Burada, A için olan X ve
Y tipi satırları izleyiniz.

 57

1 vektörünün tümünü elde etmek için satırları kopyalayıp topluyoruz. Sadece tek
sayılar ile numaralandırılmış sütunlar gösterilmektedir.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−
−−
−

−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−−−
−
−
−
−

11112
00010
00100
01000
10000

11112
01110
01100
11000
10000

11112
10022
10212
02112
21112

Sonuncusu 2 vektörünün tümüne eşit olmaktadır.

Teori 3.3 (Oluşumun En Düşük Değeri) Herhangi bir W0 için, S = 3 * w0 - 2

boyutlarında en düşük ağırlıkla ve bir çok değişkenle ⎡ ⎤S log2=n bir eşik değeri

fonksiyonu oluşturabiliriz.

Kanıt: 11 aA = ‘i sağlayan bir A oluşturacağız ve Teori 3.2’yi uygulayacağız. A’yı
oluşturmak için sadece 2 adet Y tipi vektör

 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
−−−

−−−
10...10101
01...01011

 58

gereklidir.

İki olası şekilde(2 - 1 ... -1) sonuç elde edilebilir.
X tipi vektörler, ikişer ikişer toplanarak, şu sonucu verirler:

Bu kısmi toplamları tekrar edip toplayarak, 1 vektörünün tümünü elde edebiliriz.
Peki bunu nasıl yapacağız? İki Y tipi ve iki X tipi vektörü toplayarak bir (0,...,0,1)
oluştururuz.

 -2 1 ... 1 2 0 ... 0 0

veya

-2 1 ... 1 2 0 ... 0 1

Si’den kastımızın i = 1...n , singleton vektörü (0,...,0,1, 0,...,0), 1. pozisyonda
iken, olduğunu ifade edelim. Tüm Si’ye V ve F tipi vektörleri toplayarak
ulaştığımızı göstermek için tümevarım kullanıyoruz. Hatta j = 1,...,i - 1 için tüm Sj
‘ye ulaştığımızı varsayalım. İki X tipi ve iki Y tipi vektörleri toplayarak Si
üretebiliriz.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛
−

−−−−−−−−

10...0000...00
......
......
......
0...01000...00
00...0100...00
000...021...12
1111...11112

Tüm Si vektörlerini bulduktan sonra, onları 3 x (2 -1 ... -1) kere toplayıp, 2
vektörünün tümüne ulaşabiliriz.

3.4.3 Keyfi Büyüklük ve Sayıda Değişkenler için Oluşum

Bu bölümde, fazladan bir değişken elde etmek için ağırlığı nasıl bölmemiz
gerektiğini göstereceğiz. Aynı zamanda, bir ya da iki değişken birim ağırlıkla
toplandığında sonucun en düşük değerli bir fonksiyon olduğunu da
kanıtlayacağız.

 59

Yardımcı Teorem 3.3 (Ağırlığı Bölmek) W = (w0, w1, ..., wn) en düşük
değerinde olsun.. O halde a + b = w1 minimum değerde olduğunda, W = (w0, a,
b, w2, w3,..., wn+1) olacaktır.

Kanıt: İkinci sütunu tekrar ederken, bir A oluşturun.

Yardımcı Teorem 3.4 (bir girdiyi birim ağırlıkla toplamak W = (w0, w1, ..., wn)
minimum değerinde olsun. O halde wn+1 = 1 minimum değerinde olduğunda, W
= (w1, w2, w3,..., wn+1) olacaktır.

Kanıt: W’nun en düşük değerinde olmadığına yani W için daha iyi bir seçenek
olduğunu düşünelim ve buna W diyelim. İki olasılık vardır. Ya w'n+1 = 0 olacaktır
ya da i < n + 1 için bazı w’lar uygun wi’den daha küçüktür. İkinci durumda, xn+1=0
alıyoruz ve hipoteze ters olarak daha küçük ağırlıklarla uygulanmış olan orijinal
fonksiyonu elde ediyoruz. Şimdi w'n+1 = 0 olduğunu, yani xn+1’e bağlı olmadığını
farz edelim. Bu tüm X girdileri için 0

0
≥∑n

ii xw ya da 2
0

−≤∑n

ii xw olduğunu
ifade eder. Orjinal fonksiyonun minimum değerinde olmadığını söyleyerek w0’ı 1
birim azaltabiliriz.

Bu iki yardımcı teoremi kullanarak, fonksiyonları keyfi sayıda ve büyüklükte
değişkenlerle oluşturmak basittir. Hatta bundan fazlasını da yapabiliriz:
fonksiyonları sabit ağırlık yapısıyla oluşturabiliriz. Bu fikri Yardımcı Teorem 2.3’ü
kanıtlayarak gösterelim.

Yardımcı Teorem 2.3’ün Kanıtı:

İki pozitif sabit K ve α aşağıdaki için bir ağırlık vektörü

wwww llll 12111
+⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

<<<<
αα

www lll ⎥⎦

⎥
⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

≥+
αα
21

Oluşturmalıyız.

α = 1 olması Örnek 2.7’de incelenmişti. Ağırlık vektörü şu şekilde

12,...,11,...,1,,,...,4,2,1,1,,...,4,2,1,1,(222 +⎥⎦
⎥

⎢⎣
⎢++⎥⎦

⎥
⎢⎣
⎢++−

αα
wwwwppp

Olsun.

p, w l

p
122 +⎥⎦

⎥
⎢⎣
⎢ +

≥
α

olacak şekilde ve yeterli büyüklükte bir tamsayı olacak şekilde

seçilmiştir. Vektörün minimum düzeyde olduğunu kanıtladığımız şekilde, diğer
ağırlıklar için de yukarıdaki iki koşulun sağlandığını kanıtlıyoruz.

 60

3.5 Sonuçlar

Keyfi ağırlık, büyüklük ve sayıdaki girdili minimum ağırlık eşiği fonksiyonları
oluşturmak için iki teknik gösterdik. {0,1} ve { -1,1} ‘yi girdi kümeleri olarak kabul
ettik. Bu teknikleri kullanarak, üstsel olarak ve polinom olarak büyüyen
ağırlıkların arasındaki ayrımı ayrıntılarıyla inceledik. Asıl sorun bu tekniklerin
devre boyutunda bulunan değişken ağırlığa sahip fonksiyonların mevcut alt
sınırlarını genişletmede yararlı olup olmadığını bulmaktır.

Bölüm 4

Devre Derinliği için Ağırlık Boyutundan Vazgeçmek

4.1 Giriş

Sinirsel ağ alanındaki deneysel birçok deneysel sonuç, doğrusal eşik
değerlerindeki katsayıların büyüklüğünün girdilerin boyu ile birlikte çok hızlı
arttığını ve bu nedenle bu ağın pratikte kullanımını sınırladığını göstermektedir.
Doğal olarak şu soru sorulabilir: eğer sadece katsayı büyümesi küçük olan eşik
elemanları seçilirse, ağın bilişimsel gücü ne kadar sınırlanır? Bu bölüm büyük
ağırlıklar gerektiren LT fonksiyonlarının uygulanması üzerine yoğunlaşmaktır.
Büyük ağırlıklarla tek bir LT geçidi kullanmak yerine, küçük ağırlıklı LT
geçişlerinden oluşan iki tabakalı devre kullanıyoruz. Büyük ve küçük sırasıyla
n‘nin, girdilerin sayısı, üstel olarak ve polinomial olarak anlamına gelmektedir.

Üstel olarak büyüyen ağırlıklara sahip olan eşik elemanıyla uygulanan bir
fonksiyon olduğu sayfa [17], [33], [38], [43], fakat bu fonksiyon polinomial olarak
büyüyen ağırlığa sahip olan eşik elemanıyla uygulanamayacağı gösterilmişti. Bu
sonucun ışığında LT altsınıfı küçük ağırlıklı fonksiyonların sınıfı olarak
tanımlanmaydı. Siu ve Bruck LTd C LT2d+1 sayfa [13]’nin sınırları TT dd LL 1+⊂

 61

haline getirdiği ve bunu TT LL 21⊂ şeklinde göstererek ve keyfi derinliği
genelleyerek kanıtlamıştır. Lakin bu metot çok karmaşıktır ve kanıtları takip
etmek zordur. [18], [13]’deki sonuçların basitleştirilmiş versiyonunu
göstermektedir. TT LL 21⊂ olduğunu göstermeye odaklanır. Bir yere kadar
daha basit ve hissel bir oluşum yaratarak birincinin yerini almaktadır. Fikir, iki
işlemi ağırlıları azaltmak, iki ayrı güce ayırmak ve onları modula bir asal olarak
bölmek için kullanmaktır. Sonuç olarak elde edilen küçük-ağırlıklı geçitler, yeterli
prime kullanılırsa (58) doğru çıktı yaratan bir devreye bağlılardır.

Sadece belirli bir büyük-ağırlık fonksiyonun simülasyonunu kullanarak, sayfa [13]
ve [18]’de belirtilen sonuçları daha da basitleştirdik: KARŞILAŞTIRMA. Sonuç
olarak sırasıyla 0(n4 logn) olan devremizdeki bir takım geçitlerde sınırlar ve
[18]deki)(log1112 no n ’deki genel sınırda önemli gelişmeler elde ettik. Ayrıca bir
bilgisayar simülasyonu çalıştırdık ve 22 değişene kadar minimum devreler
belirledik. Simülasyonun sonuçlarını gösteriyoruz ve ileriki araştırmalar için
uygulamalar ve talimatlar sunuyoruz.

4.2 Karşılaştırma için LT2 devresi

Karşılaştırma fonksiyonunun 2 n-bit sayıdan oluştuğunu farz edelim. Xi =
(x1,x3,..., x2n-1) X2 = (x2)X4..., X2n) Є {0, l}n olsun. X1 ve X2 tarafından temsil edilen
tam sayı değerleri sırasıyla şunlara eşittir: ∑ =

−

−

n

i

i

ix1
1

12 2 ve ∑ =

−n

i

i

ix1
1

2 2 ,
KARŞILAŞTIRMA fonksiyonu şu şekilde tanımlanır.

⎩
⎨
⎧ >

=
Diger

C XXXX 0
1

),(21
21 .

Diğer bir değişle,

]sgn[),(2121 XXXXC −=

)](sgn[2121

12 xx ii

n

i

i −=
−=

−∑

şeklinde ifade edilebilir.

KARŞILAŞTIRMA fonksiyonun LT1,’ye ait olma fakat LT1’e ait olmama gibi ilginç
bir özelliği vardır. Armonik analiz araçları kullanılarak, KARŞILAŞTIRMA’nın
LT2’de olduğu gösterilmiştir. Sayfa [18]’de açıklanan metod kullanılarak
KARŞILAŞTIRMA için bir LT2 devresinin açık oluşumunu sağlıyoruz.
KARŞILAŞTIRMA’nın açık oluşumu sayfa [2]’de açıklanmıştı.

 62

KARŞILAŞTIRMA’nın değerinin, X1 ve X2’nin farklılık gösterdiği en yüksek-düzey
bit pozisyonuyla bulunduğunu unutmayınız. Eğer bu bit X1’de 1 ise ve X2’de 0
ise, o halde C(X1,X2) = 1. Ya da, C(X1X2) = 0. (X1 = X2 iken, 59 tanımı
C(X1,X2)=0.)

)()(2121

12 xx ii

n

i

iXF −=
−=

−∑ olsun. Birinci basamak, 1’den büyük olan ağırlıkları
üsrekli olarak yarıya bölüp 1 ve 0 arasında ağırlığa sahip ağırlıklar sağlayarak bir
Fi(X) fonksiyonları sırası oluşturmaktır. Aşağıdakiyle başlıyoruz.

F0(X) = F(X). n basamak sonra, bölme işlemi sıfıra eşit olan bir fonksiyon

xxxxxxF n

n

n

n

2

1

12

1

43210 22...22 −

−

− −++−+−=

xxxxF n

n

n

n

2

2

12

2

431 22... −

−

− −++−=

...

...

xxF nnn 2121 −=
−−

0=Fn

verecektir.

Her bölmenin hem X1 hem X2’yi sola kaydırmaya eşit olduğunu unutmayalım.

Yardımcı Teorem 1. F(X)’inve yukarıda belirtildiği gibi sola kaydırılmış Fl(X),
0≤I≤ n doğrusal fonksiyonların doğrusal kombinasyonları için,

 .1)(:0)(=∃⇔> XlXF Fl

Kanıt. Her X Є {0, l}2n için bir t mevcuttur, öyle ki tüm I ≥ t için, Fl(X) = 0. Şimdi
kaydırmayla ortaya çıkacak en büyük hatayı göz önünde bulundurun Şunu

 1|)(.2)(|max

}
max

101,0{
2

=− +>∈
XX FF lllX

n

görüyoruz.

Her kaydırmayla en fazla iki değişken (ağırlıkları 1 ve -1 arasında değişen “low-
order bit”leri temsil eden) yok edildiğinden. Bu nedenle, |F(X)| sıfır değilse, |Fl(X)|
= 1 olacak bir / mevcuttur. Eğer F(X) pozitifse, o halde tüm Fl(X)ler pozitif veya

 63

sıfırdır ve eğer F(X) negatifse, o halde Fl(X)ler negatif veya sıfırdır. Sonuç
aşağıdaki gibidir.

}1,0{),...,,(),,...,,(242212311

n

nn xxxXxxxX ∈==
− olsun. Her 0 ≤ I ≤ n için

“test” 60 fonksiyonunu aşağıdaki gibi tanımlayın.

⎩
⎨
⎧ =

=
Diger

X
X FT l

l 0

1)(...1
)(

Yardımcı Teorem 1 şu şekilde

1)(
0

0)(=
=

⇔> XTV lXF
n

l

tanımlanabilir.

Deneme olmasına rağmen, modulo asal sayılarını hesaplama fikriye
kullanıldığında Yardımcı Teorem 1 yararlı hale geliyor. Modulus işlemini 0’da
ortalanmış simetrik bir aralıkta değerler vermesi için tanımlıyoruz. Örneğin bir
tam sayı Z için ve pozitif tamsayı k için, t Є [-k, k] ve t ≡ Z (mod 2k-1) olduğunda,
Z mod (2k-1)=t olsun. p prime verildiğinde, aşağıdaki gibi her 0 ≤ I ≤ n için bir test
işlemi modulo p tanımlayın.

⎩
⎨
⎧ =

=
diger

pXeger
X FT l

pl 0

1mod)(1
)(

Bir X Є {0, 1}2n için ve bir asal p için, sıradaki tüm Fl(X) fonksiyonları için TPl(X)
hesapladığımızı varsayalım. Test işlem modulosu asal p her zaman doğru
cevabı vermediğinden, bu yeterli olmayacaktır. Fakat aşağıdaki Yardımcı
Teorem bize yeterli asal sayıda tekrar edersek, örneğin r kadar, çoğu zaman
doğru yanıtı alacağımızı söylemektedir.

Yardımcı Teorem 2. p1 < p2 <... 3’ten büyük ardışık asallar olsun. s,
p1p2...ps>2n+l-1 sağlayan en küçük tamsayı olsun. O halde |Z| < 2n – 1 olan her Z
tamsayısı için,

Z Є [- 1,1] => Z mod]1,1[−∈pi tüm asallar > 3,

Z ∉ [- 1,1] => Z mod]1,1[−∈pi s’den küçük asallar > 3.

 64

Kanıt. Birinci ifade denemedir. İkincisi direkt olarak Chinese Remainder
Theorem (bakınız [18])’den alıntıdır. s = O(nlogn).

X Є {0, l}2n için ve bir grup asal sayı p1p2...pr için,)(p li,

XT 1 ≤ i ≤ r ve 0 ≤ I ≤ n

için olduğunu hesaplayan bir elemanlar bütününe sahip olduğumuzu düşünelim.

F(X) < 0 olduğunda bir elemanın 1’e döndüğü bir “yanlış” pozitif belirleyin. F(X) >
0 olduğunda bir elemanın 1’e döndüğü bir “doğru” pozitif belirleyin.

• F(X) > 0 olduğunda, Yardımcı Teorem 1 her satırda en az bir gerçek pozitif
olduğunu söylemektedir. Bu nedenle dizide toplamda en az r tane gerçek pozitif
vardır.
• F(X) < 0 olduğunda, Yardımcı Teorem 2 her sütunda 3 • s ‘den az yanlış
pozitifin olduğunu söylemekteir. Bu nedenle dizide toplamda 3 • s ■ n’den az
yanlış pozitif bulunmaktadır.
Eğer r = 3 • s ■ n olduğunu seçersek, F(X) < 0 olduğunda 1’e dönen elemanların
sayısı her zaman r’den küçük olacaktır, aynı zamanda F(X) > 0 olduğunda 1’e
dönen elemanların sayısı r’ye eşit ya da r’den küçük olacaktır. Buradaki önemli
nokta yanlış pozitiflerin sayısının üst sınırının satır sayısından ve gerçek
pozitiflerin sayısının alt sınırının sütun sayısından bağımsız olmasıdır.

KARŞILAŞTIRMA için, test elementlerini bir LT geçişine girdi olarak
bağlayabiliriz ve geçişin eşiğini r olarak belirleyebiliriz. Buradaki sorun tek bir
tabaka küçük ağırlıklı eşik geçişleri kullanarak, test elementlerini nasıl
gerçekleştireceğimizdir.

Bu yaklaşım eşik devre teorisinde standardtır. 1 ≤ i ≤ r ve 0 ≤ l ≤ n için,

)(
,

XpF li

’i, Fl(X) modulo pi’nin ağırlıkları düşürülerek elde edilen doğrusal

kombinasyon olarak tanımlayınız.

Her X Є {0, l}2n için,

 .1mod)(1)(

,,

=⇔= pXpXp FT
lili

Şimdi)(

,

XpF li

 en fazla n • pt farklı değer üstleniyor. Bunların en fazla n tanesi

modulo pi alındığında 1’e eşittir.)(
,

XpF li

’in değerlerini v1, v2,...,vn gibi azaltılmış

 65

modulo pi 1 iken gösteriniz. Her Vj, 1 ≤ j ≤ n için, ilk tabakaya iki LT geçişi
yerleştirip bunlara)()1(XG j

 ve)()2(XG j
 diyoruz.

• Gj

)1(ve Gj

)2(’ deki girdi telleri üzerindeki ağırlıklar)(
,

XpF li

’nin

ağırlıklarına eşit olarak eşitlenmiştir.
• Gj

)1(ve Gj

)2(’nin geçişleri sırasıyla vj ve vj+i, olarak ayarlanmıştır.

• Gj

)1(ve Gj

)2(‘nin çıkış ağırlıkları üzerindeki ağırlıklar sırasıyla 1 ve -1,

olarak

∑
=

=+
n

j
jj XpXX TGG

li1

)2()1()())()((
,

ayarlanmıştır.

Sonuç olarak, toplamda, her birinin gerçekleştirilmek için 2 • n LT geçişine
ihtiyacı olan 3 • s • n2 tane test elemanımız var. Yani toplamda 6 • s • n3 tane LT
geçişi lazım. s = O(nlogn) olduğundan, yapımızın büyüklüğü şudur: 0(n4logn).

4.3 Bilgisayar Simülasyonu

KARŞILAŞTIRMA’nın LT2 yapısını simüle etmek için, ekte gösterilen kısa bir
Matlab programı kullandık. Her n (değişken sayısının yarısı) için, en küçük
asalların sayısını ve düzgün bir devre oluşturan en küçük eşiği bulduk. Aşağıdaki
tablo sonuçları göstermektedir:

n Asal Sayısı Eşik

1 1 0

2 1 0

3 2 1

4 3 2

5 4 3

6 6 5

7 8 7

8 10 9

9 12 11

10 14 13

11 16 15

 66

Devredeki en büyük ağırlığı girdi sayısının fonksiyonu olarak çiziyoruz.

4.4 TT dd LL 1

ˆ
+⊂ ’e Genelleme

"1-yaklaşım," denilen yukarıdaki fonksiyonun önemli bir özelliği çıktı eşik
geçişinin ağırlıklı toplamla değiştirilebilmesidir. (i.e., 64 sgn(.) fonksiyonunu iptal
edin) böyle bir devrenin çıktısı 0’a ya da 1’e çok yakın olacaktır. Bu durum sayfa
[13]’te LTd ⊂ LTd+1 olduğunu göstermek için kullanılmıştır. Fikir şu şekildedir:

1. LTd devresinin çıkış geçişini, Giast, alalım. Bir LT geçişi olduğu için Bölüm
4.2de görüldüğü gibi bir LT2 geçişi de onun yerine geçebilir.
2. Ona bağlı olan bütün geçişleri alıp, G i

last

)(

1− , onların da yerlerini değiştiriyoruz.

3. Çıkış tabakası G i

last

)(

1− ile giriş tabakası G i

last

)(’yi birleştirmek için "1- yaklaşım "
özelliğini kullanın.

4. Tüm LT geçişlerinin yerine LT2 devreleri gelene kadar işleme devam edin.

 67

LTd+i devresiyle bir LTd fonksiyonu simüle etmek için tabakaları birleştirin.

4.5 Sonuç

LTd ⊂ LTd+i çok yararlı bir sonuçtur.. MADD Є LT2-65 anlamına gelen MADD Є

LTM oluşturarak, LTM Є LT2 olduğunu göstermek için kullanabiliriz. Bu

çalışmanın ilginç bir yönü ise Bölüm 4.2’de belirtilen yaklaşımı kullanarak

KARŞILAŞTIRMA için LT2 uygulamasının büyüklüğününün elde etmektir.

Bölüm 5

Çok Eşikli Doğrusal Eşik Elementi LTM

5.1 Giriş

LT elemanlarının VLSI uygulanması sayfa [8] üzerine yaptığımız çalışmadan
ilham alarak, bu bölümde LTM çok geçişli doğrusal eşik bkz: Sayfa [15] ve [35],

 68

denilen daha güçlü bir hesaplama elemanından bahsedeceğiz. LT elemanındaki
işaret fonksiyonu yerine, girdilerinin ağırlıklı toplamının keyfi (polinom olarak çok
geçişler) bir doğru yanlış fonksiyonu hesaplanır.

Çalışmadaki LTM devreleri(LTM elemanlarından oluşan devreler) hakkındaki
konular, hesaplama kapasitelerinin, sınırlamalarının hesaplanması ve
özelliklerinin AON devrelerinin özellikleriyle karşılaştırılmasıdır. Bu çalışmadaki
yaklaşım, LT devreleri ve LTM devreleri arasındaki ilişkiyi anlamaktan geçer. Bu
bölümdeki ana katkılarımız şunlardır:

• m tamsayılarının eklenmesi eve iki tamsayının ürünleri için LTM
devrelerinin etkin tasarımlarını oluşturarak, LTM’nin gücünü
göstermekteyiz.

• LTM devrelerinin uygulamadan LT devrelerinden daha rahat olduğunu
gösteriyoruz. Özellikle n girdili doğru yanlış fonksiyonları için VLSI planı
LT devrelerindeki 0(n2)’dan LTM devrelerindeki 0(n) ‘ye düşürüldüğündeki
alanlarda.

• LTM devrelerinin hesaplama gücünü LT devreleriyle karşılaştırarak
belirtiyoruz.

Şekil 5.1: LT, SYM ve LTM hesaplama elemanlarının şema halinde gösterimi.
Daha sonra LT ve LTM elemanlarının resmi tanımlarını açıklayacağız.

5.1.1 Tanımlar ve Örnekler

Tanım 5.1 (Doğrusal Eşik Geçişi - LT)
Bir doğrusal eşik geçişi iki rakamlı girdileriyle bir doğru yanlış fonksiyonunu
hesaplar

)sgn()(
1

0 ∑
=

+=
n

i
ii xwwXf

wi tamsayılarken ve eğer durumu 0’a eşitse ya da 0’dan büyükse sgn(.) çıktı
olarak 1 verir, eğer durum öyle değilse 0 verir.

Sekil 5.1.1 bir n-girdili LT elemanı; eğer wxw

n

ii 01
−≥∑ ise, elemanın çıktı

olarak 1 verdiğini, değilse çıktı olarak 0 verdiğini gösterir. İkincisi simetrik
fonksiyonların genel sınıfına dahildir-SYM.

 69

Tanım 5.2 (Simetrik Fonksiyonlar - SYM)
Bir doğru yanlış fonksiyonu eğer değeri girdide bulunan 1’lere (|X| olarak
gösterilir) bağlıysa

 ∑=
n

ixX
1

||

simetriktir.

Şekil 5.1.1 simetrik fonksiyonun bir örneğini göstermektedir; 3 geçişi vardır, |X| <
t1 ve t2 ≤ |X| ≤ t3 için sonuç olarak 1 verir, diğer durumlarda 0 verir. EVET, VEYA
ve EŞİTLİK simetrik fonksiyonların örnekleridir. Tek bir LT elemanı sadece
simetrik fonksiyonların sınırlı altkümesini ifade edebilir. LTM’yi SYM’nin
genellemesi olarak tanımlıyoruz. Çünkü ağırlıkları 1’e sabitlemek yerine LT’de
olduğu gibi onların değişken olmalarına izin veriyoruz (bkz: şekil 5.1.1.)

Tanım 5.3 (Çok Geçişli Doğrusal Eşik Geçişi - LTM)
Eğer ağırlık kümesi wiЄZ,1≤i≤n ise f fonksiyonu LTM’dedir. Ve fonksiyon
h : Z —> {0,1} öyle ki

 içinherXhXf
nn

i
ii xw }1,0{)()(

1
∈= ∑

=

girdisi []∑∑ ==

− n

i i

n

i i ww 11
||,|| taradığı zaman polinomial kadar geçiş aşamasından

geçmesi h’yi sınırlayan tek şeydir.

Geçiş sayısında bir kısıtlama olmadığında bir LTM geçişi herhangi bir doğru
yanlış fonksiyonunu hesaplayabilecek kapasiteye sahiptir. Hatta keyfi fonksiyon
f, 2 1−i

iw ve),...,()(11

12 xxx ni

n i fh =∑ − olsun.

Örnek 5.1 (XOR Є LTM)
XOR(X) 1 sonucunu verir, eğer |X| ise ve X’in içindeki 1’lerin sayısı tekse.

Uygulamak için 0 ≤ k ≤ n için, wi = 1 ve))(1(
2
1)(1kkh −−= olmasını seçin. h(k), k

< 0 ve k > n için tanımlanmak zorunda değildir. Ve polinomial pek çok geçişi
vardır. LTM’nin hesaplayabildiği başka yararlı bir fonksiyon da ADD(X, Y)’dir, iki
n-bit tamsayı olan X ve Y’nin toplamı.

Örnek 5.2 (ADD ∈ LTM) Toplamayı uygulamak için

))((),(
1
2∑

=

+=
l

i
ii

i

ll
yxhf YX

 70

k Є [2l, 2 x 2l - 1] U [3 x 2l,) için hi(k) = 1 olduğunda X + Y ‘nin m. bitini hesaplar.
Şekil 5.2 n = 4 olduğunda ortaya çıkanların örneğini göstermketedir.

Şekil 5.2: Her çıktı biti için tek bir LTM geçişi kullanarak iki 4-bit-tamsayının
toplamı.

5.1.1 Düzenleme

Bu bölüm şu şekilde düzenlenmiştir. Bölüm 5.2’de, LTM devrelerinin
uygulamalarını göreceğiz. Özellikle, tek tabakalı LTM elemanlarıyla m
tamsayılarının nasıl toplanacağını göreceğiz. Bölüm 5.3’te, LTM’nin tanımlama
sonuçlarını kanıtlayacağız, kapsama ilişkileri ve özellikle LTM ⊆ LT2. Ayrıca
hangi kapsamaların uygun olduğunu göstereceğiz ve farklılıkları belirtmek için
fonksiyonlardan yararlanacağız.

5.2 LTM Yapıları

LTM hakkındaki teorik sonuçlar doğru yanlış fonksiyonlarının VLSI
uygulanmasında uygulanabilir. Çoklu eşikleri olan geçiş fikri aklımıza simetrik
doğru yanlış fonksiyonlarının etkin bir VLSI uygulamasını ararken geldi. Tek bir
LT geçişi simetrik doğru yanlış fonksiyonlarını uygulamada yetersiz olsa bile, iki
katmanlı bir LT devresi yeterlidir(Şekil 5.2). Ayrıca böyle bir devrenin VE, VEYA
ve DEĞİL üzerine kurulmuş geleneksel mantık devresinden çok daha iyi çalıştığı
bilinmektedir. Ayrıca geleneksel devrelerin üstel büyüklükleri vardır (ya da
sınırsız derinliği) [51].

 71

Şekil 5.3: LT devresi, 0(n) büyüklüğünde vs tek bir LTM geçişi.

Öneri 5.1 (simetrik fonksiyon uygulaması için LT2 vs LTM)
Bir simetrik fonksiyonun LT2 düzeni için 0(n2)’lik bir alana ihtiyaç vardır; oysa
LTM için sadece O(n)’lik bir alana ihtiyaç vardır.

KANıT:
LT2’de genellenmiş simetrik bir fonksiyonu uygulamak için birinci tabakada n tane
LT geçişine ihtiyaç vardır. w0 geçişi dışında hepsi aynı wi ağırlığına sahiptir. Aynı
doğrusal toplam olan ∑n

ii xw1 n kere tekrarlamaktansa, bunu bir kere yapıyoruz
ve sonuçları n tane farklı geçişle karşılaştırıyoruz. Sonuç olarak ortaya çıkan
devre tek bir LTM geçişine tekabül eder.

Şekil 5.2 genellenmiş bir simetrik fonksiyonun uygulanmasından LTM’nin LT’ye
göre olan avantajlarını göstermektedir. Aslında, LT2 düzeni gereğinden fazladır,
her ağırlığın n tane kopyası vardır ve en az 0(n2)’lik bir alana ihtiyaç vardır. Diğer
taraftan LTM tek bir ağırlıklı toplam vermektedir ve alan ihtiyacı 0(n)’dir. Tek bir
LTM geçişi m tane n-bit tamsayısı olan MADD’in toplamını hesaplayabilir. Tek
sorun m’nin n’de polinomial olmasıdır.

Teori 5.1 (MADD Є LTM)
LTM geçişlerinin tek bir katmanı, m’nin n’de en polinomial halinde olması
şartıyla, m tane n-bit tamsayıyı toplayabilir.

KANıT:
MADD en fazla n + logm bitteki tamsayıları vermektedir. Her bit için bir tane LTM
geçişine ihtiyaç vardır. En az önemli bit basit bir m-bit XOR ile hespalanmaktadır.
Diğer tüm bitler için

)(),...,(

1

)(

1

)()1(2∑∑ ==
= l

j

j

i

l

i

i

l

m

l xhXXf

toplamın l. bitini hesaplamak için kullanıyoruz.

Örnek 5.3 (üç 3-bit tamsayının toplamı)

 72

Yukarıdaki yapıyı m = 3, n = 3’e uyguluyoruz. Sonuç şekil 5.2’de gösterilmiştir.
Sonucun {0,...,21} aralığında olduğuna dikkat ediniz. Bu nedenle, çıktı bitini
hesaplayan LTM geçişinin sadece 2 tane eşiğe ihtiyacı vardır.

Sonuç 5.1 (PRODUCT Є PTM) PTM geçişlerinin tek bir katmanı (yukarıda
açıklanan), m’in n’de en polinomial halde olması şartıyla, m tane n-bit tamsayının
ürününü hesaplayabilir.

KANıT:
Sayfa [9]’daki PT1’le benzer şekilde, PTM1’de (ya da sadece PTM) doğrusal
yoğunluk polinomial sonuca izin veriyoruz.

f(X) = h(w1X1 + ... + WnXn + W(1,2) x1x2 +...)

Fakat sonucun polinomial olacak kadar çok olmasına izin vermiyoruz(yoksa
herhangi bir doğru yanlış fonksiyonu tek bir geçişle gerçekleştirilebilir). İki n-bir
tamsayı olan X ve Y’nin ürünü ∑ =

= n

i iYYXPRODUCT x1),(şeklinde yazılabilir.
PRODUCT’ı uygulamak için MADD yapısını kullanıyoruz.

),,...,,(),(21 YYYMADDYXPRODUCT xxx n=

Şekil 5.4: MADD: üç tane 3-bit tamsayı olan X, Y ve Z’nin toplaması –
LTM elemanlarının bir tabakası kullanılarak.

 73

Şekil 5.5: Sınıflar arasındaki ilişki.

)(),(
1 1
2∑∑

= =

=
n

j

n

i
ij

i

ll
yxhf YX

fl ürünün l-inci bitini vermektedir.

5.2 LTM’nin Sınıflandırılması

Küçük ağırlıkları(polinomial olarak büyüyen) göstermek için bir şapka
kullanıyoruz, örneğin LT, LTM [6], [43] ve tek bir tabaktan oluşmayan devrenin
derinliğini(tabakalarının sayısını) belirtmek için altsimge kullanıyoruz. Bu
çalışmada geçen devrelerin hepsinin polinomial büyüklüğü(elemanların sayısı) n
(girdi sayısı) cinsindendir. Örneğin LT2 sınıfı LT elemanlarının derinlik-2
polinomial büyüklüğe sahip olanlarıyla uygulanabilen doğru yanlış
fonksiyonlarından oluşur.

Şekil 5.3 doğru yanlış fonksiyonlarının 5 sınıfı, LT, LT, LTM, LTM ve LT2, ile
farklılıkları kurmak için kullanılan fonksiyonların ilişkisini anlatır.

Bu bölümde Şekil 5.3’te gösterilen ilişkileri kanıtlayacağız.

Teori 5.2 (LTM’nin Sınıflandırılması)
Şekil 5.3’de gösterilen kapsamalar ve farklılıklar aşağıdadır;

• LTMLTTL ⊆⊆ˆ
• LTMMTLTL ⊆⊆ ˆˆ
• TLLTM 2

ˆ⊆

• LTXORamaMTLXOR ∉∈ ˆ
• MTLCOMPfakatLTCOMP ˆ∉∈
• MTLLTADDfakatLTMADD ˆ∪∉∈
• LTMfakatLI IPTP kk ∉∈ ˆ

2

 74

5.4 Sınıflandırma Teorisinin Kanıtı

Şekil 5.3’te gösterilen ilişkileri kanıtlayalım. İlk başta kapsama ilişkilerini görelim.
Daha sonra sınıflar arasındaki farklılıkları gösteren fonksiyonların üzerinde
duracağız.

5.4.1. Kapsamalar

Çoğu kapsama ilişkisi şu tanımlardan gelirler: LTMLTTL ⊆⊆ˆ ve

LTMMTLTL ⊆⊆ ˆˆ . Sadece bir tanesinin bir kanıta ihtiyacı vardır:

TLLTM 2
ˆ⊆

Yukarıdaki ifadeyi göstermek için sayfa [13]’den bir sonuç kullanacağız. Keyfi
ağırlıklı tek bir LT geçişi, bir LT2 devresiyle gerçekleştirilebilir. Ayrıca ikinci
tabakadaki doğrusal olmama durumu devrenin çıktılarını etkilenmeden
kaldırılabilir (1-yaklaşım denilen özellik). p n’de polinomial iken ve tüm i’ler için f
Є LT iken

TLf i ˆ∈ ,)()(
1

X
i

Xf
p

ii fw∑=

LTM’deki bir fonksiyonun LT2 uygulamasını düşünelim. Birbirinin aynısı olan LT
geçişlerinden oluşan bir tabaka ve onları takip eden 1 ve -1 ağırlığında tek bir
geçiş ve -1 eşiğinden oluşur. Birinci tabakadaki her LT geçişini, eşiti olan LT
geçişleri ve ağırlıklı toplamıyla değiştiriyoruz. Ağırlıklı toplamları birleştiriyoruz.
Örneğin ikinci ve üçüncü tabakalar, ortaya çıkan devre LT2’de olacaktır.

5.4.2 Farklılıklar

Birinci örnekte MTLXOR ˆ∈ olduğunu ve XOR ∉ LT olduğunun bilindiğini gördük.
Diğer taraftan, COMP(X,Y), iki tane n-bit tamsayının karşılaştırmasının LT’de

⎩
⎨
⎧ ≤

=−= ∑
= Diger

iseXY
YXCOMP yx ii

n

i

i

0
1

))(sgn(),(
1
2

olduğunu gördük.

MTLCOMP ˆ∉ olduğunu gösterelim. Bu nedenle bir doğru yanlış fonksiyonun
entropi özelliğinden bahsedeceğiz. İletişimin karmaşıklığı hakkında eşit bir tanım
sayfa [47]de verilmiştir.

 75

Tanım 5.4 (Entropi)

Doğru yanlış fonksiyonu için n-değişkeni, S bu değişkenlerin altkümesi ve

} ||
1,0{

S
s∈ ,),...,(||1 xxf Sns −

 f’de s’nin değeri S’nin yerine konularak elde edilen

fonksiyon. f’nin entropisi

 |}1,0{:|max][} ||S

ss
sfE f ∈=

şeklinde tanımlanır.

Entropi n değişkenin mümkün 2 ||S tüm değerlerini S kümesine atayarak elde
edebileceği alt fonksiyon üzeri n- |S| değişkenlerin maksimum sayısıdır.

Yardımcı Teorem 5.1 (Üstel Entropi, Üstel Ağırlıklar Demektir)
Öyle bir f fonksiyonu ki, E[f] n’de üstel, LTM uygulaması üstel ağırlıkları
gerektirmekte. Örneğin ∑n

iw1 || üstel.

Kanıt: Bir alt fonksiyon ∑∈

∈
Si iiS swW olduğunda

)(),(),...,(||1 Wxwxxf S

SXi
iiSns

hsSXf +=== ∑
−∈

−

şeklinde yazılabilir.

Pigonhole prensibine göre ve Ws bir tamsayı ise, |}:{| sW s E[f]’den büyük
olmalıdır. Eğer değilse Ws’nin tüm E[f] özel alt fonksiyonlarını tanımlamaya
yeterli özel değeri olmayacaktır. Bu da

 ∑∑
=∈

≤≤
n

i
i

Si
i wwfE

1
||||][

demektir.

MTLCOMP ˆ∉

Kanıt: E[COMP]’nun üstel olduğunu gösteriyoruz ve 5.1’i kullanıyoruz.

fs(x1,..,xn) = COMP(X,Y = s) olsun.

 76

bu fonksiyonlardan 2n tane mevcut; hepsinin özel olduğunu gösterelim. İki ayrı
tamsayı s1 ve s2, öyle bir X0 seçin ki s1 < X0 < s2, ve sonra fs1(X0) ≠ fS2(X0).

 MTLLTADDfakatLTMADD ˆ∪∉∈

Kanıt: ADD ∈ LTM olduğunu gördük. Toplamın en az önemli olan kısmı LT’de

olmayan XOR’dur. Diğer taraftan MTLADD ˆ∉ anlamına gelen COMP’a benzer

bir kanıtı olan E[ADD] üsteldir.

 LTMIfakatLI PTP kk ∉∈ ˆ
2

Kanıt: Let ∑= n

ii yxYXIP
1

),(olsun. Fonskyionu IPk(X, Y) =1 sadece ve sadece

IP ≥ k, ya da IPk = 0 olarak tanımlayın. IPk ∉ LTM olduğunu iddia ediyoruz. Hatta
IPk LTM’nin içinde olsaydı, ağırlıklı toplam tarafından takip edilen bit LT geçişleri
tabakasıyla uygulanabilirdi[13]. O zaman IP2 (Inner Product mod 2)’yi yanlış
olarak bilinen TL ˆ2 ’de uygulamak için k = 1..n için devreleri birleştirebilirdik.

Sınıflandırmayı tamamlamak için eksik olan şey şudur: MTLLTTL ˆˆ ∩= . Bunun
doğru olduğunu varsayıyoruz.

Varsayım 5.1 (MTLLTTL ˆˆ ∩=)
LT değişken değerli doğrusal eşik fonksiyonları sınıfını temsil etsin ve TL̂
ağırlıklarında Polinomial büyüme olan fonksiyonların sınıfı olsun ve LTM de
Tanım 5.1’de belirtildiği gibi olsun böylece,

MTLLTTL ˆˆ ∩=

5.5 Sonuçlar

Asıl amacımız etkin bir genellenmiş simetrik fonksiyon ortaya koymak için teorik
sonuçları kullanmaktı. Bu işlem süresince, LT2 uygulamasının gereğinden fazla
olduğunu anladık. Bu da bizi LTM’nin tanımına, yeni ve daha güçlü bir
hesaplama elemanına, götürdü. LTM’nin gücünü LT’ye gore sınıflandırdık. VLSI
düzenlerinin alanlarının 0(n2) ‘dan 0(n)’ye düşürmede ve çoklu toplama ve
üründe etkili tasarımlar elde etmede nasıl kullanılabileceğini belirttik. Gelecek
çalışmalar için bazı ilginç talimatlar ise şunlardır. (i) MTLLTTL ˆˆ ∩= varsayımını
doğrulama (ii) LTM’nin analizinde özellikle PTM’nin sınıflandırmada nereye
düştüğünü göstermede(şekil 5.3), spektral teknikleri uygulama.
Doğrusal karar listelerinden, LDL, Bölüm 2’nin sonuç kısmında(77), Bölüm 2.7’de
bahsedilmiştir. LTM’nin LDL’nin bir parçası olduğunu görmek kolaydır yani

LDLLTM ⊆ .İlginç bir problem LTM ∈ LDL ya da LTM = LDL oluşturmaktır.

 77

Daha mümkün cevap olan öncekini kanıtlamak için, IPk’nin tüm LDL yapıları
gösterilmeli ve gösterilen fonksiyonlar LTM’de olmamalıdır.

Gelecek çalışmalar için başka bir yön ise 6. Bölümde dile getirilmiştir. Yukarıdaki
fikirleri VLSI kümesinde uygulamaktır. µ2 analog çipte, yukarıdaki modeli
kullanarak programlanabilir bir genellenmiş simetrik fonksiyon ürettik. Yüzen
geçiş teknolojisi ağırlıkları programlamak için kullanıldı. Yüzen geçişe elektronlar
enjekte ederek ve elektronları oraya yönlendirerek tek bir geçişe ağırlık yükledik.

 78

Bölüm 6

Programlanabilir Sinirsel Mantık ile VLSI Uygulanması

6.1 Giriş

Neuromorphic analog VLSI alanında, çoğu araştırma bir şekilde öğrenen veya
adapte olan sinirlerin uygulanmasıyla ilgilenmekte, sayfa [11], [16], [19]. Bunun
nedeni sinirsel sistemlerin gücünün adapte olma yeteneklerinden
kaynaklandığına inanılmasıdır. Bir sinir tarafından yerine getirilen fonksiyonun
ağırlıklı girdilerin toplamı ve daha sonra bir eşik kendi kendine(öğrenmeden) bir
yapı bloğu olduğu kanıtlanmıştır. Uzun yıllar boyunca teorik bilgisayar bilimi bu
tarz nöronların gücünü, polinomial büyüklükteki vs üstel büyüklükteki devreler ve
NP’nin tam olması sorunuyla ilgili problemler açısından inceledi. Ana sorun-
doğru yanlış girdisi, çıktısı ve eşik devreleri üretmek ve yararlı doğru yanlış
fonksiyonlarını etkili bir şekilde hesaplama. Eşik devrelerinin şaşırtıcı derecede
güçlü oldukları görülmüştür[1]. Örneğin tamsayı bölümü, sabit derinliği olan bir
polinomial büyüklükteki eşik devresiyle yapılabilir. Başka bir değişle eğer iki n-bit
tamsayının bölümünün hesaplanması eşik devreleriyle yapılmak isteniyorsa,
polinomial olarak pek çok, n tane, eşik elementlerine ihtiyaç vardır. Diğer yandan
VE, YA DA ve DEĞİL gibi geleneksel mantık devreleri kullanmak, üstel sayıda
pek çok geçiş kullanmayı gerektirir. XOR ve tamsayı toplaması gibi daha basit
fonksiyonlarda da durum aynıdır.

Eşik devreleri teorisinden elde edilen sonuçların çoğu, silikon üzerindeki
devrelerde kullanıma uyarlanabilir. Ağırlıklar için en yüksek boyut ve sonuç
olarak alınan elementin ya da devrenin gücü arasındaki ilişki gibi sonuçlar[6],
[13], XOR, ADD, MULTIPLY ve diğer yararlı fonksiyonların etkin tasarımları için
bkz: Sayfa [24], [28], [31]. Örneğin teorinin basit bir uygulaması bizi çoklu eşik
elementini tanımlamaya taşıdı, bkz: Bölüm 5. Bu, belirli doğru yanlış
fonksiyonlarında özellikle PARITY gibi simetrik fonksiyonların alanını 0(n2)’den
0(n)’ye indirdi.

Araştırmamızın 3 önemli amacı vardır:
1. Uygulama yönü. Silikon üzerinde etkili eşik elementleri tasarlamak ve
uygulamak.
 2. Teorik yönü. Yüksek performanslı eşik devrelerini sistematik bir şekilde
tasarlamak için, teorik bilgisayar biliminde yapılmış çalışmalardan yararlanmak.
3. Programlanabilirlik yönü. Eşik elementlerini FPGA’larda yapı taşları olarak
kullanmak.

Eşik devrelerinin kullanılması, 60’ların ve 70’lerin başında önerilmişti sayfa [4],
[48], [53], ve daha yakın olarak bkz: sayfa [28], [39]. Bildiğimiz kadarıyla, eşik
devrelerinin teorik sonuçları daha önce silikon kullanımını içeren başka bir
çalışmayla ilişkilendirilmemişti. Programlanabilir nöron-bazlı donanım son
zamanlarda sayfa [39], [41]’de önerilmiştir. Aşağıdaki uygulama bölümünde,
bunların çalışmamızla olan ilişkisini anlatıyoruz. FPGA’nın kısa bir tekrarı için
bkz: sayfa [50]. Bölüm 6.2’de eşik devrelerini geleneksel mantık devreleriyle
karşılaştırıyoruz. Bölüm 6.3’te tasarımın programlanabilirlik yönüne

 79

odaklanıyoruz. Bölüm 6.4’te VLSI uygulamasını ve test sonuçlarını görüyoruz.
LTM elementi Bölüm 5’te ve sayfa [7]’de teorik bir açıdan anlatılmıştı. Geleneksel
eşik devreleriyle ve (VE, YA DA, DEĞİL) devreleriyle karşılaştırılmıştı. Bölüm 6.5
µ2 -teknoloji 2mm x 2mm çipi üzerine LTM’nin kullanımını göstermektedir.

Şekil 6.1: Sinirsel vs. geleneksel mantık. XOR hesaplayan iki devre.

6.2 Sinirsel Mantık ve Geleneksek Mantık

Herhangi bir doğru yanlış fonksiyonu AON devreleriyle sistematik olarak
çözülebilirken neden eşik elementleri kullanalım ki? (XOR) gibi bazı
fonksiyonlarda girdideki bit sayısı arttıkça AON devresindeki elementlerin sayısı
da üstel olarak artacaktır[51]. Diğer taraftan, doğrusal eşik elementleri
kullanılıyorsa, geçişlerin sayısı, girdi bitlerinin sayısı içinde doğrusaldır. Bu Şekil
6.2de, 3-bit girdi için kullanılmıştır. Genellikle, n tane bitin XORunu hesaplayan
derinlik-2 AON devresinin en az 2n-1 + 1 tane geçişe ihtiyacı vardır. LT
kullanılırsa, sadece n + 1 geçişe ihtiyaç vardır.

LT devrelerinin AON devrelerinden daha güçlü olduğunu görmek gayet kolaydır.
Bunun nedeni her AON geçişi için, onun eşiti olan ve aynı fonksiyonu
hesaplayan bir LT geçişinin mevcut olmasıdır. Oysa çoğu LT geçişinin AON
eşitleri yoktur.

Örnek 6.1 (ÇOĞUNLUK) ağırlık vektörü (W0, ...,w5) = (-3,1,1,1,1,1) ile tanımlanmış
bir fonksiyon olsun:

f(x1,..., x5) = sgn(-3 + x1 + x2 + x3 + x4 + x5).

Sadece bir adet 1 vermektedir, oysa 3 ya da aha fazla girdi 1’dir. Tek bir VE veya
YA DA geçişiyle uygulanamaz, bazı girdileri reddetsek bile (DEĞİL).

LT devreleri daha güçlü oldukları halde, yapı taşlarının daha karmaşık olduğu ve
bu nedenle devre düzeninde daha çok yer kaplayacakları tartışılabilir. Bu konu
bir yere kadar doğrudur. Fakat ihtiyaç duyulan geçişlerin sayısında üstelden

 80

polinomial a giden düşüş, boyutlarındaki büyümeyi görünmez hale getirmektedir.
Sıradaki bölüm bu konu üzerinde duracaktır.

6.3 Programlanabilir ve Fiziksel Bağlantılı Ağırlıklar

FPGA’ya mevcut fonksiyonların içinden seçilen, her elementin hesapladığı
fonksiyon programlanabilir olan element devreleri olarak bakılabilir. Geleneksel
FPGAlarda bu içinden seçilen küme VE, YA DA ve DEĞİL’den oluşmaktadır. Biz
daha geniş bir fonksiyonlar kümesi sunuyoruz, Doğrusal Eşik Fonksiyonları, LT.
Bir LT geçişi hakkındaki tüm bilgi eşikte ve ağırlıklarda saklıdır. Ağırlıkları
kullanmanın 2 yolunu göz önünde bulunduruyoruz.
• Fiziksel bağlantılı ağırlıklar bir transistörün en/boy oranında kodlanmıştır.
• Programlanabilir ağırlıklar, yüzen geçiş üzerine kalıcı bir yük olarak konmuştur.

Fiziksel bağlantılı ağırlıklar, devre üretildikten sonra tekrar değiştirilemezler oysa
programlanabilir olanlar değiştirilebilirler. Fiziksel bağlantılı ağırlıklar otomatik
düzende ilginç bir sorun teşkil etmekteler. Karşılaştırma fonksiyonu, COMP, gibi
bazı fonksiyonlar 1’den 2n/2’ye kadar bir ağırlık gerektirmekteler. Şekil 6.3 8-bit
COMP fonksiyonunu göstermektedir. VE, VEYA ve tüm simetrik fonksiyonlar
küçük ağırlıklarla uygulanabilir. Bu farklılık da fiziksel bağlantılı ağırlıkları ve bazı
LT geçişlerini kullanmanın diğerlerinden daha geniş olduğunu gösterir.

Şekil 6.2: 2 4-bit tamsayının karşılaştırılması.

Programlanabilir ağırlık kullanmak, düzeni basitleştirir ve LT elementinin
hesapladığı fonksiyon üzerinde değişiklik yapmayı sağlar. Sıradaki bölümde
uygulamanın ayrıntılarından bahsedeceğiz.

6.4 Uygulama ve Sonuçları

Sayfa [41]’de yazarlar, değişken bir doğru yanlış fonksiyonunu uygulayan sinir
bazlı bir devre üretmişlerdi. Biz değişken bir eşik elementi (doğru yanlış
fonksiyonlarının sınırlı bir kümesi) uyguluyoruz. Asıl fonksiyon ağırlıklar
düzeltilerek seçildi. Şekil 6.4’te şemasal uygulama görülebilir. 16-girişli eşik
elementi MO-SIS’te mevcut olan standart mµ2 duble - çoklu analog işlemi
kullanılarak üretildi. Düzen için Şekil 6.4’e bakınız. 16 girdi tüm 4 geçişe de metal
kullanılarak (mor) dağıtıldı; böyle bir düzen eşik elementlerinin yoğun şemalarını
oluşturmayı sağlar.

 81

Her ağırlık için tek bir transistör kullanarak, ağırlıkları polisilikon yüzen geçişlerin
üzerine yerleştiriyoruz böylece yenilenme olmadan da uzun zaman boyunca
hafızada tutma sağlanıyor. Çarpma, girdilerin doğru yanlış olması gerçeği
üzerine kurulmuştur, mantıksal bir 0 için 0 Volt, mantıksal bir 1 için X Volt, X 1 ile
5 Volt arasında değişebilir. Bir girdi ilgili ağırlığa akım oranı yaratır. Toplam

∑ =

n

i ii xw1 transistörleri aynı yere bağladığımızda doğal olarak ortaya çıkar.
Akımların toplamı yerine voltajların toplamları kullanıldığında, [39]’daki bir diğer
yaklaşım ortaya çıkar. Son olarak iki dönüştürücü çıktıları mantıksal 0’a ya da
mantıksal 1’e çekmeye uğraşırlar.

 Şekil 6.3: Programlanabilir Doğrusal Eşik Elemanın Şeması.

Yeni bir fonskiyonda programlama yapabilmek için, ağırlıkları yönlendirme ve
sıcak elektron enjeksiyonu ile değiştirir, yüzen geçişlerin benzer uygulamaları
için bkz sayfa [16], [19], [55]. Sayfa [10]’da görülebileceği üzere, burada
kullanılan tek transistör belleğinden birazcık daha karmaşık olan analog hafıza
hücresi, 14 bite kadar bilgi saklayabilir, ve bu çoğu uygulanabilir eşik fonksiyonu
için yeterli bir miktardır.

Girdi vektöründeki 1’lerin sayısını değiştirerek 016

00 =+∑ =i ixw iken eşik değerini
w0 belirleyerek, eşik elementimizin doğrusallığını test ettik. Mantıksal 1 değeri
için 1 volt kullanıldı. Şekil 6.5 sonuçları göstermekte.

Verinin karekök şekline dikkat ediniz. Bu önemli bir noktayı göstermekte. T’de
doğrusal olmayan belirli bir T değeri elde etmek için gerekli olan voltaj. Eşiğin
üstünde ya da altında işleyen bir nFET için, tek bir girdinin katkıları sırasıyla
şöyledir:

)2(
2 VV TgI −= β

 eI V
V

I T

g
k

0= .

 82

VT termal voltaj iken ve (3, I0 ve K sabit iken. Fiziksel bağlantılı ağırlıklar, (5 ve
I0‘nun oranlı olduğu transistörün W/L oranı olarak kodlanmışlardır[29]. Bu,
transistörün neresinde işlem olduğuna bağlı olmadan, ağırlıkların değerlerini
W/L’de doğrusal kılmaktadır. Programlanabilir ağırlıklar durumunda değer,

Şekil 6.4: Doğrusal toplamın düzeni – W0 ∑− =

16

10% i ii xww . Dört eşik elementi

 83

gösterilmektedir, iki programlanabilir ve iki programlanamaz, sonuncusunun birim
ağırlıkları vardır. Gösterilen alan 168µ x 360µ ’dur. Çip MOSIS’te mevcut olan
2µ teknolojisiyle üretilmiştir.

Şekil 6.5: Vdd — Eşik ve girdideki 1’lerin sayısı.

Yüzen geçişte depolanan voltajda ağırlıkların sayıları üstel ya da ikinci
dereceden olabilir bkz: Şekil 6.4. Bu tarz doğrusal olmama durumları, geniş
dinamik aralıklarda söz konusudur.

6.4 VLSI Düzeni ile LTM

LTM hakkındaki teorik sonuçlar doğru yanlış fonksiyonlarının VSLI
uygulanmasına da uyarlanabilir. Çoklu eşikleri olan geçiş fikri aklımıza simetrik
doğru yanlış fonksiyonlarının etkin bir VLSI uygulamasını ararken geldi. Tek bir
LT geçişi simetrik doğru yanlış fonksiyonlarını uygulamada yetersiz olsa bile, iki
katmanlı bir LT devresi yeterlidir. Ayrıca böyle bir devrenin VE, VEYA ve DEĞİL
üzerine kurulmuş geleneksel mantık devresinden çok daha iyi çalıştığı
bilinmektedir. Ayrıca geleneksel devrelerin üstel büyüklükleri vardır.

Öneri 6.1 (Simetrik Fonksiyon Uygulaması için LT2 vs LTM)
Simetrik bir fonksiyonun LT2 düzeni 0(n2) kadar bir alan gerektirmektedir oysa

Şekil 6.6: Genellenmiş bir simetrik fonksiyonun uygulanmasında LTM’nin LT’ye
göre olan avantajlarını göstermektedir. Ağırlıklı toplam her geçişte tekrar
uygulanmaktansa sadece bir kere uygulanır.

 84

KANıT:
LT2’de genellenmiş simetrik bir fonksiyonu uygulamak için birinci tabakada n tane
LT geçişine ihtiyaç vardır. w0 geçişi dışında hepsi aynı wi ağırlığına sahiptir. Aynı
doğrusal toplam olan ∑n

ii xw1 ’i n kere tekrarlamaktansa, bunu bir kere
yapıyoruz ve sonuçları n tane farklı geçişle karşılaştırıyoruz. Sonuç olarak ortaya
çıkan devre tek bir LTM geçişine tekabül eder.

Yukarıdaki önerme Şekil 12’de tasvir edilmiştir. Aslında, LT2 düzeni gereğinden
fazladır, her ağırlığın n tane kopyası vardır ve en az 0(n2)’lik bir alana ihtiyaç
vardır. Diğer taraftan LTM tek bir ağırlıklı toplam vermektedir ve alan ihtiyacı
0(n’)dir. Şekil 6.5 LTM elementinin yüksek düzeyli bir şemasını göstermektedir.
Bu element 2mm x 2mm çip üzerine, MOSIS’deki 2µ teknolojisi kullanılarak
üretilmiştir. Şekil 14 düzenini göstermektedir. 16 girdisi vardır. Çıktısı 4-bit bellek
hücresini gösteren 4-bit bus’tan oluşur. LT geçişinin düzeninde kullanılan
akımların toplamının, Şekil 6.4, aksine; ağırlıklı toplam Nöron MOS tarzında
uygulanmıştır, voltajların kapasite toplamı için bkz: Sayfa [30], [39]. Ağırlıkların
ve eşiklerin değerleri yüzen geçişler üzerine depolanmıştır. Belirli bir ağırlık/eşik
seçmek için giriş çizgileri kullanılarak, birlikte ya da ayrı ayrı olmak üzere
programlanabilirler.

 85

Şekil 6.7: Bir LTM geçişinin yüzey düzeyli şeması.

Eşiklerin yükseldiğini varsayarak, sadece tek bir çizginin VE tabakasının
çıktısında mantıksal 1’de olduğu bilinmektedir, bkz: Şekil 13. bu bilgiden
yararlanarak, 16 çizgiyi değerleri fonksiyonlara göre depolayan bir bellek hücresi
yardımıyla 4-bir bus’lara yüklüyoruz. Genel olarak, log21 bitlerinden bir bus elde
edilir, t LTM elementinin geçişlerinin (eşiklerinin) sayısı iken. Simetrik
fonksiyonlarda t = n, girdi sayısı. Ya da Şekil 6.5’teki devreye bakılabilir, 16-bit
girdi ve 4-bit programlanabilir hesaplama elementi.

6.5 Sonuç

Ağırlık depolamak için yüzen geçişler kullanarak 16-girdili programlanabilir
doğrusal eşik elementi ürettik ve test ettik. Böyle bir depolama yenileme
gerektirmemekte ve ağırlıkların enjeksiyon ya da yönlendirme yoluyla
değiştirilmesi sağlanmaktadır. 16-girdili çoklu-eşik elementi uygulayarak ikinci bir
çip daha ürettik. Bir tek çoklu-eşik elementi XOR ve tamsayı toplaması
yapabilmektedir. Bazı yararlı doğru yanlış fonksiyonlarının ilk tabakadaki tüm
geçişleri aynı ağırlığa sahip olan 1-tabakalı LT devreleri tarafından yapılabilmesi
bilgisinden yararlanmaktadır. Ağırlıklı toplamı sadece bir kere uygulayarak,
alanın n2’den n’e düşürülmesini saplamaktadır.

 86

Uygulanabilirlik açısından bakarsak, bu çalışmanın devamı, fiziksel bağlantılı
ağırlıklı eşik devrelerinin düzenini sistematik (ya da otomatik) bir şekilde üretmeyi
planlama yönünde olabilir. Çalışmanın başka bir yöne ise programlanabilir eşik
elementlerini FPGA’larda yapı taşı olarak kullanmak olabilir.

Şekil 6.8: 16-girdili bir LTM elementinin düzeni. Çıktı 4-bit bellek hücresini
gösteren 4-bit bus’tan oluşmaktadır. Ağırlıklı toplam, voltajların kapasite toplamı
olarak Nöron MOS tarzında uygulanmıştır. Bu çip MOSIS’de bulunan µ2
teknolojisi ile üretilmiştir.

 87

Bölüm 7

Sonuçlar

Bu tez doğrusal eşik elementlerinin özelliklerini incelemiştir. Bunlar, doğru yanlış
girdileri, doğru yanlış çıktıları olan yapay nöronlar, çıktılarının ağırlıklı
toplamlarının işaretini hesaplamak. 3 şekilde katkımız olmuştur:

• Teorik düzeyde T dL)(ˆ ve LTM gibi yeni fonksiyon sınıflarını tanımladık ve
bunların hesaplama gücünü sınıflandırdık.
 • Algoritmik düzeyde, gerçek ağırlıkların reel sayıların eğişken bir alt
kümesinden alınan ağırlıklara nasıl dönüştürülebileceğini gösterdik. LT
fonksiyonlarının minimum ağırlıkla nasıl oluşturulabileceğini ve son olarak
COMP’u hesaplayan bir TL 2

ˆ devresi üreten bir algoritma gösterdik. Ayrıca,
XOR, ADD, PRODUCT gibi yararlı fonksiyonları hesaplayan LTM devrelerinden
bahsettik.
• Uygulama düzeyinde, LT ve LTM’nin VLSI uygulamasının tasarımı, düzenini ve
test edilmesini gösterdik. Ağırlıkların değerini depolamak için yüzen geçiş
teknolojisini kullanan programlanabilir bir LT elementi tasarladık.

Bölüm 2’de eşik devreleri teorisinin bazı bilinen sonuçlarını gösterdik, özellikle
herhangi bir doğrusal eşik elementinin tamsayı ağırlıklarla kullanılabileceğine
değindik. Buradaki katkımız, reel sayıların değişken kümesiyle yapılan bir
genelleme oldu. Ağırlıkları değiştirmeye yarayan bir algoritma ile bir LT
fonksiyonunun uygulanma şartlarını belirttik. Bölüm 3’te minimum ağırlıklarla
doğrusal eşik fonksiyonları oluşturmak için bir metot sunduk. Bu d ile
işaretlenmiş olan T dL)(ˆ sınıfları arasındaki farklılıkları ortaya çıkarmak için

kullanıldı. d, 0(nd) ağırlıklarıyla uygulanabilen fonksiyonlar kümesi olan bir T dL)(ˆ
sınıfı. Bölüm 4’te bilinen bir sonuç ortaya konuldu, büyük ağırlıklara sahip bir LT
elementinin, TL̂ elementlerinen oluşan iki tabakalı devreyle, küçük ağırlıklı
doğrusal eşik elementleriyle kullanılabileceği. Katkımız, COMP, karşılaştırma
fonksiyonu için bu devrelerden oluşturmak oldu. Bölüm 5’te LTM’den ya da çok
eşikli doğrusal eşik elementinden bahsedildi. XOR, ADD, PRODUCT gibi yararlı
Boolean fonksiyonları için oluşturulmuştur. Ayrıca LTM’nin LT ve TL̂ , TL 2

ˆ ve
LT2 gibi altsınıflarına göre gücü hesaplandı. Son olarak Bölüm 6’da LT ve
LTM’nin VLSI uygulamasından bahsedildi. Fiziksel bağlantılı ve programlanabilir
çözümler sunuldu. Ağırlıklar, yüzen geçişlere yük olarak depolandı ve
elektronların yönlendirilmesi ve enjeksiyonuyla değiştirildi.

Açık kalan noktalar ve gelecekteki araştırmalar için ilginç yönler şunlardır.
Örneğin bu tezde belirtilen fonksiyon sınıflarıyla doğrusal karar listesindeki
fonksiyon sınıfları arasındaki ilişki[49]. LTM ve LT ile ilgili konuları tamamlamak
için varsayım 5.1’in kanıtı gereklidir. Algoritmik açıdan, ağırlıkları dönüştürmek ve
küçültmek için verimli algoritmalar geliştirmek zor bir sorun gibi görünmektedir.
Donanım uygulaması konusunda ise, uzak bir hedef de, bazı özel
programlanabilir geçiş şemalarıyla, eşik elementlerinin mantık tasarım
kütüphanelerinde yapı taşı olarak kullanılmasıdır.

 88

Ek

fonksiyon correct = test(n, r, t)
%% fonksiyon correct = test(n, r, t)
% COMPARISON(X,Y)’nin simulasyonu
% correct = 1 eğer çalışma kurulursa
% n = X (Y) içindeki kullanılan bitlerin sayısı
% r = kullanılan asal sayıların sayısı
% t = kullanılan eşik
% V.Bohossian May, 96

BIG = 2^n;
correct = 1;
load primes.txt; % İlk 1000 asal sayı
p = primes(3:r + 2); % 2 ve 3’ü çıkar
hp = fix(p / 2) + 0.1; % hp : yarı p
p = p * ones(1, n); % kolonları çiftle
hp = hp * ones(1, n);
for i=1:n, L(i) = 2 ^ (i - 1);end;

for x=0 : 2 ^ n - 1,
for y=0 : 2 ^ n - 1,

Ax = fix((x * ones(1, n)) ./ L);
Ay = fix((y * ones(1, n)) ./ L);
A = Ax - Ay;
A = rem(ones(r, 1) * A + BIG * p, p);
A = A + ((signChp - A) - 1) / 2) .* p;
positives = size(find(~(A - 1)),1);
bit = (positives > t);
correct = correct & (bit == (x > y));

end;
end;

return;

 89

Kaynaklar

[1] E. Allender. A note on the power of threshold circuits. Proceedings of the

30th IEEE Symposium on Foundations of Computer Science, pages 580-
584, 1989.

[2] N. Alon and J. Bruck. Explicit constructions of depth-2 majority circuits for

comparison and addition. SIAM Journal of Discrete Mathematics, 7(1): 1-
8, February 1994.

[3] E. Amaldi and V. Kann. The complexity and approximability of finding

maximum feasible subsystems of linear relations. Ecole Polytechnique
Federale De Lausanne Technical Report, ORWP 93/11, August 1993.

[4] J.J. Amodei, R.O. Winder, D. Hampel, and T.R. Mayhew. Digital circuit

techniques. International Solid-State Circuits Conference, February 1967.

[5] P.W. Beame, S.A. Cook, and H.J. Hoover. Log depth circuits for division

and related problems. Proceedings of the 25th IEEE Symposium on
Foundations of Computer Science, pages 1-6, 1984.

[6] V. Bohossian and J. Bruck. Algebraic techniques for constructing minimal

weight threshold functions. Submitted to SIAM Journal of Discrete
Mathematics. Available at http://paradise.caltech.edu/ETR.html.

[7] V. Bohossian and J. Bruck. Multiple threshold neural logic. Advances in

Neural Information Processing Systems, 10, 1998. Available at
http://paradise.caltech.edu/ETR.html.

[8] V. Bohossian, P. Hasler, and J. Bruck. Programmable neural logic.

Proceedings of the second annual IEEE International Conference on
Innovative Systems in Silicon, pages 13-21, 1997. Available at
http://paradise.caltech.edu/ETR.html.

[9] J. Bruck. Harmonic analysis of polynomial threshold functions. SIAM

Journal of Discrete Mathematics, 3(2):168-177, May 1990.

[10] C. Diorio, S. Mahajan, P. Hasler, B.A. Minch, and C. Mead. A high

resolution non-volatile analog memory cell. Proceedings of the
International Conference of Circuits and Systems, 3:2233-2236, 1995.

[11] R. Douglas, M. Mahowald, and C. Mead. Neuromorphic analogue VLSI.

Annual Reviews in Neuroscience, 18:255-281, 1995.

[12] M. Goldmann, J. Hastad, and A. Razborov. Majority gates vs. general

weighted threshold gates. Computational Complexity, 2:277-300, 1992.

[13] M. Goldmann and M. Karpinski. Simulating threshold circuits by majority

circuits. Proceedings of the 25th ACM Symposium on the Theory of
Computing, pages 551-56, 1993.

 90

[14] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold
circuits of bounded depth. Journal of Computer and System Sciences,
46(2): 129-154, April 1993.

[15] D.R. Haring. Multi-threshold threshold elements. IEEE Transactions on

Electronic Computers, 15(1), February 1966.

[16] P. Hasler, C. Diorio, B.A. Minch, and C. Mead. Single transistor learning

synapses. Advances in Neural Information Processing Systems, pages
817-824, 1995.

[17] J. Hastad. On the size of weights for threshold gates. SIAM Journal of

Discrete Mathematics, 7:484-492, 1994.

[18] T. Hofmeister. A note on the simulation of exponential threshold weights.

CON-COON conference, 1996.

[19] M. Holler, S. Tarn, H. Castro, and R. Benson. An electrically trainable

artificial neural network with 10240 'floating gate' synapses. International
Joint Conference on Neural Networks, 11:191-196, June 1989.

[20] J. Hopfield. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the USA National
Academy of Sciences, 79:2554-2558,1982.

[21] A.A. Irmatov. On the number of threshold functions. Diskretnaya

Matematika (Russian), 5(3):40-43, 1993.

[22] A. A. Irmatov. Estimations of the number of threshold functions. Discrete

Mathematics and Applications, 6(6):569-583, 1996.

[23] J. Kahn, J. Komlos, and E. Szemeredi. On the probability that a random

{±1}-matrix is singular. Journal of the American Mathematical Society,
8(l):223-240, 1995.

[24] W.H. Kautz. The realization of symmetric switching functions with linear-

input logical elements. IRE Transactions on Electronic Computers, March
1961.

[25] M. Krause and P. Pudlak. On computing boolean functions by sparse real

polynomials. Proceedings of the 36th Annual Symposium on Foundations
of Computer Science, pages 682-691, October 1995.

[26] H.W. Kuhn and A.W. Tucker. Linear inequalities and related systems.

Annals of Mathematics Studies, 38, 1956. Princeton University Press,
Princeton, NJ.

[27] H.W. Kuhn and A.W. Tucker. On systems of linear inequalities. Linear In-

equalities and Related Systems, Annals of Mathematics Studies, 38:99-
156, 1957. Princeton University Press, Princeton, NJ.

 91

[28] R. Lauwereins and J. Bruck. Efficient implementation of a neural
multiplier. IBM Research Report, RJ 8138 (74551), May 30, 1991.

[29] C. Mead. Analog VLSI and neural systems. Addis on-Wesley, 1989.

97 [30] B.A. Minch, C. Diorio, P. Hasler, and C. Mead. Translinear circuits
using subthreshold floating-gate MOS-transistors. Analog integrated
circuits and signal processing, 9(2): 167-179, March 1996.

[31] R.C. Minnick. Linear - input logic. IRE Transactions on Electronic

Computers, March 1961.

[32] M. Muroga. Threshold logic and its applications. Wiley-Inter science,
1971.

[33] J. Myhill and W.H. Kautz. On the size of weights required for linear-input

switching functions. IRE Transactions on Electronic Computers, 10:288-
290, 1961.

[34] A.M. Odlyzko. On subspaces spanned by random selections of ±1

vectors. Journal of Combinatorial Theory, Series A(47): 124-133, 1988.

[35] S. Olafsson and Y.S. Abu-Mostafa. The capacity of multilevel threshold

functions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 10(2), March 1988.

[36] D.T. Perkins, D.G. Willis, and E.A. Whitmore. Division of space by concur-

rent hyperplanes. Internal Report, Missile and Space Division, 1959.
Lockheed Aircraft Corporation, Sunnyvale, California.

[37] D. Rumelhart and J. McClelland. Parallel distributed processing:

Explorations in the microstructure of cognition. MIT Press, 1982.

[38] J.S. Shawe-Taylor, M.H.G. Anthony, and W. Kern. Classes of feedforward

neural networks and their circuit complexity. Neural Networks, 5:971-977,
1992.

[39] T. Shibata, K. Kotania, and T. Ohmi. Real-time reconfigurable logic

circuits using neuron MOS transistors. International Solid-State Circuits
Conference, 1993.

[40] T. Shibata and T. Ohmi. A functional MOS transistor featuring gate-level

weighted sum and threshold operations. IEEE Transactions on Electron
Devices, 39(6), June 1992.

[41] T. Shibata and T. Ohmi. Neuron MOS binary-logic integrated circuits - part

I: Design fundamentals and soft-hardware-logic circuit implementation.
IEEE Transactions on Electron Devices, 40(3), March 1993.

[42] L. Shlafli. Gesamelte mathematische abhandlugen. Band 1, 1850. Basel:

Verlag Birkhauzer.

 92

[43] K. Siu and J. Bruck. On the power of threshold circuits with small weights.
SI AM Journal ofDiscrete Mathematics, 4(3):423-435, August 1991.

[44] K. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural

networks for division and related problems. IEEE Transactions on
Information Theory, 39(3):423-435, May 1993.

[45] K. Siu and V.P. Roychowdhury. On optimal depth threshold circuits for

multiplication and related problems. SIAM Journal of Discrete
Mathematics, 7(2):284-292, May 1994.

[46] D.R. Smith. Bounds on the number of threshold functions. IEEE

Transactions on Electronic Computers, June 1966.

[47] M. Szegedy. Algebraic methods in lower bounds for computational

models with limited communication. PhD Thesis, 1989. Chicago, Illinois.

[48] T. Tich-Dao. Threshold I2L and its applications to binary symmetric

functions and multivalued logic. IEEE Journal of Solid-State Circuits,
12(5), October 1977.

[49] G. Turan and F. Vatan. Linear decision lists and partitioning algorithms for

the construction of neural networks. 1997.

[50] . Villasenor and W.H. Mangione-Smith. Configurable computing.

Scientific American, pages 66-71, June 1997.

[51] I. Wegener. The complexity of the parity function in unbounded fan-in un-

bounded depth circuits. Theoretical Computer Science, 85:155-170,
1991.

[52] D.G. Willis. Minimum weights for threshold switches. Switching Theory in

Space Techniques, 1963. Stanford University Press.

[53] B.A. Wooley and C.R. Baugh. An integrated m-out-of-n detection circuit

using threshold logic. IEEE Journal of Solid-State Circuits, 9(5), October
1974.

[54] S. Yajima and T. Ibaraki. A lower bound on the number of threshold

functions. IEEE Transactions on Electronic Computers, 14(6):926-929,
December 1965.

[55] K. Yang and A.G. Andreou. The multiple input floating gate MOS

differential amplifier: An analog computational building block. IEEE
ISCAS, 5, 1994.

[56] A.C. Yao. On ACC and threshold circuits. Proceedings of the 31th IEEE

Symposium on Foundations of Computer Science, pages 619-627, 1990.

[57] T. Zaslavsky. Facing up to arrangements: Face-count formulas for

partitions of space by hyperplanes. Journal of the American Mathematical
Society, 154, Providence, RI, 1975.

 93

[58] Y.A. Zuev. Methods of geometry and probabilistic combinatorics in

threshold logics. Discrete Mathematics, pages 427-438, Appl. 2, 1992.

