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Özet 
 
İnsan beyinleri temel yapı blokları olarak bilgisayarlara göre birkaç kat daha 
yavaş olmasına rağmen birleşik iyileştirme ve görüntü ses tanımlama gibi zor 
problemlerin çözümünde bilgisayarlara göre çok daha üstündür. Bu gözlem 
yapay nöron alanındaki ilgiyi arttırmaktadır. Sonraki biyolojik sinirlerin 
hareketinden esinlenen yapay sinirleri bağlayarak kurulmuştur. Bu tezde n ikili 
girdilerin nörona benzer doğru yanlış fonksiyonlarını hesaplayan doğrusal 
başlangıç elemanının(LT) olarak adlandırılan yapay nöronun doğru yanlış 
versiyonunu düşüneceğiz. LT elemanı onun doğru yanlış girdilerinin ağırlıklı 
toplamının işaretini çıkar. LT devreleri olarak adlandırılan LT elemanlarından 
oluşan ağ devrelerindeki çalışmanın ana konusu hesaplanabilir kapasitelerinin ve 
limitlerinin tahminini ve VE, VEYA, DEĞİL(AON devreleri) kapılarına 
dayandırılmış geleneksel doğru yanlış mantık devrelerinin özelliklerinin 
kıyaslanmasıdır. Örneğin LT devreleri AON devrelere göre tamsayıların 
toplaması, çarpması, bölmesi gibi önemli fonksiyonların uygulamasında daha 
verimlidir. 
 
LT elemanının AON kapısından daha güçlü olduğunu görmek kolay, basitçe 
birinin ağırlığı seçmedeki özgürlüğü yüzünden. Gerçekten ağırlıkların farklı 
seçimleri farklı doğru yanlış fonksiyonları üretir. Bu nedenle, basit bir LT elemanı 

ile tanımlanabilecek n-girdili doğru yanlış fonksiyonlarının sayısı 2
2n ’dir. Bu ek 

üs eklenti karışıklığı ile orantılıdır. Bazı LT fonksiyonları büyüklük olarak farklı 
ağırlıklar gerektirir karşılık gelen LT elemanlarının zor donanım ve yazılım 
uygulamalarında yardımcı olarak. Bundan dolayı LT devrelerinin alanında teorik 
araştırma ağırlıklar üzerine odaklanmıştır kısıtlı ağırlıklarda LT elemanlarının 
kısmi kuvvetlerinde. 1971’lerde Muroga doğrusal başlangıç elemanının tamsayı 
ağırlıklarla ifade edilebileceğini ispatladı. Ağırlıkların büyüklüklerini doğal 
sayılarla kısıtlayarak orijinal LT elemanının gücü kaybedilmiş olmaz. Bu durumu 
reel sayıların alt kümelerine genelleyebiliriz. Örneğin, ağırlıklar tamsayıların 
karesi olarak sınırlandırılabilir ve tüm LT fonksiyonları tanına bilinir. Şu soruyu 
soracağız. Kendi ağırlıklarıyla çizilen ağırlıkları bütün LT fonksiyonlarıyla ifade 
edilebileceğini garanti eden D ∈ R üzerindeki altkümelerin şartları nelerdir? 
Ağırlıkların karışıklığının diğer bir bakış açısı da girdi sayısı arttıkça büyümesidir. 
Sayfa [17], [33], [38], [43] de gösterildiği gibi üslü olarak büyüyen ağırlıklarıyla 
tek bir eşik elementiyle ifade edile bilinen doğrusal eşik fonksiyonları vardır ama 
daha küçük polinom olarak büyüyen ağırlıklardaki eşik elementleriyle ifade 
edilemez. Sonucun ışığı doğrultusunda küçük (polinom olarak büyüyen) ağırlık 
fonksiyonlarının sınıfı sayfa [43]’te doğrusal eşik fonksiyonları setiyle LT adında 
bir sınıf tanımlayarak yukarıdaki soruyla ilgilenilmiş oldu. Biz tek bir LT elementi 
üzerine odaklanacağız. Polinom ve üs ağırlıkları arasında ayırımı daha da rafine 
ederek aradaki boşlukları doldurmaya izin veren en düşük ağırlıklar ile eşik 
fonksiyonları kurmak için iki yeni metodumuz olacak. Yani, polinomun derecesi 
d’ye göre LT alt sınıflarına bölünen polinom boyutlu ağırlıklarla doğrusal eşik 
fonksiyonlarının sınıfını ispat edeceğiz. Aslında daha genel bir sonuçla herhangi 
sayıda girdi ve ağırlık için doğrusal eşik fonksiyonu olduğunu ispatlayacağız. 
      Bazı LT fonksiyonları girdi değişkenlerinin sayısıyla üslü olarak büyümeyi 
gerektirmektedir sayfa [13], [18], ‘de gösterildiği gibi bu tip fonksiyonlar küçük 
boyutlarda polinom olarak büyüyen LT kapılarının iki katmanlı devreleriyle 
değiştirilebilir. Sayfa [18]’de büyük katsayılarla belli fonksiyonlara odaklanarak 
gösterildiği gibi devrenin boyutu üzerindeki en iyi bilinen sınırı geliştireceğiz. 
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Ayrıca açık iki katmanlı devre üreteceğiz. İki katmanlı LT devreleri farklı doğrusal 
elementlerden oluşmuştur ama bazı doğru yanlış fonksiyonları için eşitlik, 
toplama ve çarpma gibi, birinci tabakanın kapıları aynıdır. Bu durumun 
avantajından faydalanmak için yeni bir doğru yanlış hesaplayan bir element 
tanıtacağız. İşaret fonksiyonu yerine girdilerinin ağırlıklı toplamlarının doğru 
yanlış fonksiyonlarını hesaplar. Çoklu geçişli doğrusal eşikler anlamına gelen 
LTM hesaplama elementi diyeceğiz. VLSI uygulamasında bağlamında LTM’nin 
avantajları daha belirgin olacaktır. Gerçekten bu yeni model simetrik fonksiyonun 
yerleşim alanını 0(n2)’den 0(n) ‘e düşürmektedir. LT ve LTM elementlerinin VLSI 
uygulamalarını göstereceğiz. Programlanabilir ve donanımsal olarak bağlanabilir 
iki çeşit element yapılmıştır. Programlanabilir elementler ağırlıkların değerlerinin 
depolamak için yüzen kapıların şarjını kullanmaktadır. 

      Uzun yıllar boyunca doğrusal eşik mantığı konusuna, hesaplanabilir devre 
karışıklığı, sayfa [38], [56], ve donanım uygulamasını, sayfa [40], [48] iki farklı 
yolla yaklaşılmıştır. Şaşırtıcı olarak, bu iki yaklaşım arasında çok küçük bir 
iletişim vardır. Bütün olarak, bu tez eşik devrelerin uygulamasını ve teorisi 
arasında bir bağlantı kurmaya yönelik bir adımdır. Bu durumun katkısı üç 
seviyelidir. Teorik seviyede, LT ve LTM gibi fonksiyonların yeni sınıfları 
tanımlandı ve hesaplama güçleri tahmin edildi. Algoritmik seviyede, reel 
ağırlıkların keyfi reel sayıların, tamsayı ağırlıklarından çizilen ağırlıklara nasıl 
dönüştüğünü göstereceğiz, ayrıca en düşük ağırlıklarda LT fonksiyonlarını nasıl 
kuracağımızı ve son olarak LT2 devreleri(düşük ağırlıklı kapılardan oluşan devre) 
üreten ve COMP denilen kıyaslama fonksiyonunu hesaplayan bir algoritma 
göstereceğiz. Ayrıca XOR, toplama, çarpma fonksiyonları gibi yararlı 
fonksiyonları yapan LTM devreleri sunacağız. Uygulama safhasında tasarımı, 
yerleşimi ve LT ve LTM’nin VLSI uygulamasının testini göstereceğiz. Eşik 
mantığının teorik ve pratik yönü arasında bir bağlantı kurmak pratik problemler 
için çözüm sağlamaya ve uygulama konularından esinlenen yeni teorik soruların 
tanımına faydalı olacak. 
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Bölüm 1 
 
Giriş 
 
İnsan beyninin temel yapı blokları birkaç kat daha yavaş olmasına rağmen 
birleşik optimizasyon, resim ve ses tanıma gibi zor problemlerin çözümünde 
bilgisayarlara göre çok daha fazla üstündür. Bu gözlem yapay sinir ağları sayfa 
[20], [37] alanına daha fazla eğilmeyi tetikledi. İkincisi biyolojik nöronlardan 
esinlenerek yapay sinirler birbirine bağlayarak kurulmuştur. Bu tezde n ikili 
girdilerin sayfa [32] sinire benzer doğru yanlış fonksiyonlarını hesaplayan 
doğrusal başlangıç elemanı(LT) olarak adlandırılan yapay nöronun doğru yanlış 
versiyonunu düşüneceğiz. Bir LT elementi doğru yanlış girdilerinin ağırlıklı 
toplamının işaretini dışarıya çıkarır. LT devreleri denilen LT elementlerinden 
oluşan ağların çalışma alanındaki ana konu onların hesaplama kapasitelerindeki 
tahmini, sınırları ve VE, VEYA, DEĞİL (AON devreleri denilmektedir) kapılarına 
dayandırılmış geleneksel doğru yanlış mantık devrelerinin özelliklerinin 
kıyaslanmasını içermektedir. Örneğin LT devreleri AON devrelere göre 
tamsayıların toplaması, çarpması, bölmesi gibi önemli fonksiyonların 
uygulamasında daha verimlidir. 
 
 
Sinirsel ve doğrusal eşik mantığına iki yaklaşım bulunmaktadır: Teori ve 
uygulama. LT elementlerini uygulama yapan elektronik devreler altmışlı yıllarda 
önerilmişti. Bu alandaki çalışmalar halen devam etmektedir. Diğer yandan LT ile 
ilgili son yapılan teorik araştırma hesaplanabilir devre karmaşasının çatısı, sayfa 
[38], [56] kurulmuştur. Exclusive-OR (XOR) gibi belli doğru yanlış fonksiyonların 
sabit derinlikteki polinom büyüklükteki LT devresiyle ifade edilebileceği 
gösterilmiştir ama eğer klasik AON uygulaması kullanılırsa üslü olarak büyük bir 
devre gerektirmektedir. Toplama, çarpma, bölme gibi birçok faydalı fonksiyonun 
temeli olarak XOR, araştırmacılar hesaplamanın doğrusal eşik modelinin sınır ve 
gücünü araştırması üzerine yoğunlaşmışlardır. Bu görev şaşırtıcı olarak zor 
olmuştur. Gerçekten alandaki yalnız güçlü alt sınır polinom ağırlık gibi küçük LT 
elementlerin polinom boyut devrelerinin iki katmanlı olarak uygulanabileceği 
fonksiyonların sınıfı LT2 ile ilgilidir. Diğer bir deyimle LT2 gibi keyfi ağırlıklarda LT 
elementlerinin kullanımına izin verilirse LT2 ‘de olmayan bir fonksiyon bulunabilir, 
o zaman alt sınır olmaz, keyfi ağırlıklarda LT devrelerinin polinom boyutta 
devreleriyle iki katmanlı uygulama yapılabilecek fonksiyon yoktur. 
 
Sinir mantığın teorik ve pratik bakış açıları arasında çok küçük bir ilişki vardır. Bu 
tezin amacı teorik ve uygulama arasındaki bu boşluğu azaltmaktır. Bu bölümün 
geri kalanında tezde ifade edilen ana fikri adresleyeceğiz. Bölüm 1.1’de LT 
modellerini kullanarak ortak doğru yanlış fonksiyonlarını uygulama yapan 
örnekleri sunacağız ve doğrusal eşik fonksiyonlarını sınıflayan LT’yi 
tanımlayacağız. Bölüm 1.2 LT elementlerinin ağırlıklarının çalışması üzerine ana 
fikirleri işlemektedir, bölüm 2, 3 ve 4 de sonuçları anlatmaktadır. Bölüm 1.3.5. ve 
6. bölümlerle ilgilidir, VLSI uygulaması kadar iyi olan LT elementinden türetilen 
yeni bir hesaplama elementi olan LTM’yi anlatmaktadır. Son olarak da bölüm 
1.4’te tezin katkılarını özetlemektedir. 
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1.1 Tanım ve Örnekler ile LT Fonksiyonu 
 
Bu bölümde doğrusal eşik kapısıyla hesaplanan fonksiyonun resmi bir tanımını 
vereceğiz. Tek bir LT elementiyle uygulama yapılabilen doğru yanlış 
fonksiyonları örnekleri göstereceğiz, özellikle VE, VEYA, MAJ ve COMP olarak 
aşağıda belirtilen hesaplamaları göstereceğiz. 
 
Bu tez doğrusal eşik kapılarından oluşan LT devreleri veya doğrusal eşik 
devreleri çalışması üzerine odaklanmıştır. Bunlar ikili sayı düzeninde girdiler ve 
çıktılar içermektedir. Doğrusal eşik fonksiyonlarıyla matematiksel olarak 
anlatılmaktadır. 
 
Tanım 1.1  (Doğrusal Eşik Fonksiyonu) 
 
n- değişkenli doğrusal eşik fonksiyonu şu tipte bir doğru yanlış fonksiyonudur: 
 f : {0, l}n —> {0,1} 
 
 

 
 
Şekil 1.1: Doğrusal Eşik Elementi )sgn(

1∑ =
+−= n

i ii xwty . 
 Herhangi x Є {0, l}n için 
 

 

⎩
⎨
⎧ ≥

==
Diger
xF

xFxf
0

0)(1
))(sgn()(  

 
 
 

∑
=

+==
n

i
ii xwwxwxF

1
0),1.()(  

 
w Є Rn+1 ile sabitlenerek yazılabilecektir. Şekil 1.1 fikri göstermektedir. Aşağıdaki 
örnekleri düşünün. 
 
 
Örnek 1.1 (OR’un LT Gösterimi) 
 
Basit bir doğru yanlış fonksiyonu 
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⎩
⎨
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Diger

xn
.......1

)0,...,0(),...,( if       0
) ,...,OR( xxx 1

n1  

 
 
n-değişkenden oluşan OR bağlantısıdır. 
 
 
Eşik kapısıyla uygulanabilir, her n için 
 
 

∑
=

+=∈∀
n

i
iion

n

xwwxxORx
1

1 )sgn(),...,(,1,0{ }  

 
 
(w0, ...,wn) ağırlık vektörü bulunmaktadır. 
 
 
OR’u implement etmek için birim ağırlıklara ve w0 değeri -1 olan bir eşik değere 
ihtiyaç vardır. 
 
 
  W=(-1,1,...,1) 
 
 
X1 X2 -1 + X1 + X2 sgn(-1 + x1 + x2) OR(x1,x2) 
0 0 -1 0 0 
0 1 0 1 1 
1 0 0 1 1 
0 0 1 1 1 

Tablo 1.1: 2-değişkenli bağlantı, OR(x1, x2) = sgn(-1 + x1 + x2) 
 
 
X1 X2 -2 + x1 + x2 sgn(-2 + x1 + x2) AND(x1,x2) 
0 0 -2 0 0 
0 1 -1 0 0 
1 0 -1 0 0 
0 0 0 1 1 

Tablo 1.2: 2-değişkenli ayrılma, AND(x1,x2) = sgn(-2 + x1 + x2) 
 
 

∑
=

+−=
n

i
ix

1
n1 )1sgn(),...,OR( xx  

 
 
Tablo 1.1 n = 2 durumunu göstermektedir. 
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Örnek 1.2 (AND Є LT) 
 
AND ayrımı da 
 
 

)sgn(),...,(
1

1 ∑
=

+−=
n

i
in xxx nAND  

 
doğrusal bir eşik fonksiyonudur. 

 
 
Tablo 1.2 n = 2 için olan durumu göstermektedir. 
 
Çoğunluk fonksiyonu olan MAJ girdi değişkenlerinin yarısından çoğu 1 ise çıktı 
olarak 1 veren fonksiyondur. 
 
 
Örnek 1.3 (MAJ Є LT) 
 
Aşağıda çoğunluk fonksiyonunun tanımı vardır. 
 
 

⎪⎩

⎪
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡≥

= ∑ =

Diger

n
Eger

MAJ
n

i i
n

xxx
0

2
..1

),...,( 1
1

 

 
 
 
X1 x2 x3 -2 + x1 + x2 + x3 sgn(-2 + x1 + x2 + x3) MAJ(x1, x2, x3) 
0 0 0 -2 0 0 
0 0 1 -1 0 0 
0 1 0 -1 0 0 
0 1 1 0 1 1 
1 0 0 -1 0 0 
1 0 1 0 1 1 
1 1 0 0 1 1 
1 1 1 1 1 1 

Tablo 1.3: 3-değişkenli çoğunluk, MAJ(x1, x2, x3) = sgn(-2 + x1 + x2 + x3). 
 
 
Eşik fonksiyonu için doğal bir adaydır, ağırlıkların bir seçimi, 
 
 

)1,...,1,
2

( ⎥⎥
⎤

⎢⎢
⎡−= nw  

 
 



 13 

∑
=

+⎥⎥
⎤

⎢⎢
⎡−=

n

i
ixXX

n
MAJ

1
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sgn(),...,(  

 
tablo 1.3 n = 3 olan durumu göstermektedir. 
 
Örnek 1.1, 1.2 ve 1.3 simetrik olanlar için doğru yanlış fonksiyonlarını 
göstermektedir. Çıktı pozisyonlarından bağımsız olarak girdi vektöründeki 1’lerin 
sayısına bağlı olan fonksiyonlardır. İyi bilinen simetrik fonksiyon eşitlik ya da 
XOR fonksiyonudur. 
 
 
Örnek 1.4 (XOR ∉ LT) 
 
n-değişkenli eşitlik fonksiyonu 
 
  

⎪⎩

⎪
⎨
⎧

= ∑ =

Diger

isetekEger
XOR

n

i ixXX
0

.......1
),...,( 1
21  

 
şeklindedir. 
 
 
n=2 olsun ve XOR’u implement eden bazı ağırlıklar vardır. 
 
 

),,( 210 wwww =  
 
 

)sgn(),( 221121 xwxwwXX oXOR ++=  
 

 
 
X1 x2 -2 + x1 + x2 + x3 XOR(x1,x2) gösterir 
0 
0 
1 
1 

0 
1 
0 
1 

w0  
w0 + w2  
w0 + w1 

w0 + w1 + w2 

0 
1 
1 
0 

w0 < 0                  (1) 
w0 + w2>0            (2) 
w0 + w1>0             (3) 
w0 + w1 + w2 < 0   (4) 

Tablo 1.4: 2-değişkenli eşitlik, X0R(x1,x2) ≠ sgn(w0 + w1x1 + w2x2) 
 
 
Tablo 1.4 x değiştikçe F(x)’in değerlerini göstermektedir. Fonksiyonun değerleri 
Wi’nin çözümünün olmadığı eşitsizli sistemi üretmektedir. Gerçekten eşitlik (1) + 
(4) 2 w0 + w1 + w2 + w3 < 0 iken,eşitlik (2) + (3) 2 w0 + w1 + w2 + w3 > 0 
değerlerini üretmektedir. O nedenle n = 2 için XOR ∉ LT. Herhangi n için de aynı 
durum geçerlidir. Gerçekten herhangi n için XOR Є LT düşünün ve XOR 
fonksiyonu 
 
 



 14 

)sgn(),(
1

21 ∑
=

+=
n

i
iio xwwXXXOR  

 
şeklindedir. 
 
O zaman 
 
 

)sgn()0,...,0,,( 221121 xwxwwXX oXOR ++=  
 
 
ancak n=2 için XOR(x1, x2, 0,..., 0) = XOR(x1, x2), XOR Є LT,doğru olmayacak 
şekilde. 
 
Doğrusal eşik fonksiyonları için de simetrik tüm fonksiyonlar için w1=w2=...=wn. 
Bu durum oldukça uygun çünkü ağırlıkların tümü 1’e eşitlenebilir. Alttaki doğru 
yanlış fonksiyonları simetrik olmazsa ne olur? Ağırlıklar ne kadar büyük olabilir? 
Takip eden örnek ağırlıkları farklı olmayı gerektiren bir LT fonksiyonunu 
göstermektedir ve böylece diğerleriyle kıyaslandığında bazılarının büyük 
olmasını gerektiriyor. Gerçekte ağırlıklar girdi değişkenlerinin sayısıyla üslü 
olarak büyümektedir. 
 
 
Örnek 1.5 (COMP Є LT) 
 
Karşılaştırma fonksiyonu X ve Y olan ve ikilik sistemde gösterimleri (x1,..., xn) ve 
(y1,..., yn) olan iki tamsayı kabul etmektedir. Birinci değişken olan X  
 
 

xi
n

i

iX ∑
=

−=
1

12  

 
 
iken ikinci değişken Y 
 
 

yi
n

i

iY ∑
=

−=
1

12  

 
 
şeklindedir ve onları kıyaslamaktadır. Ve her ikisini 
 
 

⎩
⎨
⎧ >

=
diger

YXeger
COMP yyxx nn 0

1
),...,,,...,(

11
 

 
 
fonksiyonu ile karşılaştırıyor. COMP’un LT uygulaması 
 
 



 15 

∑∑
=

−

=

− −=
n

i
i

i
n

i
i

i

nn yxyyxxCOMP
1

1

1

1

11 )sgn(),...,,,...,( 22  

 
 
yukarıda tanımlı olduğu gibidir. Aşağıdaki 
 
 

),...,2,1,,...,2,1,0( 22 nnw −−−=  
 
ağırlık vektörüne dönüştürmektedir. 

 
 
 
1.2 Doğrusal Eşik Elementinin Ağırlıkları 
 
Bu bölümde LT elementlerinin ağırlıklarına ilişkin ana konularına değineceğiz. 
Farklı ağırlıktaki kümelerin aynı LT fonksiyonunu türetebileceğini göstereceğiz ve 
asgari ağırlıkları tanımlayacağız. 2, 3 ve 4. bölümlerin konuları tanıtıldı, sırasıyla 
ağırlıkları sınırlama, asgari ağırlıklarla fonksiyonlar kurma ve büyük ağırlıktaki tek 
bir elementi düşük ağırlıklı kapılardan oluşan bir devreye dönüştürme. Doğrusal 
eşik elementi gibi bir elementin verim hesabı nasıl yapılır? Tek bir LT kapısı farklı 
doğru yanlış fonksiyonlarının kalabalığını uygulama yapabilir. Bu ağırlıklarını 
değiştirerek yapılabilmektedir. Gerçekten her bir ağırlık seçimi ayrı bir fonksiyona 
tekabül etmektedir. Bazı farklı ağırlıktaki kümeler aynı doğru yanlış fonksiyonunu 
üretirken genel olarak ağırlıklar için iki farklı seçim iki farklı fonksiyon 
vermektedir. N girdili bir LT elementi 2n farklı doğru yanlış fonksiyonu uygulama 
edebilir, bölüm 2.3.1’de bu durumu göreceğiz. LT’nin AON’a göre karşılaştırılmış 
bu ilave gücü ilave bir karışıklığı beraberinde getirmektedir. Bu noktada şu soru 
sorulabilinir: doğrusal bir eşik kapısının bilgi içeriği nedir özellikle bu bilgiyi 
depolamak için ne kadar bit gerekmektedir? 
 
Tek bir LT elementinin ağırlıkları üzerine odaklanalım. Şunu not edin, bir I 
fonksiyonu olsun, ağırlık vektörü w benzersiz olmasın. Farklı ağırlıklar aynı 
fonksiyonu uygulama yapsın. 
 
Örnek 1.6 (Ağırlıkları düşürmek)  
 
Aşağıdaki f fonksiyonu 
 
 

)42642sgn(),...,( 432141 xxxxxxf +−+−=  
 

 
aşağıdaki gibi yazılabilir: 
 
 

)2321sgn(),...,( 432141 xxxxxxf +−+−=  
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Çünkü sgn(2a) = sgn(a) her a > 0 için geçerlidir. Şu fonksiyonu düşünün: 
 
 

)42642sgn(),...,( 5432151 xxxxxxxf ++−+−= . 
 

 
X5‘e bağlı olmadığı için aşağıdaki gibi yazılabilir. 
 
 

)2321sgn(),...,( 432151 xxxxxxf +−+−= . 
 
Çünkü xxxx 4321 42642 +−+−  ikinin katı olduğu için ya ≤2 ya da ≥0 ‘dır. Her iki 

durumda da x5 ’i eklemek işareti değiştirmez. 
 
Benzer bir fikir aşağıdaki iki örneğe de 
 
 

xxxxxxxf 4432141 )44sgn(),...,( =++++−=  
 
 

1)23sgn(),...,( 32131 =−−+= xxxxxf  
 
 
uygulanabilir. 
 
 
Ama genel olarak daha düşük veya en düşük ağırlıklar bulmak daha zor bir 
problemdir. Ağırlıkları  asgari yapmak için 
 
 

)4321sgn(),...,( 32131 xxxxxf +−+−=  
 
 
aşağıdaki fonksiyonunun implement edilmesi gerekmektedir. 
 
 

)sgn(),,( 321321 xxxxxxf += . 
 

 
Aşağıdaki fonksiyonu implement eden asgari ağırlıkları türetmektedir. 
 
 

)21sgn(),...,( 32131 xxxxxf +−+−= . 
 
 
Örnek eşitlik 1.6 aynı LT elementini implement etmek için farklı ağırlıktaki 
vektörler kullanılabileceğini göstermektedir. Bu düşüncenin resmi bir tanımı 
aşağıdaki gibidir. 
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Tanım 1.2  ( Ağırlık Uzayı) 
 
F eşik fonksiyonu verilmiş olsun, Tanım 1.1’i sağlayan tüm ağırlıkların kümesini 
 
 

⎭
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=

)()sgn(,1,0{:
1

} xfxWW
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i
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W olarak tanımlayalım. 
 
 
 
Ağırlıkları çalışmak istiyoruz, özellikle aşağıdaki ortogonal sorular üzerinde 
duruyoruz. 
1.   Eğer ağırlıklar sadece tamsayılar olsun şeklinde sınırlandırılırsa ne olur ya da 
genel olarak ağırlıklar R’nin herhangi bir alt kümesine sınırlandırılacak olursa?  
 
2. Ağırlıkların tam sayı olduğunu ve boyutlarının verildiğini varsayarsak,  en 
düşük ağırlık vektörünü nasıl bulunur? 
 
3.Verilen fonksiyonda, f,  minimum ağırlığın büyük olduğunu faz edersek,  
örneğin girdilerin sayısı ile katlanarak artıyorsa bu fonksiyonu küçük ağırlıklı 
girişlerden oluşmuş iki-katlı LT devresiyle tamamlayabilir miyiz? 
 
1970’lerin başlarında gösterilmiştir ki herhangi bir LT fonksiyonu tamsayı olarak 
işaretlenen ağırlık ile tamamlanabilir. Burada müspet olamayan bir ispat 
yapılmıştır yani tamsayı olan ağırlığı bulmadan tamsayı ağırlıklar kümesinin var 
olduğu gösterilmiştir. Bölüm 2’de şu soruları soruyoruz: Sonuç elemanının 
kuvvetini etkilemeden verilen sayı kümesinde isteğe bağlı bir değer olarak 
ağırlıklar nasıl kısıtlanabilir? Bu sayı kümesinin koşulları nelerdir? Etkili bir 
dönüştürme algoritması var mıdır? 
 
Bölüm 3 ve Bölüm 4’te ise tamsayı ağırlıkların boyutuna değinilmektedir. 
Ağırlıkların boyutunun ölçülmesi için L1 normu kullanıyoruz. 
 
Tanım 1.3 ( En Düşük Ağırlık Boyutu) 
Bir ağırlık vektörünün boyutunu ağırlığın mutlak değerlerinin toplamı olarak 
tanımlıyoruz. 
 
Minimum ağırlık boyutunun doğrusal eşik fonksiyonu 
 
 

⎡ ⎤ ∑
=∈

=
n

i
iWw wfS

0
|)|(min  

 
şeklinde tanımlanır. 
 
 
En düşük değeri sağlayan belirli vektöre en düşük ağırlık vektörü denir. 
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Doğal olarak, S[f] n’in fonksiyonudur. 
 
Çeşitli bilgilerin aynı anda işleme tabi tutulduğu bilgisayar işlev türlerinde yapılan 
birçok deneyin sonucu göstermiştir ki doğrusal eşik değerlerindeki katsayıların 
değerleri, girdilerin boyutlarıyla birlikte çok hızlı bir şekilde artmıştır. Bu nedenle 
bilgisayar işlev türlerinin pratikte kullanımı sınırlanır ve bu durumu bir olağan 
soru takip eder: Eğer biri katsayılarında sadece “küçük” artışları olan eşik 
değerleri için kendini sınırlıyorsa bu bilgisayar işlev türlerinin bilişimsel gücü nasıl 
sınırlanabilir? Katlanarak artan ağırlıklı tek bir eşik değeri tarafından 
tamamlanabilen fakat polinom olarak artan ağırlıklı bir eşik değeri tarafından 
tamamlanamayan fonksiyon yani sayfa [17], [33], [38], [43]’te gösterilmiştir. Bu 
fonksiyon COMP’tur. Örnek 1.5.’te benzer fonksiyon gösterilmiştir. Bu sonuçların 
ışığında LT’nin altsınıfları küçük ağırlıklı fonksiyon sınıfı: LT olarak 
tanımlanmıştır. n’in katlanarak artması ve n’in polinom olarak artması için küçük 
ve büyük değer girdi sayılarında kalır. LT nasıl bir yoğunluktadır, başka bir 
deyişle küçük ağırlıkla fark edilmeyen fakat polinom derecesi d olan11 gibi artan 
ağırlıklar ile tamamlanabilen fonksiyonlar var mıdır? LT ağırlıklarının 
polinomunun derecesinin artışına endeksli fonksiyon sınıflarına bölünebilir mi? 
Bölüm 3’te verilen ağırlık boyutlarında LT fonksiyonlarının algoritmik oluşumu 
gösterilerek bu sorular cevaplanacaktır. 
 
İstenen büyük ağırlıklı LT fonksiyonlarına nasıl değinilebilir? Siu ve Bruck   ([43]),                        

TT LL ˆ
21⊂  ‘i göstererek ve isteğe bağlı derinliği genelleştirerek TT dd LL ˆ

1+
⊂  

[13] ,  TT dd LL ˆ
1+

⊂  sınırında geliştirilebileceğini kanıtlamıştır. Metot her ne 

kadar karmaşık olsa da ve [18]’de ispatı takip etmek güçleşse de [13]’ün 
sonuçları olan basitleştirilmiş versiyon sunuluyor. Burada TT LL ˆ

21⊂  ‘nin 

gösterilmesine odaklanılıyor. Ağırlığı düşürmek için kullanılan iki yöntem ikinin 
kuvveti olarak bölmek ve prime modüle göre bölmektir. Eğer yeteri kadar prime 
kullanılıyorsa ”küçük”- ağırlık girişleri doğru çıktıyı üreten devre ile birleştirilir. 
Belirli büyük ağırlık fonksiyonunun benzetimini kısıtlayarak sayfa [13] ve [18]’de 
gösterilen sonuçları daha basitleştirilebilir: COMP. Netice itibariyle sayfa [18]’deki 
0(n12log11 n)’un genel sınırları üzerindeki önemli gelişme olan 0(n4logn) 
düzenindeki devrenin kapılarının sayıları sınırlandırılır.  
 
 
1.3 Çoklu Eşik ve VLSI Uygulaması 
 
Bu kısımda bölüm 6’da tanımlanacak olan donanım uygulamalarının sonuçlarını 
ana hatlarıyla inceleyecek ve bölüm 5’deki LT’yle ilgili yeni bir fonksiyon sınıfı 
olan LMT gösterilir. 
 
60’larda ve 70’lerde ortaya atılan eşik devreleri uygulamaları sayfa [4], [48], [53] 
ve daha yakın sayfalarda [28], [39]’dur. Bilgi birikimimiz için eşik devrelerindeki 
teorik sonuçlar, silikonlu uygulamaları içeren işlere eklenmiyor. Programlanabilir 
nötron bazlı donanımlarda sayfa [39], [41] öneriliyor. 
 
LT uygulamalarının özellikle birbirinden ayrıldığı iki nokta var: Ağırlıklı toplamı 
hesaplamak için kullanılan metot ve ağırlığın saklanmasında kullanılan usul. Her 
biri ağırlıklı girdilere denk akımlar seçildi. Buna göre doğru yanlış girdileri 
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kullanıldı ve kesin çarpmaya gerek duyulmadı. 
 
Girdi mantıksal 0 ve akım wi mantıksal 1 olduğunda sıfır akım üretildiğinden emin 
olunur. Böyle bir “çarpım” girdi pimi giriş terminaliyle bağlantılı olan tek bir 
transistor tarafından yapılabilir. Ağırlığı depolama ve girdileri ölçeklendirme tek 
bir transistor de birleştirilmiş olması bu şekilde bir yaklaşımın avantajıdır. Fakat 
ağırlıklar nasıl tamamen depolanıyor? Bu problemi iki yönden ele alabiliriz: 
Fiziksel bağlantılı ve programlanabilir ağırlıklar. Fiziksel bağlantılı Ağırlıklar 
devrenin planlandığı anda tanımlanır ve bir kere monte edildikten sonra 
değiştirilemez. Fiziksel bağlantılı ağırlıklar ile ilgili birçok ilginç soru vardır. 
Gerçekten çoğu uygulamalarda farklı ağırlıklar farklı planlara karşılık gelirler. Bu 
farklılıklar LT devresi planlamayı zor bir iş haline getirir. Çünkü farklı elemanların 
farklı şekilleri vardır. Ancak önceki bölümde gördüğümüz üzere hesaplanan 
fonksiyonu etkilemeden LT elemanının ağırlığı değiştirilebilinir. Bu son faktör 
elemanların birbirine tamamıyla uyabilecek şekilde planlanmasına yardımcı olur. 
Öte yandan programlanabilir ağırlıklar böyle zorluklar çıkarmaz. Tüm LT 
elemanları benzer görünür. Programlanabilir ağırlıkların birçok uygulama şekli 
vardır. Dijital RAM olarak depolanabilir ya da girdi hattından beslenebilir. Bölüm 
6’da LT elemanının iki uygulama yolu gösteriliyor. Birincisinde transistorun boy 
en oranında depolayan fiziksel bağlantılı ağırlıklar kullanılıyor diğerinde ise geçici 
olamayan yük olarak dalgalı giriş transistoru yerleştirilmiş programlanabilir 
ağırlıklar kullanılıyor. İkinci durumda ağırlığın değeri tünelin açılmasına ya da 
sıcak elektron püskürmesine bağlı olarak değişebilir. Eşitlik gibi genel LT2 
fonksiyonu için bir LT devresi planlandığında LT gösteriminin gerekenden fazla 
olduğunun farkına varılabilir. Genelde LT2 devresi farklı eşik elemanlarından 
oluştuğunda, eşitlik, toplama ve çarpma gibi bazı kullanışlı fonksiyonlar halinde 
birinci katmanın girişi eşikleri açısından farklı olurlar. Bu faktörün avantajlarından 
yararlanmak için bölüm 5’e giriş yapmak gerekir. LTM, çarpım eşikleri olan 
doğrusal eşik elemanı, yeni bir hesaplama elemanıdır ve şu hesaplama da 
kullanılır: Doğru yanlış girdilerin ağırlıklı toplamının tek bir eşikle karşılaştırmak 
yerine eşik kümeleriyle karşılaştırıla bilinir. Geometrik olarak ikiye bölünmüş 
hiper küp şeklinde kullanılan paralel hiper düzlemler kümesi olarak görülebilir. 
 
Tanım 1.4  (Çoklu Bağlantılı Doğrusal Eşik Girişi – LTM) 
Fonksiyon f LTM’ dedir eğer ağırlıklar kümesi Zwi∈ ,1≤i≤n ve a var ise 
Fonksiyon h : Z —> {0,1} öyle ki  
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Sadece h’de kısıtlanır öyle ki polinom olarak girdileri tarayacak birçok 
[ ]|||,

11| ∑∑ ==
− n

i i

n

i i ww  bağlantılara uğrar. 

 
Fark ediliyor ki bağlantı sayılarındaki kısıtlama olmadan LMT girişi hiçbir doğru 
yanlış fonksiyonunu hesaplayabilir durumda değildir. Aslında verilen keyfi 
fonksiyon, / , kümesi 2 1−= i

iw  ve ),...,()( 11

12 xxx ni

n i fh =∑ − . 
 
Şimdiki örnekte tek LTM elementi ile nasıl eşitlik fonksiyonunu, XOR, 
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hesaplayabileceğimiz gösterilecektir. Örnek 1.4’te XOR’ yi hesaplamak için tek 
bir LT elemanının yeterli olamadığı gösterilmişti. 
 
Örnek 1.7 (XOR ∈ LTM) 
XOR(X) çıktıları 1 eğer |X|, X’deki 1’lerin sayıları tektir. Diğer türlü çıktıları 0 olur. 

Uygulamak için 0 ≤ k ≤ n aralığında wi = 1 ve )1(1(
2
1)( )kkh −−=  seçilir. h(k)’nın k 

< 0 ve k > n olarak tanımlanmasına gerek yoktur ve birçok polinom şeklinde 
bağlantısı vardır. 
 
Diğer bir kullanışlı fonksiyon ise iki tam sayının toplanmasıdır. LTM 
elemanlarının tek katmanı tarafından hesaplanır. 
 
Yukarıda da bahsedildiği gibi eşitlik fonksiyonunun planında gerekli olan alanın 
geliştirilmesi için LTM araştırması pratik düşünceler üzerine geliştirilmiştir. LT 
teorik çerçeve içinde kalsa da, bu yeni hesaplama elemanı birçok zor problemin 
çözülmesini sağlar. Tek bir LMT elemanının tek bir LT elemanından daha güçlü 
olduğunu görmek çok basittir. Fakat LT2 ya da TL ˆ2  karşılaştırmasında nasıl 

güçlü olabilir? 
 
 
 
 
 
1.4 Tezin Yazımı ve Organizasyonu 
 
Tezin yazımı üç aşamada gerçekleşmiştir: 
• Teorik aşamada T

d
L ˆ )(

 ve LTM gibi yeni fonksiyon sınıfları tanımlanmış 
ve bunların hesaplama güçleri tahmin edilmiştir. 
• Algoritmik aşamada tam sayı ağırlıklarda olduğu gibi her hangi bir reel 
sayılar kümesinde gerçek ağırlığın ağırlığa nasıl dönüşeceği ve minimum ağırlıklı 
LT fonksiyonlarının nasıl oluşturulacağı gösterilmiştir. Ayrıca COM P 
fonksiyonunu hesaplayan TL ˆ2  devresinin oluşturulduğu algoritma gösterilmiştir. 

Son olarak XOR, ADD, PRODUCT gibi kullanışlı fonksiyonların LTM ile 
hesaplanması gösterilmiştir. 
• Uygulama aşamasında ise LT ve LMT ‘in uygulamaları olan VLSI‘nın 
tasarım, planlama ve test basamakları gösterilmiştir. Ağırlık değerini depolamak 
için dalgalı giriş kullanılan programlanabilir LT elemanı tasarlanmıştır. 
 
Tez şu şekilde organize edilmiştir: Bölüm 2’de eşik devresi teorisinin bilinen 
sonuçları gösterilmiştir. Özellikle herhangi bir doğrusal eşik elemanı tam sayı 
ağırlık ile tamamlanabilir. Makalemiz bu sonucun herhangi bir reel sayılar 
kümesinde genelleştirilmesidir. Ağırlığın dönüştürüldüğü algoritma boyunca 
koşullar tamamlanmış LT fonksiyonunun türetilmesine izin verir. Bölüm 3’te 
minimum ağırlıkta doğrusal eşik fonksiyonlarının oluşturuluş metodu 
gösterilmiştir. Bu metot d’ye bağlı T

d
L ˆ )(

 sınıflarının birbirinden ayrılması için 

kullanılır. d tamsayısı verildiğinde T
d

L ˆ )(
 sınıfı ağırlığın 0(nd) ile tamamlayabildiği 
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fonksiyon kümesi olarak tanımlanır. Bölüm 4’te örnekteki gibi belli başlı sonuçlar 
gösterilmiştir: Büyük ağırlıklı tek LT elemanı iki katlı devreden oluşmuş TL̂  
elemanı yani küçük ağırlıklı doğrusal eşik elemanı ile tamamlanabilir. Bölüm 5’te 
LMT yani çoklu bağlantılı doğrusal eşik girişi tanıtılmıştır. XOR, ADD, PRODUCT 
15’den LT’ye ilgili LTM’nin kuvvetinin tahmini ve türev sınıfları gibi  TL̂ , TL ˆ2   ve 

LT2  gibi kullanılan doğru yanlış fonksiyonlarının yapıları gösterilmiştir. Son 
olarak bölüm 6’da LT ve LMT’nin tamamlayıcısı VLSI tanıtılmıştır. Fiziksel 
bağlantılı ve programlanabilir sonuçlar gösterilmiştir. Ağırlıklar dalgalı girişteki 
yükte depolanır ve elektron püskürmesi ve tünel açılmasıyla değiştirilir. 
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Bölüm 2 
 
Ağırlıkların Kısıtlanması 
 
2.1 Giriş 
 
Şimdiki bölümde tek LT elemanının ağırlığı ile ilgili sorulara odaklanılıyor. Verilen 
herhangi bir n tane değişkenli eşik fonksiyonunda ağırlığı depolamak için kaç 
tane bite ihtiyaç vardır. Bu sorunun cevabı herhangi bir LT fonksiyonunun tam 
sayı ağırlıklar ile tamamlanmasının gösterilmesi ve boyutlarının kısıtlanmasının 
sağlanması ile 1970’lerin başında Murago, sayfa [32], tarafından verilmiştir.  
Bölüm 2’de bu düşünde şu sorulara cevap verilerek genelleştirilecektir: 
 
• Ağırlıkların büyüklüğü tam sayılar yerine tamsayıların kareleriyle 
sınırlandırılırsa ne olur? 
• Eğer yalnızca 2’nin kuvvetlerine izin verilirse ne olur? 
• Genelde D, pozitif reel sayıların alt kümesi, D ∈ R+ ağırlıkların büyüklüğü 
D’den olan LT fonksiyon seti LT[D] olarak tanımlanır. 
 
 

DffDLT wxwwxx i

n

i
iion

∈+== ∑
=

||)...sgn(),...,(:{][
1

1  olduğu yerde. 

 
LT[D] = LT ‘deki D koşulları nelerdir? ( örneğin tüm LT fonksiyonlarını 
tamamlamak için büyüklüğü D’den olan ağırlıklar yeterlidir. 

 
 
Bölüm 2.2’de bu tip soruların bazı motivasyonları gösterilecektir. 2.3’te ise şu 
başlıklar altında toplanabilecek ispatlar ve örnekler verilecektir: 
 
• n değişkenli kaç tane LT fonksiyonu vardır? 
• Herhangi bir eşik fonksiyonunda ağırlıkların depo edilebilmesi için gerekli 
bitlerin üst sınırı nedir? 
• Tamamlanan fonksiyonu değiştirmeden her hangi bir reel ağırlığı nasıl bir 
tam sayıya dönüştürebiliriz? 
 
Bölüm 2.5’te ise temel sonuç sunulacaktır: Tamamlanabilen LT fonksiyonları 
tarafından garanti edilen D kümesinin koşulları. 
 
 
2.2 Motivasyon 
 
Eşik devrelerine değinildiği zaman, genellikle mesele belirli ağırlık değerinin aynı 
girişte ya da değişik girişlerde farklı bölgelerde görülmesidir. Ağırlık değerini 
depolamanın pahalı olduğu verilen sistemde öncelikle değer depolanmak istenir 
ve aynı değeri birçok bölgede depolamak yerine ilişkin ağırlıklar ile bağlanır. Bu 
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kavram eşik devrelerinin uygulamalarındaki hem donanım hem de yazılımda 
tatbik edilebilir. Öğrenilmiş algoritmaların sonuçları ya da verilen fonksiyonda 
basit bir ön hesaplama olarak verilmiş ağırlıklar için yukarıdaki yaklaşım 
edilgendir. Yalnızca çift ağırlıklar değerleri elenir. Daha fazla çift ağırlıklar ortaya 
çıkartmak için ilgili eşik fonksiyonlarını etkilemeden değiştirilmiş belli ağırlıkların 
depolama yerlerini muhafaza etme amacımıza ulaşmamıza bir basamak daha 
kaldı. Bölüm 1.2’de farklı ağırlıklar kümeleri aynı eşik fonksiyonu ile 
tamamlanabildiği için yukarıdaki durumun yapılabildiğini gördük. Bu bağlamda şu 
soru sorulabilir: Verilen reel sayılar kümesi tüm LT fonksiyonlarının gösterilmesi 
için yeterli midir? 
 
 
2.3 Taslaklar ve ilgili çalışmalar 
 
Farklı bir ağırlık aynı LT fonksiyonu ile tamamlanabilir. Ağırlıklar kümesini 
karakterize etmenin bir yolu ağırlığın sınırları olarak neyi tanımladığımızdır. 
 
Tanım 2.1 (Ağırlığın sınırları) 
(w0,...,wn) ağırlığın seti olsun ve f de bunların tamamladığı fonksiyon olsun. 
Kümenin sınır çifti 
 

)(max
1

00)(|
∑
==

+=
n

i
iixfx xwwl  

 
ve 

)(max
1

01)(|
∑
==

+=
n

i
iixfx xwwh  

 
olsun. 
 
Burada (l, h)  sınırın iki açık özellik  
 

•   I < 0 ve h ≥ 0 
•  her x Є {0, l}n için,  ] [hln

i ii xww ,
10 ∉+∑ =

 
 
görülmektedir.  

 
Aşağıda gösterilen ispatı yapmak için ( -1, 1 ) sınırlarına ihtiyacımız olacak. 
Verilen herhangi bir ağırlıklar setini algoritma 2.1 şöyle bir sete çevirir. 
 
Algoritma 2.1 ( ( -1, 1) sınırı) 
(u0,...,un) kümesi (l,h)   sınırı ile veriliyor ve 
 
 

)
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lh
lh uw +−

−
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lh
uw i

i −
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2

 her i için, 1≤i≤n 

 
 
algoritma 2.1’in geçerli ağırlıkları ürettiğini gösterelim öylek ki orjinal olanlarla 
aynı değerleri ürettiğini ve sınırlarının (-1,1) aralığında olduğunu gösterelim. 
  
Yardımcı Teorem 2.1  (Ağırlıkların çevirimi) 
 (uo,...,un) (h,l) sınırlı ağırlıkların keyfi bir kümesi olsun ve f ifade ettiği fonksiyon 
olsun. Algoritma 2.1 ile elde edilen ve (-1,1) sınırında bulunan fonskiyon olsun ve 
f fonksiyonunu ifade etsin. 
 
Kanıt: 
 

)sgn()(
10 ∑ =

+= n

i ii xuuxf     )sgn()(
10 ∑ =

+= n

i ii xwwxg  
 

)sgn()(
10 ∑ =

+= n

i ii xuuxf  ve g fonksiyonu yeni ağırlıklarla ifade edilen 

(wo,...,wn), )sgn()(
10 ∑ =

+= n

i ii xwwxg . Her x için g(x)=f(x) olduğunu 
göstereceğiz. İki duruma bakacağız: 
 
 
f(x) = 0 olsun.  Tanım 2.1 ile sınır (l,h) ile ve h-l>0 ile sınır 
 
 

l
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i
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şeklindedir. Eşitliğin her iki tarafına aşağıdaki yöntemi 
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çarparsak, 
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sonucuna ulaşırız. 
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g(x)=0 
 
 
 
 

• f(x)=1 yapan x için aynı işlemleri tekrarlarsak 
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elde ederiz. 
 
 
                   g(x)=1 
 
 
 
ve g=f olduğunu gösterdik ve öyle 1||

10 ≥+∑ =

n

i ii xww  bir eşitsizlik olan 

∑ =
+ n

i ii xuu 10  noktalarında  h veya l’ye eşit olan bir eşitlik olduğunu gösterdik. 
 
Bu durumu bir örnekle gösterelim. 
 
Örnek 2.1  ((—1,1) Sınırı) 
2-değişkenli LT fonksiyonunu düşünelim. 
 
 

f(x1,x2) = sgn(-1.2 + 0.5x1 + 1.1x2) 
 
 

Ağırlık vektörü (-1.2,0.5,1.1). Sınırı olan (l,h)’yi hesaplayalım. Ağırlıklı toplam 
aşağıdaki değerleri tahmin etmektedir.  
 
X1 x2 -1.2 + 0.5 x1 + 1.1x2 f(x1, x2) 

0 0 -1.2 0 
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0 1 -0.1 0 

1 0 -0.7 0 

1 1 0.4 1 

 
Tanım 2.1’e başvurarak 
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L ve h’yi elde ederiz. 
 
 
Algoritma 2.1 ile yeni ağırlıklar 
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şeklindedir. Yeni ağırlık vektörü aşağıdaki değerleri tahmin etmektedir. 
 
X1 x2 -5.4 + 2.0 x1 +4.4x2 sgn(-5.4 + 2.0 x1 + 4.4x2) 

0 0 -5.4 0 

0 1 -1.0 0 

1 0 -2.4 0 

1 1 1.0 1 

 
 
Beklendiği gibi yeni ağırlıklar aynı fonksiyonu ifade etmektedir ve sınırı (-1,1)’dir. 
 
Tek elemanlı LT’nin çalışmasıyla ilgili iyi bilinen bazı sorunları belirtelim. 
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2.3.1 n-Değişkenli 0(2n ) LT Elemanı Vardır 
 
n tane değişken verildiğinde toplam doğru yanlış fonksiyonunun 22

n

 olduğunu 
belirlemek kolaydır. Ayrıca genel doğru yanlış fonksiyonu 2n çiftli girişli gerçek 
tablosu tarafından özel olarak belirlenir. Bu fonksiyonların kaç tanesi gerçekten 
eşik fonksiyonlarıdır? Bu soru 1950’lerde birçok yazar tarafından düşünülmüştür. 
Şu sınırlama sayfa [36] ‘da türetilmiştir. 
 

2
2

|| nLT <  
 
 
|LT|  n tane değişkenli eşik fonksiyonları için sabit kalır. Daha sonra 1850’de L. 
Schlafli, sayfa [42], tarafından |LT| deki en iyi üst sınırı 
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olarak bulunmuştur. 
 
Sayfa [54] ‘de |LT| deki ilk alt sınır yayınlandı fakat aynı dergide gösterilmiş 
benzer bir ispat olan [46] ’nın sunuş tarihi nedeniyle önceliği oldu. Bu alt sınır 
şudur: 
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Yalnızca 1989’da Zuev tarafından bu sınırlar geliştirildi. Sayfa [34] ve [57] ‘deki 
sonuçların kullanıldığı sayfa [58]  görülebilir ve 
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şeklinde bu sınırı tanımlayabiliriz. 
 
 
 
Son zamanlarda üst sınır daha da geliştirilmiştir, bunun için sayfa [21] ve [23]’e 
bakınız: 
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Ve son olarak sayfa [22]’de ispatlandığı gibi 
 
 

2 )(log|| 2

2 nOnnnLT −−>  
 
 
olarak gösterilebilir. Sonuç olarak üst ve alt sınır aralığı daraldı.  2n çevresinde n 
değişkenli eşik fonksiyonları olduğundan teorik argümanlardaki kullanılabilir. Bu 
argümanlar en az n2 olması gereken ağırlığı (eğer bu değerde değilse bazı 
fonksiyonlar diferansiyelleşemiyor.) göstermek için ihtiyaç duyulan toplam bit 
sayısını belirlemek amacıyla kullanılabilir. Ayrıca 1.2 kısmında gördüğümüz gibi 
farklı ağırlık vektörleri aynı fonksiyonu tamamlıyor. LT sunumunun depolama 
açısından en uygun sunum değildir çünkü ağırlığı sunmak için n2 fazla bite 
ihtiyaç vardır. 
 
 
2.4 Reelden Tamsayı Ağırlıklara 
 
Bu bölümde tamsayı ağırlıklarla yazılabilen reel ağırlıklar gibi herhangi bir ağırlık 
kümesini ile yazılmış fonksiyonu göstereceğiz. İki argüman sunuyoruz: 
• Ağırlıkların boyutlarını sınırlamayı sağlayan müspet olmayan, varoluş 
temelli argüman. 
• Ağırlıkların boyutlarını sınırlamayan fakat verilen ağırlık kümesini tam 
sayıya dönüştüren müspet argüman. 
 
 
 
 
2.4.1 Her Bir 0(nlog2n) Bit için Ağırlık Sağlayan Eşik 

Fonksiyonları 
 
Yukarıda bahsedildiği gibi verilen eşik fonksiyonu tahminine göre tek bir ağırlık 
en az 0(n) bit sağlar. Çünkü LT sunumu dağınıktır. Muroga ,sayfa [32] ‘nin 
1970’lerin başlarında gösterdiği gibi gerçek sayı 0(nlog2n) ‘dur. Tam olarak 
olamasa da LT sunumu biraz yoğundur; 0(n2) arasındaki 0(n2log2n) fark daha 
küçüktür ve eşik izlenerek yapılan ağırlık toplamının kullanılmasıyla uygun 
hesaplama avantajı elde edilir. Muroga’nın sınır tanımını kavrayabilmek için 
aşağıda ispatı gösterilmektedir. 
 
 
Theorem 2.1 (Ağırlıkta 0(nlog2n) bits) Keyfi bir n-değişkenli LT fonksiyonu 
için,ağırlık wi aşağıdaki 
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durumu sağlamaktadır. 
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Kanıt: 
l, LTf ∈  koşulunu sağlayan bir eşik fonksiyonu olsun. Ağırlıkları (u0, ...,un) 
olarak bilinmesin. l’nin doğruluk tablosundan 2n adet doğrusal eşitsizlikler 
çıkartılabilir. 
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noktadaki değerine ( alt tercih ihtiyaridir. ) bağlıdır. (l,h) ağırlıkların (u0,...,un) 
sınırlarıdır ve (-1, 1) sınırlarında yeni ağırlıkların (u0,...,un)  elde edilmesi için 
algoritma 2.1 uygulanır. Eşitsizlik sistemi 
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şekline gelir. 
 
 
Doğrusal eşitsizlik teorisinde, sayfa [26], [27] , belli başlı sonuçlar kullanılarak; 2n 
eşitsizliği dışında n + 1 ‘in alt kümesinin var olduğunu öne sürebiliriz. Örneğin 
eğer eşitsizlik işareti eşitlik işareti ile yer değiştirir ise eşitliğin sonuç sisteminin 
çözümü aynı zamanda eşitsizlik sistemini de çözer. İlgili işaretlenmiş n + 1 
eşitsizliğinde } 1

1

)({
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n

k

kz {0, 1}"  noktalarının bir kümesi olsun.  

Aşağıdaki 24 eşitlikler sistemini 
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elde ederiz. 
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Yukarıda da değinildiği gibi eşitliklerin sağ tarafı f fonksiyonuna bağlıdır. Cramer 
metodu kullanılarak  
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sonuç bulunabilir. 
 
 
Burada A determinant iken 
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ve Ai eşitlik sisteminin sağ tarafında i. kolonun değiştirilmesiyle elde edilmektedir.  
 
Fark ediliyor ki 
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yukarıdaki matrisler Is, Os ve -1s ‘den oluşmuştur. Böyle bir matrisin 
determinantı aşağıdaki sınırı 
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sağlar. 
 
Bn sınırlama sırası aşağıdaki durumu 
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sağlamaktadır. 
 
 
Daha sonra aşağıdaki durumu 
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)!()( nOnXn ≤Δ  
 
 
ifade etmektedir. 
 
 
 
Burada tamsayı ağırlıkların boyutu üzerinde ilgileniyoruz, dolayısıyla  
 

)log()!(
||

|| 2 2
' nn

iii OnOww =≤
Δ
Δ=Δ= Δ  

 
 
tek bir ağırlığı depolamak için 0(nlog2n) bite ihtiyaç vardır. 
 
 
2.4.2 Her Bir 0(nlog2n) Bit için Ağırlık Sağlayan Eşik 

Fonksiyonları 
 
Bölüm 2.4.1’de herhangi bir LT fonksiyonunda boyutlarında yukarıdan sınır 
koyarak ağırlığı depolamak için O(nlogn) bit’in yeterli olduğunu kanıtladık. 

1961’in başlarında her bir f2(n) bit için ağırlık gibi )(22
n

O  boyutlarını sağlayan 
fonksiyon bulundu. Son dönemlerde sayfa [17] ‘de Hastad boyutu 6(nlog2n) olan 
gibi her bir ağırlık için fi(nlogn) ‘u sağlayan fonksiyonu gösterdi. Bölüm 2.3.1’de 
gördüğümüz gibi her bir ağırlık için en az n bit deposuna ihtiyaç duyulan yaklaşık 
2n LT fonksiyonu vardır. Daha önce de değinildiği üzere LT sunumu depolama 
açısından en uygun sunum değildir. Bu sunum eşik fonksiyonunu depolamak için 
ilave bitlerle log n faktörünü sağlar. Bununla beraber LT sunumu yoğundur ve 
kompleksliği hesaplamak için ekstra depolanma arayı kapatır. Depolama için LT 
fonksiyonlarının spektral sunumu en uygun olanıdır. Aslında sayfa [9] ‘da yazar 
ilk n + 1 spektral katsayılarının özel bir şekilde belirlendiğini göstermiştir. 
 
2.4.3     Reel Sayılardan Tamsayılara Çeviren Bir 
Algoritma 
 
İspatın geçerliliği boyunca süren algoritmayı göstermeden önce, birkaç örneğe 
bakalım. 
 
Örnek 2.2 (Reel sayılardan tamsayılara) Aşağıdaki fonksiyon verilmiş olsun. 
 
 

)3.02.05.0sgn(),( 21211 xxxxf ++−=  

 
 
Tam sayı ağırlıkları elde etmek için açık olan yol bunları 10 faktörü ile 
çarpmaktır. Olguyu kullanarak 
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)325sgn(),( 21212 xxxxf ++−=  

 
 
denklem aşağıdaki gibi 
 
 

)235.2sgn(),( 21212 xxxxf −Π+−=  

 
olsun. 
 
 
Bu durumda derecelendirme işe yaramıyor çünkü irrasyonel ağırlıklar var. Bu 
ağırlıklarla uzlaşmanın bir yolu yer fonksiyonlarını, ⎣ ⎦ , kullanmaktır ve 
 
 

)233sgn(),( 21212 xxxxf −+−=  

 
 
aşağıdaki fonksiyonda ise 
 
 

)
3
21.05.0sgn(),( 21213 xxxxf ++−=  

 
 
şeklindedir. 
 
 
Ne x10 ne de ⎣ ⎦  doğru cevabı verdi. Doğru cevabı bulmak için çarpma işlemini 
ve yer fonksiyonunu birlikte uygulamalıyız ve aşağıdaki örnek 
 
 
  )45sgn(),( 21213 xxxxf ++−=  

 
 
reelden tamsayı ağırlıklara dönüştürmek için kullanılan algoritmanın arkasında ki 
ana fikri gösteriyor. Derecelendirme ve her ağırlık için yer uygulama. 
Algoritmanın işleyebilmesi için herhangi bir ağırlık vektörünün yeterince büyük ve 
derecelendirilmiş katsayılarının var olduğunun kanıtlanması gerekir. 
 
Algoritma 2.2  (Reelden tamsayı ağırlıklarına) verilen reel ağırlık kümesi 
(u0,...,un). 
1. ( -1,1) sınırında yeni ağırlıkları (v0,...,vn) ‘de etmek için algoritma 2.1 ‘i uygula. 
2. ⎣ ⎦vw ii n )2( +=  ‘i yerleştir. 
 
Yardımcı Teorem 2.2  (Reelden tamsayı ağırlıklarına) 
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Algoritma 2.2 ‘de oluşturulan ağırlıklar orijinal ağırlıklarla aynı fonksiyonu 
tamamlar. Şöyle ki, 
 
 

)sgn()sgn()(
1

0
1

0 ∑∑
==

+=+=
n

i
ii

n

i
ii xwwxuuxf . 

 
 
 
İspat: 
(u0,...,un) reel ağırlıklar kümesi olsun.Yeni ağırlıklar  kümesini (V0,...,vn) elde 
etmek için algoritma 2.1‘i uygulayalım Gösterimi basitleştirmek için (1,x1 x2,...,xn)  
genişletilmiş vektörü yerine x diyelim sonuç olarak ∑ =

+= n

i ix1 i0 vv     x v. . Yardımcı 
teorem 2.1 ‘e göre yeni ağırlıklar da aynı fonksiyonu tamamlar ve sınırları (-1, 1 ). 
Örneğin 
 
 

).sgn().sgn()( xvxuxf ==  
 
 

1|.| ≥xv  her }1,0{ n
x∈ . 

 
 
Yukarıdaki eşitsizliği k ile çarpıyoruz, 
  
 

kxkw ≥|).(|  her }1,0{ n
x∈  

 
 
⎣ ⎦kw  vektörü ifade etsin. 
 
 

⎣ ⎦ ⎣ ⎦ kxkwxkwxkw ≥+− |..).(|  
 
 

⎣ ⎦ ⎣ ⎦ kxkwxkwkw ≥+− |.).(| . 
 
Üçgen eşitsizliği ile, 
 
 

⎣ ⎦ ⎣ ⎦ kxkwxkwkw ≥+− |.||).(|  
 
 
⎣ ⎦ ⎣ ⎦ xkwkwkxkw ).(||.| −−≥  

 
 
⎣ ⎦ ⎣ ⎦ ||)(||1|.| kwkwnkxkw −+−≥  
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⎣ ⎦ ||1,...,1(||1|.| +−≥ nkxkw  

 
 
⎣ ⎦ 11|.| ++−≥ nnkxkw  

 
 
⎣ ⎦ 1|.| −−≥ nkxkw  

 
elde ediliyor. 
 
 
Bu noktada k = n + 2 yapıyoruz ve aşağıdaki denklemi 
 
 

⎣ ⎦ 1|.)2(| ≥+ xwn  
 
 
elde ediyoruz. 
 
Yeni ağırlıkların orijinal fonksiyonu f tamamladığını nasıl belirtebiliriz? Verilen 
herhangi bir x girdi vektörü yukarıdaki basamakları tekrarlar, lxu ≤.  durum f(x)=0 
ya da hxu ≥.  durum f(x) =1 için ile başlar ve ⎣ ⎦ 1.)2( −≤+ xwn  ya da 

⎣ ⎦ 1.)2( ≥+ xwn  türetir. Mutlak değerin ispatta kullanılması iki durumu birlikte 
tehdit eder. 
 
Aşağıdaki örnekte algoritma 2.2 uygulanıyor.  
 
Örnek 2.3 (Algoritmayı kullanarak) 
Örnek 2.1’de kullanılan aynı 2-değişkenli fonksiyonu  
 
 

)1.15.02.1sgn(),( 2121 xxxxf ++−=  

 
kullanalım. 
 
 
Örnek 2.1’de yapılan Algoritma 2.1’i yapmaya ihtiyaç duyuyoruz. Yeni ağırlık 
vektörü v, 
 
 

)4.40.24.5sgn(),( 2121 xxxxf ++−= . 

 
 
Bu noktada ağırlıkları n + 2 = 4 ile çarpıyoruz ve 
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)17822sgn(),( 2121 xxxxf ++−=  

 
tabanını alıyoruz. 
Yeni tamsayı ağırlıkları aşağıdaki tabloyu veriyor. 
 
X1 x2 -22 + 8 x1 + 17 x2 sgn(-22 + 8 x1 + 17x2) 

0 0 -22 0 

0 1 -5 0 

1 0 -14 0 

1 1 3 1 

 
 
Beklenildiği gibi fonksiyon değişmedi. Fakat bulunan ağırlıklar biraz büyük. 
Özellikle asıl fonksiyon AND(x1,x2)‘dir ve çok daha küçük eightlerle 
 
 

)2sgn(),( 2121 xxxxf ++−=  

 
şeklinde tamamlanabilir. 
 
Bölüm 3’te olası en küçük tamsayı ağırlıklar değerini bulma problemine 
yönelinecektir. 
 
 
2.5  Ağırlıkların Herhangi Bir Sayı Kümesine 
Dönüştürülmesi  
 
Ağırlıkların mutlak değerini D kümesi, D ∈ R olarak kısıtlanır. D’ye ağırlıkların 
tanım kümesi denir. 
 
Tanım 2.2 (LT(D) – D tarafından spawned edilen LT fonksiyonları kümesi) 
Verilen D’ye göre, R’nin alt kümesi, LT(D)  mutlak değeri yalnız D’den çekilmiş 
ağırlıklar ile tamamlanabilen LT fonksiyonlarının kümesi olarak tanımlanır. 
 
Resmen 
 
 

,{)( 1RnwLTfDLT +∈∃⊆=  öyle ki }1,0{)sgn()(
1

0

nn

i
ii
xxf xww ∈∀+= ∑

=
 

 
                         ve || Dwi∈  0≤i≤n için. 
 
Hedefimiz D’nin özelliklerini ve LT(D) üzerindeki etkilerini irdelemektir. Birkaç 
kesin durumu eleyerek öncelikle D için aday listesini daraltalım. 
• D sonsuzdur. 
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Aslında eğer D sonlu ise yeterince büyük n bulunabilir. Bu sebeple n değişkenli 
LT fonksiyonu vardır. Bu fonksiyon D’nin asallığından daha büyüğüne ihtiyaç 
duyan ayrı ağırlıkların sayısı sebebiyle 
D’den çekilen ağırlıklarla tamamlanamaz. Örneğin COMPARISON fonksiyonu, 
ağırlıkların yarısı ayrık olması için değişken sayısına n > 2|D|.diyelim. 
• D sayılabilir. 
Bölüm 2.3’te belirtildiği gibi LT(N) = LT ‘dır. Herhangi bir LT fonksiyonu tam sayı 
ağırlıkları kullanılarak tamamlanabilir. N’den daha yüksek asallığı olan bir küme 
kullanılması ekstra fonksiyonellik sağlamaz. Aslında eğer küme ] [ε,0  aralığını 
içeriyorsa tam sayı ağırlıkları LT(D) = LT ‘ye uygun olmak için küçültülebilir. Diğer 
yandan D =[100,101],  olduğu düşünülürse fonksiyonların kümesi fazla sayıdaki 
üretimi çok limitlidir. Bu OR ve birkaç yakından ilgili fonksiyon içerir. Genel 
sayılamayan D kümesi durumunda D’nin  “en iyi” sayılabilen alt kümesine 
odaklanırız. 
• D tam anlamıyla sıralanmıştır. 
D sayılabilir olduğu için sıralanabilir. Ayrıca tüm elemanları ayrı olmalıdır. Bu 
alfabenin rolünü oynar. 
 
D sayılabilir ve sıralanabilir olduğu için endekslenebilir. 
 
 
  { }NİiD di ∈=  ve idd ii ∀≤

+
...1 . 

 
 
Aşağıda “değiştirilmiş yer” fonksiyonu d(.) tanımlanıyor: 
 
 
 

d:   R   →    R 
 
 

di
xdxd =→ )(......:  

 
Öyleki dd ii

x 1+≤≤  
 

 
Örnek 2.4 ( Kare ve üstel ağırlıklar) 
Gördük ki reel ağırlıklar tamsayı ağırlıklara dönüştürülebilir. Ağırlıkları mükemmel 
karelere dönüştürmek mümkün müdür? 
 
 
  id i

2=  her iЄN için. 
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5-değişkenli AND fonksiyonunu 
 
 

  
⎩
⎨
⎧ ===

=
diger

eger
AND xxxx 0

1...1
),...,( 51
51

 

 
düşününüz. 
 
 
LT’nin bir fonksiyon olduğunu gördük ve aşağıdaki gibi 
 
 
  )5sgn(),...,( 5432151 xxxxxxxAND +++++−=   
 
yazılabilir. 
 
Tam kare formunda ağırlıklarla  
 
 
  )9444425sgn(),...,( 5432151 xxxxxxxAND +++++−=  
 
şeklinde yazılabilir mi? 
 
 
Ya 2’nin katları şeklinde yazılabilir mi? 
 
 
  2iid =  her iЄN için 
 
 
  )2228sgn(),...,( 5432151 xxxxxxxAND +++++−=  
 
 
eşitliğinden görülüyor ki, örnek 2.4’de di’nin devamının ne olduğunu 
önemsemeden D’den çekilen ağırlıklarla AND tamamlanabilir. Bu durum her 
hangi bir LT fonksiyonu için doğru değildir. Takip eden teorem gösteriyor ki eğer 
di polinom olarak artıyorsa LT(D) = LT fakat bunlar üstel ise bazı LT fonksiyonları 
tamamlanamaz. 32, eğer D 0(id) ise tüm LT fonksiyonları tarafından 
tamamlanabilirler. Fakat D Q(2an)  ise bu durum gerçekleşmez. Nitekim daha 
genel sonuçları gösteriyoruz. Mesela bazı süper- polinom artışları serbest 
bırakılır eğer di O(nlogn) ise, LT(D) = LT. 
 
Teorem 2.2 (Ağırlıkların Kısıtlanması) 
Ağırlıklar sıralanmış D = {di, i ∈ N}, D ∈ R+  kümesi tarafından kısıtlanmış olsun. 
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1. LT(D) = LT eğer verilen büyük sabit C ∈ R+ için herhangi bir i > i0 de I0,  
var ise 

 
 

C(di+1 - di) < di. 

 
 

2. LT(D) ⊂  LT eğer di )(2 nαΩ  ve 
 
 

),,( 0iK ∞∃  Her i > i0 için di
iK ≤∞2 . 

 
İspat: 
Birinci bölümü gösterelim. (l,h) sınırlarıyla verilen orijinal ağırlık vektörü u,  ile 
algoritma 2.1 ‘i uygulayarak (-1, 1 ) sınırlarında yeni ağırlıklar v elde ederiz. 
 
 
  1|.| ≥xv  her }1,0{ n

x∈  için. 
 
 
Yukarıdaki eşitsizliği k ile çarpıyoruz, 
 
 
  kxkw ≥|).(|  her }1,0{ n

x∈  için 
 
aşağıdaki eşitsizliğe 
 
 
  kxkwdxkwdxkw ≥+− |).().().(|  
 
dönüşür. 
 
 
Yukarıda tanımlandığı gibi d(kw), (d(kw0),...,d(kwn)) vektörünü gösteriyorken, d 
fonksiyonu D kümesi için yer fonksiyonu aşağıdaki gibi 
 
 
  kxkwdxkwdkw ≥+− |).().(|  
 
  genelleştiriliyor. 
 
 
Üçgen eşitsizliği ile, 
 
 
  kxkwdxkwdkw ≥+− |).(||).(|  
 
 
  |)).(|).(| xkwdkwkxkwd −−≥  
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  ∑
=

−−≥
n

j
ii ww kdkkxkwd

0
|)(|).(|  

 
  ))(1().(| 1 dd ii

nkxkwd −+−≥
+

 
 
 
i  d(k|wmax|) = di, iken, wmax  ağırlık en büyük mertebeye ulaşır |kwi — d(kwi)| 
D’nin koşullarına göre  
 
 
  ddd iiiC <−

+
)( 1  

 
 
i0 vardır. 
 
 
Tüm i > i0 ve herhangi bir seçim için C’yi C = wmax(n + 1) alalım. 
 
 
  dddw iiin <−+

+
))(1(

1max
 

 
eşitsizliği ile d fonksiyonunun tanımı ile di < kwmax 
 
 
  kwddw iin

max1max
))(1( <−+

+
 

 
 
  0))(1( 1 >−+−

+ dd iink . 
 
Daha sonraki eşitsizliği kullanarak aşağıdaki denklem 
 
 
  0|).(| >xkwd  
 
ortaya çıkmaktadır. 
 
 
Yeni ağırlık vektörünün d(kw), orijinal fonksiyon tarafından tamamlandığını 
göstermek için bu kadar yeterlidir. Teoremin ispatının ikinci bölümüne gelmeden 
önce iki örneğe bakalım. 
 
Örnek 2.5 (Kareler) D, örnek 2.4’te tanımlanan tam kareler kümesinde 
tanımlanan 
 
 

D = {1,4,9,16,25,...} 
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küme olsun. 
 

 
Teorem 2.2’ye göre tüm LT fonksiyonları her C eR+ için 
 
 
  iiidd iCiCC ii

222

1 )12()12()( <+=−++=−
+   

 
olarak tanımlanabilmektedir.  
 
Her  i > i0, 
 
 

  12 2

0 +⎥⎦
⎥

⎢⎣
⎢ ++= CC Ci  

 
 
teorem 2.2’nin ispatı 
 
 
  ))(1().(| 1 dd ii

nkxkwd −+−≥
+

 
 
eşitsizliğinde görüldüğü gibidir.  
 
 
Olarak, 
 
 
  )12)(1().(| ++−≥ inkxkwd  
 
 
  )12)(1().(|

max
++−≥ kknkxkwd  

 
 
seçiyoruz 
 
 
  232 2 ++++= nnk n  
 
ve aşağıdaki eşitsizliği  
 
 
  0|).(| >xkwd  
 
elde ediyoruz. 
 
 
Yeni ağırlıkların orjinal fonksiyonu ifade ettiğini göstermektedir. 
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Örnek 2.6 (Sayısal örnek) 
 
Örnek 2.7 (2’nin Kuvvetleri) Üstteki ispat 2’nin üsleri için kullanılırsa ne olur: 
 
 

D = {1,2,4,8,16,...} 
 
 

Teorem 2.2’deki ifade kullanılırsa 
 
 
  ddd i

iii
ii CCCC <=−=− +

+
)()()( 222 1

1  
 
 
durum dddiR iiiCC <−∃∈∀

+

+ )(/, 10  her ii 0≥  için sağlanamaz. Teorem 
kullanılamaz. İspat nerede başarısız olmaktadır? 
 
 
  kxkw ≥|).(|  her }1,0{ n

x∈  için 
 
 
  kxkwdxkwdxkw ≥+− |).(||).().(|  
 
 
  kxkwdxkwdkw ≥+− |).()).((|  
 
 
  kxkwdxkwdkw ≥+− |).(||)).((|  
 
 
  |)).((||).(| xkwdkwkxkwd −−≥  
 
  
  ))(1(|).(| 1 dd ii

nkxkwd −+−≥
+

 
 
 
Bu noktada şu ifade kullanılarak di+1 – di = di < k 
 
 
  knkxkwd )1(|).(| +−≥  
 
 
  nkxkwd −≥|).(|  
 
 
ispatımız burada işe yaramadı ancak 2’nin kuvvetleri için sonuçları kanıtlamanın 
başka bir yolu olmalıdır. Karşıt bir örneğe ihtiyacımız var. Ağırlık vektörü             
(-5,1,1,2,3,4) olan 5 değişkenli LT fonksiyonu 
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  )4325sgn(),,,,( 5432154321 xxxxxxxxxxf +++++−=  
 
düşünelim. 
 
2’nin üsleri olarak ifade edebileceğimiz ağırlıkları bulduğumuzu 
 
 

)222sgn(),,,,( 5

5

4

4

3

3

2

2

1

10

54321 222222 xxxxxxxxxx aaaaaaf +++++−=  
 
 
farz edelim. 
 
 
aj ∈ N iken. f tanımında yeni ağırlıkların ilişkisine göre şu gözlemleri 
 
 
  0)11100( =f  ama 22 431)11010( aaf <⇒=  
 
 
  0)10010( =f  ama 22 541)10001( aaf <⇒=  
 
 
 

0)00001( =f  ama 222 4351)00110( aaaf +<⇒=  
 
yaparız. 
 
 
Bu eşitsizlik sisteminin tam sayı sonucu olmadığının görülmesi çok basittir. 
 
İspat: (devam) 
Teorem 2.2 deki 2. savı ispatlamak için örnek 2.7 deki fikir izlenir. 2 iK α ‘nin 
ağırlıları ile tamamlanamayan fonksiyonu 
 
 
  wwww

a
l

a
lll 12111 ......

+⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

<<<<<  

 
bulunmak isteniliyor. Bunu sağlayan herhangi bir ağırlık kümesi seçeriz. 
Ağırlıkların farklı olmasını garanti ederiz ayrıca fonksiyonu düzenlenir. 
 
İlk eşitsizlik kümesi 
 
 
  www

a
l

a
ll ⎥⎦

⎥
⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

>+ 21  
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gösterir. 
 
İlk eşitsizlikler kümesi aşağıdakileri 
 
 

  www
a

l
a

ll ⎥⎦
⎥

⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

<< 21
4
1

2
1  

 
ifade etmektedir. 
 
 
İkinci ile birlikte gerekli çelişki sağlanır. Bu örnek 2.7 de K = a = 1 olarak 
yapılmıştır. Fonksiyonları herhangi bir sabit olan K ve a ‘ya göre nasıl 
yapılandırabiliriz? Geliştirme için bölüm 5’te elemanlar kullanırız. 
 
Yardımcı Teorem 2.3 (yoğun ağırlıklar ile fonksiyon kurma) 
K ve A sabitleri verilmiş ve aşağıdakileri sağlayan herhangi bir ağırlık kümesi 
olan fonksiyonumuz  
 
 
  wwww

a
l

a
lll 12111 ......

+⎥⎦
⎥

⎢⎣
⎢ ++⎥⎦

⎥
⎢⎣
⎢ ++

<<<<<  

 
vardır. 
 
 
 
Ve 
 
 
  www

a
l

a
ll ⎥⎦

⎥
⎢⎣
⎢ +⎥⎦

⎥
⎢⎣
⎢ +

>+ 21  

 
 
İle yardımcı teorem 2.3’ün ispatı Bölüm 3.4.3’te verilmiştir.  
 
                                                        
2.6 Sonuç 
 
Bölüm 2’de LT fonksiyonlarının tam sayı ağırlıklarla tamamlanması gibi belli başlı 
sonuçların genelleştirilmesi yapılmıştır. Yoğunluğu yeterli D tarafından çekilen 
ağırlıkları olan LT fonksiyonlarının verilen herhangi bir alt küme, D ∈ R ile 
tamamlanabileceğini gösterdik. D’nin polinom olarak ya da süper polinom olarak 
artması gerekir fakat üstel olarak artıyorsa bazı fonksiyonlar reelleştirilemez. 
Teorem 2.2 D’nin doğru şartlarını gösterir. İspatlar müspettir, ağırlıkların 
oluşumundaki ya da karşıt örneklerin oluşumundaki algoritmalar gösterilmiştir. 
Sayfa [49] ‘da 38 de tamamlanan doğrusal düşünce listesi ile 2 katlı LT devreleri 
tanıtılmıştır. İkinci kat girişindeki ağırlıkların büyüklükleri 2’nin kuvvetleridir. 
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Bölüm 3 
 
Minimum Ağırlıklar 
 
3.1 Giriş 
 
Bu bölümde tam sayılı ağırlıklar gibi ikili girdi ve çıktılı tek doğrusal eşik girişi 
incelenecektir. Bu girişler matematikte doğrusal eşik fonksiyonu olarak 
tanımlanır. 
 
Tanım 3.1 (Doğrusal Eşik Fonksiyonu) n değişkenli doğrusal eşik fonksiyonu 
doğru yanlış fonksiyonudur f : {0,1}n —> {0,1} her x için ∈ {0,1}n ve w ∈ Rn+1 

olarak 
 
 

  
⎩
⎨
⎧ ≥

==
Diger

içinxF
xFxf

,0
0)(,1

))(sgn()(  

 
 

  ∑
=

+−=−=
n

i
ii xwwxWxF

1
0),1.()(  

 
sabitlenmiştir. 
   
Bölüm 2 de görüldüğü gibi LT fonksiyonları tamsayı ağırlıkları ile reelize edilebilir. 
Bu bölümün devamında genelliği kaybetmeden ağırlıkların tam sayı olduğunu 
varsayacağız. 
 
Ayrıca doğrusal eşik fonksiyonu  
 
 
  }1,0{1,1{: } →−

n
f  

 
tamamlanabilir. 
 
 
{0 ,1} ve { -1, 1} sunumlarına yönlendireceğiz. 
 
Verilen f fonksiyonda ağırlık vektörü özel değildir. 
 
Tanım 3.2 (Ağırlık alanı ) Verilen eşik fonksiyonu f ve W tanım 3.1 i karşılayan 
tüm ağırlıkların kümesi olarak tanımlanıyor. 
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  )}()),1.(sgn(,1,0{:{ } xfxWxwW
nnZ =−∈∀∈=  

 
 
Aşağıda ağırlıkların boyutunun bir ölçümü vardır. 
 
 
 
Tanım 3.2 (En Düşük Ağırlık Boyutu) Ağırlık boyutunun vektörü ağırlıkların 
mutlak değerlerinin toplamı olarak tanımlanır. En düşük ağırlık boyutunun 
doğrusal eşik fonksiyonu şu şekilde  
 

  )||(min][
0
∑
=∈

=
n

i
iWw wfS  

 
tanımlanır. 
 
Asgariyi sağlayan belirli vektöre minimum ağırlık vektörü denir. Doğal olarak 
S[f]’nin fonksiyonudur. 
 
3.1.1  Motivasyon 
 
Neden eşik devresindeki ağırlıkların boyutuyla ilgileniyoruz? 
 
Eşik devresi şaşırtıcı derecede güçlü görünüyor. Örneğin polinom boyutunun 
sabit derinlikli eşik devresi tarafından tam sayı bölmesi tamamlanıyor. AC0deki 
her fonksiyon polinom benzeri ekseri devrelerin3 derinlikten hesaplanabilir 
olması [1] ayrıca sağlanmıştır. Bu tüm ACC° için gerçektir. Etkili üst sınırlar 
verildiğinde alt sınırları bulmak elde etmek için güçlüklerle karışılması sürpriz 
değildir. Aslında eşik devresi için en iyi alt sınır derinlik2 için gerekli olan Inner-
Product-Mod-2 (IP2) ‘nin sonucudur. Fakat bu alt sınır devrenin küçük ağırlıklar 
içerdiğini varsayar ve IP2 herhangi bir ağırlıklı 2 derinlikli polinom eşik devresi 
tarafından hesaplanabilir. Şöyle ki, eşik devreleri için alt sınırların gelişmesinin 
edinilmesi, büyük ağırlıkların rolünün anlaşılması ilgili olduğu görülüyor. Eğer 
yalnızca küçük gelişme boyutlarının katsayılarıyla eşik elemanları 
kısıtlanabiliyorsa, devrenin hesaplanabilir gücü nasıl kısıtlanabilir? Bu durum 
sayfa [17], [33], [43] de gösteriliyor. Üstel şekilde artan ağırlıklı tek eşik elemanı 
S[f]  ~ 2n tarafından tamamlanabilen doğrusal eşik fonksiyonları bulunuyor. Fakat 
bu fonksiyonlar daha küçük polinom olarak artan ağırlıklı eşik elemanı S[f] ~ nd, d 
tarafından tamamlanamıyor. Bu sonuçların ışığında yukarıdaki soru ile doğrusal 
eşik fonksiyonlarının kümelerinin bulunduğu sınıfı (“küçük” polinom olarak artan 
ağırlıklı fonksiyon sınıfı) açıklayarak uzlaşabiliriz.  Yakın zamandaki 
araştırmaların çoğu küçük ağırlıklı devrelerin gücüne ve keyfi ağırlıklı devreyle 
ilişkilerine odaklanmıştır. Özellikle bunlar gösteriyor ki devredeki derinliği bir 
arttırmak tüm polinom boyuttaki ağırlıkları düşürmek için yeterlidir. Bu bölümde 
değişik yaklaşımlar ediniyoruz. Devrelerle uğraşmak yerine tek eşik girişine 
odaklanılıyor.  
 
 
3.1.2. Organizasyon 
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Söz konusu bölümün geri kalanının özet bir çerçevesini vermekteyiz. Bölüm 
3.2’de biz etkiyi en aza indirirken karşı karşıya kalınan bazı zorlukları ve çıktı 
alanı tarafından nasıl etkilendiğini göstermekteyiz. Bölüm 3.3’de biz {-1,1}’de 
tanımlanan fonksiyonları dikkate alıyoruz. Eşikte olmayan fonksiyonlar 
sınırlandırılıyor ( genelleştirilmiş ana fonksiyon ) ve en düşük ağırlığa sahip bu 
tür fonksiyonların nasıl yapılacağını gösteriyoruz. Bölüm 3.4’de biz {0,1} üzerinde 
tanımlanan her hangi bir eşik fonksiyonu ile temas etmemizi sağlayan minimal 
fonksiyonları oluşturmanın başka bir yolunu veriyoruz.  
 
 
3.2  Başlangıçlar ve Örnekler 
 
Bu bölümde bir eşik fonksiyonunun ağırlığını en aza indirmeye çalışırken karşı 
karşıya kalınan bazı zorlukları açıklamaktayız. Biz ayrıca çıktı alanının etkileme 
ölçülerinden nasıl etkilendiğini gösteriyoruz. (Örneğin {-1,1}’e karşılık {0,1}) 
Bununla ilgili sonuçlara sayfa [25] ‘ten bakınız. 
 
 
3.2.1    Etkileri En Aza İndirme  
 
Bir eşik unsurunun etkilerini ölçme konusunda analiz yaparken ana zorluk, 
aşağıdaki örnekte gösterildiği gibi farklı bir etki seti tarafından tek bir doğrusal 
eşik fonksiyonu gerçekleştirilmesinden kaynaklanmaktadır. 
 
Örnek 3.1 ( En Düşük Etkiye Sahip Bir Eşik Fonksiyonu ) Aşağıdaki iki etki 
setini değerlendirelim.( etki vektörleri ) 
 
 
  w = (4  1  2 5),  xxxF x 3211 524)( +++−=  
 
 
  w' = (8 2 4 10),  xxxF x 3212 10426)( +++−=  
 
Her ikisi de aynı eşik fonksiyonunu  
 
 
  ))(sgn())(sgn())(sgn()( 112 2 xxxxf FFF ===  
 
vermektedir. 
 
 
Yakından bir bakış f(X) = sgn(-1 + x3), yukarıdaki etki faktörlerinin hiç birisinin 
minimal ölçüde olmadığını göstermektedir. Gerçekten de en düşük etki         
wN=(1 0 0 1) ve S[f] = 2’dir.  
 
Verilen bir etki setinin minimal düzeyde olup olmadığını belirlemek genel olarak 
bir sorundur. Bizim tekniğimiz etki vektörlerinin yapılmasından ibarettir ve onun 
en düşüğü kolaylıkla sağlanabilir. Biz daha sonra daha büyük bir fonksiyonlar 
seti elde etmek için onları en düşük düzeyde muhafaza ederken nasıl 
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değiştirileceği gösteriliyor.    

 
 
 
3.2.2     {0,1} karşılık {-1,1} 
 
Bizim aynı fonksiyonu (0,1) ve (-1,1) üzerinde gerçekleştirdiğimizi farz edin. 
Etkilenme nasıl olacaktır? Bir örneğe göz atalım. 
 
Örnek 3.2 (OR Fonksiyonu) 
 

1.  xi Є {0,1} için 
 
 

)...1sgn(),...,( 11 xxxx nnOR +++−=  

 
olsun. 
 
Ağırlıkların boyutu S = n + 1. Bu ağırlıklar en düşük olanıdır. 
 
 
Kanıt:   Ağırlıklar tamsayıdır. Boyutlarını düşürmek OR’un tanımını delecek 
şekilde 0’lamak demek oluyor. 
 

2. Şimdi, xi Є {-1,1} için 
 

 
)...2sgn(),...,( 11 xxxx nn nOR +++−=  

 
olsun. 
 
Ağırlıkların boyutu S = 2n - 1. Bu ağırlıklar da en düşük olanıdır. 
 
Kanıt: OR’u ifade eden tüm ağırlıklar pozitif olmalıdır. Any weights that 
implement OR have to be positive. S' < 2n-2 boyutunda ağırlıkların olduğunu 
düşünün. Hiçbir ağırlık 0 olamaz, böylece nwn ≥∑1

' , -w0 < (2n - 2) - n = n - 2 eşik 
fonksiyonunu ifade eder.wi’ en düşük ağırlık olsun. Xi =1 olsun ve diğer tüm 
girdiler -1 olsun. )2('

1
−< −∑ nw wi

n  böylece F(X) < 0 OR’un tanımını delerek. 
 
Bu örnekten de görülebileceği gibi {0,1} ifadesi {-1,1} ifadesinden daha küçük 
ağırlıktadır. Bu genel olarak doğru mudur? 
 
 
Örnek 3.3 ( (MAJ Fonksiyonu) n değişken sayısı tek olsun. Girdilerin 
yarısından fazlası doğru olursa MAJ fonksiyonu doğru dönmektedir. 
 
• xi Є {0,1} için 
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  )...
2
1sgn(),...,( 11 xxxx nn

n
MAJ ++++−=  

 
olsun. 
 
 

Ağırlıkların boyutu 
2
13 += nS . Durum 2’dekine benzer bir ispatla bunların en 

küçük olduğunu gösterebiliriz. 
 
• Şimdi xi Є { -1,1} olsun, 
 
 
  )...sgn(),...,( 11 xxxx nn

MAJ ++=  
 
 
Onların ölçüsünün indirilmesi, bir veya daha fazlasının 0’ya getirilmesini ifade 
ettiği içi bu etkiler minimaldir.  Bu ise MAJ’ın tanımını değiştirecektir. Etki ölçüsü 
S = n dir. 
 
Bu ikinci örnek genel olarak {0,1} mi yoksa {-1,1}’nın mı daha küçük ağırlıkta bir 
fonksiyon üreteceğini söyleyemeyeceğimizi göstermektedir. 
 
 
3.3 {-1,1} Üzerinde Genelleştirilmiş Çoğunluk Fonksiyonu 
 
Bu bölümde aşağıdaki modele  
 
 
  }1,0{}1,1{: →−f  

 
 

  )sgn()(
1
∑=
n

ii xwxf  

 
çalışılacaktır. 
 
 
Eşik olmadığına dikkat edin, biz belirli etkilere sahip bir çoğunluk fonksiyonuna 
göz atıyoruz. Biz minimal etkilere sahip fonksiyonların oluşturduğu fonksiyonlara 
cevap veriyoruz.  Özellikle amacımız belirli bir çıktı n ve ölçü S elde etmek 
içindir.  
 
 
3.3.1   Matematiksel Kurgular 
 
Biz minimal etkinin kolaylıkla kurulabileceği fonksiyonlar ile ilgilenmekteyiz. 
Minimal etkiyi bulma bir araştırmayı kapsar; Biz bu nedenle sınırlı bir etki alanına 
sahip fonksiyonları bulmak için çabalıyoruz. Aşağıda yazılı olanlar bize w üzerine 
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sınırlamalar koymamıza izin vermektedir. (Bu bölümün geri kalan kısmında, 
karışıklığa meydan vermemek için biz açık bir şekilde vektörleri anlatılacaktır.) 
 
Tanım 3.4 (Bir Doğru Yanlış Fonksiyonun Temel Alanı) Bir vektör G { — 1, l}n 
f(v) = f(-v) gibi f’nin temeli olarak adlandırılır. Biz temel alan R’yi f’nin tüm temel 
setleri olarak tanımlarız. 
 
Tanım  3.5 (Temel Generator Matriks)  Verilen bir etki vektörü  w ∈ W ve bir 
temel v G R  için, temel generator matriks, G = (gij),bir  a (nxk)-matriksidir,          
{-1,0,1} kapsamındadır, g dizileri w’ye doğru düz açılı ve diktir ve tüm sıfır  
olmayan koordinatlarda v’ ye eşittir, yani, 
 

1.   0=wG  Gw = 0 
2.   0=gij veya vg jij

=  her i ve j için. 

 
Örnek 3.4 (Temel Generator Matriks) Bir etki vektörü tarafından belirlenen bir 
linear fonksiyon verildiğini var sayalım. w = (1,1,2,4,1,1,2,4). Araştırırken 
v=(1,1,1,1, -1, -1, -1, -1) olduğunu tespit ederiz. Dikkat edin w1 + w2 – w7= 0 ve 
g.w = 0 olarak yazılabilir, orada g = (1,1,0,0,0,0,-1,0) G setidir r= v - 2g. g tüm 
sıfır olmayan koordinatlarda v’ye eşit olduğu için f ∈ {-1,1}"dir. Ayrıca  
r.w=v.w+g.w = 0 dır. Biz yeni bir temel ortaya atıyoruz. r= (-1, -1,1,1, -1, -1,1, -1). 
 
Lemma 3.1 (G ve W’nin Dikeyliği) Verilen bir etki vektörü w ∈ W ve bir temel 
v∈R, uGT = 0 her hangi bir etki vektörü u ∈ W için düzenlenmiştir.  
 
Kanıt: u ∈ W ve bir dizi için, G’nin gi, v = v - 2gi olsun <fj, eğer G {—1,1}™ 
tanımlarken ve if ■ w = 0 ise. Bu f(if) = f(—if) anlamına gelir: Her hangi bir temel 
vektör için u ∈ W, sgn{u.v) = sgn(-u.v). Bu nedenle, u ■ (v - 2gi) = 0 ve sonuç 
olarak , v . u = 0 olduğu için, u . cji = 0 kabul ederiz. 
 
Yardımcı Teorem 3.2 (Minimalite)  w ∈ W ağırlık vektörü için ve kök v ∈ R için, 
eğer, rank(G) = n - 1 (i.e., G n - 1 bağımsız satıra sahip) ve |wi| = 1 bazı i’ler için, 
o zaman w en düşük ağırlık vektörüdür. 
 
İspat: Yardımcı teorem 3.1 ‘den her u ağırlık vektörü uGT = 0 eşitliğini sağlar.          
rank(G) = n - 1  dim(W) = 1 olduğunu gösterir. Örneğin tüm muhtemel ağırlık 
vektörleri kendi içinde çarpılan tam sayılardır. |wi| = 1 olduğu için tüm vektörler 
u=kw k>1 değeri için eşitliğinde vardır. 
 
Örnek 3.4 ‘ü yardımcı teorem 3.2 ‘nin uygulamaları ile tamamladık. 
 
Örnek 3.5 (Minimalite)   
 
 
  )4,2,1,1,4,2,1,1(=w  
 
  )1,1,1,1,1,1,1,1( −−−−=v  
 
verilmiş olsun. 
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Aşağıdaki gibi bir yapı kurabiliriz: 
 
 
 

G=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

-10000111
0-1000011
00-100001
-10001000
0-1000100
00-100010
000-10001

 

 
 
Rank(G)’nin minimum olduğunu göstermek oldukça kolay ve S[f] = 16. 
 
 
3.3.2 Ağırlık Vektörleri 
 
Örnek 3.5’te nasıl verilen vektörün minimum olduğunun gösterildiğini işlemiştik. 
Bu kısımda keyfi girdi değerleri ile minimum ağırlıklı boyutunu içeren doğrusal 
eşik fonksiyonunun örneklerini gösterilir. 
 
Ağırlık vektörü oluşturmak ve en düşük olduğunu göstermek istiyoruz. Girdilerin 
sayısına n diyelim ve n çift olsun. w de iki denk bloktan oluşsun: 
 
 

(w1,w2,..., wn/2, w1, w2,..., wn/2) 
 
 

Açıkça, v = (1,1,..., 1, -1, -1,..., -1) bir kök ve G ilgili karşılık gelen matristir. 
 
 
 

G=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

1-00....0000100...0000
01-0....0000010...0000

...

...

...
000....01-00000...0100
000....001-0000...0010
000....0001-000...0001
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3.3.3 Yapım 
 
S tamsayısı ve n değişken ile n değişkenli ve s boyutunda minimum ağırlıkta bir 
fonksiyon olduğunu göstermektedir. 
 
Teorem 3.1 (Ana Sonuç) (s,n) ikilisi için aşağıdakileri sağlayan 
 

1. n ≤ s ≤ 
⎪⎩

⎪
⎨
⎧

+
−−

isetekn

iseçiftn
nn

n

22
2

2
3

2
1

2
 

2. s çift 
 
[f] = s boyutunda en düşük ağırlıklı n değişkenden oluşan doğrusal bir eşik 
fonksiyonu vardır. 
 
Kanıt: Verilen (s,n) çifti yukarıdaki şartları sağlar. sn

i iw =∑ =1
|| koşulunu 

sağlayan ağırlık vektörü w, yapılandırılır. Daha sonra f(x) = sgn( xw
. ) 

fonksiyonunun minimum ağırlık vektörü gösterilir. İspat sadece n ‘in çift olduğunu 
gösterir.   
         YAPIM. 

1. (ai, a2,..., an/2) = (1,1, •••, 1) tanımlanır. 
2. Eğer 2/2/

1
sn

i ia <∑ =
 ise ai < 2i-2 gibi en küçük ai alınarak arttırılır.(Bağlantı 

olayında olduğu gibi en küçük i’ye endeksli wi alınır.) 
 

3.  2/2/

1
sn

i ia <∑ =
 veya  (a1, a2,...,aN) = (1,1, 2, 4,..., 2 2

2
−
n

) 
4. Set w = (a1, a2,...,an/2, a1, a2,..., an/2) olana kadar , bir önceki basamağı  
tekrar ederiz.  

 
Çünkü boyutu zamanla arttırarak algoritmada n < s < 2n/2 eşitsizliğini sağlayan 
her s tamsayısı için istenilen sonuca yaklaşılır. w’nin en düşük olduğunu 
gösterelim.  
 
MİNİMALİTE verilen w = (a1,a2, ..,an/2,a1,a2, ..,an/2) ‘den kökü                          
u=(1,1,...,1, -1, -1,..., -1)   ve wi = wi+n/2. eşitliği ile ilgili  genelleştirici G matrisinin 
n/2 satırını buluruz. Eklenilen satırlardan anlaşılıyor ki ilk k ai'leri ikinin kuvvetleri 
(k s ve n ‘ye bağlıyken). Bunlar ai = ∑ =

k

j jij aa1  şeklinde yazılabilir ve k-1 satır 

üretilebilir. Son olarak diğer bütün ai’ler i>k iken 2k+1 den’ küçüktür. Bunlar ikili 

açılım olarak yazılabilir, (α ij
 ∈ {0,1} iken a, kn −

2
gibi ağırlıklar vardır. G’nin 

bağımsız toplam n-1 satırı vardır. rank(G) = n - 1 ve w1 = 1; yardımcı teorem 
3.2’ye göre w  minimumdur ve S[f] = s’dir. 
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Örnek 3.6 (10 Değişkenli ve 26 Büyüklükteki Bir Fonksiyon)   İle başlıyoruz 
 
 

a= (1,1,1,1,1) 
 
 
Öteleme yapıyoruz, 
 
 

(1,1,2,1,1) 
 
(1,1,2,2,1) 

 
(1,1,2,2,2) 

 
(1,1,2,3,2) 

 
(1,1,2,3,3) 

 
(1,1,2,4,3) 

 
(1,1,2,4,4) 

 
ve sonuç olarak algoritma 
 
 

a= (1,1,2,4,5) 
 
 
sonsuza gitmektedir.  
 
 
  w =( a ,a )= (1,1,2,4,5, 1,1,2,4,5) 
 
en düşük olduğu iddia edilir. 
 
Gerçekten, v  = (1,1,1,1,1, -1, -1, -1, -1, -1) ve 
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G=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

-1000001001
0-100000111
00-10000011
000-1000001
-1000010000
0-100001000
00-10000100
000-1000010
0000-100001

 

 
 
9 rankında bir matristir. 
 
 
Örnek 3.7 (Polinom Boyutlarında Fonksiyonlar) Bu örnekte Teorem 3.1 ‘in 
uygulamasını göreceğiz. S[f] < nd için doğrusal eşik fonksiyonları olan T

d
L ˆ )(

 ‘yi 
tanımlıyoruz. Teorem gösteriyor ki her çift n için n değişkenli ve minimum ağırlıklı 
S[f] = nd bir f fonksiyonu vardır. Buradan yapılacak çıkarım tüm d’ler için T

d
L ˆ )(

  
uygun bir LT alt kümesidir. 
 
 
3.4 {0,1} de Keyfi Eşik Fonksiyonu 
 
Bu kısımda en düşük ağırlıklı eşik fonksiyonunun oluşturulabilmesi için değişik 
teknikler gösterilecek. Her bir yükün boyutu değişkenlerin sayısı ile fonksiyonları 
oluşturabiliriz. Fonksiyonları {0,1} girdi tanım kümesinde düşünebiliriz fakat keyfi 
girdi uzayı{a,b} için argüman hala vardır. Bölümün geri kalanında karışıklığı 
önlemek amacıyla vektörleri belirtmek için büyük harfler kullanacağız. 

 
 

3.4.1   Yaklaşım  
 
Kullandığımız metotlar sayfa [52]’nin sonuçlarını taban almaktadır. 
Genelleştirmenin dışına çıkmadan ağırlıkların tamamıyla pozitif tamsayılar 
olduklarını var sayalım. Hedefimiz ∑∑ == n

i

n

i wwS
00

|| . 

 
Eşitliğini küçültmektir. Eşitlik [32]’den bildiğimiz gibi aynı fonksiyon tarafından 
tamamlanan diğer ağırlıklar, U, tamamen pozitif olmalıdır. 
 
W, ∑∑ ≥ n

i

n

i uw 00
 şartları altında göstereceğiz. 

 
Aşağıdaki eşitliklerde olan girdi vektörlerini X ve Y  
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olarak düşünelim. 
 
Matrisin satırlarını A olarak belirleyelim, 
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satırların tekrarına izin verdik:  X(i) = X(j) = ... = X(k)’ı elde ettik.  
 
Örnek 3.8 (Matris A) Elimizde aşağıdaki ağırlıkların olduğunu varsayalım. 
 
 

W = (13 6 6 3 3 2 2  1  1) 
 
 
Hedefimiz minimum olduğunu göstermektir. Öncelikle matris A’yi oluşturmalıyız. 
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A için pek çok seçenek mevcuttur. Yukarıda gösterilen daha sonra 
göreceklerimiz kadar iyi bir örnek değildir. 
 
Teori 3.2 (En Düşük Değeri Sağlama Koşulu) : Ağırlık vektörü W olarak kabul 
edildiğinde,  A’yı aşağıda belirtilen şekilde açıklarız. Eğer a > 0 ve A aşağıdakini 
sağlamaktaysa 
 

(1 ...1)A= (a ... a) 
 
 
ağırlık vektörü W minimum değere sahiptir. 
 
Kanıt: X’lerin ve F’lerin tanımına göre, A matris’i aşağıdakileri  
 
 

 
qp

T

nwwwwA
→−−−←→−−−←

= 11...100...00....( )210                                                 (3.1) 
 
sağlar. 
 
sgn(0) = 1 ve sgn(-1) = 0 olduğundan, aynı fonksiyonu uygulayan herhangi bir 
ağırlık vektörü, U, yukarıdaki eşitlikleri “=” yerine “>” ile yerine getirmelidir. 
 
 

qp

T

nuuuuA
→−−−←→−−−←

= 11...100...00....( )210                                                 (3.2) 
 
V = U - W olsun ve (3.1)deki eşitlikleri (3.2)deki eşitsizliklerden çıkaralım. Sonuç 
olarak şunları  
 
 

qp

T

nvvvvA
+

→−−−←
= 00...00....( )210                                                  (3.3) 

 
buluruz. 
 
Şimdi öyle bir A alalım ki 
 
 

 
nqp

aaaA
→−−−←→−−−←

=
+

....11...11            (3.4) 
 
 
A pozitif bir tamsayı olduğunda eşitlik (3.3)’teki tüm eşitsizlikleri soldaki tüm 1 
vektörüyle çarpıp şu sonucu  
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elde ederiz. 
 
Tüm i = 0,..., n için, a > 0, wi ≥ 0, ui ≥ 0  olduğundan, şunu  
 

∑∑ ≥ n

i

n

i wu 00
 

 
bilmekteyiz. 
 
Girdi kümesinin {0,1} olduğu gerçeğini, kanıtın hiç bir aşamasında 
kullanmadığımıza dikkat ediniz. Hatta yukarıdaki kanıt herhangi bir {a, b} girdi 
kümesi için geçerlidir. Görebileceğiniz gibi kanıt, eşitlik (3.4)’ü sağlayacak bir 
A’nın yapılandırılması üzerine kurulmuştur. Bir A oluşturabilmek için W seçimine 
bağlı olan uygun X’lere ve F’lere ihtiyaç vardır. 
 
 
 
3.4.2 Basit Oluşum 
 
Bu bölümde W ile, genel oluşum için ağırlık vektörü, karşı karşıya geleceğiz, ve 
uygun bir A matrisi bularak W’nin en düşük değerde olduğunu kanıtlayacağız. 
Eşik değeri W0’yu isteğe bağlı bir değer olarak kabul edelim. Şunları seçelim: 
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−wwwwwwwwww n
n  ve w2i=w2i-1 i=1,..,n 

için.  Öyle bir “n” seçiyoruz ki  101 12 −≥∑ − wwn i  olsun. Bir örnek inceleyelim. 
 
Örnek 3.9 (w0 = 13) Yukarıda tekrarlanan tanımı uygulayarak, Örnek 3.8’deki 
ağırlık faktörünü elde ediyoruz: W = (13 6 6 3 3 2 2 1 1). Burada, A için olan X ve 
Y tipi satırları izleyiniz. 
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1 vektörünün tümünü elde etmek için satırları kopyalayıp topluyoruz. Sadece tek 
sayılar ile numaralandırılmış sütunlar gösterilmektedir.  
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Sonuncusu 2 vektörünün tümüne eşit olmaktadır. 
 
Teori 3.3 (Oluşumun En Düşük Değeri) Herhangi bir W0 için, S = 3 * w0 - 2 

boyutlarında en düşük ağırlıkla ve bir çok değişkenle ⎡ ⎤S log2=n  bir eşik değeri 

fonksiyonu oluşturabiliriz.  

 
Kanıt:   11 aA =  ‘i sağlayan bir A oluşturacağız ve Teori 3.2’yi uygulayacağız. A’yı 
oluşturmak için sadece 2 adet Y tipi vektör  
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gereklidir. 

 
 
İki olası şekilde(2   - 1 ... -1) sonuç elde edilebilir.  
X tipi vektörler, ikişer ikişer toplanarak, şu sonucu verirler:  
 
Bu kısmi toplamları tekrar edip toplayarak, 1 vektörünün tümünü elde edebiliriz. 
Peki bunu nasıl yapacağız? İki Y tipi ve iki X tipi vektörü toplayarak bir  (0,...,0,1) 
oluştururuz.  
 
  -2  1  ...  1  2  0  ...  0  0 
 

veya 
 
-2  1  ...  1  2  0  ...  0  1 

 
Si’den kastımızın i = 1...n , singleton vektörü (0,...,0,1, 0,...,0), 1. pozisyonda 
iken, olduğunu ifade edelim. Tüm Si’ye V ve F tipi vektörleri toplayarak 
ulaştığımızı göstermek için tümevarım kullanıyoruz. Hatta j = 1,...,i - 1 için tüm Sj 
‘ye ulaştığımızı varsayalım. İki X tipi ve iki Y tipi vektörleri toplayarak Si 
üretebiliriz. 
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Tüm Si vektörlerini bulduktan sonra, onları 3 x (2  -1  ...  -1) kere toplayıp, 2 
vektörünün tümüne ulaşabiliriz.                                                                                   
 
 
3.4.3   Keyfi Büyüklük ve Sayıda Değişkenler için Oluşum  
 
Bu bölümde, fazladan bir değişken elde etmek için ağırlığı nasıl bölmemiz 
gerektiğini göstereceğiz. Aynı zamanda, bir ya da iki değişken birim ağırlıkla 
toplandığında sonucun en düşük değerli bir fonksiyon olduğunu da 
kanıtlayacağız.  
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Yardımcı Teorem 3.3 (Ağırlığı Bölmek) W = (w0, w1, ..., wn) en düşük 
değerinde olsun.. O halde a + b = w1 minimum değerde olduğunda, W  = (w0, a, 
b, w2, w3,..., wn+1) olacaktır.  
 
Kanıt: İkinci sütunu tekrar ederken, bir A oluşturun.                                          
 
Yardımcı Teorem 3.4 (bir girdiyi birim ağırlıkla toplamak W = (w0, w1, ..., wn) 
minimum değerinde olsun.  O halde  wn+1 = 1 minimum değerinde olduğunda, W  
= (w1, w2, w3,..., wn+1) olacaktır. 
 
Kanıt: W’nun en düşük değerinde olmadığına yani W için daha iyi bir seçenek 
olduğunu düşünelim ve buna W diyelim. İki olasılık vardır. Ya w'n+1 = 0 olacaktır 
ya da i < n + 1 için bazı w’lar uygun wi’den daha küçüktür. İkinci durumda, xn+1=0 
alıyoruz ve hipoteze ters olarak daha küçük ağırlıklarla uygulanmış olan orijinal 
fonksiyonu elde ediyoruz. Şimdi w'n+1 = 0 olduğunu, yani  xn+1’e bağlı olmadığını 
farz edelim. Bu tüm X girdileri için 0

0
≥∑n

ii xw  ya da 2
0

−≤∑n

ii xw olduğunu 
ifade eder. Orjinal fonksiyonun minimum değerinde olmadığını söyleyerek w0’ı 1 
birim azaltabiliriz. 
 
Bu iki yardımcı teoremi kullanarak, fonksiyonları keyfi sayıda ve büyüklükte 
değişkenlerle oluşturmak basittir. Hatta bundan fazlasını da yapabiliriz: 
fonksiyonları sabit ağırlık yapısıyla oluşturabiliriz. Bu fikri Yardımcı Teorem 2.3’ü 
kanıtlayarak gösterelim. 
 
Yardımcı Teorem 2.3’ün Kanıtı: 
 
İki pozitif sabit K ve α  aşağıdaki için bir ağırlık vektörü  
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Oluşturmalıyız. 
 
α  = 1 olması Örnek 2.7’de incelenmişti. Ağırlık vektörü şu şekilde  
 
 

12,...,11,...,1,,,...,4,2,1,1,,...,4,2,1,1,( 222 +⎥⎦
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Olsun. 
 
p, w l

p
122 +⎥⎦

⎥
⎢⎣
⎢ +

≥
α

olacak şekilde ve yeterli büyüklükte bir tamsayı olacak şekilde 

seçilmiştir. Vektörün minimum düzeyde olduğunu kanıtladığımız şekilde, diğer 
ağırlıklar için de yukarıdaki iki koşulun sağlandığını kanıtlıyoruz. 
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3.5 Sonuçlar 
 
Keyfi ağırlık, büyüklük ve sayıdaki girdili minimum ağırlık eşiği fonksiyonları 
oluşturmak için iki teknik gösterdik. {0,1} ve { -1,1} ‘yi girdi kümeleri olarak kabul 
ettik. Bu teknikleri kullanarak, üstsel olarak ve polinom olarak büyüyen 
ağırlıkların arasındaki ayrımı ayrıntılarıyla inceledik. Asıl sorun bu tekniklerin 
devre boyutunda bulunan değişken ağırlığa sahip fonksiyonların mevcut alt 
sınırlarını genişletmede yararlı olup olmadığını bulmaktır.  
 

 
 
 
 
 
 
 
 
 
 
Bölüm 4 

  
Devre Derinliği için Ağırlık Boyutundan Vazgeçmek  
 
4.1 Giriş 
 
Sinirsel ağ alanındaki deneysel birçok deneysel sonuç, doğrusal eşik 
değerlerindeki katsayıların büyüklüğünün girdilerin boyu ile birlikte çok hızlı 
arttığını ve bu nedenle bu ağın pratikte kullanımını sınırladığını göstermektedir. 
Doğal olarak şu soru sorulabilir: eğer sadece katsayı büyümesi küçük olan eşik 
elemanları seçilirse, ağın bilişimsel gücü ne kadar sınırlanır? Bu bölüm büyük 
ağırlıklar gerektiren LT fonksiyonlarının uygulanması üzerine yoğunlaşmaktır. 
Büyük ağırlıklarla tek bir LT geçidi kullanmak yerine, küçük ağırlıklı LT 
geçişlerinden oluşan iki tabakalı devre kullanıyoruz. Büyük ve küçük sırasıyla 
n‘nin, girdilerin sayısı, üstel olarak ve polinomial olarak anlamına gelmektedir. 
   
Üstel olarak büyüyen ağırlıklara sahip olan eşik elemanıyla uygulanan bir 
fonksiyon olduğu sayfa [17], [33], [38], [43], fakat bu fonksiyon polinomial olarak 
büyüyen ağırlığa sahip olan eşik elemanıyla uygulanamayacağı gösterilmişti. Bu 
sonucun ışığında LT altsınıfı küçük ağırlıklı fonksiyonların sınıfı olarak 
tanımlanmaydı. Siu ve Bruck LTd C LT2d+1 sayfa [13]’nin sınırları TT dd LL 1+⊂   
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haline getirdiği ve bunu TT LL 21⊂  şeklinde göstererek ve keyfi derinliği 
genelleyerek kanıtlamıştır. Lakin bu metot çok karmaşıktır ve kanıtları takip 
etmek zordur.  [18],  [13]’deki sonuçların basitleştirilmiş versiyonunu 
göstermektedir. TT LL 21⊂  olduğunu göstermeye odaklanır. Bir yere kadar 
daha basit ve hissel bir oluşum yaratarak birincinin yerini almaktadır. Fikir, iki 
işlemi ağırlıları azaltmak, iki ayrı güce ayırmak ve onları modula bir asal olarak 
bölmek için kullanmaktır. Sonuç olarak elde edilen küçük-ağırlıklı geçitler, yeterli 
prime kullanılırsa (58) doğru çıktı yaratan bir devreye bağlılardır.    
 
Sadece belirli bir büyük-ağırlık fonksiyonun simülasyonunu kullanarak, sayfa [13] 
ve [18]’de belirtilen sonuçları daha da basitleştirdik: KARŞILAŞTIRMA. Sonuç 
olarak sırasıyla 0(n4 logn) olan devremizdeki bir takım geçitlerde sınırlar ve  
[18]deki )( log1112 no n ’deki genel sınırda önemli gelişmeler elde ettik. Ayrıca bir 
bilgisayar simülasyonu çalıştırdık ve 22 değişene kadar minimum devreler 
belirledik. Simülasyonun sonuçlarını gösteriyoruz ve ileriki araştırmalar için 
uygulamalar ve talimatlar sunuyoruz. 
 
4.2 Karşılaştırma için LT2 devresi 
 
Karşılaştırma fonksiyonunun 2 n-bit sayıdan oluştuğunu farz edelim. Xi = 
(x1,x3,..., x2n-1) X2 = (x2)X4..., X2n) Є {0, l}n olsun.  X1 ve X2 tarafından temsil edilen 
tam sayı değerleri sırasıyla şunlara eşittir: ∑ =

−

−

n

i

i

ix1
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12 2  ve ∑ =
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i

i

ix1
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2 2 , 
KARŞILAŞTIRMA fonksiyonu şu şekilde tanımlanır. 
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Diğer bir değişle, 
 
 
  ]sgn[),( 2121 XXXXC −=  
 
 
                     )](sgn[ 2121

12 xx ii

n

i

i −=
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−∑  
 
şeklinde ifade edilebilir. 
 
 
KARŞILAŞTIRMA fonksiyonun LT1,’ye ait olma fakat LT1’e ait olmama gibi ilginç 
bir özelliği vardır. Armonik analiz araçları kullanılarak, KARŞILAŞTIRMA’nın 
LT2’de olduğu gösterilmiştir. Sayfa [18]’de açıklanan metod kullanılarak 
KARŞILAŞTIRMA için bir LT2 devresinin açık oluşumunu sağlıyoruz. 
KARŞILAŞTIRMA’nın açık oluşumu sayfa [2]’de açıklanmıştı.  
 



 62 

KARŞILAŞTIRMA’nın değerinin, X1 ve X2’nin farklılık gösterdiği en yüksek-düzey 
bit pozisyonuyla bulunduğunu unutmayınız. Eğer bu bit X1’de 1 ise ve X2’de 0 
ise, o halde C(X1,X2) = 1.  Ya da, C(X1X2) = 0.   (X1 = X2 iken, 59 tanımı 
C(X1,X2)=0.) 
 

)()( 2121

12 xx ii

n

i

iXF −=
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−∑  olsun. Birinci basamak, 1’den büyük olan ağırlıkları 
üsrekli olarak yarıya bölüp 1 ve 0 arasında ağırlığa sahip ağırlıklar sağlayarak bir 
Fi(X) fonksiyonları sırası oluşturmaktır. Aşağıdakiyle başlıyoruz. 
 
F0(X) = F(X).  n basamak sonra, bölme işlemi sıfıra eşit olan bir fonksiyon  
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verecektir. 
 
  
Her bölmenin hem X1 hem X2’yi sola kaydırmaya eşit olduğunu unutmayalım.  
 
 
Yardımcı Teorem 1. F(X)’inve  yukarıda belirtildiği gibi sola kaydırılmış Fl(X), 
0≤I≤ n doğrusal fonksiyonların doğrusal kombinasyonları için,  
 
 
  .1)(:0)( =∃⇔> XlXF Fl  
 
 
Kanıt. Her X Є {0, l}2n için bir t mevcuttur, öyle ki tüm I ≥ t için, Fl(X) = 0. Şimdi 
kaydırmayla ortaya çıkacak en büyük hatayı göz önünde bulundurun Şunu  
 
  1|)(.2)(|max

}
max

101,0{
2

=− +>∈
XX FF lllX

n
 

 
görüyoruz. 
 
Her kaydırmayla en fazla iki değişken (ağırlıkları 1 ve -1 arasında değişen “low-
order bit”leri temsil eden) yok edildiğinden. Bu nedenle, |F(X)| sıfır değilse, |Fl(X)| 
= 1 olacak bir / mevcuttur. Eğer F(X) pozitifse, o halde tüm Fl(X)ler pozitif veya 
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sıfırdır ve eğer F(X) negatifse, o halde Fl(X)ler negatif veya sıfırdır. Sonuç 
aşağıdaki gibidir. 
 
 

}1,0{),...,,(),,...,,( 242212311

n

nn xxxXxxxX ∈==
−  olsun. Her 0 ≤ I ≤ n için 

“test” 60 fonksiyonunu aşağıdaki gibi tanımlayın. 
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Yardımcı Teorem 1 şu şekilde  
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0)( =
=

⇔> XTV lXF
n

l

 

 
tanımlanabilir. 
 
 
Deneme olmasına rağmen, modulo asal sayılarını hesaplama fikriye 
kullanıldığında Yardımcı Teorem 1 yararlı hale geliyor. Modulus işlemini 0’da 
ortalanmış simetrik bir aralıkta değerler vermesi için tanımlıyoruz. Örneğin bir 
tam sayı Z için ve pozitif tamsayı k için, t Є [-k, k] ve t ≡ Z (mod 2k-1) olduğunda, 
Z mod (2k-1)=t olsun. p prime verildiğinde, aşağıdaki gibi her 0 ≤ I ≤ n için bir test 
işlemi modulo p tanımlayın. 
 
 

⎩
⎨
⎧ =

=
diger

pXeger
X FT l

pl 0

1mod)(1
)(  

 
 
Bir X Є {0, 1}2n için ve bir asal p için, sıradaki tüm Fl(X) fonksiyonları için TPl(X) 
hesapladığımızı varsayalım. Test işlem modulosu asal p her zaman doğru 
cevabı vermediğinden, bu yeterli olmayacaktır. Fakat aşağıdaki Yardımcı 
Teorem bize yeterli asal sayıda tekrar edersek, örneğin r kadar, çoğu zaman 
doğru yanıtı alacağımızı söylemektedir. 
 
Yardımcı Teorem 2. p1 < p2 <... 3’ten büyük ardışık asallar olsun.  s, 
p1p2...ps>2n+l-1 sağlayan en küçük tamsayı olsun. O halde  |Z| < 2n – 1 olan her Z 
tamsayısı için, 
 
 

Z Є [- 1,1]    =>   Z mod ]1,1[−∈pi  tüm asallar > 3, 

Z ∉ [- 1,1]    =>   Z mod ]1,1[−∈pi  s’den küçük asallar > 3. 
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Kanıt. Birinci ifade denemedir. İkincisi direkt olarak Chinese Remainder 
Theorem (bakınız [18])’den alıntıdır. s = O(nlogn).  
 
X Є {0, l}2n için ve bir grup asal sayı p1p2...pr  için, )(p li,

XT  1 ≤ i ≤ r ve 0 ≤ I ≤ n 

için olduğunu hesaplayan bir elemanlar bütününe sahip olduğumuzu düşünelim. 
 

 
 
F(X) < 0 olduğunda bir elemanın 1’e döndüğü bir “yanlış” pozitif belirleyin. F(X) > 
0 olduğunda bir elemanın 1’e döndüğü bir “doğru” pozitif belirleyin.  
 
•  F(X) > 0 olduğunda, Yardımcı Teorem 1 her satırda en az bir gerçek pozitif 
olduğunu söylemektedir. Bu nedenle dizide toplamda en az r tane gerçek pozitif 
vardır. 
•  F(X) < 0 olduğunda, Yardımcı Teorem 2 her sütunda 3 • s ‘den az yanlış 
pozitifin olduğunu söylemekteir. Bu nedenle dizide toplamda 3 • s ■ n’den az 
yanlış pozitif bulunmaktadır. 
Eğer r = 3 • s ■ n olduğunu seçersek, F(X) < 0 olduğunda 1’e dönen elemanların 
sayısı her zaman r’den küçük olacaktır, aynı zamanda F(X) > 0 olduğunda 1’e 
dönen elemanların sayısı r’ye eşit ya da r’den küçük olacaktır. Buradaki önemli 
nokta yanlış pozitiflerin sayısının üst sınırının satır sayısından ve gerçek 
pozitiflerin sayısının alt sınırının sütun sayısından bağımsız olmasıdır.  
 
KARŞILAŞTIRMA için, test elementlerini bir LT geçişine girdi olarak 
bağlayabiliriz ve geçişin eşiğini r olarak belirleyebiliriz. Buradaki sorun tek bir 
tabaka küçük ağırlıklı eşik geçişleri kullanarak, test elementlerini nasıl 
gerçekleştireceğimizdir. 
 
Bu yaklaşım eşik devre teorisinde standardtır. 1 ≤ i ≤ r ve 0 ≤ l ≤ n için, 

)(
,

XpF li

’i, Fl(X) modulo pi’nin ağırlıkları düşürülerek elde edilen doğrusal 

kombinasyon olarak tanımlayınız.  
 
Her X Є {0, l}2n için, 
 
 
 
  .1mod)(1)(

,,

=⇔= pXpXp FT
lili

 

 
 
Şimdi )(

,

XpF li

 en fazla n • pt farklı değer üstleniyor. Bunların en fazla n tanesi 

modulo pi alındığında 1’e eşittir. )(
,

XpF li

’in değerlerini v1, v2,...,vn gibi azaltılmış 
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modulo pi 1 iken gösteriniz. Her Vj, 1 ≤ j ≤ n için, ilk tabakaya iki LT geçişi 
yerleştirip bunlara )()1( XG j

 ve )()2( XG j
 diyoruz. 

• Gj

)1(  ve Gj

)2( ’ deki girdi telleri üzerindeki ağırlıklar )(
,

XpF li

’nin 

ağırlıklarına eşit olarak eşitlenmiştir. 
• Gj

)1(   ve Gj

)2( ’nin geçişleri sırasıyla vj ve vj+i, olarak ayarlanmıştır. 

• Gj

)1(   ve Gj

)2(  ‘nin çıkış ağırlıkları üzerindeki ağırlıklar sırasıyla 1 ve -1, 

olarak  
 
 

∑
=

=+
n

j
jj XpXX TGG

li1

)2()1( )())()((
,

 

 
ayarlanmıştır. 
 
 
Sonuç olarak, toplamda, her birinin gerçekleştirilmek için 2 • n LT geçişine 
ihtiyacı olan 3 • s • n2 tane test elemanımız var. Yani toplamda 6 • s • n3 tane LT 
geçişi lazım. s = O(nlogn) olduğundan, yapımızın büyüklüğü şudur: 0(n4logn). 
 
 
4.3 Bilgisayar Simülasyonu 
 
KARŞILAŞTIRMA’nın LT2 yapısını simüle etmek için, ekte gösterilen kısa bir 
Matlab programı kullandık. Her n (değişken sayısının yarısı) için, en küçük 
asalların sayısını ve düzgün bir devre oluşturan en küçük eşiği bulduk. Aşağıdaki 
tablo sonuçları göstermektedir:    

n Asal Sayısı Eşik 

1 1 0 

2 1 0 

3 2 1 

4 3 2 

5 4 3 

6 6 5 

7 8 7 

8 10 9 

9 12 11 

10 14 13 

11 16 15 
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Devredeki en büyük ağırlığı girdi sayısının fonksiyonu olarak çiziyoruz. 
 
 

 
 
 
4.4    TT dd LL 1

ˆ
+⊂ ’e Genelleme 

 
"1-yaklaşım," denilen yukarıdaki fonksiyonun önemli bir özelliği çıktı eşik 
geçişinin ağırlıklı toplamla değiştirilebilmesidir.  (i.e., 64 sgn(.) fonksiyonunu iptal 
edin) böyle bir devrenin çıktısı 0’a ya da 1’e çok yakın olacaktır. Bu durum sayfa 
[13]’te LTd ⊂  LTd+1 olduğunu göstermek için kullanılmıştır. Fikir şu şekildedir: 
  
1. LTd devresinin çıkış geçişini, Giast, alalım. Bir LT geçişi olduğu için Bölüm 
4.2de görüldüğü gibi bir LT2 geçişi de onun yerine geçebilir.  
2. Ona bağlı olan bütün geçişleri alıp, G i

last

)(

1− , onların da yerlerini değiştiriyoruz. 

3. Çıkış tabakası G i

last

)(

1−  ile giriş tabakası G i

last

)( ’yi birleştirmek için  "1- yaklaşım " 
özelliğini kullanın.   
  
4. Tüm LT geçişlerinin yerine LT2 devreleri gelene kadar işleme devam edin. 
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LTd+i  devresiyle bir LTd fonksiyonu simüle etmek için tabakaları birleştirin. 
 
 
 
4.5    Sonuç 
 

LTd ⊂  LTd+i çok yararlı bir sonuçtur.. MADD Є LT2-65 anlamına gelen MADD Є 

LTM oluşturarak,  LTM Є LT2 olduğunu göstermek için kullanabiliriz. Bu 

çalışmanın ilginç bir yönü ise Bölüm 4.2’de belirtilen yaklaşımı kullanarak 

KARŞILAŞTIRMA için LT2 uygulamasının  büyüklüğününün elde etmektir. 
 
 
 

 
 
 
 
Bölüm 5 
 
Çok Eşikli Doğrusal Eşik Elementi LTM 
 
5.1    Giriş 
 
LT elemanlarının VLSI uygulanması sayfa [8] üzerine yaptığımız çalışmadan 
ilham alarak, bu bölümde LTM çok geçişli doğrusal eşik bkz: Sayfa [15] ve [35], 
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denilen daha güçlü bir hesaplama elemanından bahsedeceğiz. LT elemanındaki 
işaret fonksiyonu yerine, girdilerinin ağırlıklı toplamının keyfi (polinom olarak çok 
geçişler) bir doğru yanlış fonksiyonu hesaplanır. 
 
Çalışmadaki LTM devreleri(LTM elemanlarından oluşan devreler) hakkındaki 
konular, hesaplama kapasitelerinin, sınırlamalarının hesaplanması ve 
özelliklerinin AON devrelerinin özellikleriyle karşılaştırılmasıdır. Bu çalışmadaki 
yaklaşım,  LT devreleri ve LTM devreleri arasındaki ilişkiyi anlamaktan geçer. Bu 
bölümdeki ana katkılarımız şunlardır: 
 

• m tamsayılarının eklenmesi eve iki tamsayının ürünleri için LTM 
devrelerinin etkin tasarımlarını oluşturarak, LTM’nin gücünü 
göstermekteyiz. 

• LTM devrelerinin uygulamadan LT devrelerinden daha rahat olduğunu 
gösteriyoruz. Özellikle n girdili doğru yanlış fonksiyonları için VLSI planı  
LT devrelerindeki 0(n2)’dan LTM devrelerindeki  0(n) ‘ye düşürüldüğündeki 
alanlarda. 

• LTM devrelerinin hesaplama gücünü LT devreleriyle karşılaştırarak 
belirtiyoruz. 

 
 
 

 
 
 
Şekil 5.1: LT, SYM ve LTM hesaplama elemanlarının şema halinde gösterimi.  
Daha sonra LT ve LTM elemanlarının resmi tanımlarını açıklayacağız.  
 
 
5.1.1 Tanımlar ve Örnekler 
 
Tanım 5.1  (Doğrusal Eşik Geçişi - LT) 
Bir doğrusal eşik geçişi iki rakamlı girdileriyle bir doğru yanlış fonksiyonunu 
hesaplar 
 

)sgn()(
1

0 ∑
=

+=
n

i
ii xwwXf  

 
wi tamsayılarken  ve eğer durumu 0’a eşitse ya da 0’dan büyükse sgn(.) çıktı 
olarak 1 verir, eğer durum öyle değilse 0 verir. 
 
Sekil 5.1.1 bir n-girdili LT elemanı; eğer wxw

n

ii 01
−≥∑  ise, elemanın çıktı 

olarak 1 verdiğini, değilse çıktı olarak 0 verdiğini gösterir. İkincisi simetrik 
fonksiyonların genel sınıfına dahildir-SYM. 
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Tanım 5.2  (Simetrik Fonksiyonlar - SYM) 
Bir doğru yanlış fonksiyonu eğer değeri girdide bulunan 1’lere (|X| olarak 
gösterilir) bağlıysa  
 

  ∑=
n

ixX
1

||  

 
simetriktir. 
 
 
Şekil 5.1.1 simetrik fonksiyonun bir örneğini göstermektedir; 3 geçişi vardır, |X| < 
t1 ve t2 ≤ |X| ≤ t3 için sonuç olarak 1 verir, diğer durumlarda 0 verir. EVET, VEYA 
ve EŞİTLİK simetrik fonksiyonların örnekleridir. Tek bir LT elemanı sadece 
simetrik fonksiyonların sınırlı altkümesini ifade edebilir. LTM’yi SYM’nin 
genellemesi olarak tanımlıyoruz. Çünkü ağırlıkları 1’e sabitlemek yerine LT’de 
olduğu gibi onların değişken olmalarına izin veriyoruz (bkz: şekil 5.1.1.) 
 
Tanım 5.3  (Çok Geçişli Doğrusal Eşik Geçişi - LTM) 
Eğer ağırlık kümesi wiЄZ,1≤i≤n ise f fonksiyonu LTM’dedir. Ve fonksiyon                 
h : Z —> {0,1} öyle ki 
 
 
 

  içinherXhXf
nn

i
ii xw }1,0{)()(

1
∈= ∑

=
 

 
 
girdisi [ ]∑∑ ==

− n

i i

n

i i ww 11
||,||  taradığı zaman polinomial kadar geçiş aşamasından 

geçmesi h’yi sınırlayan tek şeydir. 
 
Geçiş sayısında bir kısıtlama olmadığında bir LTM geçişi herhangi bir doğru 
yanlış fonksiyonunu hesaplayabilecek kapasiteye sahiptir. Hatta keyfi fonksiyon 
f, 2 1−i

iw  ve ),...,()( 11

12 xxx ni

n i fh =∑ −  olsun. 
 
Örnek 5.1 (XOR Є LTM) 
XOR(X) 1 sonucunu verir, eğer |X| ise ve X’in içindeki 1’lerin sayısı tekse. 

Uygulamak için 0 ≤ k ≤ n için, wi = 1 ve ))(1(
2
1)( 1kkh −−= olmasını seçin. h(k), k 

< 0 ve k > n için tanımlanmak zorunda değildir. Ve polinomial pek çok geçişi 
vardır. LTM’nin hesaplayabildiği başka yararlı bir fonksiyon da ADD(X, Y)’dir, iki 
n-bit tamsayı olan X ve Y’nin toplamı. 
 
 
 
Örnek 5.2 (ADD ∈ LTM) Toplamayı uygulamak için 
 
 

  ))((),(
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k Є [2l, 2 x 2l - 1] U [3 x 2l, ) için hi(k) = 1 olduğunda X + Y ‘nin m. bitini hesaplar. 
Şekil 5.2 n = 4 olduğunda ortaya çıkanların örneğini göstermketedir. 
 

 
 
Şekil 5.2: Her çıktı biti için tek bir LTM geçişi kullanarak iki 4-bit-tamsayının 
toplamı. 
 
 
5.1.1 Düzenleme 
 
Bu bölüm şu şekilde düzenlenmiştir. Bölüm 5.2’de, LTM devrelerinin 
uygulamalarını göreceğiz. Özellikle, tek tabakalı LTM elemanlarıyla m 
tamsayılarının nasıl toplanacağını göreceğiz. Bölüm 5.3’te, LTM’nin tanımlama 
sonuçlarını kanıtlayacağız, kapsama ilişkileri ve özellikle LTM ⊆  LT2. Ayrıca 
hangi kapsamaların uygun olduğunu göstereceğiz ve farklılıkları belirtmek için 
fonksiyonlardan yararlanacağız.   
 
 
5.2 LTM Yapıları 
 
LTM hakkındaki teorik sonuçlar doğru yanlış fonksiyonlarının VLSI 
uygulanmasında uygulanabilir. Çoklu eşikleri olan geçiş fikri aklımıza simetrik 
doğru yanlış fonksiyonlarının etkin bir VLSI uygulamasını ararken geldi. Tek bir 
LT geçişi simetrik doğru yanlış fonksiyonlarını uygulamada yetersiz olsa bile,  iki 
katmanlı bir LT devresi yeterlidir(Şekil 5.2).  Ayrıca böyle bir devrenin VE, VEYA 
ve DEĞİL üzerine kurulmuş geleneksel mantık devresinden çok daha iyi çalıştığı 
bilinmektedir. Ayrıca geleneksel devrelerin üstel büyüklükleri vardır (ya da 
sınırsız derinliği) [51]. 
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Şekil 5.3: LT devresi, 0(n) büyüklüğünde vs tek bir LTM geçişi. 
 
Öneri 5.1  (simetrik fonksiyon uygulaması için LT2 vs LTM) 
Bir simetrik fonksiyonun LT2 düzeni için 0(n2)’lik bir alana ihtiyaç vardır; oysa 
LTM için sadece O(n)’lik bir alana ihtiyaç vardır. 
 
KANıT: 
LT2’de genellenmiş simetrik bir fonksiyonu uygulamak için birinci tabakada n tane 
LT geçişine ihtiyaç vardır. w0 geçişi dışında hepsi aynı wi ağırlığına sahiptir. Aynı 
doğrusal toplam olan ∑n

ii xw1  n kere tekrarlamaktansa, bunu bir kere yapıyoruz 
ve sonuçları n tane farklı geçişle karşılaştırıyoruz. Sonuç olarak ortaya çıkan 
devre tek bir LTM geçişine tekabül eder. 
  
Şekil 5.2 genellenmiş bir simetrik fonksiyonun uygulanmasından LTM’nin LT’ye 
göre olan avantajlarını göstermektedir. Aslında,  LT2 düzeni gereğinden fazladır, 
her ağırlığın n tane kopyası vardır ve en az 0(n2)’lik bir alana ihtiyaç vardır. Diğer 
taraftan LTM tek bir ağırlıklı toplam vermektedir ve alan ihtiyacı 0(n)’dir. Tek bir 
LTM geçişi m tane n-bit tamsayısı olan MADD’in toplamını hesaplayabilir. Tek 
sorun m’nin n’de polinomial olmasıdır. 
 
Teori 5.1  (MADD Є LTM) 
LTM geçişlerinin tek bir katmanı, m’nin n’de en polinomial halinde olması 
şartıyla, m tane n-bit tamsayıyı toplayabilir. 
 
KANıT: 
MADD en fazla n + logm bitteki tamsayıları vermektedir. Her bit için bir tane LTM 
geçişine ihtiyaç vardır. En az önemli bit basit bir m-bit XOR ile hespalanmaktadır. 
Diğer tüm bitler için 
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l xhXXf  

toplamın l. bitini hesaplamak için kullanıyoruz. 
 
 
Örnek 5.3 (üç 3-bit tamsayının toplamı) 



 72 

Yukarıdaki yapıyı m = 3, n = 3’e uyguluyoruz. Sonuç şekil 5.2’de gösterilmiştir. 
Sonucun {0,...,21} aralığında olduğuna dikkat ediniz. Bu nedenle, çıktı bitini 
hesaplayan LTM geçişinin sadece 2 tane eşiğe ihtiyacı vardır. 
 
Sonuç 5.1 (PRODUCT Є PTM) PTM geçişlerinin tek bir katmanı (yukarıda 
açıklanan), m’in n’de en polinomial halde olması şartıyla, m tane n-bit tamsayının 
ürününü hesaplayabilir. 
 
KANıT: 
Sayfa [9]’daki PT1’le benzer şekilde, PTM1’de (ya da sadece PTM) doğrusal 
yoğunluk polinomial sonuca izin veriyoruz. 
 
 

f(X) = h(w1X1 + ... + WnXn + W(1,2) x1x2 +...) 
 
 
Fakat sonucun polinomial olacak kadar çok olmasına izin vermiyoruz(yoksa 
herhangi bir doğru yanlış fonksiyonu tek bir geçişle gerçekleştirilebilir). İki n-bir 
tamsayı olan X ve Y’nin ürünü ∑ =

= n

i iYYXPRODUCT x1),(  şeklinde yazılabilir. 
PRODUCT’ı uygulamak için MADD yapısını kullanıyoruz.  
 
 
  ),,...,,(),( 21 YYYMADDYXPRODUCT xxx n=  
 
 

 
 

Şekil 5.4: MADD: üç tane 3-bit tamsayı olan X, Y ve Z’nin toplaması – 
LTM elemanlarının bir tabakası kullanılarak. 
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Şekil 5.5: Sınıflar arasındaki ilişki. 
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fl ürünün l-inci bitini vermektedir. 
 
 
5.2 LTM’nin Sınıflandırılması 
 
Küçük ağırlıkları(polinomial olarak büyüyen) göstermek için bir şapka 
kullanıyoruz, örneğin LT, LTM [6], [43] ve tek bir tabaktan oluşmayan devrenin 
derinliğini(tabakalarının sayısını) belirtmek için altsimge kullanıyoruz. Bu 
çalışmada geçen devrelerin hepsinin polinomial büyüklüğü(elemanların sayısı)  n 
(girdi sayısı) cinsindendir. Örneğin LT2 sınıfı LT elemanlarının derinlik-2 
polinomial büyüklüğe sahip olanlarıyla uygulanabilen doğru yanlış 
fonksiyonlarından oluşur. 
 
Şekil 5.3 doğru yanlış fonksiyonlarının 5 sınıfı, LT, LT, LTM, LTM ve LT2, ile 
farklılıkları kurmak için kullanılan fonksiyonların ilişkisini anlatır. 
 
Bu bölümde Şekil 5.3’te gösterilen ilişkileri kanıtlayacağız.  
 
Teori 5.2  (LTM’nin Sınıflandırılması) 
Şekil 5.3’de gösterilen kapsamalar ve farklılıklar aşağıdadır; 
 

• LTMLTTL ⊆⊆ˆ  
• LTMMTLTL ⊆⊆ ˆˆ  
• TLLTM 2

ˆ⊆  

• LTXORamaMTLXOR ∉∈ ˆ  
• MTLCOMPfakatLTCOMP ˆ∉∈  
• MTLLTADDfakatLTMADD ˆ∪∉∈  
• LTMfakatLI IPTP kk ∉∈ ˆ

2
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5.4 Sınıflandırma Teorisinin Kanıtı 
 
Şekil 5.3’te gösterilen ilişkileri kanıtlayalım. İlk başta kapsama ilişkilerini görelim. 
Daha sonra sınıflar arasındaki farklılıkları gösteren fonksiyonların üzerinde 
duracağız.  
 
5.4.1. Kapsamalar 
 
Çoğu kapsama ilişkisi şu tanımlardan gelirler:  LTMLTTL ⊆⊆ˆ  ve 

LTMMTLTL ⊆⊆ ˆˆ . Sadece bir tanesinin bir kanıta ihtiyacı vardır: 
 
 

TLLTM 2
ˆ⊆  

 
 
Yukarıdaki ifadeyi göstermek için sayfa [13]’den bir sonuç kullanacağız. Keyfi 
ağırlıklı tek bir LT geçişi, bir LT2 devresiyle gerçekleştirilebilir. Ayrıca ikinci 
tabakadaki doğrusal olmama durumu devrenin çıktılarını etkilenmeden 
kaldırılabilir (1-yaklaşım denilen özellik). p n’de polinomial iken ve tüm i’ler için f 
Є LT iken  
 
 

TLf i ˆ∈ , )()(
1

X
i

Xf
p

ii fw∑=   

 
LTM’deki bir fonksiyonun LT2 uygulamasını düşünelim. Birbirinin aynısı olan LT 
geçişlerinden oluşan bir tabaka ve onları takip eden 1 ve -1 ağırlığında tek bir 
geçiş ve -1 eşiğinden oluşur. Birinci tabakadaki her LT geçişini, eşiti olan LT 
geçişleri ve ağırlıklı toplamıyla değiştiriyoruz. Ağırlıklı toplamları birleştiriyoruz. 
Örneğin ikinci ve üçüncü tabakalar, ortaya çıkan devre LT2’de olacaktır. 
 
5.4.2 Farklılıklar 
 
Birinci örnekte MTLXOR ˆ∈  olduğunu ve XOR ∉ LT olduğunun bilindiğini gördük. 
Diğer taraftan, COMP(X,Y), iki tane n-bit tamsayının karşılaştırmasının LT’de  
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olduğunu gördük. 
 
 

MTLCOMP ˆ∉  olduğunu gösterelim. Bu nedenle bir doğru yanlış fonksiyonun 
entropi özelliğinden bahsedeceğiz. İletişimin karmaşıklığı hakkında eşit bir tanım 
sayfa [47]de verilmiştir. 
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Tanım 5.4  (Entropi) 
 
Doğru yanlış fonksiyonu için n-değişkeni, S bu değişkenlerin altkümesi ve 

} ||
1,0{

S
s∈ , ),...,( ||1 xxf Sns −

 f’de s’nin değeri S’nin yerine konularak elde edilen 

fonksiyon. f’nin entropisi  
 
 
  |}1,0{:|max][ } ||S

ss
sfE f ∈=  

 
 
şeklinde tanımlanır. 
 
Entropi n değişkenin mümkün 2 ||S   tüm değerlerini S kümesine atayarak elde 
edebileceği alt fonksiyon üzeri n- |S| değişkenlerin maksimum sayısıdır. 
 
Yardımcı Teorem 5.1  (Üstel Entropi, Üstel Ağırlıklar Demektir) 
Öyle bir f fonksiyonu ki, E[f] n’de üstel, LTM uygulaması üstel ağırlıkları 
gerektirmekte. Örneğin ∑n

iw1 ||  üstel. 
 
Kanıt:    Bir alt fonksiyon ∑∈

∈
Si iiS swW  olduğunda  

 
 
  )(),(),...,( ||1 Wxwxxf S

SXi
iiSns

hsSXf +=== ∑
−∈

−  

 
şeklinde yazılabilir. 
 
 
Pigonhole prensibine göre ve Ws bir tamsayı ise, |}:{| sW s  E[f]’den büyük 
olmalıdır. Eğer değilse Ws’nin tüm E[f] özel alt fonksiyonlarını tanımlamaya 
yeterli özel değeri olmayacaktır. Bu da  
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demektir. 
 

MTLCOMP ˆ∉  
 
Kanıt: E[COMP]’nun üstel olduğunu gösteriyoruz ve 5.1’i kullanıyoruz.  
 
 

fs(x1,..,xn) = COMP(X,Y = s) olsun. 
 
 



 76 

bu fonksiyonlardan 2n tane mevcut; hepsinin özel olduğunu gösterelim. İki ayrı 
tamsayı s1 ve s2, öyle bir X0 seçin ki s1 < X0 < s2, ve sonra fs1(X0) ≠  fS2(X0). 
 
 
  MTLLTADDfakatLTMADD ˆ∪∉∈  
 

Kanıt:  ADD ∈ LTM olduğunu gördük.  Toplamın en az önemli olan kısmı LT’de 

olmayan XOR’dur. Diğer taraftan MTLADD ˆ∉  anlamına gelen COMP’a benzer 

bir kanıtı olan E[ADD] üsteldir. 

 

  LTMIfakatLI PTP kk ∉∈ ˆ
2

 
 
 
Kanıt: Let ∑= n

ii yxYXIP
1

),(  olsun. Fonskyionu  IPk(X, Y) =1 sadece ve sadece 

IP ≥ k, ya da IPk = 0 olarak tanımlayın. IPk ∉ LTM olduğunu iddia ediyoruz. Hatta 
IPk LTM’nin içinde olsaydı, ağırlıklı toplam tarafından takip edilen bit LT geçişleri 
tabakasıyla uygulanabilirdi[13]. O zaman IP2 (Inner Product mod 2)’yi yanlış 
olarak bilinen TL ˆ2 ’de uygulamak için k = 1..n için devreleri birleştirebilirdik. 

 
Sınıflandırmayı tamamlamak için eksik olan şey şudur: MTLLTTL ˆˆ ∩= . Bunun 
doğru olduğunu varsayıyoruz. 
 
Varsayım 5.1  ( MTLLTTL ˆˆ ∩= ) 
LT değişken değerli doğrusal eşik fonksiyonları sınıfını temsil etsin ve TL̂  
ağırlıklarında Polinomial büyüme olan fonksiyonların sınıfı olsun ve LTM de 
Tanım 5.1’de belirtildiği gibi olsun böylece, 
 

 
MTLLTTL ˆˆ ∩=  

 
 
 
5.5 Sonuçlar 
 
Asıl amacımız etkin bir genellenmiş simetrik fonksiyon ortaya koymak için teorik 
sonuçları kullanmaktı. Bu işlem süresince, LT2 uygulamasının gereğinden fazla 
olduğunu anladık. Bu da bizi LTM’nin tanımına, yeni ve daha güçlü bir 
hesaplama elemanına, götürdü. LTM’nin gücünü LT’ye gore sınıflandırdık. VLSI 
düzenlerinin alanlarının 0(n2) ‘dan 0(n)’ye düşürmede ve çoklu toplama ve 
üründe etkili tasarımlar elde etmede nasıl kullanılabileceğini belirttik. Gelecek 
çalışmalar için bazı ilginç talimatlar ise şunlardır. (i) MTLLTTL ˆˆ ∩=  varsayımını 
doğrulama (ii) LTM’nin analizinde özellikle PTM’nin sınıflandırmada nereye 
düştüğünü göstermede(şekil 5.3), spektral teknikleri uygulama. 
Doğrusal karar listelerinden, LDL, Bölüm 2’nin sonuç kısmında(77), Bölüm 2.7’de 
bahsedilmiştir. LTM’nin LDL’nin bir parçası olduğunu görmek kolaydır yani 

LDLLTM ⊆ .İlginç bir problem LTM ∈ LDL ya da LTM = LDL oluşturmaktır. 
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Daha mümkün cevap olan öncekini kanıtlamak için, IPk’nin  tüm LDL yapıları 
gösterilmeli ve gösterilen fonksiyonlar LTM’de olmamalıdır.  
 
Gelecek çalışmalar için başka bir yön ise 6. Bölümde dile getirilmiştir. Yukarıdaki 
fikirleri VLSI kümesinde uygulamaktır. µ2   analog çipte, yukarıdaki modeli 
kullanarak programlanabilir bir genellenmiş simetrik fonksiyon ürettik. Yüzen 
geçiş teknolojisi ağırlıkları programlamak için kullanıldı. Yüzen geçişe elektronlar 
enjekte ederek ve elektronları oraya yönlendirerek tek bir geçişe ağırlık yükledik. 
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Bölüm 6 
 
Programlanabilir Sinirsel Mantık ile VLSI Uygulanması 
 
6.1 Giriş 
 
Neuromorphic analog VLSI alanında, çoğu araştırma bir şekilde öğrenen veya 
adapte olan sinirlerin uygulanmasıyla ilgilenmekte, sayfa [11], [16], [19]. Bunun 
nedeni sinirsel sistemlerin gücünün adapte olma yeteneklerinden 
kaynaklandığına inanılmasıdır. Bir sinir tarafından yerine getirilen fonksiyonun 
ağırlıklı girdilerin toplamı ve daha sonra bir eşik kendi kendine(öğrenmeden) bir 
yapı bloğu olduğu kanıtlanmıştır. Uzun yıllar boyunca teorik bilgisayar bilimi bu 
tarz nöronların gücünü, polinomial büyüklükteki vs üstel büyüklükteki devreler ve 
NP’nin tam olması sorunuyla ilgili problemler açısından inceledi. Ana sorun- 
doğru yanlış girdisi, çıktısı ve eşik devreleri üretmek ve yararlı doğru yanlış 
fonksiyonlarını etkili bir şekilde hesaplama. Eşik devrelerinin şaşırtıcı derecede 
güçlü oldukları görülmüştür[1]. Örneğin tamsayı bölümü, sabit derinliği olan bir 
polinomial büyüklükteki eşik devresiyle yapılabilir. Başka bir değişle eğer iki n-bit 
tamsayının bölümünün hesaplanması eşik devreleriyle yapılmak isteniyorsa, 
polinomial olarak pek çok, n tane, eşik elementlerine ihtiyaç vardır. Diğer yandan 
VE, YA DA ve DEĞİL gibi geleneksel mantık devreleri kullanmak, üstel sayıda 
pek çok geçiş kullanmayı gerektirir. XOR ve tamsayı toplaması gibi daha basit 
fonksiyonlarda da durum aynıdır. 
 
Eşik devreleri teorisinden elde edilen sonuçların çoğu, silikon üzerindeki 
devrelerde kullanıma uyarlanabilir. Ağırlıklar için en yüksek boyut ve sonuç 
olarak alınan elementin ya da devrenin gücü arasındaki ilişki gibi sonuçlar[6], 
[13],  XOR, ADD, MULTIPLY ve diğer yararlı fonksiyonların etkin tasarımları için 
bkz: Sayfa [24], [28], [31]. Örneğin teorinin basit bir uygulaması bizi çoklu eşik 
elementini tanımlamaya taşıdı, bkz: Bölüm 5. Bu, belirli doğru yanlış 
fonksiyonlarında özellikle PARITY gibi simetrik fonksiyonların alanını 0(n2)’den 
0(n)’ye indirdi. 
 
Araştırmamızın 3 önemli amacı vardır: 
1.   Uygulama yönü. Silikon üzerinde etkili eşik elementleri tasarlamak ve 
uygulamak. 
 2.   Teorik yönü. Yüksek performanslı eşik devrelerini sistematik bir şekilde 
tasarlamak için, teorik bilgisayar biliminde yapılmış çalışmalardan yararlanmak.  
3.   Programlanabilirlik yönü. Eşik elementlerini FPGA’larda yapı taşları olarak 
kullanmak. 
 
Eşik devrelerinin kullanılması, 60’ların ve 70’lerin başında önerilmişti sayfa [4], 
[48], [53], ve daha yakın olarak bkz: sayfa [28], [39]. Bildiğimiz kadarıyla, eşik 
devrelerinin teorik sonuçları daha önce silikon kullanımını içeren başka bir 
çalışmayla ilişkilendirilmemişti. Programlanabilir nöron-bazlı donanım son 
zamanlarda sayfa [39], [41]’de önerilmiştir. Aşağıdaki uygulama bölümünde, 
bunların çalışmamızla olan ilişkisini anlatıyoruz.  FPGA’nın kısa bir tekrarı için 
bkz: sayfa [50]. Bölüm 6.2’de eşik devrelerini geleneksel mantık devreleriyle 
karşılaştırıyoruz. Bölüm 6.3’te tasarımın programlanabilirlik yönüne 
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odaklanıyoruz. Bölüm 6.4’te VLSI uygulamasını ve test sonuçlarını görüyoruz. 
LTM elementi Bölüm 5’te ve sayfa [7]’de teorik bir açıdan anlatılmıştı. Geleneksel 
eşik devreleriyle ve (VE, YA DA, DEĞİL) devreleriyle karşılaştırılmıştı. Bölüm 6.5 
µ2 -teknoloji 2mm x 2mm çipi üzerine LTM’nin kullanımını göstermektedir. 

 
 

 
 

Şekil 6.1: Sinirsel vs. geleneksel mantık. XOR hesaplayan iki devre. 
 
 
6.2 Sinirsel Mantık ve Geleneksek Mantık 
 
Herhangi bir doğru yanlış fonksiyonu AON devreleriyle sistematik olarak 
çözülebilirken neden eşik elementleri kullanalım ki? (XOR) gibi bazı 
fonksiyonlarda girdideki bit sayısı arttıkça AON devresindeki elementlerin sayısı 
da üstel olarak artacaktır[51]. Diğer taraftan, doğrusal eşik elementleri 
kullanılıyorsa, geçişlerin sayısı, girdi bitlerinin sayısı içinde doğrusaldır. Bu Şekil 
6.2de, 3-bit girdi için kullanılmıştır. Genellikle, n tane bitin XORunu hesaplayan 
derinlik-2 AON devresinin en az 2n-1 + 1 tane geçişe ihtiyacı vardır. LT 
kullanılırsa, sadece n + 1 geçişe ihtiyaç vardır. 
 
LT devrelerinin AON devrelerinden daha güçlü olduğunu görmek gayet kolaydır. 
Bunun nedeni her AON geçişi için, onun eşiti olan ve aynı fonksiyonu 
hesaplayan bir LT geçişinin mevcut olmasıdır. Oysa çoğu LT geçişinin AON 
eşitleri yoktur. 
 
Örnek 6.1 (ÇOĞUNLUK) ağırlık vektörü (W0, ...,w5) = (-3,1,1,1,1,1) ile tanımlanmış 
bir fonksiyon olsun: 
 
 

f(x1,..., x5) = sgn(-3 + x1 + x2 + x3 + x4 + x5). 
 
 
Sadece bir adet 1 vermektedir, oysa 3 ya da aha fazla girdi 1’dir. Tek bir VE veya 
YA DA geçişiyle uygulanamaz, bazı girdileri reddetsek bile (DEĞİL). 
 
LT devreleri daha güçlü oldukları halde, yapı taşlarının daha karmaşık olduğu ve 
bu nedenle devre düzeninde daha çok yer kaplayacakları tartışılabilir. Bu konu 
bir yere kadar doğrudur. Fakat ihtiyaç duyulan geçişlerin sayısında üstelden 
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polinomial a giden düşüş, boyutlarındaki büyümeyi görünmez hale getirmektedir. 
Sıradaki bölüm bu konu üzerinde duracaktır. 
 
 
6.3 Programlanabilir ve Fiziksel Bağlantılı Ağırlıklar 
 
FPGA’ya mevcut fonksiyonların içinden seçilen, her elementin hesapladığı 
fonksiyon programlanabilir olan element devreleri olarak bakılabilir. Geleneksel 
FPGAlarda bu içinden seçilen küme VE, YA DA ve DEĞİL’den oluşmaktadır. Biz 
daha geniş bir fonksiyonlar kümesi sunuyoruz, Doğrusal Eşik Fonksiyonları, LT.  
Bir LT geçişi hakkındaki tüm bilgi eşikte ve ağırlıklarda saklıdır. Ağırlıkları 
kullanmanın 2 yolunu göz önünde bulunduruyoruz. 
•  Fiziksel bağlantılı ağırlıklar bir transistörün en/boy oranında kodlanmıştır. 
•  Programlanabilir ağırlıklar, yüzen geçiş üzerine kalıcı bir yük olarak konmuştur.  
 
Fiziksel bağlantılı ağırlıklar, devre üretildikten sonra tekrar değiştirilemezler oysa 
programlanabilir olanlar değiştirilebilirler. Fiziksel bağlantılı ağırlıklar otomatik 
düzende ilginç bir sorun teşkil etmekteler. Karşılaştırma fonksiyonu, COMP, gibi 
bazı fonksiyonlar 1’den 2n/2’ye kadar bir ağırlık gerektirmekteler. Şekil 6.3 8-bit 
COMP fonksiyonunu göstermektedir. VE, VEYA ve tüm simetrik fonksiyonlar 
küçük ağırlıklarla uygulanabilir. Bu farklılık da fiziksel bağlantılı ağırlıkları ve bazı 
LT geçişlerini kullanmanın diğerlerinden daha geniş olduğunu gösterir. 
 
 

   
 

Şekil 6.2: 2 4-bit tamsayının karşılaştırılması. 
 

Programlanabilir ağırlık kullanmak, düzeni basitleştirir ve LT elementinin 
hesapladığı fonksiyon üzerinde değişiklik yapmayı sağlar. Sıradaki bölümde 
uygulamanın ayrıntılarından bahsedeceğiz. 
 
 
6.4 Uygulama ve Sonuçları 
 
Sayfa [41]’de yazarlar, değişken bir doğru yanlış fonksiyonunu uygulayan sinir 
bazlı bir devre üretmişlerdi. Biz değişken bir eşik elementi (doğru yanlış 
fonksiyonlarının sınırlı bir kümesi) uyguluyoruz. Asıl fonksiyon ağırlıklar 
düzeltilerek seçildi. Şekil 6.4’te şemasal uygulama görülebilir. 16-girişli eşik 
elementi MO-SIS’te mevcut olan standart mµ2  duble - çoklu analog işlemi 
kullanılarak üretildi. Düzen için Şekil 6.4’e bakınız. 16 girdi tüm 4 geçişe de metal 
kullanılarak (mor) dağıtıldı; böyle bir düzen eşik elementlerinin yoğun şemalarını 
oluşturmayı sağlar. 
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Her ağırlık için tek bir transistör kullanarak, ağırlıkları polisilikon yüzen geçişlerin 
üzerine yerleştiriyoruz böylece yenilenme olmadan da uzun zaman boyunca 
hafızada tutma sağlanıyor. Çarpma, girdilerin doğru yanlış olması gerçeği 
üzerine kurulmuştur, mantıksal bir 0 için 0 Volt, mantıksal bir 1 için X Volt, X 1 ile 
5 Volt arasında değişebilir. Bir girdi ilgili ağırlığa akım oranı yaratır. Toplam 

∑ =

n

i ii xw1  transistörleri aynı yere bağladığımızda doğal olarak ortaya çıkar. 
Akımların toplamı yerine voltajların toplamları kullanıldığında, [39]’daki bir diğer 
yaklaşım ortaya çıkar. Son olarak iki dönüştürücü çıktıları mantıksal 0’a ya da 
mantıksal 1’e çekmeye uğraşırlar.  
 

  
 
 Şekil 6.3: Programlanabilir Doğrusal Eşik Elemanın Şeması. 
 
Yeni bir fonskiyonda programlama yapabilmek için, ağırlıkları yönlendirme ve 
sıcak elektron enjeksiyonu ile değiştirir, yüzen geçişlerin benzer uygulamaları 
için bkz sayfa [16], [19], [55]. Sayfa [10]’da görülebileceği üzere, burada 
kullanılan tek transistör belleğinden birazcık daha karmaşık olan analog hafıza 
hücresi, 14 bite kadar bilgi saklayabilir, ve bu çoğu uygulanabilir eşik fonksiyonu 
için yeterli bir miktardır. 
 
Girdi vektöründeki 1’lerin sayısını değiştirerek 016

00 =+∑ =i ixw   iken eşik değerini 
w0 belirleyerek, eşik elementimizin doğrusallığını test ettik. Mantıksal 1 değeri 
için 1 volt kullanıldı. Şekil 6.5 sonuçları göstermekte. 
 
Verinin karekök şekline dikkat ediniz. Bu önemli bir noktayı göstermekte. T’de 
doğrusal olmayan belirli bir T değeri elde etmek için gerekli olan voltaj. Eşiğin 
üstünde ya da altında  işleyen bir nFET için, tek bir girdinin katkıları sırasıyla 
şöyledir:  
 
  

  )2(
2 VV TgI −= β  
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VT termal voltaj iken ve (3, I0 ve K  sabit iken. Fiziksel bağlantılı ağırlıklar, (5 ve 
I0‘nun oranlı olduğu transistörün W/L oranı olarak kodlanmışlardır[29]. Bu, 
transistörün neresinde işlem olduğuna bağlı olmadan, ağırlıkların değerlerini 
W/L’de doğrusal kılmaktadır. Programlanabilir ağırlıklar durumunda değer, 
 

   
 
Şekil 6.4: Doğrusal toplamın düzeni – W0 ∑− =

16

10% i ii xww . Dört eşik elementi 
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gösterilmektedir, iki programlanabilir ve iki programlanamaz, sonuncusunun birim 
ağırlıkları vardır. Gösterilen alan 168µ  x 360µ ’dur. Çip MOSIS’te mevcut olan 
2µ  teknolojisiyle üretilmiştir. 
 

  
 

Şekil 6.5: Vdd — Eşik ve girdideki 1’lerin sayısı. 
 
Yüzen geçişte depolanan voltajda ağırlıkların sayıları üstel ya da ikinci 
dereceden olabilir bkz: Şekil 6.4. Bu tarz doğrusal olmama durumları, geniş 
dinamik aralıklarda söz konusudur. 
 
 
6.4 VLSI Düzeni ile LTM 
 
LTM hakkındaki teorik sonuçlar doğru yanlış fonksiyonlarının VSLI 
uygulanmasına da uyarlanabilir. Çoklu eşikleri olan geçiş fikri aklımıza simetrik 
doğru yanlış fonksiyonlarının etkin bir VLSI uygulamasını ararken geldi. Tek bir 
LT geçişi simetrik doğru yanlış fonksiyonlarını uygulamada yetersiz olsa bile,  iki 
katmanlı bir LT devresi yeterlidir.  Ayrıca böyle bir devrenin VE, VEYA ve DEĞİL 
üzerine kurulmuş geleneksel mantık devresinden çok daha iyi çalıştığı 
bilinmektedir. Ayrıca geleneksel devrelerin üstel büyüklükleri vardır. 
 
Öneri 6.1  (Simetrik Fonksiyon Uygulaması için LT2 vs LTM ) 
Simetrik bir fonksiyonun LT2 düzeni 0(n2) kadar bir alan gerektirmektedir oysa  
 
 
 
Şekil 6.6: Genellenmiş bir simetrik fonksiyonun uygulanmasında LTM’nin LT’ye 
göre olan avantajlarını göstermektedir. Ağırlıklı toplam her geçişte tekrar 
uygulanmaktansa sadece bir kere uygulanır. 
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KANıT: 
LT2’de genellenmiş simetrik bir fonksiyonu uygulamak için birinci tabakada n tane 
LT geçişine ihtiyaç vardır. w0 geçişi dışında hepsi aynı wi ağırlığına sahiptir. Aynı 
doğrusal toplam olan ∑n

ii xw1 ’i n kere tekrarlamaktansa, bunu bir kere 
yapıyoruz ve sonuçları n tane farklı geçişle karşılaştırıyoruz. Sonuç olarak ortaya 
çıkan devre tek bir LTM geçişine tekabül eder. 
 
Yukarıdaki önerme Şekil 12’de tasvir edilmiştir. Aslında,  LT2 düzeni gereğinden 
fazladır, her ağırlığın n tane kopyası vardır ve en az 0(n2)’lik bir alana ihtiyaç 
vardır. Diğer taraftan LTM tek bir ağırlıklı toplam vermektedir ve alan ihtiyacı 
0(n’)dir. Şekil 6.5 LTM elementinin yüksek düzeyli bir şemasını göstermektedir. 
Bu element 2mm x 2mm çip üzerine, MOSIS’deki 2µ  teknolojisi kullanılarak 
üretilmiştir. Şekil 14 düzenini göstermektedir. 16 girdisi vardır. Çıktısı 4-bit bellek 
hücresini gösteren 4-bit bus’tan oluşur. LT geçişinin düzeninde kullanılan 
akımların toplamının, Şekil 6.4, aksine; ağırlıklı toplam Nöron MOS tarzında 
uygulanmıştır, voltajların kapasite toplamı için bkz: Sayfa [30], [39].  Ağırlıkların 
ve eşiklerin değerleri yüzen geçişler üzerine depolanmıştır. Belirli bir ağırlık/eşik 
seçmek için giriş çizgileri kullanılarak, birlikte ya da ayrı ayrı olmak üzere 
programlanabilirler. 
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Şekil 6.7: Bir LTM geçişinin yüzey düzeyli şeması. 
 
Eşiklerin yükseldiğini varsayarak, sadece tek bir çizginin VE tabakasının 
çıktısında mantıksal 1’de olduğu bilinmektedir, bkz: Şekil 13. bu bilgiden 
yararlanarak, 16 çizgiyi değerleri fonksiyonlara göre depolayan bir bellek hücresi 
yardımıyla 4-bir bus’lara yüklüyoruz. Genel olarak, log21 bitlerinden bir bus elde 
edilir, t LTM elementinin geçişlerinin (eşiklerinin) sayısı iken. Simetrik 
fonksiyonlarda t = n, girdi sayısı. Ya da Şekil 6.5’teki devreye bakılabilir, 16-bit 
girdi ve 4-bit programlanabilir hesaplama elementi. 
 
 
6.5 Sonuç 
 
Ağırlık depolamak için yüzen geçişler kullanarak 16-girdili programlanabilir 
doğrusal eşik elementi ürettik ve test ettik. Böyle bir depolama yenileme 
gerektirmemekte ve ağırlıkların enjeksiyon ya da yönlendirme yoluyla 
değiştirilmesi sağlanmaktadır. 16-girdili çoklu-eşik elementi uygulayarak ikinci bir 
çip daha ürettik. Bir tek çoklu-eşik elementi XOR ve tamsayı toplaması 
yapabilmektedir. Bazı yararlı doğru yanlış fonksiyonlarının ilk tabakadaki tüm 
geçişleri aynı ağırlığa sahip olan 1-tabakalı LT devreleri tarafından yapılabilmesi 
bilgisinden yararlanmaktadır. Ağırlıklı toplamı sadece bir kere uygulayarak, 
alanın n2’den n’e düşürülmesini saplamaktadır. 
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Uygulanabilirlik açısından bakarsak, bu çalışmanın devamı, fiziksel bağlantılı 
ağırlıklı eşik devrelerinin düzenini sistematik (ya da otomatik) bir şekilde üretmeyi 
planlama yönünde olabilir. Çalışmanın başka bir yöne ise programlanabilir eşik 
elementlerini FPGA’larda yapı taşı olarak kullanmak olabilir. 
 
 

  
 
Şekil 6.8: 16-girdili bir LTM elementinin düzeni. Çıktı 4-bit bellek hücresini 
gösteren 4-bit bus’tan oluşmaktadır. Ağırlıklı toplam, voltajların kapasite toplamı 
olarak Nöron MOS tarzında uygulanmıştır. Bu çip MOSIS’de bulunan µ2  
teknolojisi ile üretilmiştir. 
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Bölüm 7 
 
Sonuçlar 
 
Bu tez doğrusal eşik elementlerinin özelliklerini incelemiştir. Bunlar, doğru yanlış 
girdileri, doğru yanlış çıktıları olan yapay nöronlar, çıktılarının ağırlıklı 
toplamlarının işaretini hesaplamak. 3 şekilde katkımız olmuştur: 
 
•  Teorik düzeyde T dL )(ˆ  ve LTM gibi yeni fonksiyon sınıflarını tanımladık ve 
bunların hesaplama gücünü sınıflandırdık. 
 • Algoritmik düzeyde, gerçek ağırlıkların reel sayıların eğişken bir alt 
kümesinden alınan ağırlıklara nasıl dönüştürülebileceğini gösterdik. LT 
fonksiyonlarının minimum ağırlıkla nasıl oluşturulabileceğini ve son olarak 
COMP’u hesaplayan bir TL 2

ˆ  devresi üreten bir algoritma gösterdik. Ayrıca, 
XOR, ADD, PRODUCT gibi yararlı fonksiyonları hesaplayan LTM devrelerinden 
bahsettik. 
•  Uygulama düzeyinde, LT ve LTM’nin VLSI uygulamasının tasarımı, düzenini ve 
test edilmesini gösterdik. Ağırlıkların değerini depolamak için yüzen geçiş 
teknolojisini kullanan programlanabilir bir LT elementi tasarladık.   
 
Bölüm 2’de eşik devreleri teorisinin bazı bilinen sonuçlarını gösterdik, özellikle 
herhangi bir doğrusal eşik elementinin tamsayı ağırlıklarla kullanılabileceğine 
değindik. Buradaki katkımız, reel sayıların değişken kümesiyle yapılan bir 
genelleme oldu. Ağırlıkları değiştirmeye yarayan bir algoritma ile bir LT 
fonksiyonunun uygulanma şartlarını belirttik. Bölüm 3’te minimum ağırlıklarla 
doğrusal eşik fonksiyonları oluşturmak için bir metot sunduk. Bu d ile 
işaretlenmiş olan T dL )(ˆ  sınıfları arasındaki farklılıkları ortaya çıkarmak için 

kullanıldı. d, 0(nd) ağırlıklarıyla uygulanabilen fonksiyonlar kümesi olan bir T dL )(ˆ  
sınıfı. Bölüm 4’te bilinen bir sonuç ortaya konuldu, büyük ağırlıklara sahip bir LT 
elementinin, TL̂  elementlerinen oluşan iki tabakalı devreyle, küçük ağırlıklı 
doğrusal eşik elementleriyle kullanılabileceği. Katkımız, COMP, karşılaştırma 
fonksiyonu için bu devrelerden oluşturmak oldu. Bölüm 5’te LTM’den ya da çok 
eşikli doğrusal eşik elementinden bahsedildi. XOR, ADD, PRODUCT gibi yararlı 
Boolean fonksiyonları için oluşturulmuştur. Ayrıca LTM’nin LT ve TL̂ , TL 2

ˆ  ve  
LT2 gibi altsınıflarına göre gücü hesaplandı. Son olarak Bölüm 6’da LT ve 
LTM’nin VLSI uygulamasından bahsedildi. Fiziksel bağlantılı ve programlanabilir 
çözümler sunuldu. Ağırlıklar, yüzen geçişlere yük olarak depolandı ve 
elektronların yönlendirilmesi ve enjeksiyonuyla değiştirildi.  
 
Açık kalan noktalar ve gelecekteki araştırmalar için ilginç yönler şunlardır. 
Örneğin bu tezde belirtilen fonksiyon sınıflarıyla doğrusal karar listesindeki 
fonksiyon sınıfları arasındaki ilişki[49]. LTM ve LT ile ilgili konuları tamamlamak 
için varsayım 5.1’in kanıtı gereklidir. Algoritmik açıdan, ağırlıkları dönüştürmek ve 
küçültmek için verimli algoritmalar geliştirmek zor bir sorun gibi görünmektedir. 
Donanım uygulaması konusunda ise, uzak bir hedef de, bazı özel 
programlanabilir geçiş şemalarıyla, eşik elementlerinin mantık tasarım 
kütüphanelerinde yapı taşı olarak kullanılmasıdır. 
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Ek 
 
fonksiyon correct = test(n, r, t) 
%%   fonksiyon correct = test(n, r, t) 
%     COMPARISON(X,Y)’nin simulasyonu 
%     correct = 1 eğer çalışma kurulursa 
%     n = X (Y) içindeki kullanılan bitlerin sayısı 
%     r = kullanılan asal sayıların sayısı 
%     t = kullanılan eşik 
%    V.Bohossian May, 96 
 
 
BIG = 2^n; 
correct = 1; 
load primes.txt;                    % İlk 1000 asal sayı 
p = primes(3:r + 2);              % 2 ve 3’ü çıkar 
hp = fix(p / 2) + 0.1;             % hp : yarı p 
p = p * ones(1, n);                % kolonları çiftle 
hp = hp * ones(1, n); 
for i=1:n, L(i) = 2 ^ (i - 1);end; 
 
for x=0 : 2 ^ n - 1,  
for y=0 : 2 ^ n - 1, 

Ax = fix((x * ones(1, n)) ./ L); 
Ay = fix((y * ones(1, n)) ./ L); 
A = Ax - Ay; 
A = rem(ones(r, 1) * A + BIG * p, p); 
A = A + ((signChp - A) - 1) / 2) .* p; 
positives = size(find(~(A - 1)),1); 
bit = (positives > t); 
correct = correct & (bit == (x > y));  

end;  
end; 
 
 
return; 
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