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Ozet

insan beyinleri temel yapi bloklari olarak bilgisayarlara gére birka¢ kat daha
yavas olmasina ragmen birlesik iyilestirme ve goruntl ses tanimlama gibi zor
problemlerin ¢ozumunde bilgisayarlara gore ¢ok daha Ustindur. Bu godzlem
yapay noron alanindaki ilgiyi arttirmaktadir. Sonraki biyolojik sinirlerin
hareketinden esinlenen yapay sinirleri baglayarak kurulmustur. Bu tezde n ikili
girdilerin ndrona benzer dogru yanhg fonksiyonlarini hesaplayan dogrusal
baglangic elemaninin(LT) olarak adlandirilan yapay noéronun dogru yanhs
versiyonunu duguneceg@iz. LT elemani onun dogru yanlis girdilerinin agirlikl
toplaminin isaretini ¢ikar. LT devreleri olarak adlandirilan LT elemanlarindan
olusan ag devrelerindeki ¢calismanin ana konusu hesaplanabilir kapasitelerinin ve
limitlerinin  tahminini ve VE, VEYA, DEGIL(AON devreleri) kapilarina
dayandiriimig geleneksel dogru vyanlig mantik devrelerinin  ozelliklerinin
kiyaslanmasidir. Ornegin LT devreleri AON devrelere goére tamsayilarin
toplamasi, ¢arpmasi, bolmesi gibi dnemli fonksiyonlarin uygulamasinda daha
verimlidir.

LT elemaninin AON kapisindan daha gugli oldugunu goérmek kolay, basitce
birinin agirhgr segmedeki 0zgurliglu yuzunden. Gergekten agirliklarin farkli
segimleri farkli dogru yanlis fonksiyonlari dretir. Bu nedenle, basit bir LT elemani

ile tanimlanabilecek n-girdili dogru yanlis fonksiyonlarinin sayisi 2”2’dir. Bu ek

us eklenti karisikligi ile orantihdir. Bazi LT fonksiyonlari buyuklik olarak farkli
agirhklar gerektirir karsilik gelen LT elemanlarinin zor donanim ve yazilim
uygulamalarinda yardimci olarak. Bundan dolayi LT devrelerinin alaninda teorik
arastirma agirliklar Uzerine odaklanmigtir kisith agirliklarda LT elemanlarinin
kismi kuvvetlerinde. 1971’'lerde Muroga dogrusal baslangi¢c elemaninin tamsayi
agirhklarla ifade edilebilecegini ispatladi. Agirliklarin buyukltklerini  dogal
sayllarla kisitlayarak orijinal LT elemaninin glicu kaybedilmis olmaz. Bu durumu
reel sayilarin alt kiimelerine genelleyebiliriz. Ornegin, agirliklar tamsayilarin
karesi olarak sinirlandirilabilir ve tim LT fonksiyonlari tanina bilinir. Su soruyu
soracagiz. Kendi agirliklariyla cizilen agirliklari butin LT fonksiyonlariyla ifade
edilebilecegini garanti eden D € R uzerindeki altkimelerin sartlari nelerdir?
Agirhiklarin karigikliginin diger bir bakis agisi da girdi sayisi arttik¢ga buyumesidir.
Sayfa [17], [33], [38], [43] de gosterildigi gibi Uslu olarak buyuyen agirliklariyla
tek bir esik elementiyle ifade edile bilinen dogrusal egik fonksiyonlari vardir ama
daha kuguk polinom olarak buyuyen agirliklardaki esik elementleriyle ifade
edilemez. Sonucun 1s1g1 dogrultusunda kiguk (polinom olarak buylyen) agirlik
fonksiyonlarinin sinifi sayfa [43]'te dogrusal esik fonksiyonlar setiyle LT adinda
bir sinif tanimlayarak yukaridaki soruyla ilgilenilmig oldu. Biz tek bir LT elementi
uzerine odaklanacagiz. Polinom ve Us agirliklari arasinda ayirimi daha da rafine
ederek aradaki bosluklari doldurmaya izin veren en duguk agirliklar ile esik
fonksiyonlari kurmak icin iki yeni metodumuz olacak. Yani, polinomun derecesi
d'ye gore LT alt siniflarina bolunen polinom boyutlu agirliklarla dogrusal esik
fonksiyonlarinin sinifini ispat edecegiz. Aslinda daha genel bir sonugla herhangi
sayida girdi ve agirlik i¢cin dogrusal esik fonksiyonu oldugunu ispatlayacagiz.

Bazi LT fonksiyonlari girdi degiskenlerinin sayisiyla Uslu olarak buyumeyi
gerektirmektedir sayfa [13], [18], ‘de gOsterildigi gibi bu tip fonksiyonlar kiguk
boyutlarda polinom olarak buylyen LT kapilarinin iki katmanh devreleriyle
degistirilebilir. Sayfa [18]'de bluyuk katsayilarla belli fonksiyonlara odaklanarak
gOsterildigi gibi devrenin boyutu Uzerindeki en iyi bilinen siniri gelistirecegiz.
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Ayrica agik iki katmanli devre lretecegiz. iki katmanli LT devreleri farkli dogrusal
elementlerden olugsmustur ama bazi dogru yanhg fonksiyonlari igin esitlik,
toplama ve c¢arpma gibi, birinci tabakanin kapilari aynidir. Bu durumun
avantajindan faydalanmak igin yeni bir dogru yanlis hesaplayan bir element
tanitacadiz. isaret fonksiyonu yerine girdilerinin agirlikli toplamlarinin dogru
yanls fonksiyonlarini hesaplar. Coklu gegisli dogrusal esikler anlamina gelen
LTM hesaplama elementi diyecegiz. VLSI uygulamasinda baglaminda LTM’nin
avantajlari daha belirgin olacaktir. Gergekten bu yeni model simetrik fonksiyonun
yerlesim alanini 0(n?)’den 0(n) ‘e diisiirmektedir. LT ve LTM elementlerinin VLSI
uygulamalarini gosterecegiz. Programlanabilir ve donanimsal olarak baglanabilir
iki cesit element yapiimistir. Programlanabilir elementler agirliklarin degerlerinin
depolamak i¢in yuzen kapilarin sarjini kullanmaktadir.

Uzun yillar boyunca dogrusal esik mantigi konusuna, hesaplanabilir devre
karigikhigi, sayfa [38], [56], ve donanim uygulamasini, sayfa [40], [48] iki farkli
yolla yaklasiimistir. Sasirtict olarak, bu iki yaklasim arasinda ¢ok kuguk bir
iletisim vardir. Butun olarak, bu tez esik devrelerin uygulamasini ve teorisi
arasinda bir baglanti kurmaya yonelik bir adimdir. Bu durumun katkisi Ug¢
seviyelidir. Teorik seviyede, LT ve LTM gibi fonksiyonlarin yeni siniflari
tanimlandi ve hesaplama gugleri tahmin edildi. Algoritmik seviyede, reel
agirhklarin keyfi reel sayilarin, tamsay! agirliklarindan c¢izilen agirliklara nasil
donustigunu gosterecegiz, ayrica en dusuk agirliklarda LT fonksiyonlarini nasil
kuracagimizi ve son olarak LT, devreleri(duguk agirlikli kapilardan olusan devre)
ureten ve COMP denilen kiyaslama fonksiyonunu hesaplayan bir algoritma
gosterecegiz. Ayrica XOR, toplama, carpma fonksiyonlari gibi vyararl
fonksiyonlari yapan LTM devreleri sunacagiz. Uygulama safhasinda tasarimi,
yerlesimi ve LT ve LTM’nin VLSI uygulamasinin testini gosterecegiz. Esik
mantiginin teorik ve pratik yonu arasinda bir baglanti kurmak pratik problemler
icin ¢gozUm saglamaya ve uygulama konularindan esinlenen yeni teorik sorularin
tanimina faydali olacak.
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Bolum 1
Giris

insan beyninin temel yapi bloklar birka¢ kat daha yavas olmasina ragmen
birlesik optimizasyon, resim ve ses tanima gibi zor problemlerin ¢6ziUmunde
bilgisayarlara gore ¢ok daha fazla ustindur. Bu gozlem yapay sinir aglari sayfa
[20], [37] alanina daha fazla egilmeyi tetikledi. ikincisi biyolojik ndronlardan
esinlenerek yapay sinirler birbirine baglayarak kurulmustur. Bu tezde n ikili
girdilerin sayfa [32] sinire benzer dogru yanlis fonksiyonlarini hesaplayan
dogrusal baglangi¢ elemani(LT) olarak adlandirilan yapay néronun dogru yanls
versiyonunu dusunecegiz. Bir LT elementi dogru yanlis girdilerinin agirhkl
toplaminin igaretini disariya c¢ikarir. LT devreleri denilen LT elementlerinden
olusan aglarin ¢calisma alanindaki ana konu onlarin hesaplama kapasitelerindeki
tahmini, sinirlari ve VE, VEYA, DEGIL (AON devreleri denilmektedir) kapilarina
dayandiriimig geleneksel dogru vyanlis mantik devrelerinin  ozelliklerinin
kiyaslanmasini icermektedir. Ornegin LT devreleri AON devrelere gore
tamsayilarin  toplamasi, c¢arpmasi, bolmesi gibi o6nemli fonksiyonlarin
uygulamasinda daha verimlidir.

Sinirsel ve dogrusal esik mantigina iki yaklagim bulunmaktadir: Teori ve
uygulama. LT elementlerini uygulama yapan elektronik devreler altmigh yillarda
onerilmisti. Bu alandaki ¢alismalar halen devam etmektedir. Diger yandan LT ile
ilgili son yapilan teorik arastirma hesaplanabilir devre karmasasinin ¢atisi, sayfa
[38], [56] kurulmustur. Exclusive-OR (XOR) gibi belli dogru yanhg fonksiyonlarin
sabit derinlikteki polinom buyuklukteki LT devresiyle ifade edilebilecegi
gOsterilmistir ama eger klasik AON uygulamasi kullanilirsa Uslu olarak buyuk bir
devre gerektirmektedir. Toplama, carpma, bolme gibi birgok faydali fonksiyonun
temeli olarak XOR, arastirmacilar hesaplamanin dogrusal esik modelinin sinir ve
gucunu aragtirmasi Uzerine yogunlagsmislardir. Bu gorev sasirtici olarak zor
olmustur. Gergekten alandaki yalniz gugli alt sinir polinom agirlik gibi kuguk LT
elementlerin polinom boyut devrelerinin iki katmanl olarak uygulanabilecegi
fonksiyonlarin sinifi LT ile ilgilidir. Diger bir deyimle LT, gibi keyfi agirliklarda LT
elementlerinin kullanimina izin verilirse LT, ‘de olmayan bir fonksiyon bulunabilir,
o zaman alt sinir olmaz, keyfi agirliklarda LT devrelerinin polinom boyutta
devreleriyle iki katmanli uygulama yapilabilecek fonksiyon yoktur.

Sinir mantigin teorik ve pratik bakis agilari arasinda ¢ok kuguk bir iligki vardir. Bu
tezin amaci teorik ve uygulama arasindaki bu boglugu azaltmaktir. Bu boéluman
geri kalaninda tezde ifade edilen ana fikri adresleyecegiz. Bolum 1.1'de LT
modellerini kullanarak ortak dogru yanlis fonksiyonlarini uygulama yapan
ornekleri sunacagiz ve dogrusal esik fonksiyonlarini siniflayan LT'yi
tanimlayacagiz. Bolim 1.2 LT elementlerinin agirliklarinin ¢calismasi Uzerine ana
fikirleri igslemektedir, bolim 2, 3 ve 4 de sonuglari anlatmaktadir. Bolum 1.3.5. ve
6. bolumlerle ilgilidir, VLSI uygulamasi kadar iyi olan LT elementinden turetilen
yeni bir hesaplama elementi olan LTM’yi anlatmaktadir. Son olarak da bolim
1.4’te tezin katkilarini 6zetlemektedir.



1.1  Tanim ve Ornekler ile LT Fonksiyonu

Bu bdlumde dogrusal esik kapisiyla hesaplanan fonksiyonun resmi bir tanimini
verecegiz. Tek bir LT elementiyle uygulama yapilabilen dogru yanlis
fonksiyonlari ornekleri gosterecegiz, ozellikle VE, VEYA, MAJ ve COMP olarak
asagida belirtilen hesaplamalari gosterecegiz.

Bu tez dogrusal esik kapilarindan olugsan LT devreleri veya dogrusal esik
devreleri galigmasi uUzerine odaklanmistir. Bunlar ikili sayr duzeninde girdiler ve
ciktilar icermektedir. Dogrusal esik fonksiyonlariyla matematiksel olarak
anlatilmaktadir.

Tanim 1.1 (Dogrusal Esik Fonksiyonu)

n- degiskenli dogrusal esik fonksiyonu su tipte bir dogru yanls fonksiyonudur:
f:{0, " —>{0,1}

Tam
Gorunum

Bm L
m‘r: Z — W

— Gikh

L4 4 32 J
L4 4 22 J

BITn Esik — W,

Sekil 1.1: Dogrusal Esik Elementi y =sgn(-+ > 1. x,)-
Herhangi x € {0, I}" igin

F(x)=0

1
S (x) =sgn(F(x)) = { 0 Diger

Fx)=w(lx) =y, + 2 w,x,
i=1

w € R"" ile sabitlenerek yazilabilecektir. Sekil 1.1 fikri gostermektedir. Asagidaki
ornekleri dugunun.

Ornek 1.1 (OR'un LT Gésterimi)

Basit bir dogru yanlis fonksiyonu
10



0 if (X s x,) = (0,0)

OR(x. 1 x ) =
Kpwe Ko {1 ....... Diger

n-degiskenden olusan OR baglantisidir.

Esik kapisiyla uygulanabilir, her n igin
Vxe (01} OR(x, x,) = s80(yy, + > W, )
i=1

(Wo, ...,wn) agirhk vektoru bulunmaktadir.

OR'’u implement etmek igin birim agirliklara ve wydeg@eri -1 olan bir esik degere
ihtiyac vardir.

W=(-1,1,...,1)
X | Xo| -1+ X+ X5 sgn(—1 + Xq + X2) OR(X1,X2)
0|0 -1 0 0
0|1 0 1 1
110 0 1 1
0|0 1 1 1

Tablo 1.1: 2-degiskenli baglanti, OR(x4, x2) = sgn(-1 + x1 + x2)

X1 Xo| -2+ X1+ X2 sgn(—2 + X1 + X2) AND(X1,X2)
0|0 -2 0 0
0|1 -1 0 0
110 -1 0 0
0|0 0 1 1

Tablo 1.2: 2-degiskenli ayrilma, AND(x1,x2) = sgn(-2 + x1 + X2)
OR(X,,-X,) =sen(-1+ Y x)
i=1
Tablo 1.1 n =2 durumunu gostermektedir.
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Ornek 1.2 (AND € LT)
AND ayrimi da

AND(x, - xc,) = sg0(=0+ D )
i=l

dogrusal bir egik fonksiyonudur.
Tablo 1.2 n = 2 igin olan durumu gostermektedir.
Cogunluk fonksiyonu olan MAJ girdi degiskenlerinin yarisindan gogu 1 ise ¢ikti

olarak 1 veren fonksiyondur.

Ornek 1.3 (MAJ € LT)

Asagida ¢cogunluk fonksiyonunun tanimi vardir.

1 Eger..le1 X2 [g—‘

MAT (3, ) =
0  Diger
X1 |x2 |x3 [-2 + X1+ X2+ X3 sgn(—2 + X7+ X0+ X3) MAJ(X1, X2 X3)
0(0|0O0 -2 0 0
O[O0 |1 -1 0 0
0(110 -1 0 0
o(1|1 0 1 1
11010 -1 0 0
1101 0 1 1
11110 0 1 1
1111 1 1 1

Tablo 1.3: 3-degiskenli cogunluk, MAJ(x1, X2, X3) = Sgn(-2 + x1 + X2 + X3).

Esik fonksiyonu igin dogal bir adaydir, agirliklarin bir secgimi,
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MAT(X s X)) = sgn(—[g—‘ + 2 X,

tablo 1.3 n = 3 olan durumu gostermektedir.

Ornek 1.1, 1.2 ve 1.3 simetrik olanlar igin dogru yanhs fonksiyonlarini
gostermektedir. Cikti pozisyonlarindan bagimsiz olarak girdi vektorundeki 1’lerin
sayisina bagll olan fonksiyonlardir. lyi bilinen simetrik fonksiyon esitlik ya da
XOR fonksiyonudur.

Ornek 1.4 (XOR ¢ LT)

n-degiskenli esitlik fonksiyonu

1 Eger..z:j:1 X;-tek.ise

XOR(X | X)) = {
0 Diger

seklindedir.

n=2 olsun ve XOR'u implement eden bazi agirliklar vardir.
W= (W Wio W)

XOR(X1 ’Xz) = Sgn(Wo Twx T w, X2)

Xi| X2| -2+ X1+ X2+ X3 XOR(X1,X2) gbsterir

00 Wo 0 Wo <0 ™
011 Wo + Wo 1 wp + wo>0 (2)
1 0 Wo + Wy 1 wp + ws>0 (3)
1 1 Wo + wis + wWo 0 wo+wys+wy<0 (4)

Tablo 1.4: 2-degiskenli egitlik, XOR(x1,x2) # sSgn(wo + w1Xs + W2X>)

Tablo 1.4 x degistikge F(x)'in degerlerini gostermektedir. Fonksiyonun degerleri
Wi'nin ¢ozumunun olmadigi esitsizli sistemi Uretmektedir. Gergekten esitlik (1) +
(4) 2w+ ws+wo+ w3 <0 iken,e§itlik (2) + (3) 2w+ ws+ wo+ws >0
degerlerini Uretmektedir. O nedenle n = 2 igin XOR ¢ LT. Herhangi n i¢in de ayni
durum gecerlidir. Gergekten herhangi n icin XOR € LT dusinin ve XOR
fonksiyonu
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XOR( X, X)) =sgn(yy, + iw,- x)

seklindedir.

O zaman

XOR()(I,)(2 ,0,...,0) = sgn(wo Fwix,tw, X2)

ancak n=2 icin XOR(x1, X2, 0,..., 0) = XOR(x4, x2), XOR € LT,dogru olmayacak
sekilde.

Dogrusal egsik fonksiyonlari igin de simetrik tim fonksiyonlar igin ws=w,=...=w,,
Bu durum oldukga uygun ¢unku agirliklarin tuma 1’e esitlenebilir. Alttaki dogru
yanlhs fonksiyonlari simetrik olmazsa ne olur? Agirliklar ne kadar buyuk olabilir?
Takip eden ornek agirliklari farkli olmayi gerektiren bir LT fonksiyonunu
gOstermektedir ve boylece digerleriyle kiyaslandiginda bazilarinin  buyuk
olmasini gerektiriyor. Gergekte agirliklar girdi degiskenlerinin sayisiyla Uslu
olarak buyumektedir.

Ornek 1.5 (COMP € LT)

Karsilagtirma fonksiyonu X ve Y olan ve ikilik sistemde gosterimleri (x4
(v1.... ¥n) olan iki tamsayi kabul etmektedir. Birinci degisken olan X

.....

seklindedir ve onlari kiyaslamaktadir. Ve her ikisini

1 eger X >Y

COMP( X seees X s V) seees =
R N A {0 diger

fonksiyonu ile kargilagtiriyor. COMP’un LT uygulamasi
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S il S il
COMP(x; s X5 V) soe0s V) = sgn(d. 2" x. - D2 )
i=1 i=1
yukarida tanimli oldugu gibidir. Agagidaki

w=(0,1.2,...,2" ~1,-2,...-2")

agirlik vektorine donusturmektedir.

1.2 Dogrusal Esik Elementinin Agirhiklari

Bu bolimde LT elementlerinin agirliklarina iligkin ana konularina deginecegiz.
Farkli agirliktaki kimelerin ayni LT fonksiyonunu turetebilecegini gosterecegdiz ve
asgari agirliklari tanimlayacagiz. 2, 3 ve 4. boélumlerin konulari tanitildi, sirasiyla
agirhiklar sinirlama, asgari agirliklarla fonksiyonlar kurma ve buyuk agirliktaki tek
bir elementi dusuk agirlikli kapilardan olusan bir devreye donusturme. Dogrusal
esik elementi gibi bir elementin verim hesabi nasil yapilir? Tek bir LT kapisi farkli
dogru yanhls fonksiyonlarinin kalabaligini uygulama yapabilir. Bu agirliklarini
degistirerek yapilabilmektedir. Gergekten her bir agirlik segimi ayri bir fonksiyona
tekabul etmektedir. Bazi farkl agirliktaki kimeler ayni dogru yanls fonksiyonunu
uretirken genel olarak agirliklar icin iki farkh secim iki farkh fonksiyon
vermektedir. N girdili bir LT elementi 2" farkli dogru yanhs fonksiyonu uygulama
edebilir, bolum 2.3.1’de bu durumu goérecegiz. LT'nin AON’a gore karsilastiriimis
bu ilave gucu ilave bir karigikhgi beraberinde getirmektedir. Bu noktada su soru
sorulabilinir: dogrusal bir esik kapisinin bilgi icerigi nedir Ozellikle bu bilgiyi
depolamak i¢in ne kadar bit gerekmektedir?

Tek bir LT elementinin agirliklari Uzerine odaklanalim. Sunu not edin, bir |
fonksiyonu olsun, agirhk vektorU w benzersiz olmasin. Farkh agirliklar ayni
fonksiyonu uygulama yapsin.

Ornek 1.6 (Agirliklari diisiirmek)

Asagidaki f fonksiyonu
f(xl,...,x4) = Sgn(2—4xl+6x2—2x3+4x4)
asagidaki gibi yazilabilir:

f(xl,...,x4) =Sgn(1—2xl+3x2—x3+2x4)
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Cunkul sgn(2a) = sgn(a) her a > 0 i¢in gegerlidir. Su fonksiyonu dugunun:
f(xl,...,xs)=Sgn(2—4x1+6x2—2x3+4x4+x5).
Xs'e bagl olmadigi i¢in asagidaki gibi yazilabilir.

f(X1""’X5):Sgn(1_2X1+3XQ_X3+2X4)'

CUnkl 2—-4 x +6 x,—2x,+4 x, ikinin kati oldugu icin ya <2 ya da 20 ‘dir. Her iki
durumda da y,'i eklemek igareti degistirmez.

Benzer bir fikir agsagidaki iki 6rnege de
SO x) =sen(=4+ x,+ x,+ x4 x) = X,
SO ) = senB+2 x,— x,— xy) =1

uygulanabilir.

Ama genel olarak daha dusuk veya en dusuk agirliklar bulmak daha zor bir
problemdir. Agirliklari asgari yapmak igin

f(xl,...,x3) =sgn(—1+ 2x1 _3)(?2 + 4X3)

asagidaki fonksiyonunun implement edilmesi gerekmektedir.
S e x5 X = s8n0x, X, + ) -

Asagidaki fonksiyonu implement eden asgari agirliklari tretmektedir.
f(xl,...,x3) =sgn(—1+ XX, ™t 2X3) )

Ornek esitlik 1.6 ayni LT elementini implement etmek igin farkli agirliktaki
vektorler kullanilabilecegini gostermektedir. Bu dusuncenin resmi bir tanimi
asagidaki gibidir.
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Tanim 1.2 ( Agirhk Uzayi)

F esik fonksiyonu verilmig olsun, Tanim 1.1’i saglayan tum agirliklarin kimesini

w ={WG R":‘v’xe {O,I}n,sgn(wo+iwixi) =f(x)}

W olarak tanimlayalim.

Agirhklari galhigmak istiyoruz, o6zellikle asagidaki ortogonal sorular Uzerinde
duruyoruz.

1. Eger agirliklar sadece tamsayilar olsun seklinde sinirlandirilirsa ne olur ya da
genel olarak agirliklar R'nin herhangi bir alt kimesine sinirlandirilacak olursa?

2. Agirliklarin tam sayi oldugunu ve boyutlarinin verildigini varsayarsak, en
dusuk agirlik vektorana nasil bulunur?

3.Verilen fonksiyonda, f, minimum agirhgin blyuk oldugunu faz edersek,
ornegin girdilerin sayisi ile katlanarak artiyorsa bu fonksiyonu kuguk agirhkli
girigslerden olusmus iki-katli LT devresiyle tamamlayabilir miyiz?

1970’lerin baglarinda gosterilmistir ki herhangi bir LT fonksiyonu tamsayi olarak
isaretlenen agirlik ile tamamlanabilir. Burada muspet olamayan bir ispat
yapilmistir yani tamsayi olan agirhgr bulmadan tamsayi agirliklar kimesinin var
oldugu gosterilmigtir. Bolum 2'de su sorulari soruyoruz: Sonu¢ elemaninin
kuvvetini etkilemeden verilen saylr kimesinde istege bagl bir degder olarak
agirliklar nasil kisitlanabilir? Bu sayr kimesinin kogullari nelerdir? Etkili bir
donustirme algoritmasi var midir?

Bolim 3 ve Bolum 4'te ise tamsayi agirliklarin boyutuna deginilmektedir.
Agirhiklarin boyutunun oélgtlmesi i¢in L; normu kullaniyoruz.

Tanim 1.3 ( En Duguk Agirlik Boyutu)
Bir agirhik vektorunun boyutunu agirhgin mutlak degerlerinin toplami olarak
tanimliyoruz.

Minimum agirlik boyutunun dogrusal esik fonksiyonu

ST 7= minC> )

seklinde tanimlanir.

En dugsuk degeri saglayan belirli vektore en duguk agirlik vektoru denir.
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Dogal olarak, S[f] n’in fonksiyonudur.

Cesitli bilgilerin ayni anda isleme tabi tutuldugu bilgisayar islev turlerinde yapilan
bircok deneyin sonucu gostermigtir ki dogrusal esik degerlerindeki katsayilarin
degerleri, girdilerin boyutlariyla birlikte ¢ok hizli bir sekilde artmistir. Bu nedenle
bilgisayar iglev turlerinin pratikte kullanimi sinirlanir ve bu durumu bir olagan
soru takip eder: Eger biri katsayilarinda sadece “kuguk” artiglari olan esik
degerleri igin kendini sinirliyorsa bu bilgisayar islev turlerinin bilisimsel gicu nasil
sinirlanabilir? Katlanarak artan agirhkli tek bir esik degeri tarafindan
tamamlanabilen fakat polinom olarak artan agirlikli bir esik degeri tarafindan
tamamlanamayan fonksiyon yani sayfa [17], [33], [38], [43]'te gOsterilmistir. Bu
fonksiyon COMPtur. Ornek 1.5.’te benzer fonksiyon gdésterilmistir. Bu sonuglarin
Isiginda  LTnin altsiniflart  kiguk agirlikhh - fonksiyon sinifi:. LT olarak
tanimlanmigtir. n'in katlanarak artmasi ve n’in polinom olarak artmasi igin kiguk
ve bluyuk deger girdi sayilarinda kalir. LT nasil bir yogunluktadir, baska bir
deyigle kuguk agirlikla fark edilmeyen fakat polinom derecesi d olan11 gibi artan
agirhklar ile tamamlanabilen fonksiyonlar var midir? LT agirliklarinin
polinomunun derecesinin artisina endeksli fonksiyon siniflarina boélunebilir mi?
Bolim 3'te verilen agirlik boyutlarinda LT fonksiyonlarinin algoritmik olugumu
gOsterilerek bu sorular cevaplanacaktir.

istenen blyiik agirlikli LT fonksiyonlarina nasil deginilebilir? Siu ve Bruck ([43]),
LT, cL]A"2 i gostererek ve istege bagli derinligi genellestirerek LT, chd+1

[13] , LTchf"d+l sinirinda gelistirilebilecegini kanitlamigtir. Metot her ne

kadar karmasik olsa da ve [18]'de ispati takip etmek guclesse de [13]'Un
sonuglarl olan basitlestiriimis versiyon sunuluyor. Burada LTchf2 ‘nin

gosteriimesine odaklaniliyor. Agirhgi dusurmek icin kullanilan iki yontem ikinin
kuvveti olarak bolmek ve prime module gore bolmektir. EGer yeteri kadar prime
kullanihyorsa "kuguk”- agirlik girigleri dogru ciktiyr Ureten devre ile birlestirilir.
Belirli buyuk agirlik fonksiyonunun benzetimini kisitlayarak sayfa [13] ve [18]'de
gOsterilen sonuglari daha basitlestirilebilir: COMP. Netice itibariyle sayfa [18] deki
0(n"?log" n)un genel sinirlari (izerindeki &nemli gelisme olan 0(n*logn)
duzenindeki devrenin kapilarinin sayilari sinirlandirilir.

1.3 Coklu Esik ve VLSI Uygulamasi

Bu kisimda bolium 6’da tanimlanacak olan donanim uygulamalarinin sonuglarini
ana hatlariyla inceleyecek ve bolim 5’deki LTyle ilgili yeni bir fonksiyon sinifi
olan LMT gosterilir.

60’larda ve 70’lerde ortaya atilan esik devreleri uygulamalari sayfa [4], [48], [53]
ve daha yakin sayfalarda [28], [39]'dur. Bilgi birikimimiz igin esik devrelerindeki
teorik sonuglar, silikonlu uygulamalari iceren iglere eklenmiyor. Programlanabilir
notron bazli donanimlarda sayfa [39], [41] Oneriliyor.

LT uygulamalarinin 6zellikle birbirinden ayrildigi iki nokta var: Agirlikli toplami
hesaplamak igin kullanilan metot ve agirligin saklanmasinda kullanilan usul. Her
biri agirhkli girdilere denk akimlar segcildi. Buna gore dogru yanlis girdileri
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kullanildi ve kesin garpmaya gerek duyulmadi.

Girdi mantiksal 0 ve akim w; mantiksal 1 oldugunda sifir akim Uretildiginden emin
olunur. Boyle bir “carpim” girdi pimi giris terminaliyle baglantil olan tek bir
transistor tarafindan yapilabilir. Agirligi depolama ve girdileri 6lgeklendirme tek
bir transistor de birlestiriimis olmasi bu sekilde bir yaklagimin avantajidir. Fakat
agirliklar nasil tamamen depolaniyor? Bu problemi iki yonden ele alabiliriz:
Fiziksel baglantii ve programlanabilir agirliklar. Fiziksel baglantili Agirliklar
devrenin planlandigi anda tanimlanir ve bir kere monte edildikten sonra
degistirilemez. Fiziksel baglantili agirliklar ile ilgili birgok ilging soru vardir.
Gergekten ¢ogu uygulamalarda farkli agirliklar farkl planlara karsilik gelirler. Bu
farklihklar LT devresi planlamay! zor bir is haline getirir. Cunku farkli elemanlarin
farkh sekilleri vardir. Ancak onceki bolumde goérdigumuz Uzere hesaplanan
fonksiyonu etkilemeden LT elemaninin agirhidr degistirilebilinir. Bu son faktor
elemanlarin birbirine tamamiyla uyabilecek sekilde planlanmasina yardimci olur.
Ote yandan programlanabilir agirliklar boyle zorluklar c¢ikarmaz. Tim LT
elemanlar benzer gorunur. Programlanabilir agirliklarin birgok uygulama sekli
vardir. Dijital RAM olarak depolanabilir ya da girdi hattindan beslenebilir. Bolim
6'da LT elemaninin iki uygulama yolu gosteriliyor. Birincisinde transistorun boy
en oraninda depolayan fiziksel baglantili agirliklar kullaniliyor digerinde ise gegici
olamayan yuk olarak dalgali giris transistoru yerlegtiriimis programlanabilir
agirhklar kullaniliyor. ikinci durumda agirhigin degeri tiinelin agiimasina ya da
sicak elektron puskurmesine bagll olarak degisebilir. Esgitlik gibi genel LT2
fonksiyonu igin bir LT devresi planlandiginda LT gosteriminin gerekenden fazla
oldugunun farkina varilabilir. Genelde LT2 devresi farkli esik elemanlarindan
olustugunda, esitlik, toplama ve ¢arpma gibi bazi kullanigl fonksiyonlar halinde
birinci katmanin girisi esikleri agisindan farkl olurlar. Bu faktorin avantajlarindan
yararlanmak i¢in bolim 5’e giris yapmak gerekir. LTM, carpim esikleri olan
dogrusal esik elemani, yeni bir hesaplama elemanidir ve su hesaplama da
kullanilir: Dogru yanhsg girdilerin agirlikli toplaminin tek bir egikle karsilastirmak
yerine esik kumeleriyle karsilastirila bilinir. Geometrik olarak ikiye bolunmus
hiper kup seklinde kullanilan paralel hiper dizlemler kiimesi olarak gorulebilir.

Tanim 1.4 (Coklu Baglantili Dogrusal Esik Girigi — LTM)
Fonksiyon f LTM’ dedir eger agirliklar kimesi 4, € Z,1<i<n ve a var ise

Fonksiyon h : Z —> {0,1} Oyle ki
f&)=hYw,x) her xe {01} igin.
i=1

Sadece h’de kisitlanir Oyle ki polinom olarak girdileri tarayacak birgok
l—Z;JW LY w, |J baglantilara ugrar.

Fark ediliyor ki baglanti sayilarindaki kisittama olmadan LMT girisi higbir dogru
yanlis fonksiyonunu hesaplayabilir durumda degildir. Aslinda verilen keyfi

fonksiyon, /, kimesi vy, =2 ve h(X.'2" x) = f(x,sx,)-

Simdiki ornekte tek LTM elementi ile nasil esitlik fonksiyonunu, XOR,
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hesaplayabilecegimiz gdsterilecektir. Ornek 1.4'te XOR’ yi hesaplamak igin tek
bir LT elemaninin yeterli olamadigi gosterilmisti.

Ornek 1.7 (XOR € LTM)
XOR(X) ciktilar 1 eger |X|, X'deki 1’lerin sayilar tektir. Diger turlu giktilari O olur.

Uygulamak icin O < k < n araliginda w; = 1 ve h(k) = %(1—(—l)k) secilir. h(k)’nin k

< 0 ve k > n olarak tanimlanmasina gerek yoktur ve birgok polinom geklinde
baglantisi vardir.

Diger bir kullanigli fonksiyon ise iki tam sayinin toplanmasidir. LTM
elemanlarinin tek katmani tarafindan hesaplanir.

Yukarida da bahsedildigi gibi esitlik fonksiyonunun planinda gerekli olan alanin
geligtiriimesi icin LTM arastirmasi pratik dusunceler Uzerine geligtirilmistir. LT
teorik ¢erceve iginde kalsa da, bu yeni hesaplama elemani bir¢ok zor problemin
¢ozlulmesini saglar. Tek bir LMT elemaninin tek bir LT elemanindan daha guglu

oldugunu goérmek g¢ok basittir. Fakat LT, ya da sz kargilastirmasinda nasil
guclu olabilir?

1.4 Tezin Yazimi ve Organizasyonu

Tezin yazimi U¢ asamada gergeklesmistir:
J Teorik asamada Lf(d) ve LTM gibi yeni fonksiyon siniflari tanimlanmig

ve bunlarin hesaplama gugcleri tahmin edilmigtir.

. Algoritmik asamada tam sayi agirliklarda oldugu gibi her hangi bir reel
sayllar kumesinde gercgek agirligin agirhga nasil donusecedi ve minimum agirhkli
LT fonksiyonlarinin nasil olusturulacag:r gosterilmistir. Ayrica COM P

fonksiyonunu hesaplayan L7 devresinin olusturuldugu algoritma gosterilmistir.
T,

Son olarak XOR, ADD, PRODUCT gibi kullanigli fonksiyonlarin LTM ile
hesaplanmasi gosterilmistir.

J Uygulama asamasinda ise LT ve LMT ‘in uygulamalari olan VLS/Inin
tasarim, planlama ve test basamaklar gosterilmistir. Agirhk degerini depolamak
igin dalgali giris kullanilan programlanabilir LT elemani tasarlanmistir.

Tez su sekilde organize edilmigtir: Bolum 2'de esik devresi teorisinin bilinen
sonuglari gosterilmistir. Ozellikle herhangi bir dogrusal esik elemani tam sayi
agirhk ile tamamlanabilir. Makalemiz bu sonucun herhangi bir reel sayilar
kimesinde genellestiriimesidir. Agirligin  donusturaldugu algoritma boyunca
kosullar tamamlanmis LT fonksiyonunun turetilmesine izin verir. Bolum 3’te
minimum agirlikta dogrusal esik fonksiyonlarinin  olusturulug metodu

gosterilmigtir. Bu metot d'ye bagli Lf(d) siniflarinin birbirinden ayrilmasi igin

kullanilir. d tamsayisi verildiginde L7 sinifi agirigin 0(n°) ile tamamlayabildii
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fonksiyon kumesi olarak tanimlanir. Bolum 4’te drnekteki gibi belli bash sonugclar

gosterilmigtir: Buyuk agirhkli tek LT elemani iki kath devreden olugmus LT
elemani yani kuguk agirlikli dogrusal egik elemani ile tamamlanabilir. Bolum S'te
LMT yani ¢oklu baglantili dogrusal esik girigi tanitilmigtir. XOR, ADD, PRODUCT

15’den LT'ye ilgili LTM’nin kuvvetinin tahmini ve turev siniflari gibi LT, sz ve
LT> gibi kullanilan dogru yanhg fonksiyonlarinin yapilari gosterilmigtir. Son
olarak bolum 6'da LT ve LMTnin tamamlayicisi VLS/ tanitilmigtir. Fiziksel

baglantih ve programlanabilir sonuglar gosterilmistir. Agirliklar dalgali girigteki
yukte depolanir ve elektron puskirmesi ve tunel agilmasiyla degistirilir.
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Bolum 2

Agirliklarin Kisitlanmasi

21 Girig

Simdiki bolimde tek LT elemaninin agirhidi ile ilgili sorulara odaklaniliyor. Verilen
herhangi bir n tane degiskenli esik fonksiyonunda agirligi depolamak igin kag
tane bite ihtiyag vardir. Bu sorunun cevabi herhangi bir LT fonksiyonunun tam
say! agirliklar ile tamamlanmasinin gosterilmesi ve boyutlarinin kisitlanmasinin
saglanmasi ile 1970’lerin basinda Murago, sayfa [32], tarafindan verilmigtir.
Bolum 2’de bu dusunde su sorulara cevap verilerek genellestirilecektir:

. Agirliklarin - baydklugu tam sayilar yerine tamsayilarin kareleriyle
sinirlandirilirsa ne olur?

. Eger yalnizca 2’nin kuvvetlerine izin verilirse ne olur?

. Genelde D, pozitif reel sayilarin alt kiimesi, D € R* agirliklarin biyuklGgi

D’den olan LT fonksiyon seti LT[D] olarak tanimlanir.

LT[D1={f: f(x,»x,) =20y, + 2, W, x,)--| w, € D oldugu yerde.
i=1

LT[D] = LT ‘deki D kosullari nelerdir? ( 6rnegin tum LT fonksiyonlarini
tamamlamak i¢in buyuklugu D’den olan agirliklar yeterlidir.

Bolum 2.2°de bu tip sorularin bazi motivasyonlari gosterilecektir. 2.3’te ise su
basliklar altinda toplanabilecek ispatlar ve 6rnekler verilecektir:

. n degigkenli ka¢ tane LT fonksiyonu vardir?

. Herhangi bir esik fonksiyonunda agirliklarin depo edilebilmesi igin gerekli
bitlerin Ust siniri nedir?

. Tamamlanan fonksiyonu degistirmeden her hangi bir reel agirhgr nasil bir

tam sayiya donusturebiliriz?

Bolum 2.5’te ise temel sonug¢ sunulacaktir: Tamamlanabilen LT fonksiyonlari
tarafindan garanti edilen D kimesinin kosullari.

2.2 Motivasyon

Esik devrelerine deginildigi zaman, genellikle mesele belirli agirlik degerinin ayni
giriste ya da degisik giriglerde farkli bolgelerde gorulmesidir. Agirlik degerini
depolamanin pahali oldugu verilen sistemde oncelikle deger depolanmak istenir
ve ayni degeri birgok bolgede depolamak yerine iligkin agirliklar ile baglanir. Bu
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kavram esik devrelerinin uygulamalarindaki hem donanim hem de yazilimda
tatbik edilebilir. Ogrenilmis algoritmalarin sonuglari ya da verilen fonksiyonda
basit bir on hesaplama olarak verilmis agirliklar icin yukaridaki yaklagim
edilgendir. Yalnizca ¢ift agirliklar degerleri elenir. Daha fazla cift agirliklar ortaya
cikartmak igin ilgili esik fonksiyonlarini etkilemeden degistirilmis belli agirliklarin
depolama yerlerini muhafaza etme amacimiza ulagsmamiza bir basamak daha
kaldi. Bolum 1.2’'de farkli agirliklar kumeleri ayni esik fonksiyonu ile
tamamlanabildigi icin yukaridaki durumun yapilabildigini gordik. Bu baglamda su
soru sorulabilir: Verilen reel sayilar kimesi tum LT fonksiyonlarinin gosterilmesi
icin yeterli midir?

2.3 Taslaklar ve ilgili calismalar

Farkli bir agirik ayni LT fonksiyonu ile tamamlanabilir. Agirliklar kumesini
karakterize etmenin bir yolu agirligin sinirlari olarak neyi tanimladigimizdir.

Tanim 2.1 (Agirh@in sinirlar)

(wo,...,ws) agirhgin seti olsun ve f de bunlarin tamamladigi fonksiyon olsun.
Kdmenin sinir gifti

[/ = max (WO-I- Zwixi)
i=1

x| (x)=0

ve

h = ‘rjl;l(a)xl(wo + ZWi xi)
= i=1

olsun.
Burada (I, h) sinirin iki agik 6zellik

+ I<Ovehz0

» herx €0, }"igin, y,+ X, w,x, & LAl
gorulmektedir.

Asagida gosterilen ispati yapmak igin ( -1, 1 ) sinirlarina ihtiyacimiz olacak.
Verilen herhangi bir agirliklar setini algoritma 2.1 gOyle bir sete cevirir.

Algoritma 2.1 ( (-1, 1) sinin)
(uo,...,un) kimesi (I,h) siniriile veriliyor ve

2 h+1
Wo_h_l(Z/lo_ > )
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2y, L .
Wi:m her i icin, 1<i<n

algoritma 2.1’in gegerli agirhklar Urettigini gosterelim Oylek ki orjinal olanlarla
ayni degerleri Urettigini ve sinirlarinin (-1,1) araliginda oldugunu goésterelim.

Yardimci Teorem 2.1 (Agirliklarin gevirimi)

(uo,...,un) (h,1) sinirh agirliklarin keyfi bir kimesi olsun ve f ifade ettigi fonksiyon
olsun. Algoritma 2.1 ile elde edilen ve (-1,1) sinirinda bulunan fonskiyon olsun ve
f fonksiyonunu ifade etsin.

Kanit:
f)=sgn(yy,+ D 1.x) &) =sgn(yy,+ X W, x,)

f(x)=sgn(y,+> 1, x) Vve g fonksiyonu yeni agirliklarla ifade edilen

(WO,...Wn),  g(x)=sgn(yy,+ X, w.x)- Her x igin g(x)=f(x) oldugunu
gdsterecegiz. iki duruma bakacagiz:

f(x) =0 olsun. Tanim 2.1 ile sinir (I,h) ile ve h-I>0 ile sinir

uo-i-;uixiﬁl

seklindedir. Esitligin her iki tarafina asagidaki yontemi

Uygularsak ve daha sonra 2 ile

. l(uo_ﬂ iu x)<i(_)

carparsak,
Wot 2 W, <1
i=l
sonucuna ulasiriz.

24



e f(x)=1 yapan x i¢in ayni iglemleri tekrarlarsak

uﬁ;%xi 2 h

elde ederiz.

9(x)=1

ve g=f oldugunu gosterdik ve &yle |yy,+Y, w.x,[>1 bir esitsizlik olan
U,+ 2.1, x, Noktalarinda h veya I'ye esit olan bir esitlik oldugunu gosterdik.

Bu durumu bir 6rnekle gosterelim.
Ornek 2.1 ((—1,1) Sinin)
2-degiskenli LT fonksiyonunu dusunelim.

f(X1,X2) = sgn(—1.2 + 0.5x4 + 1.1X2)

Agirlik vektora (-1.2,0.5,1.1). Siniri olan (I,h)’yi hesaplayalim. Agirlikli toplam
asagidaki degerleri tahmin etmektedir.

X1 X2 |-1.2+05x1+1.1x f(X1, X2)
0|0 -1.2 0
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0|1 -0.1 0
110 -0.7 0
111 0.4 1

Tanim 2.1’e bagvurarak

[ = -1.24+0.5y +1.1 =-0.1
Jmax ( Xty

h= -1.24+05y +1.1 =-04
ax ( x; tl1x,)

L ve h'yi elde ederiz.
Algoritma 2.1 ile yeni agirhiklar

2 h+l1 2 04+(=0.1) _

1.2

2 _ 5.4
Woyy— Wo™ ) 0.4—(=0.1) 2

205
W=oa—on ~

_odd
W2"0a-01

seklindedir. Yeni agirlik vektoru asagidaki degerleri tahmin etmektedir.

X1 |X2 [-5.4 +2.0 x4 +4.4x2 |sgn(-5.4 + 2.0 x4 + 4.4x>)
0|0 -5.4 0
0|1 -1.0 0
110 -2.4 0
111 1.0 1

Beklendigi gibi yeni agirliklar ayni fonksiyonu ifade etmektedir ve siniri (-1,1)’dir.

Tek elemanli LT nin ¢calismasiyla ilgili iyi bilinen bazi sorunlari belirtelim.
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2.3.1 n-Degiskenli 0(2" ) LT Elemani Vardir

n tane degigken verildiginde toplam dogru yanlis fonksiyonunun 22" oldugunu

belirlemek kolaydir. Ayrica genel dogru yanlis fonksiyonu 2" ciftli girisli gergek
tablosu tarafindan 6zel olarak belirlenir. Bu fonksiyonlarin ka¢ tanesi gergekten
esik fonksiyonlaridir? Bu soru 1950’lerde birgok yazar tarafindan dugunulmustar.
Su sinirlama sayfa [36] ‘da turetilmistir.

| LT |< D"

|ILT] n tane degiskenli esik fonksiyonlari igin sabit kalir. Daha sonra 1850°de L.
Schlafli, sayfa [42], tarafindan |LT] deki en iyi Ust siniri

i=0 {1

LT 22{-2 _lj‘ o rlog,ot)

olarak bulunmustur.

Sayfa [54] ‘de |LT] deki ilk alt sinir yayinlandi fakat ayni dergide gosterilmis
benzer bir ispat olan [46] 'nin sunus tarihi nedeniyle onceligi oldu. Bu alt sinir
sudur:

n(n—1)

|LT [>7 =2

Yalnizca 1989’da Zuev tarafindan bu sinirlar geligtirildi. Sayfa [34] ve [57] ‘deki
sonuglarin kullanildigi sayfa [58] gorulebilir ve

2

10

7”70(11 Inn)
n

|LT |> 2"

seklinde bu siniri tanimlayabiliriz.

Son zamanlarda ust sinir daha da geligtirilmigtir, bunun igin sayfa [21] ve [23]'e
bakiniz:

LT[> oz
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Ve son olarak sayfa [22] de ispatlandigi gibi

LT > pn logrow

olarak gosterilebilir. Sonug olarak Ust ve alt sinir araligi daraldi. 2" gevresinde n
degiskenli esik fonksiyonlari oldugundan teorik argimanlardaki kullanilabilir. Bu
arglimanlar en az n’ olmasi gereken agirigi (ejer bu degerde degilse bazi
fonksiyonlar diferansiyellesemiyor.) gostermek igin ihtiyag duyulan toplam bit
sayisini belirlemek amaciyla kullanilabilir. Ayrica 1.2 kisminda gérdugumuz gibi
farkli agirlik vektorleri ayni fonksiyonu tamamliyor. LT sunumunun depolama
acisindan en uygun sunum degildir ¢inku agirhdr sunmak igin n® fazla bite
ihtiyac vardir.

2.4 Reelden Tamsayi Agirliklara

Bu bolimde tamsayi agirliklarla yazilabilen reel agirliklar gibi herhangi bir agirlik
kimesini ile yazilmis fonksiyonu gosterecegiz. |ki argiman sunuyoruz:

J Agirliklarin  boyutlarini sinirlamay! saglayan muspet olmayan, varolus
temelli arguman.
. Agirliklarin boyutlarini sinirlamayan fakat verilen agirlik kimesini tam

saylya donustiren muspet arguman.

2.4.1 Her Bir 0(nlogzn) Bit igin Agirhk Saglayan Esik
Fonksiyonlari

Yukarida bahsedildigi gibi verilen egik fonksiyonu tahminine gore tek bir agirlik
en az 0(n) bit saglar. Cunku LT sunumu daginiktir. Muroga ,sayfa [32] ‘nin
1970’lerin baslarinda gosterdigi gibi gercek sayi O(nlogzn) ‘dur. Tam olarak
olamasa da LT sunumu biraz yogundur; 0(n®) arasindaki 0(n?log.n) fark daha
kiguktur ve esik izlenerek yapilan agirlik toplaminin kullanilmasiyla uygun
hesaplama avantaji elde edilir. Muroga’nin sinir tanimini kavrayabilmek icin
asagida ispati gosterilmektedir.

Theorem 2.1 (Agirlikta O(nlogzn) bits) Keyfi bir n-degigkenli LT fonksiyonu
icin,agirlik w; agagidaki

lw, I< O(”lngﬂ) VO<i<n

durumu saglamaktadir.
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Kanit:
[, fe LT kosulunu saglayan bir esik fonksiyonu olsun. Agirliklari (uo, ...,un)

olarak bilinmesin. I'nin dogruluk tablosundan 2" adet dogrusal esitsizlikler
cikartilabilir.

1 (1)
Ut x, ¥-+u,x, 20

Q2" Q2"
Utux,” ttu,x,” <0

{x(k)}kz:l hiper kupun Ust noktalaridir ve egitsizligin yonu fonksiyonun ilgili

noktadaki degerine ( alt tercih ihtiyaridir. ) baghdir. (/,h) agirliklarin (uo,...,un)
sinirlanidir ve (-1, 1) sinirlarinda yeni agirliklarin (uo,...,u,) elde edilmesi icin
algoritma 2.1 uygulanir. Egitsizlik sistemi

(1) (1) (1)
Wetwix, ttw,x, 21=2/(x )~

(n+1)

2"

W T Wi X, +---+an2 <- 1_2f( )—

sekline gelir.

Dogrusal esitsizlik teorisinde, sayfa [26], [27] , belli basli sonuglar kullanilarak; 2"
egitsizligi disinda n + 1 ‘in alt kimesinin var oldugunu one surebiliriz. Ornegin

eger esitsizlik isareti esitlik isareti ile yer degistirir ise esitligin sonug sisteminin
¢6zUmu ayni zamanda egitsizlik sistemini de ¢ozer. ligili isaretlenmis n + 1

esitsizliginde { (k)} {0, 1}" noktalarinin bir kiimesi olsun.

Asagidaki 24 e§itI|kIer sistemini
) () )
W0+W121 +...+ann :Zf(Z )—1

(n+1)

(n+1) (n+1)
wotwz, tetw,z 2f(
elde ederiz.
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Yukarida da deginildigi gibi esitliklerin sag tarafi f fonksiyonuna baghdir. Cramer
metodu kullanilarak

_A
Wi A
sonug¢ bulunabilir.

Burada A determinant iken

1 1
1 ) )

1 " Zn

1 (n+1) (n+1)

1 o

ve A esitlik sisteminin sag tarafinda i. kolonun degistiriimesiyle elde edilmektedir.

Fark ediliyor ki

M M () ) ()
Loziwz Sz)=1 zy -z,

(n+1) (n+1) (n+1) (n+1) n+(1)
Lozy ez Mz )1z ez,

yukaridaki matrisler Is, Os ve -1s ‘den olusmustur. Bdyle bir matrisin
determinanti asagidaki siniri

(nXn)
A <B,
saglar.

Bn sinirlama sirasi asagidaki durumu

Bn+l 2 h Bn
saglamaktadir.

Daha sonra asagidaki durumu
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A" <o)

ifade etmektedir.

Burada tamsayi agirliklarin boyutu tzerinde ilgileniyoruz, dolayisiyla

! A n n
w34, =%A,. < 0(nl) = 0(2"1°8)

tek bir agirhgr depolamak igin O(nlogzn) bite ihtiyag vardir.

2.4.2 Her Bir 0(nlogzn) Bit igcin Agirhk Saglayan Esik
Fonksiyonlari

Bolim 2.4.1de herhangi bir LT fonksiyonunda boyutlarinda yukaridan sinir
koyarak agirigi depolamak icin O(nlogn) bit'in yeterli oldugunu kanitladik.

1961'in baglarinda her bir f2(n) bit igin agirhk gibi O(22) boyutlarini saglayan
fonksiyon bulundu. Son dénemlerde sayfa [17] ‘de Hastad boyutu 6(nlogzn) olan
gibi her bir agirlik i¢in fi(nlogn) ‘u saglayan fonksiyonu gosterdi. Bolum 2.3.1'de
gordugumuz gibi her bir agirlik igin en az n bit deposuna ihtiya¢ duyulan yaklagik
2" LT fonksiyonu vardir. Daha 6nce de deginildigi Gzere LT sunumu depolama
acisindan en uygun sunum degildir. Bu sunum esik fonksiyonunu depolamak icin
ilave bitlerle log n faktorinu saglar. Bununla beraber LT sunumu yogundur ve
kompleksligi hesaplamak igin ekstra depolanma arayi kapatir. Depolama igin LT
fonksiyonlarinin spektral sunumu en uygun olanidir. Aslinda sayfa [9] ‘da yazar
ilk n + 1 spektral katsayilarinin 6zel bir sekilde belirlendigini gostermistir.

2.4.3 Reel Sayillardan Tamsayilara Ceviren Bir
Algoritma

ispatin gegerliligi boyunca siiren algoritmayi géstermeden énce, birkag érnege
bakalim.

Ornek 2.2 (Reel sayilardan tamsayilara) Asagdidaki fonksiyon verilmis olsun.
£ (Gt x,) =sgn(-0.5+02x, +03 x)

Tam sayi agirliklari elde etmek icin agik olan yol bunlari 10 faktora ile
carpmaktir. Olguyu kullanarak
31



f2 (XV.Xz) =sgn(=5+ 2x,* 3XZ)
denklem asagidaki gibi

SO0 x,) =san(-2.35+T x, =2 x)

olsun.

Bu durumda derecelendirme ise yaramiyor ¢unku irrasyonel agirliklar var. Bu
agirliklarla uzlagmanin bir yolu yer fonksiyonlarini, | |, kullanmaktir ve

f2 (xl,xz) = sgn(—3 + 3x1 — 2x2)

asagidaki fonksiyonda ise

V2
f3 (X1 axz) = Sgl’l(—O.S + lel + sz)

seklindedir.

Ne x10 ne de | | dogru cevabi verdi. Dogru cevabi bulmak igin garpma islemini
ve yer fonksiyonunu birlikte uygulamaliyiz ve agagidaki ornek

f3 (xl,xz) = sgn(—S + X + 4x2)

reelden tamsayi agirliklara donustirmek icin kullanilan algoritmanin arkasinda ki
ana fikri gosteriyor. Derecelendirme ve her agirlik i¢in yer uygulama.
Algoritmanin igleyebilmesi icin herhangi bir agirlik vektorunun yeterince bluyuk ve
derecelendirilmig katsayilarinin var oldugunun kanitlanmasi gerekir.

Algoritma 2.2 (Reelden tamsayi agirliklarina) verilen reel agirlik kumesi

(UO,...,Un).
1. (-1,1) sinirinda yeni agirhklari (vo,...,vn) ‘de etmek icin algoritma 2.1 ‘i uygula.

2.y = |_(n + 2)VJ ‘i yerlestir.

Yardimci Teorem 2.2 (Reelden tamsayi agirliklarina)
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Algoritma 2.2 ‘de olusturulan agirliklar orijinal agirliklarla ayni fonksiyonu
tamamlar. Soyle ki,

S0 =sgn(yy,+ D, x) =sen(w, + 2w x) -
i=1 i=1

ispat:
(uo,...,un) reel agirliklar kimesi olsun.Yeni agirliklar kumesini (vy,...,v;) elde
etmek icin algoritma 2.1°i uygulayalim Gosterimi basitlestirmek icin (1,x1 X2,...,Xp)

genigletilmis vektorl yerine x diyelim sonug olarak v.x :V0+Zj=1 V. X;- Yardimci

teorem 2.1 ‘e gore yeni agirliklar da ayni fonksiyonu tamamlar ve sinirlari (-1, 1).
Ornegin

f(x) =sgn(u.x) =sgn(v.x)
[vxz1 her xe {01}
Yukaridaki esitsizligi k ile garpiyoruz,
| (fow).x [2 k her xe {01}
| kw | vektdrii ifade etsin.
| (kw).x = kw [ + [ kw [x > &

| (kow—=|kw )ox +|kw x> k.

Ucgen esitsizligi ile,
| Gow—[how J).x [ + | Lhow Jx > &
|Lkw Jx |2 k=] (kw—[ kw }).x

|Lkw |x 2 k= n+1 || (kw—Lhw ] |
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|Lhw x> k=n+1] (1.1
||_ka)6 > k—+vn+1n+1

|kwlx[2k—n-1

elde ediliyor.
Bu noktada k = n + 2 yapiyoruz ve asagidaki denklemi
L(n+2)wx[>1

elde ediyoruz.

Yeni agirliklarin orijinal fonksiyonu f tamamladigini nasil belirtebiliriz? Verilen
herhangi bir x girdi vektoru yukaridaki basamaklari tekrarlar, u.x <! durum f(x)=0
ya da  ux>h durum f(x) =1 igin ile baslar ve |(n+2)wlx<-1 ya da
|(n+2)w]x>1 tiretir. Mutlak degerin ispatta kullaniimasi iki durumu birlikte
tehdit eder.

Asagidaki 6rnekte algoritma 2.2 uygulaniyor.

anek 2.3 (Algoritmay! kullanarak)
Ornek 2.1°de kullanilan ayni 2-degiskenli fonksiyonu

f Goox) =sen(-12+05 5, +1.1x,)

kullanalim.

Ornek 2.1’de yapilan Algoritma 2.1’'i yapmaya ihtiya¢ duyuyoruz. Yeni agirlik
vektord v,

 Grpoxy) =sen(-5.4+2.0 x,+4.4 ).
Bu noktada agirliklari n + 2 = 4 ile garpiyoruz ve
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f (x> X)) =sgn(-22+8 x,+17 x)

tabanini aliyoruz.
Yeni tamsay! agirliklari agsagidaki tabloyu veriyor.

X1| X2 |-22 + 8 x4 + 17 x2| sgn(-22 + 8 x1 + 17x2)
0|0 -22 0
011 -5 0
110 -14 0
111 3 1

Beklenildigi gibi fonksiyon degismedi. Fakat bulunan agirliklar biraz buyuk.
Ozellikle asil fonksiyon AND(x1,x2)dir ve gok daha kuguk eightlerle

f (X1 ’.Xz) =sgn(-2+ Xt X2)

seklinde tamamlanabilir.

Bolum 3'te olasi en kuguk tamsayi agirliklar degerini bulma problemine
yonelinecektir.

2.5 Agirliklarin Herhangi Bir Say1 Kimesine
Donlsturalmesi

Agirliklarin mutlak degerini D kimesi, D € R olarak kisitlanir. D’ye agirhklarin
tanim kumesi denir.

Tanim 2.2 (LT(D) — D tarafindan spawned edilen LT fonksiyonlari kimesi)
Verilen D’ye gore, R’nin alt kimesi, LT(D) mutlak degeri yalniz D'den ¢ekilmis
agirhiklar ile tamamlanabilen LT fonksiyonlarinin kimesi olarak tanimlanir.

Resmen

LT(D)=1{f < LT3we R", dyle ki £(x)=sen(yy, + 3y, x)Vxe (01}
i=1

ve |y, € D| O<isn igin.

Hedefimiz D’nin Ozelliklerini ve LT(D) Uzerindeki etkilerini irdelemektir. Birkag
kesin durumu eleyerek oncelikle D igin aday listesini daraltalim.
J D sonsuzdur.
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Aslinda eger D sonlu ise yeterince buyuk n bulunabilir. Bu sebeple n degigkenli
LT fonksiyonu vardir. Bu fonksiyon D’nin asalligindan daha buyugune ihtiyag
duyan ayri agirliklarin sayisi sebebiyle

D’den gekilen agirliklarla tamamlanamaz. Ornegin COMPARISON fonksiyonu,
agirhklarin yarisi ayrik olmasi igin degisken sayisina n > 2|D|.diyelim.

J D sayilabilir.

Bolum 2.3’te belirtildigi gibi LT(N) = LT ‘dir. Herhangi bir LT fonksiyonu tam sayi
agirhklarn kullanilarak tamamlanabilir. N'den daha yuksek asalligi olan bir kime
kullaniimasi ekstra fonksiyonellik saglamaz. Aslinda eger kime Jo,e[ araligini
iceriyorsa tam sayi agirhklari LT(D) = LT ‘ye uygun olmak igin kugultulebilir. Diger
yandan D =[100,101], oldugu dusunulurse fonksiyonlarin kimesi fazla sayidaki
uretimi ¢ok limitlidir. Bu OR ve birka¢ yakindan ilgili fonksiyon icerir. Genel
sayllamayan D kumesi durumunda D’nin  “en iyi" sayilabilen alt kimesine
odaklanirz.

. D tam anlamiyla siralanmigtir.

D sayilabilir oldugu igin siralanabilir. Ayrica tim elemanlari ayri olmalidir. Bu
alfabenin rolinu oynar.

D sayilabilir ve siralanabilir oldugu icin endekslenebilir.

D={q lieN}ve g < .¥i.

Asagida “degistiriimig yer” fonksiyonu d(.) tanimlaniyor:

d R - R

d:.x.—.dx)=(,

Oyleki f <x<. .

Ornek 2.4 ( Kare ve ustel agirliklar)
Gorduk ki reel agirliklar tamsayi agirliklara donasturalebilir. Agirliklar mikemmel
karelere donustirmek mumkuin mudur?

d.=i heri€N icin.
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5-degiskenli AND fonksiyonunu

1 eger y,=..=x,=1

AND(x ooy x) =
Ko Xs {0 diger

disununuz.

LT nin bir fonksiyon oldugunu gorduk ve asagidaki gibi

AND(xl,...,xs) = Sgn(—5+x1+x2+x3+x4+x5)
yazilabilir.

Tam kare formunda agirliklarla

AND(x, 55 x) =sen(=25+4 x +4 x,+4 x,+4x,+9x,)

seklinde yazilabilir mi?

Ya 2'nin katlar1 gseklinde yazilabilir mi?
d. =2 heri€N icin

AND(X1""’X5) =sgn(—8 + X + X, + 2x3 + 2x4 + 2x5)

esgitliginden goruluyor ki, ornek 2.4’de d/nin devaminin ne oldugunu
onemsemeden D’den cekilen agirliklarla AND tamamlanabilir. Bu durum her
hangi bir LT fonksiyonu icin dogru degildir. Takip eden teorem gosteriyor ki eger
d; polinom olarak artiyorsa LT(D) = LT fakat bunlar Ustel ise bazi LT fonksiyonlari
tamamlanamaz. 32, eder D 0() ise tim LT fonksiyonlar tarafindan
tamamlanabilirler. Fakat D Q(2") ise bu durum gergeklesmez. Nitekim daha
genel sonuglari goOsteriyoruz. Mesela bazi suUper- polinom artislari serbest

birakilir eger d;O(n°®") ise, LT(D) =LT.

Teorem 2.2 (Agirliklarin Kisitlanmasi)

Agirliklar siralanmis D = {d;, i € N}, D € R" kumesi tarafindan kisitianmis olsun.
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1. LT(D) = LT eger verilen biyik sabit C € R" igin herhangi bir i > iy de I,
var ise

C(di+1 - dj) < di.

2. LT(D) c LT eger d; QD) ve

A(K,,j,) Heri>igigin K27 < 4 .

ispat:
Birinci bolumu gosterelim. (I,h) sinirlariyla verilen orijinal agirlik vektora u, ile
algoritma 2.1 ‘i uygulayarak (-1, 1 ) sinirlarinda yeni agirliklar v elde ederiz.

[vx21 her xe {0.1}" igin.
Yukaridaki esitsizligi k ile garpiyoruz,

| (fw).x [2 k her xe {0.1}" iin
asagidaki esitsizlige

| (kw).x — d(kw).x + d (kw).x |2 k

donusur.

Yukarida tanimlandigi gibi d(kw), (d(kwp),...,d(kwy,)) vektorunu gosteriyorken, d
fonksiyonu D kiimesi icin yer fonksiyonu asagidaki gibi

| kw—d (kw).x + d (kw).x [ k

genellestiriliyor.
Ucgen esitsizligi ile,
| kw—d(kw).x | +|d(kw).x |2 k

| d(kw).x = k—| kw—d(kw)).x |
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Ao x 2 k= [k —d(kyy)]

J=0

|d(kw)x 2 k—(n+ (., —d)

i d(k|wmax|) = d, iken, wnax agirlik en buyuk mertebeye ulasir |kw; — d(kw;)|
D’nin kosgullarina goére

cd.~d)<d,
ip vardir.

Tum i > ip ve herhangi bir se¢im i¢in C'yi C = wmax(n + 1) alalim.

Wmax (n + 1)(di+1 - dz) < di

esitsizligi ile d fonksiyonunun tanimi ile di < kwmax

W 1+ D = d ) < kWi

=+, ~d)>0.

Daha sonraki esitsizligi kullanarak asagidaki denklem

| d(kw).x [> 0

ortaya gikmaktadir.

Yeni agirhk vektorunin d(kw), orijinal fonksiyon tarafindan tamamlandigini
gOstermek igin bu kadar yeterlidir. Teoremin ispatinin ikinci bolumine gelmeden
once iki 6rnege bakalim.

Ornek 2.5 (Kareler) D, érnek 2.4’'te tanimlanan tam kareler kiimesinde
tanimlanan

D ={1,4,9,16,25,..}
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kime olsun.

Teorem 2.2'ye gore tim LT fonksiyonlari her C eR" igin

C(d.~d)=CG +2i+1-7)=CQi+) <]
olarak tanimlanabilmektedir.

Her i > iy,
i0={2c+,/C2+cJ+1
teorem 2.2’nin ispati

|d(kw)x 2 k—(n+ (..~ d)

esitsizliginde goruldugu gibidir.

Olarak,

| d(kw).x > k—(n+1)(2i +1)

| d(kw)x 2 k= (n+ D@2k, +1)
segiyoruz

k=n+2+wln2+3n+2

ve asagidaki esitsizligi

| d(kw).x [> 0

elde ediyoruz.

Yeni agirliklarin orjinal fonksiyonu ifade ettigini gostermektedir.
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Ornek 2.6 (Sayisal 6rnek)

Ornek 2.7 (2'nin Kuvvetleri) Ustteki ispat 2'nin Usleri icin kullanilirsa ne olur:
D ={1,2,4,8,16,...}

Teorem 2.2’deki ifade kullanilirsa
Cd.-d)=CcQ"-2)=cQ)<C{,

durumvCe R",3;5,/C(d..,—d)<d, heri=j, igin saglanamaz. Teorem
kullanilamaz. ispat nerede basarisiz olmaktadir?

| (fw).x [2 k her xe {0.1}" iin

| (kw).x — d (kw).x | + | d (kw).x [> k
| (kw— d (Jw)).x +d (kw).x [ k

| (kw—d(Jow)).x | +| d (kw).x [> k

| d(kw).x [2 k— | (kw— d(fw)).x |

|d(kw)x 2 k—(m+1)(d .~ d)

Bu noktada su ifade kullanilarak di+1 — di = di < k
| d(kw).x 2 k—(n+ Dk
| d(kw).x = —nk

ispatimiz burada ise yaramadi ancak 2’nin kuvvetleri igin sonuglari kanittamanin
baska bir yolu olmalidir. Kargit bir ornege ihtiyacimiz var. Agirhik vektoru
(-5,1,1,2,3,4) olan 5 degiskenli LT fonksiyonu
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f(X1’X2’X3’X4’XS) = Sgn(—5+x1+x2+2x3+3x4+4x5)
dusunelim.

2’nin Usleri olarak ifade edebilecegimiz agirliklari buldugumuzu

a0 al a? a3 ad as
TXp X X X Xs) =s8n(=2 +2 x,+2 x,+22 x;+22 x,+22 Xx,)
farz edelim.

aj € N iken. f taniminda yeni agirliklarin iligkisine gore su gozlemleri

£(11100)=0 ama f(11010)=1= 2" < 2™

£(10010)=0 ama f(10001) =1=> 2** < 2*

f(OOOOl) =0 ama f(OOllO) =1= 2“5 < 2a3+2a4

yapariz.

Bu esitsizlik sisteminin tam sayi sonucu olmadiginin gorulmesi ¢ok basittir.

ispat: (devam)
Teorem 2.2 deki 2. savi ispatlamak icin ornek 2.7 deki fikir izlenir. sz‘nin
agirhlari ile tamamlanamayan fonksiyonu

Wl < W1+1 <..< MHLJH <..< M}[HEJH
a a

bulunmak isteniliyor. Bunu saglayan herhangi bir agirlik kimesi seceriz.
Agirliklarin farkl olmasini garanti ederiz ayrica fonksiyonu duzenlenir.

ik esitsizlik kiimesi

Wl + M}[HéJ > M}[H%J
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gosterir.

ik esitsizlikler kiimesi asagidakileri

1 1
W, < 5 MI%J < Z ‘/V[H%J

ifade etmektedir.

ikinci ile birlikte gerekli geliski sadlanir. Bu érnek 2.7 de K = a = 1 olarak
yapilmistir. Fonksiyonlari herhangi bir sabit olan K ve a ‘ya gobre nasil
yapilandirabiliriz? Gelistirme i¢in bolum 5’te elemanlar kullanirz.

Yardimci Teorem 2.3 (yogun agirliklar ile fonksiyon kurma)
K ve A sabitleri verilmig ve asagidakileri saglayan herhangi bir agirlik kiimesi
olan fonksiyonumuz

W S Wy <o < M/IHLJ-H << M}[HEJH
a a

vardir.

Ve

Wl + M}[HéJ > M}[H%J
ile yardimci teorem 2.3’(in ispati Boliim 3.4.3'te verilmistir.

2.6 Sonug

Bolum 2’'de LT fonksiyonlarinin tam sayi agirliklarla tamamlanmasi gibi belli bash
sonuglarin genellestiriimesi yapilmigtir. Yogunlugu yeterli D tarafindan gekilen
agirhklarn olan LT fonksiyonlarinin verilen herhangi bir alt kime, D € R ile
tamamlanabilecegini gosterdik. D’nin polinom olarak ya da super polinom olarak
artmasi gerekir fakat Ustel olarak artiyorsa bazi fonksiyonlar reellestiriliemez.
Teorem 2.2 D'nin dogru sartlarini gésterir. ispatlar mispettir, agirliklarin
olusumundaki ya da karsit orneklerin olusumundaki algoritmalar gosterilmigtir.
Sayfa [49] ‘da 38 de tamamlanan dogrusal dugunce listesi ile 2 kath LT devreleri
tanitilmistir. ikinci kat girigindeki agirliklarin biyiikliikleri 2’'nin kuvvetleridir.
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Bolum 3
Minimum Agirliklar

3.1 Giris

Bu bolumde tam sayili agirliklar gibi ikili girdi ve c¢iktili tek dogrusal esik girisi
incelenecektir. Bu girisler matematikte dogrusal esik fonksiyonu olarak
tanimlanir.

Tanim 3.1 (Dogrusal Esik Fonksiyonu) n degiskenli dogrusal esik fonksiyonu

dogru yanhs fonksiyonudur f : {0,1}" —> {0,1} her x igin € {0,1}" ve w ¢ R™’
olarak

1, F(x)=0 igin

S (x) =sgn(F(x)) = { 0. Diger

FG)=W.(Lx) ==y + 2w x,
i=1

sabitlenmigtir.
Bolum 2 de goruldugu gibi LT fonksiyonlari tamsayi agirliklari ile reelize edilebilir.
Bu bolimin devaminda genelligi kaybetmeden agirliklarin tam sayi oldugunu
varsayacagiz.

Ayrica dogrusal esik fonksiyonu

fHELY s o
tamamlanabilir.
{0 ,1} ve { -1, 1} sunumlarina yonlendirecegiz.

Verilen f fonksiyonda agirlik vektort 6zel degildir.

Tanim 3.2 (Agirhk alani ) Verilen esik fonksiyonu f ve W tanim 3.1 i kargilayan
tum agirhiklarin kimesi olarak tanimlaniyor.
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W={we Z":Vxe {01} sen(W.(-1,x)) = f(x)}

Asagida agirliklarin boyutunun bir 6lgimu vardir.

Tanim 3.2 (En Dusuk Agirlik Boyutu) Agirlik boyutunun vektord agirliklarin
mutlak degerlerinin toplami olarak tanimlanir. En dusuk agirlik boyutunun
dogrusal esik fonksiyonu su sekilde

SU1=min Y 44, )

tanimlanir.

Asgariyi saglayan belirli vektore minimum agirlik vektoru denir. Dogal olarak
S[f]'nin fonksiyonudur.

3.1.1 Motivasyon

Neden egik devresindeki agirliklarin boyutuyla ilgileniyoruz?

Esik devresi sasirtici derecede glglii goérintyor. Ornegin polinom boyutunun
sabit derinlikli esik devresi tarafindan tam sayi bélmesi tamamlaniyor. AC’deki
her fonksiyon polinom benzeri ekseri devrelerin3 derinlikten hesaplanabilir
olmasi [1] ayrica saglanmistir. Bu tum ACC?® igin gergektir. Etkili Ust sinirlar
verildiginde alt sinirlari bulmak elde etmek igin gugliklerle karigilmasi surpriz
degildir. Aslinda esik devresi igin en iyi alt sinir derinlik2 igin gerekli olan Inner-
Product-Mod-2 (IP2) ‘nin sonucudur. Fakat bu alt sinir devrenin kuguk agirliklar
icerdigini varsayar ve IP2 herhangi bir agirlikh 2 derinlikli polinom esgik devresi
tarafindan hesaplanabilir. $Soyle ki, esik devreleri i¢in alt sinirlarin gelismesinin
edinilmesi, buyuk agirliklarin rolinin anlasiimasi ilgili oldugu goruluyor. Eger
yalnizca kuguk gelisme boyutlarinin  katsayilariyla esik  elemanlari
kisitlanabiliyorsa, devrenin hesaplanabilir guctu nasil kisitlanabilir? Bu durum
sayfa [17], [33], [43] de gosteriliyor. Ustel sekilde artan agirlikh tek esik elemani
S[f] ~ 2" tarafindan tamamlanabilen dogrusal esik fonksiyonlari bulunuyor. Fakat
bu fonksiyonlar daha kiigiik polinom olarak artan agirlikli esik elemani Sff ~ n°, d
tarafindan tamamlanamiyor. Bu sonuglarin i1siginda yukaridaki soru ile dogrusal
esik fonksiyonlarinin kiimelerinin bulundugu sinifi (“*kiguk” polinom olarak artan
agirhkli - fonksiyon sinifi) aciklayarak uzlasabiliriz. Yakin zamandaki
arastirmalarin gogu kuguk agirlikh devrelerin gucline ve keyfi agirlikli devreyle
iliskilerine odaklanmistir. Ozellikle bunlar gosteriyor ki devredeki derinligi bir
arttirmak tum polinom boyuttaki agirliklari dusurmek igin yeterlidir. Bu bolumde
degisik yaklagimlar ediniyoruz. Devrelerle ugragsmak yerine tek esik girigine
odaklaniliyor.

3.1.2. Organizasyon
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SOz konusu bolumuan geri kalaninin 6zet bir gergevesini vermekteyiz. Bolum
3.2'de biz etkiyi en aza indirirken kargi karsiya kalinan bazi zorluklari ve c¢ikti
alani tarafindan nasil etkilendigini gostermekteyiz. Bolum 3.3'de biz {-1,1}'de
tanimlanan fonksiyonlari dikkate aliyoruz. Esikte olmayan fonksiyonlar
sinirlandirihyor ( genellestiriimis ana fonksiyon ) ve en dusuk agirliga sahip bu
tur fonksiyonlarin nasil yapilacagini gosteriyoruz. Bolum 3.4’de biz {0,1} Gzerinde
tanimlanan her hangi bir egik fonksiyonu ile temas etmemizi saglayan minimal
fonksiyonlari olugturmanin baska bir yolunu veriyoruz.

3.2 Baslangiglar ve Ornekler

Bu bolimde bir esik fonksiyonunun agirligini en aza indirmeye c¢alisirken karsi
karsiya kalinan bazi zorluklari agiklamaktayiz. Biz ayrica ¢ikti alaninin etkileme
olgllerinden nasil etkilendigini gosteriyoruz. (Ornegin {-1,1}e karsihk {0,1})
Bununla ilgili sonuglara sayfa [25] ‘ten bakiniz.

3.2.1 Etkileri En Aza indirme

Bir esik unsurunun etkilerini dlgme konusunda analiz yaparken ana zorluk,
asagidaki ornekte gosterildigi gibi farkli bir etki seti tarafindan tek bir dogrusal
esik fonksiyonu gercgeklestiriimesinden kaynaklanmaktadir.

Ornek 3.1 ( En Diisiik Etkiye Sahip Bir Esik Fonksiyonu ) Asagidaki iki etki

setini degerlendirelim.( etki vektorleri )

W=(4 1 25), Fl(x)=—4+xl+2x2+5x3

W=(82410), F (x)=—6+2x+4x,+10y,

Her ikisi de ayni esik fonksiyonunu

S ) =sgn( [, (x)) =sgn(Q [, (x)) = sgn( ' (x))

vermektedir.

Yakindan bir bakig f(X) = sgn(-1 + x3), yukaridaki etki faktorlerinin hi¢ birisinin
minimal olgude olmadigini gostermektedir. Gergekten de en dusuk etki
wN=(1 00 1) ve S[f] = 2dir.

Verilen bir etki setinin minimal dizeyde olup olmadigini belirlemek genel olarak
bir sorundur. Bizim teknigimiz etki vektorlerinin yapiimasindan ibarettir ve onun
en dusugu kolaylikla saglanabilir. Biz daha sonra daha buyuk bir fonksiyonlar
seti elde etmek icin onlarn en dusuk duzeyde muhafaza ederken nasil
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degistirilecegi gosteriliyor.

3.2.2  {0,1} karsilik {-1,1}

Bizim ayni fonksiyonu (0,1) ve (-1,1) Uzerinde gerceklestirdigimizi farz edin.
Etkilenme nasil olacaktir? Bir 6rnege g6z atalim.

Ornek 3.2 (OR Fonksiyonu)

1. x € {0,1} icin

OR(xl,...,xn) =sgn(-1 +x,t +xn)
olsun.
Agirliklarin boyutu S = n + 1. Bu agirliklar en diguk olanidir.
Kanit: Agirliklar tamsayidir. Boyutlarini digurmek OR’un tanimini delecek
sekilde O'lamak demek oluyor.

2. Simdi, x; € {-1,1} igin

OR(x,»x,) =sgn(n—2+ x, +..+ x,)
olsun.
Agirhiklarin boyutu S = 2n - 1. Bu agirliklar da en duguk olanidir.

Kanit: OR’'u ifade eden tum agirliklar pozitif olmalidir. Any weights that
implement OR have to be positive. S' < 2n-2 boyutunda agirliklarin oldugunu

dusunun. Higbir agirlik 0 olamaz, boylece wa' >2n,-Wo<(2n-2)-n=n-2esik
fonksiyonunu ifade eder.w;i' en duguk agirlk olsun. X; =1 olsun ve diger tim
girdiler -1 olsun. Y "w'< —yy(n—2) bdylece F(X) < 0 OR'un tanimini delerek.

Bu ornekten de gorulebilecegi gibi {0,1} ifadesi {-1,1} ifadesinden daha kuguk
agirhktadir. Bu genel olarak dogru mudur?

Ornek 3.3 ( (MAJ Fonksiyonu) n degisken sayisi tek olsun. Girdilerin
yarisindan fazlasi dogru olursa MAJ fonksiyonu dogru donmektedir.

* x; € {0,1} icin
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n+1
MAJ(x, s X,) = sgn(—T+ x,ttx,)

olsun.

Agirliklarin boyutu S = Snt1

. Durum 2’dekine benzer bir ispatla bunlarin en

kiguk oldugunu gosterebiliriz.

- Simdi x; € { -1,1} olsun,

MAJ(xl,...,xn) = Sgl’l(x1 + ...+xn)

Onlarin dlgtsunun indirilmesi, bir veya daha fazlasinin O'ya getiriimesini ifade
ettigi ici bu etkiler minimaldir. Bu ise MAJ'In tanimini degistirecektir. Etki olgusu
S =ndir.

Bu ikinci 6rnek genel olarak {0,1} mi yoksa {-1,1}’nin mi daha kuaguk agirlikta bir
fonksiyon uretecegini sdyleyemeyecegimizi gostermektedir.

3.3 {-1,1} Uzerinde Genellestiriimis Cogunluk Fonksiyonu

Bu boliumde asagidaki modele

f:{=L1} = {0,1}

£ =sgn(¥ w x)

calisilacaktir.

Esik olmadigina dikkat edin, biz belirli etkilere sahip bir cogunluk fonksiyonuna
goz atiyoruz. Biz minimal etkilere sahip fonksiyonlarin olusturdugu fonksiyonlara
cevap veriyoruz. Ozellikle amacimiz belirli bir ¢ikti n ve 6lgi S elde etmek
igindir.

3.3.1 Matematiksel Kurgular

Biz minimal etkinin kolaylikla kurulabilecegi fonksiyonlar ile ilgilenmekteyiz.
Minimal etkiyi bulma bir arastirmayi kapsar; Biz bu nedenle sinirli bir etki alanina
sahip fonksiyonlari bulmak igin ¢abaliyoruz. Agagida yazili olanlar bize w tzerine
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sinirlamalar koymamiza izin vermektedir. (Bu bolumun geri kalan kisminda,
karigikliga meydan vermemek icin biz agik bir sekilde vektorleri anlatilacaktir.)

Tanim 3.4 (Bir Dogru Yanhs Fonksiyonun Temel Alani) Bir vektor G { — 1, I}"
f(v) = f(-v) gibi fnin temeli olarak adlandirilir. Biz temel alan R’yi fnin tim temel
setleri olarak tanimlariz.

Tanim 3.5 (Temel Generator Matriks) Verilen bir etki vektori w € W ve bir
temel v G R igin, temel generator matriks, G = (gij),bir a (nxk)-matriksidir,
{-1,0,1} kapsamindadir, g dizileri w'ye dogru duz agili ve diktir ve tim sifir
olmayan koordinatlarda v’ ye esittir, yani,

1. Gw=0Gw=0
2. g =Oveyag =y, herivejigin.

Ornek 3.4 (Temel Generator Matriks) Bir etki vektor(i tarafindan belirlenen bir
linear fonksiyon verildigini var sayalm. w = (1,1,2,4,1,1,2,4). Arastirirken
v=(1,1,11, -1, -1, -1, -1) oldugunu tespit ederiz. Dikkat edin w1 + w, — w7= 0 ve
g.w = 0 olarak yazilabilir, orada g = (1,1,0,0,0,0,-1,0) G setidir r= v - 2g. g tum
sifir olmayan koordinatlarda v'ye esit oldugu igin f e {-1,1}"dir. Ayrica
r.w=v.w+g.w = 0 dir. Biz yeni bir temel ortaya atiyoruz. r= (-1, -1,1,1, -1, -1,1, -1).

Lemma 3.1 (G ve W’nin Dikeyligi) Verilen bir etki vektora w € W ve bir temel
ve R, uG" =0 her hangi bir etki vektori u e W igin dizenlenmigtir.

Kanit: u € W ve bir dizi i¢cin, G’nin gi, v = v - 2g; olsun <fj, eger G {—1,1}™
tanimlarken ve if m w = 0 ise. Bu f(if) = f(—if) anlamina gelir: Her hangi bir temel
vektor icin u € W, sgn{u.v) = sgn(-u.v). Bu nedenle, u m (v - 2g;) = 0 ve sonug¢
olarak , v . u =0 oldugu icin, u . ¢; = 0 kabul ederiz.

Yardimci Teorem 3.2 (Minimalite) w € W agirlik vektoru igin ve kok v € R igin,
eger, rank(G) = n - 1 (i.e., G n - 1 bagimsiz satira sahip) ve |wj| = 1 bazi i'ler igin,
o zaman w en dusuk agirlik vektorudur.

ispat: Yardimci teorem 3.1 ‘den her u agirlik vektord uG’™ = 0 esitligini saglar.
rank(G) = n -1 dim(W) = 1 oldugunu gosterir. Ornegin tum muhtemel agirlik
vektorleri kendi icinde carpilan tam sayilardir. |wj| = 1 oldugu i¢in tum vektorler
u=kw k>1 degeri i¢in esitliginde vardir.

Ornek 3.4 ‘U yardimci teorem 3.2 ‘nin uygulamalari ile tamamladik.

Ornek 3.5 (Minimalite)

w=(11,2,4,1,1,2,4)
v =(LLL1,-1,-1,-1,-1)

verilmis olsun.
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Asagdidaki gibi bir yapi kurabiliriz:

1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0
G=|0 0 0 1 0 0 0 -1
1 0 0 0 0 -1 0 0
1 1 0 0 0 0 -1 0
1 1 1 0 0 0 0 -1

Rank(G)'nin minimum oldugunu gostermek oldukga kolay ve S[f] = 16.

3.3.2 Agirlik Vektorleri

Ornek 3.5'te nasil verilen vektoriin minimum oldugunun gosterildigini islemistik.
Bu kisimda keyfi girdi degerleri ile minimum agirlikh boyutunu iceren dogrusal
esik fonksiyonunun orneklerini gosterilir.

Agirlik vektoru olugturmak ve en dusuk oldugunu gostermek istiyoruz. Girdilerin
sayisina n diyelim ve n ¢ift olsun. w de iki denk bloktan olussun:

(W1, Wa,..., Wi, W1, Wo,..., Wp/2)

Acikca,v=(11,...,1,-1,-1,..., -1) bir kbk ve G ilgili karsilik gelen matristir.

1 0 00 .. 00 O -1 0 0O 0 0 O
o o0 ..o 00 O0-1 0O ... 000
o010 .. 00 0 0O -10 0 0 O
G=
0 0 0 0 0 0 0 -1 0
0 0 01 O 0 0 0 0 -1
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3.3.3 Yapim

S tamsayisi ve n degisken ile n degigkenli ve s boyutunda minimum agirlikta bir
fonksiyon oldugunu gostermektedir.

Teorem 3.1 (Ana Sonug) (s,n) ikilisi igin agagidakileri saglayan

22 n ¢ift ise

n-1 n-3
22 +22

1.n<s<
n tek ise
2. s ¢ift

[f] = s boyutunda en duguk agirlikli n degiskenden olusan dogrusal bir esik
fonksiyonu vardir.

Kanit: Verilen (s,n) cifti yukaridaki sartlar saglar. )" |, |=skosulunu

saglayan agirhk vektort w, vyapilandinlir. Daha sonra f(x) = sgn(w.Xx)
fonksiyonunun minimum agirlik vektor gésterilir. ispat sadece n ‘in gift oldugunu
gOsterir.

YAPIM.

1. (ai, az,..., an) = (1,1, *+=, 1) tanimlanir.
2. Eger ijai <s/2 ise aj < 2" gibi en kiiclik a; alinarak arttirilir.(Baglanti
olayinda oldugu gibi en kuguk i'ye endeksli w; alinir.)

3. 37 g, <52 veya (ar, agean) = (10, 2, 4,0 277)
4. Set w = (a1, az,...,an, a1, az,..., an2) olana kadar , bir onceki basamagi
tekrar ederiz.

Clinkii boyutu zamanla arttirarak algoritmada n < s < 2”2 esitsizligini saglayan
her s tamsayisi i¢in istenilen sonuca yaklasilir. w'nin en dusuk oldugunu
gosterelim.

MINIMALITE ~ verilen w = (aj,a2, ..an/2,@1,82, ..,anl2) ‘den Kokl
u=(1,1,...,1, -1, -1,..., -1)  ve w; = wisnp2. esitligi ile ilgili genellestirici G matrisinin
n/2 satirini buluruz. Eklenilen satirlardan anlasiliyor ki ilk k aj'leri ikinin kuvvetleri

(k s ve n ‘ye bagliyken). Bunlar a; = Zl;zla,»jaj seklinde yazilabilir ve k-1 satir
Uretilebilir. Son olarak diger biitin a/ler i>k iken 2" den’ kiigliktir. Bunlar ikili
acilim olarak yazilabilir, (0(,7 e {0,1} iken a, g—kgibi agirhklar vardir. G’nin

bagimsiz toplam n-1 satiri vardir. rank(G) = n - 1 ve wy = 1; yardimci teorem
3.2'ye gbre w minimumdur ve S[f] = s’dir.
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Ornek 3.6 (10 Degiskenli ve 26 Biiyiikliikteki Bir Fonksiyon) ile baglhyoruz

i=(1,1,1,1,1)

Oteleme yapiyoruz,

(1,1,2,1,1)
(1,1,2,2,1)
(1,1,2,2,2)
(1,1,2,3,2)
(1,1,2,3,3)
(1,1,2,4,3)
(1,1,2,4,4)

ve sonug olarak algoritma

a=(1,1,2,4,5)

sonsuza gitmektedir.

w=(a,a)=(1,1,2,4,5,1,1,2,4,5)
en dusuk oldugu iddia edilir.

Gercekten, v = (1,1,1,1,1, -1, -1, -1, -1, -1) ve
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1 0 0 0 0 -1 0 0

0 1 0 0 0 0 -1 0

0 0 1 0 0 0 0 -1 0

0 0 0 1 0 0 0 0 -1 0
G=|0 0 0 0 1 0 0 0 -1

1 0 0 0 0 0 -1 0 0

1 1 0 0 0 0 0 -1

1 1 1 0 0 0 0 0 -1

1 0 0 1 0 0 0 0 -1

9 rankinda bir matristir.

Ornek 3.7 (Polinom Boyutlarinda Fonksiyonlar) Bu érnekte Teorem 3.1 ‘in

. .- d:_: o . . Ald) .
uygulamasini gorecegiz. S[f] < n" i¢in dogrusal esik fonksiyonlari olan L i
tanimhiyoruz. Teorem gosteriyor ki her ¢ift n icin n degiskenli ve minimum agirhkl
S[f] = n® bir f fonksiyonu vardir. Buradan yapilacak cikarim tim d’ler icin Lf(d)

uygun bir LT alt kimesidir.

3.4 {0,1} de Keyfi Esik Fonksiyonu

Bu kisimda en dusuk agirlikli esik fonksiyonunun olusturulabilmesi icin degisik
teknikler gosterilecek. Her bir yukun boyutu degigkenlerin sayisi ile fonksiyonlari
olusturabiliriz. Fonksiyonlari {0,1} girdi tanim kimesinde dusunebiliriz fakat keyfi
girdi uzayi{a,b} icin argiman hala vardir. Bolumun geri kalaninda karisikligi
onlemek amaciyla vektorleri belirtmek icin buyuk harfler kullanacagiz.

3.4.1 Yaklagsim
Kullandigimiz metotlar sayfa [52]'nin sonuglarini  taban almaktadir.
Genellestirmenin disina c¢ikmadan agirliklarin tamamiyla pozitif tamsayilar

olduklarini var sayalim. Hedefimiz § = ZZ|W => W

Esitligini kagultmektir. Esitlik [32]'den bildigimiz gibi ayni fonksiyon tarafindan
tamamlanan diger agirliklar, U, tamamen pozitif olmalidir.

12 201 W, 2 Zéu sartlar altinda gosterecegiz.

Asagidaki esitliklerde olan girdi vektorlerini X ve Y
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F(X):_WO+ZWiXi:O
1

F(Y):_WoJriWiyi:O

olarak dugunelim.

Matrisin satirlarini A olarak belirleyelim,

) (N )

-1
1y XX e X,
X IR C ®)
_1 X(Z) xl xz cee le
Lo )
_1 X(p) xl x2 x,,
A= = o o) )
1 _Y“) -1 —yl —y2 ...—yn
) @) @) @)
I _Y _l_yl _yz _yn
1 - Y(’” { @ @ @
=Yy, =),

satirlarin tekrarina izin verdik: X% = X9 = . = X®'| elde ettik.

Ornek 3.8 (Matris A) Elimizde agagidaki agirliklarin oldugunu varsayalim.

W=(13663322 1 1)

Hedefimiz minimum oldugunu gdstermektir. Oncelikle matris A'yi olusturmaliyiz.

)
X -1 01010 11 1
acl-t X[t r oo 01
oyt 10-1 0-10-10 -1
o I-1 0-1 0-1 0-1 0

-1 _Y
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A igin pek ¢ok segenek mevcuttur. Yukarida gosterilien daha sonra
goreceklerimiz kadar iyi bir ornek degildir.

Teori 3.2 (En Duisuk Degeri Saglama Kosulu) : Agirlik vektord W olarak kabul
edildiginde, A’y agsagida belirtilen sekilde agiklanz. Eger a > 0 ve A asagidakini
saglamaktaysa

(1..1A=(a ... a)

agirhik vektord W minimum degere sahiptir.

Kanit: X'lerin ve F’lerin tanimina gore, A matris’i agsagidakileri

P q
>

T
AWy Wi Wy W, ) =00...001...11 (3.1)

saglar.

sgn(0) = 1 ve sgn(-1) = 0 oldugundan, ayni fonksiyonu uygulayan herhangi bir

agirhk vektoru, U, yukaridaki esitlikleri “=” yerine “>” ile yerine getirmelidir.

» q
>

T
Aot u,) =00..001..11 (3.2)

V = U - W olsun ve (3.1)deki esitlikleri (3.2)deki esitsizliklerden gikaralim. Sonug
olarak sunlari

ptq

T >
AV vy, ) =00..00 (3.3)
buluruz.
Simdi oyle bir A alalim ki
11..11.A=aa...a (3.4)

A pozitif bir tamsay! oldugunda esgitlik (3.3)’teki tum esitsizlikleri soldaki tum 1
vektorlyle garpip su sonucu
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P pra L%

(111D -A-(wgry g ry)’ > (11..110)-(00...007

.
Y.—A_\ » . T -
(@@ @) (Vo) V2 . Vp)? =0

n
a) ;>0
0

elde ederiz.

Tami=0,...,nigin,a>0,w; 20, ;=20 oldugundan, sunu

Dol Z 20 W,

bilmekteyiz.

Girdi kuimesinin  {0,1} oldugu gercegini, kanitin hi¢ bir agsamasinda
kullanmadigimiza dikkat ediniz. Hatta yukaridaki kanit herhangi bir {a, b} girdi
kumesi igin gecerlidir. Gorebileceginiz gibi kanit, esitlik (3.4)'G saglayacak bir
A’nin yapilandiriimasi Gzerine kurulmustur. Bir A olusturabilmek igcin W seg¢imine
bagh olan uygun X'lere ve F’lere ihtiyac vardir.

3.4.2 Basit Olusum

Bu bolumde W ile, genel olusum igin agirlik vektoru, karsi kargiya gelecegiz, ve
uygun bir A matrisi bularak W’nin en dusuk degerde oldugunu kanitlayacagiz.
Esik degeri wy'yu istege bagli bir deger olarak kabul edelim. Sunlari segelim:

Wl = [MJ, W3 = \‘—WO _ W]J’ WS = i‘—wo _ W] _ W3J,..., W 4 = 1 ve W2i=W2i_1 |=1 ,..,n
2 2 2 "

igin. Oyle bir “n” segiyoruz ki » 'y, >y, —1 olsun. Bir érnek inceleyelim.

Ornek 3.9 (w, = 13) Yukarida tekrarlanan tanimi uygulayarak, Ornek 3.8'deki

agirlik faktorinu elde ediyoruz: W=(13663 32 2 1 1). Burada, A igin olan X ve
Y tipi satirlari izleyiniz.
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~
J

110101011 - |
) L sumX;=(—211111122)
| -10101011 1]
(1 10101100) o |
g o osumXo=(—211112200)
| -101011100]
(110110001 o |
4 r o sumXz=(—211220011)
| -10111001 0]
(11100000 1] o |
{ r o sumXy4=(—222000011)
[ -11100001 0]

1 -1 0 -1 0 -1 0 -1 0
1 o0 -1 0 -1 0 -1 0 -1

o~

sum¥j=(2 =1 =1 =1 =1 =1 =1 =1 =1)

1 vektoranun timuna elde etmek igin satirlari kopyalayip topluyoruz. Sadece tek
sayllar ile numaralandiriimig sutunlar gosterilmektedir.

-2 1 11 2 0 00 01 0 00 01
-2 11 2 0 0 00 1-1 0 001 O0
-2 1 2 01 0 01-10 0 01 0 O
-2 2 0 01 0 1-1-1 0 010 0O
-2-1-1-1-1){(-2-1-1-1-1){=-2-1-1-1-1

Sonuncusu 2 vektorunun tumane esit olmaktadir.

Teori 3.3 (Olusumun En Dusuk Degeri) Herhangi bir wg i¢in, S = 3 * wg - 2
boyutlarinda en disiik agirlikla ve bir cok degiskenle n =[log2S] bir esik degeri

fonksiyonu olusturabiliriz.

Kanit: 14 =al ‘i saglayan bir A olusturacagiz ve Teori 3.2’yi uygulayacagiz. A'yi
olusturmak icin sadece 2 adet Y tipi vektor

l1 -1 0 -1 0 .. -1 O
1 0-1 O0-1 .. 0 -1
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gereklidir.

iki olasi sekilde(2 -1 ...-1) sonug elde edilebilir.

X tipi vektorler, ikiger ikiser toplanarak, su sonucu verirler:

Bu kismi toplamlari tekrar edip toplayarak, 1 vektorunun tumunu elde edebiliriz.
Peki bunu nasil yapacagiz? Iki Y tipi ve iki X tipi vektoru toplayarak bir (0,...,0,1)

olustururuz.

21 .120..00

21 ..120..01

Si’den kastimizin i = 1...n , singleton vektoru (0,...,0,1, 0,...,0), 1. pozisyonda
iken, oldugunu ifade edelim. Tum S/ye V ve F tipi vektorleri toplayarak
ulagtigimizi gostermek i¢in tumevarim kullaniyoruz. Hatta j = 1,...,i - 1 igin tim S;

‘ve ulastigimizi varsayahm. iki X tipi ve iki Y tipi vektorleri toplayarak S;
uretebiliriz.

2 -1 -1 -1 -1 ... -1 -1 -1 -1
-2 1 1 20 O 0 0
0 0 0 0 1 0 0 O
0 0 0O 0 0 0 0
0 O 0O 0 O 0 0 1
Tam S; vektorlerini bulduktan sonra, onlari 3 x (2 -1 ... -1) kere toplayip, 2

vektorinun timune ulasabiliriz.

3.4.3 Keyfi Buyukluk ve Sayida Degiskenler icin Olugsum

Bu bolumde, fazladan bir degisken elde etmek icin agirhgi nasil bolmemiz
gerektigini gosterecegiz. Ayni zamanda, bir ya da iki degigken birim agirlikla
toplandiginda sonucun en dusuk degerli bir fonksiyon oldugunu da
kanitlayacagiz.
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Yardimci Teorem 3.3 (Agirhgr Bolmek) W = (wo, wy, ..., W,) en dusuk

degerinde olsun.. O halde a + b = wy minimum degderde oldugunda, W= (wo, a,
b, Wz, Ws,..., Wn+1) olacaktir.

Kanit: ikinci siitunu tekrar ederken, bir A olusturun.

Yardimci Teorem 3.4 (bir girdiyi birim agirlikla toplamak W = (wo, wy, ..., Wy)

minimum degerinde olsun. O halde w;.s =1 minimum degerinde oldugunda, W
= (W1, Wa, Wa,..., Wns1) Olacaktir.

Kanit: W'nun en dusik degerinde olmadigina yani W igin daha iyi bir segcenek
oldugunu dusunelim ve buna W diyelim. Iki olasilik vardir. Ya w',+s = O olacaktir
yadai<n+ 1igin bazi wlar uygun wi'den daha kuguktur. Ikinci durumda, x,+1=0

aliyoruz ve hipoteze ters olarak daha kuguk agirliklarla uygulanmig olan orijinal
fonksiyonu elde ediyoruz. Simdi w'y+; = 0 oldugunu, yani Xx,.;'e bagli olmadigini

farz edelim. Bu tim X girdileri igin > "1y, x, 20 ya da Yy, x,<-2oldugunu

ifade eder. Orjinal fonksiyonun minimum degerinde olmadigini soyleyerek wy’i 1
birim azaltabiliriz.

Bu iki yardimci teoremi kullanarak, fonksiyonlari keyfi sayida ve buyuklukte
degiskenlerle olusturmak basittir. Hatta bundan fazlasini da yapabiliriz:
fonksiyonlari sabit agirlik yapisiyla olusturabiliriz. Bu fikri Yardimci Teorem 2.3’
kanitlayarak gosterelim.

Yardimci Teorem 2.3’un Kaniti:

iki pozitif sabit K ve o asagidaki igin bir agirlik vektori

4% < Win < "'MH—%JH <..< MH—%JH
Wl + MH&J 2 ‘/V[H%J

Olusturmaliyiz.

a =1 olmasi Ornek 2.7'de incelenmisti. Agirlik vektdri su sekilde

(—2”,1,1,2,4,...,2”,1,1,2,4,...,2”,w,w+1,...,w+tlJ+1,...,w+{—J+1

Olsun.

p, 2”21,%1+3J+10Iacak sekilde ve yeterli buyuklikte bir tamsayi olacak sekilde

segilmistir. Vektorin minimum duzeyde oldugunu kanitladigimiz gekilde, diger
agirhiklar igin de yukaridaki iki kogulun saglandigini kanithyoruz.
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3.5 Sonuglar

Keyfi agirlik, buyukluk ve sayidaki girdili minimum agirlik esigi fonksiyonlari
olusturmak igin iki teknik gosterdik. {0,1} ve { -1,1} ‘yi girdi kimeleri olarak kabul
ettik. Bu teknikleri kullanarak, Ustsel olarak ve polinom olarak buylyen
agirhklarin arasindaki ayrimi ayrintilariyla inceledik. Asil sorun bu tekniklerin
devre boyutunda bulunan degisken agirliga sahip fonksiyonlarin mevcut alt
sinirlarini genigletmede yararl olup olmadigini bulmaktir.

Bolum 4

Devre Derinligi icin Agirhik Boyutundan Vazgecmek

4.1 Giris

Sinirsel ag alanindaki deneysel birgcok deneysel sonug, dogrusal esik
degerlerindeki katsayilarin buyudklagunin girdilerin boyu ile birlikte ¢ok hizli
arttigini ve bu nedenle bu agin pratikte kullanimini sinirladigini géstermektedir.
Dogal olarak su soru sorulabilir: eger sadece katsay! buyumesi kuguk olan egsik
elemanlarn segcilirse, agin bilisimsel gucu ne kadar sinirlanir? Bu bolum buyuk
agirhklar gerektiren LT fonksiyonlarinin uygulanmasi uzerine yogunlagsmaktir.
Bayuk agirliklarla tek bir LT gecidi kullanmak yerine, kuguk agirhkh LT
gecislerinden olusan iki tabakali devre kullaniyoruz. Buyuk ve kiguk sirasiyla
n‘nin, girdilerin sayisi, Ustel olarak ve polinomial olarak anlamina gelmektedir.

Ustel olarak bilylyen agirliklara sahip olan esik elemaniyla uygulanan bir
fonksiyon oldugu sayfa [17], [33], [38], [43], fakat bu fonksiyon polinomial olarak
buaylyen agirliga sahip olan esik elemaniyla uygulanamayacagi gosterilmigti. Bu
sonucun 1giIginda LT altsinift  kiguk agirlhikh fonksiyonlarin sinifi  olarak
tanimlanmaydi. Siu ve Bruck LTy C LTq+ sayfa [13]'nin sinirlant LT LT, .
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haline getirdigi ve bunu L7 < LT, seklinde gostererek ve keyfi derinligi

genelleyerek kanitlamistir. Lakin bu metot ¢ok karmasiktir ve kanitlar takip
etmek zordur. [18], [13]deki sonuglarin basitlestiriimis versiyonunu
gostermektedir. L7 < LT, oldugunu gostermeye odaklanir. Bir yere kadar

daha basit ve hissel bir olusum yaratarak birincinin yerini almaktadir. Fikir, iki
igslemi agirhlar azaltmak, iki ayri glice ayirmak ve onlari modula bir asal olarak
bolmek igin kullanmaktir. Sonug olarak elde edilen kuguk-agirlikh gegitler, yeterli
prime kullanilirsa (58) dogru ¢ikti yaratan bir devreye baglhlardir.

Sadece belirli bir buyuk-agirlik fonksiyonun simulasyonunu kullanarak, sayfa [13]
ve [18]'de belirtilen sonuglari daha da basitlestirdik: KARSILASTIRMA. Sonug
olarak sirasiyla 0(n4 logn) olan devremizdeki bir takim gecitlerde sinirlar ve

[18]deki o(nlzlog“n) ‘deki genel sinirda dnemli gelismeler elde ettik. Ayrica bir

bilgisayar simulasyonu calistirdik ve 22 degisene kadar minimum devreler
belirledik. Simulasyonun sonuglarini gosteriyoruz ve ileriki arastirmalar igin
uygulamalar ve talimatlar sunuyoruz.

4.2 Karsilastirma icin LT, devresi

Kargilagtirma fonksiyonunun 2 n-bit sayidan olustugunu farz edelim. X; =
(X1,X3,..., X2n-1) X2 = (X2X4..., Xon) € {0, }" olsun. X; ve X;tarafindan temsil edilen

tam sayl degerleri sirasiyla sunlara esittir: > x, 27 ve > x, 2",
KARSILASTIRMA fonksiyonu su sekilde tanimlanir.

C(XI,X2)={1 X>X.

0 Diger
Diger bir degisle,
C(X,-X,)=senl X - X.]
=sgn[¥, 2" (s~ X))
seklinde ifade edilebilir.

KARSILASTIRMA fonksiyonun LTy,’ye ait olma fakat LT;'e ait olmama gibi ilging
bir 6zelligi vardir. Armonik analiz araglari kullanilarak, KARSILASTIRMA’nin
LT>de oldugu gosterilmistir. Sayfa [18]'de aciklanan metod kullanilarak
KARSILASTIRMA igin bir LT, devresinin agik olugsumunu sagliyoruz.
KARSILASTIRMA'nin agik olusumu sayfa [2]'de aciklanmisti.
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KARSILASTIRMA’nin degerinin, X; ve X2'nin farkhlik gosterdigi en yuksek-duzey
bit pozisyonuyla bulundugunu unutmayiniz. Eger bu bit X;'de 1 ise ve X>de 0
ise, o halde C(X1,X2) = 1. Ya da, C(X:1X3) = 0. (X7 = X2 iken, 59 tanimi
C(X1,X2)=0.)

F(X):Z;Zi_l(xzi_l—xm) olsun. Birinci basamak, 1’den biiyiik olan agirliklari

usrekli olarak yariya bolup 1 ve 0 arasinda agirliga sahip agirliklar saglayarak bir
Fi(X) fonksiyonlari sirasi olusturmaktir. Asagidakiyle bagliyoruz.

Fo(X) = F(X). n basamak sonra, bolme islemi sifira egit olan bir fonksiyon

n—1 n—1
Fo:X1_X2+2.7C3_2X4+"'+2 X2n71_2 Xon

n-2 n-2
F1:X3_X4+”‘+2 x2n—1_2 Xan

Fn—l = xZn—l - xZn
Fn = 0

verecektir.
Her bolmenin hem X; hem X_'yi sola kaydirmaya esit oldugunu unutmayalim.

Yardimci Teorem 1. F(X)'inve yukarida belirtildigi gibi sola kaydiriimis F(X),
0</< n dogrusal fonksiyonlarin dogrusal kombinasyonlari igin,

F(X)>0e3: F (X)=1.

Kanit. Her X € {0, I}*" igin bir t mevcuttur, dyle ki tim / = t igin, Fi(X) = 0. Simdi
kaydirmayla ortaya gikacak en buyuk hatayr géz 6nunde bulundurun Sunu

max max| [ (X)-2. F, (X)|=1

2n
Xe{o,1} =0

goruyoruz.
Her kaydirmayla en fazla iki degisken (agirliklari 1 ve -1 arasinda degisen “low-

order bit’leri temsil eden) yok edildiginden. Bu nedenle, |F(X)| sifir degilse, |Fi(X)]
= 1 olacak bir / mevcuttur. Eger F(X) pozitifse, o halde tum F(X)ler pozitif veya
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sifirdir ve eger F(X) negatifse, o halde F,(X)ler negatif veya sifirdir. Sonug
asagidaki gibidir.

X =X Xy 0> X o= (X Xaoo X)) € {0,1}” olsun. Her 0 < / < n igin
“test” 60 fonksiyonunu asagidaki gibi tanimlayin.

L. 7 (X)=1

rH= {O Diger

Yardimci Teorem 1 su sekilde

F(X)>0 & VTICX)ZI

tanimlanabilir.

Deneme olmasina ragmen, modulo asal sayilarini hesaplama fikriye
kullanildiginda Yardimci Teorem 1 yararl hale geliyor. Modulus islemini O'da
ortalanmis simetrik bir aralikta degerler vermesi igin tanimliyoruz. Ornegin bir
tam sayi Z igin ve pozitif tamsay! k igin, t € [-k, k] ve t = Z (mod 2k-1) oldugunda,
Z mod (2k-1)=t olsun. p prime verildiginde, asagidaki gibi her 0 </ < n igin bir test
islemi modulo p tanimlayin.

1 eger ' (X)mod p =1

X)=
T, {O diger

Bir X € {0, 1}*" igin ve bir asal p igin, siradaki tiim F,(X) fonksiyonlari igin Tpi(X)
hesapladigimizi varsayalim. Test iglem modulosu asal p her zaman dogru
cevabl vermediginden, bu vyeterli olmayacaktir. Fakat asagidaki Yardimci
Teorem bize yeterli asal sayida tekrar edersek, 6rnegin r kadar, ¢cogu zaman
dogru yaniti alacagimizi sdylemektedir.

Yardimci Teorem 2. p; < p, <.. 3’ten buyuk ardigik asallar olsun. s,

p1p2...ps>2"'-1 sadlayan en kiigiik tamsayi olsun. O halde |Z| < 2" -1 olan her Z
tamsayisi igin,

Z€E[-11 => Zmod J2= [-1,1] tum asallar > 3,
Z¢ [-11 => Zmod J2= [-1,1] s’den kuguk asallar > 3.
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Kanit. Birinci ifade denemedir. Ikincisi direkt olarak Chinese Remainder
Theorem (bakiniz [18])’'den alintidir. s = O(nlogn).

X € {0, I}2n icin ve bir grup asal say! pipz...pr igin, Tp (X)1<i<rve0=<l<n

igin oldugunu hesaplayan bir elemanlar butinine sahip oldugumuzu dusunelim.

Tpl.Cl(:-\—:) Tpll(-\-.) Tpl.n(:-\.:)
Tp_-.Cl(:-\.:) T, p_:.L(:-\-.:) e Tp_r.n(:-\-:.)

Tp...':l(:-\—:) T, pl(-\-.) e Tpn(-\-)

F(X) < 0 oldugunda bir elemanin 1’e dondugu bir “yanlis” pozitif belirleyin. F(X) >
0 oldugunda bir elemanin 1’e dondugu bir “dogru” pozitif belirleyin.

* F(X) > 0 oldugunda, Yardimci Teorem 1 her satirda en az bir gergek pozitif
oldugunu sdylemektedir. Bu nedenle dizide toplamda en az r tane gergek pozitif
vardir.

* F(X) < 0 oldugunda, Yardimci Teorem 2 her sutunda 3 * s ‘den az yanhsg
pozitifin oldugunu soylemekteir. Bu nedenle dizide toplamda 3 * s m n'den az
yanlis pozitif bulunmaktadir.

Eger r = 3 » s m n oldugunu segersek, F(X) <0 oldugunda 1’e donen elemanlarin
sayisi her zaman r'den kuguk olacaktir, ayni zamanda F(X) > 0 oldugunda 1’e
donen elemanlarin sayisi r'ye esit ya da r'den kuguk olacaktir. Buradaki 6nemli
nokta yanlis pozitiflerin sayisinin Ust sinirinin satir sayisindan ve gergek
pozitiflerin sayisinin alt sinirinin sttun sayisindan bagimsiz olmasidir.

KARSILASTIRMA icin, test elementlerini bir LT gegisine girdi olarak
baglayabiliriz ve gegigin esigini r olarak belirleyebiliriz. Buradaki sorun tek bir
tabaka kuguk agirhkh esik gecisleri kullanarak, test elementlerini nasil
gerceklestirecegimizdir.

Bu yaklasim esik devre teorisinde standardtir. 1 </ < r ve 0 </ < n igin,
Fp (X)’l, F(X) modulo p/nin agirliklari dugurulerek elde edilen dogrusal

kombinasyon olarak tanimlayiniz.

Her X € {0, }*" icin,

Tp_ (X):1<:>Fp. (X) mod p=1.

Simdi Fp (X) en fazla n < pt farkli deger Ustleniyor. Bunlarin en fazla n tanesi
modulo p; alindiginda 1’e esgittir. Fp (X)’in degerlerini vy, v»,...,v, gibi azaltilmis
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modulo p; 1 iken gosteriniz. Her Vj, 1 < j < n igin, ilk tabakaya iki LT gegisi
yerlestirip bunlara G?)(X ) ve G?(X ) diyoruz.

e G ve (G deki girdi telleri iizerindeki agriiklar F, (X)in

agirliklarina egit olarak esitlenmisgtir.
. Gi” ve G(jz) nin gegisleri sirasiyla v; ve v.i, olarak ayarlanmstir.

() @ g . o
. Gj ve G,» nin ¢ikis agirhklari Gzerindeki agirliklar sirasiyla 1 ve -1,
olarak

(G +G =T, ()

ayarlanmigtir.

Sonug¢ olarak, toplamda, her birinin gergeklestirimek igcin 2 « n LT gegisine
ihtiyaci olan 3 « s * n tane test elemanimiz var. Yani toplamda 6 * s * n*tane LT
gegcisi lazim. s = O(nlogn) oldugundan, yapimizin bayuklugu sudur: 0(n4logn).

4.3 Bilgisayar Simulasyonu

KARSILASTIRMA'nin LT, yapisini simule etmek icin, ekte gosterilen kisa bir
Matlab programi kullandik. Her n (degisken sayisinin yarisi) igin, en kuguk
asallarin sayisini ve dizgun bir devre olusturan en kuguk esigi bulduk. Asagidaki
tablo sonuclari gostermektedir:

n | Asal Sayisi Esik
1 1 0
2 1 0
3 2 1
4 3 2
5 4 3
6 6 5
7 8 7
8 10 9
9 12 11
10 14 13
11 16 15
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Devredeki en buyuk agirligi girdi sayisinin fonksiyonu olarak ¢iziyoruz.

Bilgisayar Simiilasyonunun Sonuclan

Largest Weight

Girdi Sayisi

4.4 Lr7,cLiT, e Genelleme

"1-yaklasim," denilen yukaridaki fonksiyonun onemli bir 6zelligi ¢ikti esik
gecisinin agirlikl toplamla degigtirilebilmesidir. (i.e., 64 sgn(.) fonksiyonunu iptal
edin) boyle bir devrenin ¢iktisi 0'a ya da 1’e ¢ok yakin olacaktir. Bu durum sayfa
[13]'te LTy < LTg4+1 oldugunu gostermek icin kullaniimigtir. Fikir su sekildedir:

1. LT, devresinin ¢ikis gegisini, Giags, alalim. Bir LT gegisi oldugu i¢in Bolum
4.2de goruldugu gibi bir LT, gegisi de onun yerine gegebilir.

2. Ona bagli olan butun gegisleri alip, fi,fl, onlarin da yerlerini degistiriyoruz.
3. Cikis tabakasi ZA)?H ile giris tabakasi Gj)t yi birlegtirmek i¢in "1- yaklagim "
ozelligini kullanin.

4. Tum LT gegislerinin yerine LT, devreleri gelene kadar isleme devam edin.
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LT4+ devresiyle bir L T4 fonksiyonu simule etmek igin tabakalari birlestirin.

4.5 Sonug

LT4 < LTgs gok yararh bir sonugtur.. MADD € LT,-65 anlamina gelen MADD €
LTM olusturarak, LTM € LT, oldugunu gostermek icin kullanabiliriz. Bu
calismanin ilging bir yonu ise Bolum 4.2'de belirtilen yaklagimi kullanarak

KARSILASTIRMA icin LT, uygulamasinin buyuklugununun elde etmektir.

Bolum 5

Cok Esikli Dogrusal Esik Elementi LTM

5.1 Giris

LT elemanlarinin VLS| uygulanmasi sayfa [8] Uzerine yaptigimiz ¢alismadan
ilham alarak, bu bolumde LTM c¢ok gecisli dogrusal esik bkz: Sayfa [15] ve [35],
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denilen daha guglu bir hesaplama elemanindan bahsedecegiz. LT elemanindaki
isaret fonksiyonu yerine, girdilerinin agirlikli toplaminin keyfi (polinom olarak ¢ok
gegcigler) bir dogru yanlis fonksiyonu hesaplanir.

Calismadaki LTM devreleri(LTM elemanlarindan olusan devreler) hakkindaki
konular, hesaplama kapasitelerinin, sinirlamalarinin  hesaplanmasi ve
Ozelliklerinin AON devrelerinin 6zellikleriyle karsilastiriimasidir. Bu galismadaki
yaklasim, LT devreleri ve LTM devreleri arasindaki iliskiyi anlamaktan gecer. Bu
bolimdeki ana katkilarimiz sunlardir:

e m tamsayilarinin eklenmesi eve iki tamsayinin urinleri icin LTM
devrelerinin  etkin  tasarimlarini olusturarak, LTM’nin  glcunu
gostermekteyiz.

e LTM devrelerinin uygulamadan LT devrelerinden daha rahat oldugunu
gosteriyoruz. Ozellikle n girdili dogru yanlis fonksiyonlari igin VLSI plani
LT devrelerindeki 0(n?)’dan LTM devrelerindeki 0(n) ‘ye disuriildigindeki
alanlarda.

e LTM devrelerinin hesaplama gucunu LT devreleriyle kargilastirarak
belirtiyoruz.

LT Kapisi SYM Kapisi LTM Kapisi

Sekil 5.1: LT, SYM ve LTM hesaplama elemanlarinin sema halinde gosterimi.
Daha sonra LT ve LTM elemanlarinin resmi tanimlarini agiklayacagiz.

5.1.1 Tanimlar ve Ornekler

Tanim 5.1 (Dogrusal Esik Gegisi - LT)

Bir dogrusal esik gecisi iki rakamli girdileriyle bir dogru yanls fonksiyonunu
hesaplar

£ =senly+ Y, wx)

w; tamsayilarken ve eger durumu O’a esitse ya da 0’dan buylkse sgn(.) ¢ikt
olarak 1 verir, eger durum Oyle degilse 0O verir.

Sekil 5.1.1 bir n-girdili LT elemani; eder Y 'y x,=—, ise, elemanin cikti

olarak 1 verdigini, degilse cikti olarak 0 verdigini gosterir. ikincisi simetrik
fonksiyonlarin genel sinifina dahildir-SYM.
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Tanim 5.2 (Simetrik Fonksiyonlar - SYM)
Bir dogru yanlis fonksiyonu eger degeri girdide bulunan 1’lere (|X| olarak
gOsterilir) bagliysa

(X =2 x,
1

simetriktir.

Sekil 5.1.1 simetrik fonksiyonun bir 6rnegini gostermektedir; 3 gegcisi vardir, |X] <
t; ve to < |X| <tz igin sonug olarak 1 verir, diger durumlarda O verir. EVET, VEYA
ve ESITLIK simetrik fonksiyonlarin érnekleridir. Tek bir LT elemani sadece
simetrik fonksiyonlarin sinirl  altkimesini ifade edebilir. LTMyi SYM’nin
genellemesi olarak tanimliyoruz. Cunku agirliklar 1’e sabitlemek yerine LTde
oldugu gibi onlarin degigken olmalarina izin veriyoruz (bkz: sekil 5.1.1.)

Tanim 5.3 (Cok Gegigli Dogrusal Esik Gegisi - LTM)
Eger agirhk kumesi wi€Z,1<isn ise f fonksiyonu LTM’'dedir. Ve fonksiyon
h:Z—>{0,1} dyle ki

f(X) = h(ﬁ w,x,) herX e {0.1} icin

girdisi [—z;y w2 lw \J taradigi zaman polinomial kadar gegis asamasindan
gecmesi h'yi sinirlayan tek seydir.

Gegcis sayisinda bir kisittama olmadiginda bir LTM gegisi herhangi bir dogru
yanlis fonksiyonunu hesaplayabilecek kapasiteye sahiptir. Hatta keyfi fonksiyon

f, w2 ve (Y27 x)=f(5xmmx,) olsun.

Ornek 5.1 (XOR € LTM)
XOR(X) 1 sonucunu verir, eger |X| ise ve X'in igcindeki 1’lerin sayisi tekse.

Uygulamak igin 0 < k< nigin, w; = 1 ve h(k) = %(1—(—1k))olmasm| secin. h(k), k

<0 ve k > nigin tanimlanmak zorunda degildir. Ve polinomial pek ¢ok gecisi
vardir. LTM'nin hesaplayabildigi baska yararl bir fonksiyon da ADD(X, Y)dir, iki
n-bit tamsayi olan X ve Y’nin toplami.

Ornek 5.2 (ADD e LTM) Toplamayi uygulamak igin

X.")=h, (ﬁ 2'Ge+ V)
; 2 Y.
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k€2, 2x2-11U[3x 2, )icin hi(k) = 1 oldugunda X + Y ‘nin m. bitini hesaplar.
Sekil 5.2 n = 4 oldugunda ortaya ¢ikanlarin ornegini gostermketedir.

b b e
N

2 Toplam-0 4 Toplam-1

Ll AAAA

b b e o

Ll AR

N

1111
T
1111

1011
1111
1177

8 Toplam-2 16 Toplam-3 16 Toplam-4

e, AAAA

b e

<l AR

P

el A

D

Ll
Ll
L] 1]

Sekil 5.2: Her ¢ikti biti igin tek bir LTM gegisi kullanarak iki 4-bit-tamsayinin
toplami.

5.1.1 Duzenleme

Bu bolim su sekilde duzenlenmistir. Bolim 5.2’de, LTM devrelerinin
uygulamalarini gérecegiz. Ozellikle, tek tabakali LTM elemanlariyla m
tamsayilarinin nasil toplanacagini gorecegiz. Bolum 5.3’te, LTM’'nin tanimlama
sonuglarini kanitlayacagiz, kapsama iligkileri ve ozellikle LTM < LT, Ayrica
hangi kapsamalarin uygun oldugunu gosterecegiz ve farkliliklari belirtmek igin
fonksiyonlardan yararlanacagiz.

5.2 LTM Yapilari

LTM hakkindaki teorik sonuglar dogru vyanhs fonksiyonlarinin VLSI
uygulanmasinda uygulanabilir. Coklu esikleri olan gegis fikri aklimiza simetrik
dogru yanhg fonksiyonlarinin etkin bir VLSI uygulamasini ararken geldi. Tek bir
LT gecisi simetrik dogru yanhs fonksiyonlarini uygulamada yetersiz olsa bile, iki
katmanl bir LT devresi yeterlidir(Sekil 5.2). Ayrica boyle bir devrenin VE, VEYA
ve DEGIL Uizerine kurulmus geleneksel mantik devresinden ¢ok daha iyi calistigi
bilinmektedir. Ayrica geleneksel devrelerin Ustel buyuklukleri vardir (ya da
sinirsiz derinligi) [51].
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— W I " S
i tanl— I o
. . . 0 - - - .

1 W — W, L

LT Devresi LTM kapisi
gerekli alan = (O(n?) gerekli alan= O(n)

Sekil 5.3: LT devresi, 0(n) blytkliginde vs tek bir LTM gegisi.

Oneri 5.1 (simetrik fonksiyon uygulamasi igin LT, vs LTM)
Bir simetrik fonksiyonun LT, diizeni igin 0(n®)lik bir alana ihtiyag vardir; oysa
LTM igin sadece O(n)’lik bir alana ihtiya¢ vardir.

KANIT:

LT>de genellenmis simetrik bir fonksiyonu uygulamak igin birinci tabakada n tane
LT gegigine ihtiyag vardir. wy gegisi disinda hepsi ayni w; agirhdina sahiptir. Ayni
dogrusal toplam olan » 'y, x, n kere tekrarlamaktansa, bunu bir kere yapiyoruz

ve sonuglarl n tane farkli gegigle karsilastiriyoruz. Sonug olarak ortaya ¢ikan
devre tek bir LTM gegisine tekabul eder.

Sekil 5.2 genellenmis bir simetrik fonksiyonun uygulanmasindan LTM’nin LT’ye
gore olan avantajlarini gostermektedir. Aslinda, LT, duzeni gereginden fazladir,
her agirligin n tane kopyasi vardir ve en az 0(n®)1ik bir alana ihtiyag vardir. Diger
taraftan LTM tek bir agirlikli toplam vermektedir ve alan ihtiyact O(n)'dir. Tek bir
LTM gegisi m tane n-bit tamsayisi olan MADD’in toplamini hesaplayabilir. Tek
sorun m’nin n’de polinomial olmasidir.

Teori 5.1 (MADD € LTM)
LTM gegislerinin tek bir katmani, m’nin n’de en polinomial halinde olmasi
sartiyla, m tane n-bit tamsayiyi toplayabilir.

KANIT:
MADD en fazla n + logm bitteki tamsayilari vermektedir. Her bit icin bir tane LTM

gegcisine ihtiya¢ vardir. En az 6nemli bit basit bir m-bit XOR ile hespalanmaktadir.
Diger tim bitler icin

f, (X(l)""=X(m)) _ hz (ijl 21'21]4:1)(?,(-]))

toplamin /. bitini hesaplamak igin kullaniyoruz.

Ornek 5.3 (li¢ 3-bit tamsayinin toplami)
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Yukaridaki yapiyt m = 3, n = 3’e uyguluyoruz. Sonug sekil 5.2°de gosterilmistir.
Sonucun {0,...,21} araliginda olduguna dikkat ediniz. Bu nedenle, ¢ikti bitini
hesaplayan LTM gegisinin sadece 2 tane esige ihtiyaci vardir.

Sonu¢ 5.1 (PRODUCT € PTM) PTM gegislerinin tek bir katmani (yukarida
aciklanan), m’in n’de en polinomial halde olmasi sartiyla, m tane n-bit tamsayinin
arununld hesaplayabilir.

KANIT:
Sayfa [9]'daki PT+le benzer sekilde, PTMide (ya da sadece PTM) dogrusal
yogunluk polinomial sonuca izin veriyoruz.

f(X) = h(wiXq + ... + WpX,, + W(1,2) X1x2 +...)

Fakat sonucun polinomial olacak kadar cok olmasina izin vermiyoruz(yoksa
herhangi bir dogru yanlis fonksiyonu tek bir gecisle gergeklestirilebilir). Iki n-bir
tamsayi olan X ve Y'nin Griinii PRODUCT(X,Y) =" x,Y seklinde yazilabilir.
PRODUCT’1 uygulamak igin MADD yapisini kullantyoruz.

PRODUCT(X,Y) = MADD(x, Y, x,Y s X, ¥.)

Xg—1 1 Xo—1 0

Xl—u'u 1 | ,\I—.: Ly -

NXowdd 00 Q- ) |

\';—1 0 \";—.1 -

Y, —0 2 Toplam-0 Y, — 2 1] Toplam-1

Y-.— 0 1 Y. 4 -

Z,—1 Zy—1 1

Z]— o . ZI_ 2 2

Z:— 0 Y Z:—n 0

"tn— 1 :”_l. '§||—' 1 t:n—' |

N, —2 1 ANy, —2 Ay—2

Xo—3 161 X!y x!

Yo— 1 Y, — 1 0 v,—1 1
Y, —2 12— Toplam-2 Y, — 2 16 Toplam-3 Y, — 2 16 Toplam-4
Y,—4 0 Y, 4 1 Y, 0
Zo— i n Zi— Zi—

Z,—>2 . Zy,—>2 I Z,-:

Z'_\_J 0 Z:—'J 0 Z-—'J

Sekil 5.4: MADD: ug¢ tane 3-bit tamsay! olan X, Y ve Z'nin toplamasi —
LTM elemanlarinin bir tabakasi kullanilarak.
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Sekil 5.5: Siniflar arasindaki iligki.

Fan=pCY2x )

j=1 i=1

fi GrinUn -inci bitini vermektedir.

5.2 LTM’nin Siniflandiriimasi

Kaguk agirliklari(polinomial olarak buyuyen) gostermek igin bir gsapka
kullaniyoruz, érnegin LT, LTM [6], [43] ve tek bir tabaktan olusmayan devrenin
derinligini(tabakalarinin sayisini) belitmek igin altsimge kullaniyoruz. Bu
calismada gecgen devrelerin hepsinin polinomial buyukligu(elemanlarin sayisi) n
(girdi sayisi) cinsindendir. Ornegin LT, sinifi LT elemanlarinin derinlik-2
polinomial buyuklige sahip olanlariyla uygulanabilen dogru yanhsg
fonksiyonlarindan olusur.

Sekil 5.3 dogru yanhs fonksiyonlarinin 5 sinifi, LT, LT, LTM, LTM ve LT, ile
farkhliklari kurmak igin kullanilan fonksiyonlarin iligkisini anlatir.

Bu bolumde Sekil 5.3’te gOsterilen iligkileri kanitlayacagiz.

Teori 5.2 (LTM’nin Siniflandiriimasi)
Sekil 5.3’de gosterilen kapsamalar ve farkliliklar asagidadir;

e I[TCLTCLIM

e I[TcCLIM cCLTM

e LTMcCLT,

e XORe LTM ama XOR¢ LT

e COMPe LT fakat COMP¢ LTM

e ADDe LTM fakat ADD¢ LT U LTM

o Ip.eLT, fakat [P,& LTM
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5.4 Siniflandirma Teorisinin Kaniti

Sekil 5.3'te gésterilen iligkileri kanitlayalim. ilk basta kapsama iliskilerini gérelim.
Daha sonra siniflar arasindaki farkhliklari gosteren fonksiyonlarin Uzerinde
duracagiz.

5.4.1. Kapsamalar

Codu kapsama iligkisi su tanimlardan gelirler: L[TcLTcLTM ve
LT c LTM < LTM . Sadece bir tanesinin bir kanita ihtiyaci vardir:

LTM c LT,

Yukaridaki ifadeyi gostermek igin sayfa [13]'den bir sonug¢ kullanacagiz. Keyfi
agirhkh tek bir LT gegisi, bir LT, devresiyle gercgeklestirilebilir. Ayrica ikinci
tabakadaki dogrusal olmama durumu devrenin g¢iktilarini etkilenmeden
kaldirilabilir (1-yaklasim denilen 6zellik). p n’de polinomial iken ve tum f’ler igin f
€ LT iken

felr, 1=, f(X)
2

LTMdeki bir fonksiyonun LT, uygulamasini dusunelim. Birbirinin aynisi olan LT
gegciglerinden olusan bir tabaka ve onlari takip eden 1 ve -1 agirliginda tek bir
gecis ve -1 esiginden olusur. Birinci tabakadaki her LT gegisini, esiti olan LT
gecisleri ve agirlikli toplamiyla degistiriyoruz. Agirlikli toplamlari birlestiriyoruz.
Ornegin ikinci ve Gglincli tabakalar, ortaya gikan devre LT,'de olacaktir.

5.4.2 Farkhhklar

Birinci drnekte XORe LTM oldugunu ve XOR ¢ LT oldugunun bilindigini gordiik.
Diger taraftan, COMP(X,Y), iki tane n-bit tamsayinin kargilastirmasinin LT'de

COMP(X.Y) (i ,-( ) 1 Y< Xise
, =Sson - =
8 pa 20, Vi 0 Diger

oldugunu gorduk.

COMP¢ LTM oldugunu gosterelim. Bu nedenle bir dogru yanls fonksiyonun
entropi 6zelliginden bahsedecegiz. lletisimin karmagsikligi hakkinda esit bir tanim
sayfa [47]de verilmigtir.

74



Tanim 5.4 (Entropi)

Dogru yanlis fonksiyonu igin n-degigkeni, S bu degiskenlerin altkimesi ve
se {O,l}w, f (x,»+X,5) fde s'nin dederi S'nin yerine konularak elde edilen
fonksiyon. f'nin entropisi

Ef]=max| f :se 013}

seklinde tanimlanir.

Entropi n degiskenin mimkiin 2" tiim degerlerini S kiimesine atayarak elde
edebilecegi alt fonksiyon uzeri n- |S| degiskenlerin maksimum sayisidir.

Yardimci Teorem 5.1 (Ustel Entropi, Ustel Agirliklar Demektir)
Oyle bir f fonksiyonu ki, E[f] n'de Ustel, LTM uygulamasi Ustel agirliklari

gerektirmekte. Ornegin > | 1, | Ustel.

Kanit: Bir alt fonksiyon JJ/ € 3.y, oldugunda

fs (xl’""xn—\S\) =f(X.S=s5)=h zwz'xi + WS)

ieX-S

seklinde yazilabilir.

Pigonhole prensibine gore ve W; bir tamsayi ise, [{JJ/ :s}| E[ffden blyuk

olmalidir. Eger degilse Wgnin tum E[f] 6zel alt fonksiyonlarini tanimlamaya
yeterli 6zel degeri olmayacaktir. Bu da

EA<Y <Yl

€S i=
demektir.

COMP ¢ LTM

Kanit: E[COMP]'nun Ustel oldugunu gosteriyoruz ve 5.1’ kullaniyoruz.

fs(x1,..,Xn) = COMP(X,Y = s) olsun.
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bu fonksiyonlardan 2" tane mevcut; hepsinin ézel oldugunu gosterelim. iki ayri
tamsayi sq ve sy, Oyle bir Xy segin ki s1 < Xp < S, ve sonra fs1(Xp) # fs2(Xo).

ADDe LTM fakat ADD¢ LT U LTM

Kanit: ADD e LTM oldugunu gorduk. Toplamin en az énemli olan kismi LT’ de
olmayan XOR’dur. Diger taraftan ADD¢ LTM anlamina gelen COMP’a benzer
bir kaniti olan E[ADD] usteldir.

[P.e LT, fakat I P & LTM

Kanit: Let IP(X,Y) = foiy, olsun. Fonskyionu IPx(X, Y) =1 sadece ve sadece

IP 2 k, ya da IPx = 0 olarak tanimlayin. /P, ¢ LTM oldugunu iddia ediyoruz. Hatta
IPx LTM’nin iginde olsaydi, agirlikh toplam tarafindan takip edilen bit LT gecisleri
tabakasiyla uygulanabilirdi[13]. O zaman /P2 (Inner Product mod 2)yi yanlis

olarak bilinen sz’de uygulamak i¢in k = 1..n igin devreleri birlestirebilirdik.

Siniflandirmayi tamamlamak igin eksik olan sey sudur: LT=LTNLTM . Bunun
dogru oldugunu varsayiyoruz.

Varsayimm 5.1 ( LT =LT NLTM )

LT degisken degerli dogrusal esik fonksiyonlari sinifini temsil etsin ve LT
agirhklarinda Polinomial buyime olan fonksiyonlarin sinifi olsun ve LTM de
Tanim 5.1’de belirtildigi gibi olsun boylece,

LT =LTNLTM

5.5 Sonuglar

Asil amacimiz etkin bir genellenmig simetrik fonksiyon ortaya koymak igin teorik
sonuglari kullanmakti. Bu islem suresince, LT, uygulamasinin gereginden fazla
oldugunu anladik. Bu da bizi LTM'nin tanimina, yeni ve daha guglu bir
hesaplama elemanina, goturdu. LTM’nin gucunu LT’ye gore siniflandirdik. VLSI
diizenlerinin alanlarinin 0(n®) ‘dan 0(n)ye diisirmede ve coklu toplama ve
urunde etkili tasarimlar elde etmede nasil kullanilabilecegini belirttik. Gelecek

calismalar icin bazi ilging talimatlar ise sunlardir. (i) LT=LT NLTM varsayimini
dogrulama (ii) LTM’nin analizinde oOzellikle PTM’nin siniflandirmada nereye
dustugund gostermede(sekil 5.3), spektral teknikleri uygulama.

Dogrusal karar listelerinden, LDL, Bolum 2’'nin sonug kisminda(77), Bolum 2.7°de
bahsedilmigtir. LTM’nin LDL’nin bir pargasi oldugunu gormek kolaydir yani
LTM c LDL .liging bir problem LTM € LDL ya da LTM = LDL olusturmaktir.
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Daha mumkun cevap olan oncekini kanitlamak igin, /P nin tum LDL yapilari
gOsterilmeli ve gosterilen fonksiyonlar LTM’de olmamalidir.

Gelecek galigmalar i¢in bagka bir yon ise 6. Bolumde dile getirilmigtir. Yukaridaki
fikirleri VLS| kumesinde uygulamaktir. 24  analog cipte, yukaridaki modeli
kullanarak programlanabilir bir genellenmis simetrik fonksiyon urettik. Yizen
gegcis teknolojisi agirliklari programlamak igin kullanildi. Ytzen gecise elektronlar
enjekte ederek ve elektronlari oraya yonlendirerek tek bir gegise agirlik yukledik.
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Bolum 6

Programlanabilir Sinirsel Mantik ile VLSI Uygulanmasi

6.1 Giris

Neuromorphic analog VLSI alaninda, ¢ogu arastirma bir sekilde 6grenen veya
adapte olan sinirlerin uygulanmasiyla ilgilenmekte, sayfa [11], [16], [19]. Bunun
nedeni sinirsel sistemlerin gucunun adapte olma yeteneklerinden
kaynaklandigina inaniimasidir. Bir sinir tarafindan yerine getirilen fonksiyonun
agirhkli girdilerin toplami ve daha sonra bir esik kendi kendine(6grenmeden) bir
yapi blogu oldugu kanitlanmigtir. Uzun yillar boyunca teorik bilgisayar bilimi bu
tarz noéronlarin glcunu, polinomial buyuklukteki vs Ustel buyuklukteki devreler ve
NP’nin tam olmasi sorunuyla ilgili problemler acisindan inceledi. Ana sorun-
dogru yanhs girdisi, ¢iktisi ve esik devreleri uretmek ve yararli dogru yanhs
fonksiyonlarini etkili bir sekilde hesaplama. Egik devrelerinin sasirtici derecede
glclu olduklan gorilmistir[1]. Ornegin tamsay! bélimu, sabit derinligi olan bir
polinomial buyuklukteki esik devresiyle yapilabilir. Baska bir degigle eger iki n-bit
tamsayinin boliumunun hesaplanmasi esik devreleriyle yapilmak isteniyorsa,
polinomial olarak pek ¢ok, n tane, esik elementlerine ihtiyag vardir. Diger yandan
VE, YA DA ve DEGIL gibi geleneksel mantik devreleri kullanmak, (stel sayida
pek cok gecis kullanmayi gerektirir. XOR ve tamsayi toplamasi gibi daha basit
fonksiyonlarda da durum aynidir.

Esik devreleri teorisinden elde edilen sonuglarin ¢ogu, silikon uzerindeki
devrelerde kullanima uyarlanabilir. Agirliklar i¢in en yuksek boyut ve sonug
olarak alinan elementin ya da devrenin glcu arasindaki iligki gibi sonuglar[6],
[13], XOR, ADD, MULTIPLY ve diger yararli fonksiyonlarin etkin tasarimlari igin
bkz: Sayfa [24], [28], [31]. Ornegin teorinin basit bir uygulamasi bizi ¢oklu egik
elementini tanimlamaya tasidi, bkz: Bolum 5. Bu, belirli dogru yanhs
fonksiyonlarinda 6zellikle PARITY gibi simetrik fonksiyonlarin alanini 0(n?)’den
0(n)’ye indirdi.

Arastirmamizin 3 dnemli amaci vardir:

1. Uygulama yonu. Silikon Uzerinde etkili esik elementleri tasarlamak ve
uygulamak.

2. Teorik yonu. Yuksek performansli esik devrelerini sistematik bir sekilde
tasarlamak igin, teorik bilgisayar biliminde yapilmig ¢alismalardan yararlanmak.
3. Programlanabilirlik yonu. Esik elementlerini FPGA’larda yapi taslari olarak
kullanmak.

Esik devrelerinin kullanilmasi, 60’larin ve 70’lerin baginda onerilmisti sayfa [4],
[48], [53], ve daha yakin olarak bkz: sayfa [28], [39]. Bildigimiz kadariyla, esik
devrelerinin teorik sonuglari daha once silikon kullanimini igeren baska bir
calismayla iligskilendiriimemigti. Programlanabilir noéron-bazli donanim son
zamanlarda sayfa [39], [41]de Onerilmigtir. Asagidaki uygulama bdlumunde,
bunlarin galismamizla olan iligkisini anlatiyoruz. FPGA’'nin kisa bir tekrari igin
bkz: sayfa [50]. Bolum 6.2'de esik devrelerini geleneksel mantik devreleriyle
kargilagtinyoruz. Bolum  6.3’te  tasarimin  programlanabilirlik  yonune
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odaklaniyoruz. Bolum 6.4'te VLSI uygulamasini ve test sonuglarini goruyoruz.
LTM elementi Bolum 5’te ve sayfa [7]'de teorik bir agidan anlatiimigti. Geleneksel
esik devreleriyle ve (VE, YA DA, DEGIL) devreleriyle karsilastiriimisti. Béliim 6.5
21 -teknoloji 2mm x 2mm ¢ipi Uzerine LTM’nin kullanimini géstermektedir.

E

VEYA }—

e
25
L<<><J <

m

Sekil 6.1: Sinirsel vs. geleneksel mantik. XOR hesaplayan iki devre.

6.2 Sinirsel Mantik ve Geleneksek Mantik

Herhangi bir dogru yanhs fonksiyonu AON devreleriyle sistematik olarak
cozulebilirken neden egik elementleri kullanalim ki? (XOR) gibi bazi
fonksiyonlarda girdideki bit sayisi arttikca AON devresindeki elementlerin sayisi
da Ustel olarak artacaktir[51]. Diger taraftan, dogrusal esik elementleri
kullaniliyorsa, gegislerin sayisi, girdi bitlerinin sayisi iginde dogrusaldir. Bu Sekil
6.2de, 3-bit girdi i¢in kullaniimigtir. Genellikle, n tane bitin XORunu hesaplayan
derinlik-2 AON devresinin en az 2" + 1 tane gegise ihtiyaci vardir. LT
kullanilirsa, sadece n + 1 gegise ihtiyac vardir.

LT devrelerinin AON devrelerinden daha guglu oldugunu gérmek gayet kolaydir.
Bunun nedeni her AON gegisi icin, onun esiti olan ve ayni fonksiyonu
hesaplayan bir LT gegisinin mevcut olmasidir. Oysa ¢ogu LT gecisinin AON
egitleri yoktur.

Ornek 6.1 (COGUNLUK) agirhk vektora (wy, ...,ws) = (-3,1,1,1,1,1) ile tanimlanmig
bir fonksiyon olsun:

f(X1,..., X5) =8gn(-3 + X1 + X2 + X3+ X4 + X5).
Sadece bir adet 1 vermektedir, oysa 3 ya da aha fazla girdi 1'dir. Tek bir VE veya
YA DA gegigiyle uygulanamaz, bazi girdileri reddetsek bile (DEGIL).
LT devreleri daha gugclu olduklari halde, yapi taglarinin daha karmasik oldugu ve

bu nedenle devre duzeninde daha ¢ok yer kaplayacaklari tartigilabilir. Bu konu
bir yere kadar dogrudur. Fakat ihtiyac duyulan gecislerin sayisinda Ustelden
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polinomial a giden dusus, boyutlarindaki buyumeyi gérinmez hale getirmektedir.
Siradaki bolum bu konu tzerinde duracaktir.

6.3 Programlanabilir ve Fiziksel Baglantili Agirhiklar

FPGA'ya mevcut fonksiyonlarin iginden secilen, her elementin hesapladigi
fonksiyon programlanabilir olan element devreleri olarak bakilabilir. Geleneksel
FPGAlarda bu icinden secilen kiime VE, YA DA ve DEGIL’den olusmaktadir. Biz
daha genisg bir fonksiyonlar kimesi sunuyoruz, Dogrusal Esik Fonksiyonlari, LT.
Bir LT gecisi hakkindaki tum bilgi esikte ve agirliklarda sakhdir. Agirliklar
kullanmanin 2 yolunu g6z 6nunde bulunduruyoruz.

+ Fiziksel baglantili agirliklar bir transistorun en/boy oraninda kodlanmistir.

» Programlanabilir agirliklar, yuzen gegis Uzerine kalici bir yuk olarak konmustur.

Fiziksel baglantili agirliklar, devre uretildikten sonra tekrar degistirilemezler oysa
programlanabilir olanlar degistirilebilirler. Fiziksel baglantili agirliklar otomatik
duzende ilging bir sorun teskil etmekteler. Kargilagstirma fonksiyonu, COMP, gibi
bazi fonksiyonlar 1’den 2"/“ye kadar bir agirlik gerektirmekteler. Sekil 6.3 8-bit
COMP fonksiyonunu gostermektedir. VE, VEYA ve tum simetrik fonksiyonlar
kuguk agirhklarla uygulanabilir. Bu farklilik da fiziksel baglantili agirliklari ve bazi
LT gecislerini kullanmanin digerlerinden daha genis oldugunu gosterir.

f—la—/'_lw—
—
R—

KARS

Sekil 6.2: 2 4-bit tamsayinin kargilasgtiriimasi.

Programlanabilir agirhik kullanmak, duzeni basitlestirir ve LT elementinin
hesapladigi fonksiyon Uzerinde degisiklik yapmayi saglar. Siradaki bolimde
uygulamanin ayrintilarindan bahsedecegiz.

6.4 Uygulama ve Sonugclari

Sayfa [41]'de yazarlar, degisken bir dogru yanhs fonksiyonunu uygulayan sinir
bazli bir devre Uretmiglerdi. Biz degigken bir egsik elementi (dogru yanhsg
fonksiyonlarinin  sinirli  bir kumesi) uyguluyoruz. Asil fonksiyon agirlklar
duzeltilerek secildi. Sekil 6.4'te semasal uygulama gorulebilir. 16-girigli esik
elementi MO-SIS’te mevcut olan standart 2um duble - ¢oklu analog islemi
kullanilarak Uretildi. Dizen igin Sekil 6.4’e bakiniz. 16 girdi tim 4 gecise de metal
kullanilarak (mor) dagitildi; boyle bir dizen esik elementlerinin yogun semalarini
olusturmayi saglar.
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Her agirlik icin tek bir transistor kullanarak, agirliklar polisilikon ylizen gegislerin
Uzerine yerlestiriyoruz boylece yenilenme olmadan da uzun zaman boyunca
hafizada tutma saglaniyor. Carpma, girdilerin dogru yanlis olmasi gergegi
Uzerine kurulmustur, mantiksal bir 0 igin 0 Volt, mantiksal bir 1 i¢cin X Volt, X 1 ile
5 Volt arasinda degisebilir. Bir girdi ilgili agirhga akim orani yaratir. Toplam

;Wixi transistorleri ayni yere bagladigimizda dogal olarak ortaya cikar.

Akimlarin toplami yerine voltajlarin toplamlar kullanildiginda, [39]'daki bir diger
yaklasim ortaya cikar. Son olarak iki donusturtucu c¢iktilari mantiksal O'a ya da
mantiksal 1’e cekmeye ugrasirlar.

Adgirhkh Toplam Esik

--------------------
- -

¥ Yizen Kapi _ci
Transistorii Esik —4 %

CIKTI

Sekil 6.3: Programlanabilir Dogrusal Esik Elemanin $Semasi.

Yeni bir fonskiyonda programlama yapabilmek igin, agirliklari yonlendirme ve
sicak elektron enjeksiyonu ile degistirir, yuzen gegiglerin benzer uygulamalari
icin bkz sayfa [16], [19], [55]. Sayfa [10]'da gorulebilecegi Uzere, burada
kullanilan tek transistor belleginden birazcik daha karmasik olan analog hafiza
hdcresi, 14 bite kadar bilgi saklayabilir, ve bu gogu uygulanabilir esik fonksiyonu
icin yeterli bir miktardir.

Girdi vektorundeki 1’lerin sayisini degistirerek W0+2:ioxi =0 iken esik degerini

wo belirleyerek, esik elementimizin dogrusalligini test ettik. Mantiksal 1 degeri
icin 1 volt kullanildi. Sekil 6.5 sonuglari gostermekte.

Verinin karekok sekline dikkat ediniz. Bu dnemli bir noktayr gostermekte. T'de
dogrusal olmayan belirli bir T degeri elde etmek igin gerekli olan voltaj. Esigin
ustinde ya da altinda isleyen bir nFET igin, tek bir girdinin katkilari sirasiyla
sOyledir:

1=50,-v.)

ng
I:]()eVT .
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Vr termal voltaj iken ve (3, Ip ve K sabit iken. Fiziksel baglantili agirliklar, (5 ve
lonun oranl oldugu transistérin W/L orani olarak kodlanmislardir[29]. Bu,
transistorin neresinde islem olduguna bagli olmadan, agirliklarin degerlerini
W/L’de dogrusal kilmaktadir. Programlanabilir agirliklar durumunda deger,

Sekil 6.4: Dogrusal toplamin diizeni — W"—Wo%zilwixi' Dért esik elementi
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gOsterilmektedir, iki programlanabilir ve iki programlanamaz, sonuncusunun birim
agirliklar vardir. Gosterilen alan 168 1 x 360 « 'dur. Cip MOSIS’te mevcut olan

2 u teknolojisiyle Uretilmigtir.

Vdd - Egik (Volts) Getig Noktasi (Dijital Girdi)
) ] 1 1 l 1
I 1 1

= I I : : *
® e

1( .

r——
< ®

®
L
o
1.8 e
L
L
161 -
*
®
L4+t
[
12+
[

1.0 t i i t t t i

0 2 - 6 by 10 12 14 16

1 Volttaki Girdilerin Sayisi
Sekil 6.5: Vdd — Esgik ve girdideki 1’lerin sayisi.

Yuzen gegiste depolanan voltajda agirliklarin sayilari Ustel ya da ikinci
dereceden olabilir bkz: Sekil 6.4. Bu tarz dogrusal olmama durumlari, genis
dinamik araliklarda s6z konusudur.

6.4 VLSI Duzeniile LTM

LTM hakkindaki teorik sonuglar dogru vyanhs fonksiyonlarinin VSLI
uygulanmasina da uyarlanabilir. Coklu esikleri olan gegis fikri aklimiza simetrik
dogru yanhg fonksiyonlarinin etkin bir VLSI uygulamasini ararken geldi. Tek bir
LT gecisi simetrik dogru yanlis fonksiyonlarini uygulamada yetersiz olsa bile, iki
katmanli bir LT devresi yeterlidir. Ayrica boyle bir devrenin VE, VEYA ve DEGIL
Uzerine kurulmus geleneksel mantik devresinden c¢ok daha iyi calistig
bilinmektedir. Ayrica geleneksel devrelerin Ustel buyuklukleri vardir.

Oneri 6.1 (Simetrik Fonksiyon Uygulamasi igin LT, vs LTM )
Simetrik bir fonksiyonun LT, duzeni 0(n2) kadar bir alan gerektirmektedir oysa

Sekil 6.6: Genellenmig bir simetrik fonksiyonun uygulanmasinda LTM’nin LT’ye
gore olan avantajlarini gostermektedir. Agirlikli toplam her geciste tekrar
uygulanmaktansa sadece bir kere uygulanir.
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Alan > O(n?) Alan > O(n)

tl

4
— WI

tp

—1 Wi

KANIT:

LT>de genellenmis simetrik bir fonksiyonu uygulamak igin birinci tabakada n tane
LT gegigine ihtiyag vardir. wy gegisi disinda hepsi ayni w; agirhgina sahiptir. Ayni
dogrusal toplam olan Y 'y, i n kere tekrarlamaktansa, bunu bir kere

yapiyoruz ve sonuglari n tane farkli gegisle karsilastiriyoruz. Sonug olarak ortaya
cikan devre tek bir LTM gegisine tekabul eder.

Yukaridaki onerme Sekil 12°de tasvir edilmistir. Aslinda, LT, duzeni gereginden
fazladir, her agirhgin n tane kopyasi vardir ve en az O(nz)’lik bir alana ihtiyag
vardir. Diger taraftan LTM tek bir agirlikh toplam vermektedir ve alan ihtiyaci
O(n’)dir. Sekil 6.5 LTM elementinin yuksek duzeyli bir semasini gostermektedir.

Bu element 2mm x 2mm c¢ip Uzerine, MOSIS’'deki 2u teknolojisi kullanilarak

uretilmistir. Sekil 14 duzenini gostermektedir. 16 girdisi vardir. Ciktisi 4-bit bellek
hdcresini gosteren 4-bit bus’tan olusur. LT gegisinin duzeninde kullanilan
akimlarin toplaminin, Sekil 6.4, aksine; agirlikli toplam Noéron MOS tarzinda
uygulanmigtir, voltajlarin kapasite toplami igin bkz: Sayfa [30], [39]. Agirliklarin
ve esiklerin de@erleri yuzen gegcigler Uzerine depolanmigtir. Belirli bir agirlik/esik
secmek icin giris cizgileri kullanilarak, birlikte ya da ayri ayri olmak Uzere
programlanabilirler.
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Sekil 6.7: Bir LTM gegiginin yuzey duzeyli semasi.

Esiklerin yukseldigini varsayarak, sadece tek bir cizginin VE tabakasinin
ciktisinda mantiksal 1’de oldugu bilinmektedir, bkz: Sekil 13. bu bilgiden
yararlanarak, 16 ¢izgiyi degerleri fonksiyonlara gore depolayan bir bellek hlcresi
yardimiyla 4-bir bus’lara yukluyoruz. Genel olarak, log»7 bitlerinden bir bus elde
edilir, t LTM elementinin gecislerinin (esiklerinin) sayisi iken. Simetrik
fonksiyonlarda t = n, girdi sayisi. Ya da Sekil 6.5’teki devreye bakilabilir, 16-bit
girdi ve 4-bit programlanabilir hesaplama elementi.

6.5 Sonug

Agirhk depolamak igin yuzen gecisler kullanarak 16-girdili programlanabilir
dogrusal esik elementi Urettik ve test ettik. BOyle bir depolama yenileme
gerektirmemekte ve agirliklarin enjeksiyon ya da yoOnlendirme yoluyla
degistiriimesi saglanmaktadir. 16-girdili coklu-esik elementi uygulayarak ikinci bir
cip daha urettik. Bir tek coklu-esik elementi XOR ve tamsayl toplamasi
yapabilmektedir. Bazi yararli dogru yanlg fonksiyonlarinin ilk tabakadaki tim
gegcigleri ayni agirliga sahip olan 1-tabakall LT devreleri tarafindan yapilabilmesi
bilgisinden yararlanmaktadir. Agirlikli toplami sadece bir kere uygulayarak,
alanin nden n’e disiriilmesini saplamaktadir.
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Uygulanabilirlik agisindan bakarsak, bu ¢alismanin devami, fiziksel baglantil
agirhikli esik devrelerinin diizenini sistematik (ya da otomatik) bir sekilde tretmeyi
planlama yéninde olabilir. Calismanin baska bir yone ise programlanabilir esik
elementlerini FPGA’larda yapi tasi olarak kullanmak olabilir.
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Sekil 6.8: 16-girdili bir LTM elementinin dizeni. Cikti 4-bit bellek hicresini
goOsteren 4-bit bus’tan olusmaktadir. Agirlikh toplam, voltajlarin kapasite toplami
olarak Néron MOS tarzinda uygulanmigtir. Bu c¢cip MOSIS’de bulunan 2u

teknolojisi ile Uretilmistir.
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Bolum 7

Sonuglar

Bu tez dogrusal esik elementlerinin 6zelliklerini incelemigtir. Bunlar, dogru yanlis
girdileri, dogru vyanhg ciktilari olan yapay noronlar, ciktilarinin agirhkl
toplamlarinin isaretini hesaplamak. 3 sekilde katkimiz olmustur:

+ Teorik duzeyde iT(d) ve LTM gibi yeni fonksiyon siniflarini tanimladik ve

bunlarin hesaplama gucunu siniflandirdik.

» Algoritmik duzeyde, gergcek agirliklarin reel sayilarin egigsken bir alt
kimesinden alinan agirliklara nasil donugturulebilecegini  gosterdik. LT
fonksiyonlarinin  minimum agirlikla nasil olugturulabilecegini ve son olarak

COMP’u hesaplayan bir iTz devresi ureten bir algoritma gosterdik. Ayrica,

XOR, ADD, PRODUCT gibi yararli fonksiyonlari hesaplayan LTM devrelerinden
bahsettik.

+ Uygulama dluzeyinde, LT ve LTM’nin VLSI uygulamasinin tasarimi, dizenini ve
test edilmesini gosterdik. Agirliklarin degerini depolamak i¢in yuzen gecis
teknolojisini kullanan programlanabilir bir LT elementi tasarladik.

Bolim 2’de esik devreleri teorisinin bazi bilinen sonuglarini gosterdik, ozellikle
herhangi bir dogrusal esik elementinin tamsayi agirliklarla kullanilabilecegine
degindik. Buradaki katkimiz, reel sayilarin degigsken kumesiyle yapilan bir
genelleme oldu. Agirliklari degistirmeye yarayan bir algoritma ile bir LT
fonksiyonunun uygulanma sartlarini belirttik. Bolim 3'te minimum agirliklarla
dogrusal esik fonksiyonlari olusturmak icin bir metot sunduk. Bu d ile

isaretlenmis olan iT(d) siniflari arasindaki farkliliklari ortaya c¢ikarmak igin

kullanildi. d, 0(n°) agirliklariyla uygulanabilen fonksiyonlar kiimesi olan bir iT(d)

sinifl. Bolum 4’te bilinen bir sonug ortaya konuldu, buyuk agirliklara sahip bir LT

elementinin, L7 elementlerinen olusan iki tabakali devreyle, kuguk agirhkli
dogrusal esik elementleriyle kullanilabilecedi. Katkimiz, COMP, karsilastirma
fonksiyonu igin bu devrelerden olusturmak oldu. Bélum 5'te LTM’den ya da ¢ok
esikli dogrusal esik elementinden bahsedildi. XOR, ADD, PRODUCT gibi yararl

Boolean fonksiyonlari igin olusturulmustur. Ayrica LTM’nin LT ve LT, iTz ve

LT> gibi altsiniflarina gore gucu hesaplandi. Son olarak Bolum 6’da LT ve
LTM’nin VLSI uygulamasindan bahsedildi. Fiziksel baglantili ve programlanabilir
¢ozUimler sunuldu. Agirliklar, yuzen gecislere yuk olarak depolandi ve
elektronlarin yonlendirilmesi ve enjeksiyonuyla degistirildi.

Acik kalan noktalar ve gelecekteki arastirmalar igin ilging yonler sunlardir.
Ornegin bu tezde belirtilen fonksiyon siniflariyla dogrusal karar listesindeki
fonksiyon siniflari arasindaki iligki[49]. LTM ve LT ile ilgili konulari tamamlamak
icin varsayim 5.1’in kaniti gereklidir. Algoritmik agidan, agirliklari donugtirmek ve
kUgultmek icin verimli algoritmalar gelistirmek zor bir sorun gibi gorinmektedir.
Donanim uygulamasi konusunda ise, uzak bir hedef de, bazi 06zel
programlanabilir gegis semalariyla, esik elementlerinin mantik tasarim
kutuphanelerinde yapi tagi olarak kullaniimasidir.
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Ek

fonksiyon correct = test(n, r, t)

%% fonksiyon correct = test(n, r, t)

% COMPARISON(X,Y)nin simulasyonu

% correct = 1 eger ¢alisma kurulursa

% n=X(Y)icindeki kullanilan bitlerin sayisi
% r=kullanilan asal sayilarin sayisi

% t=kullanilan esik

% V.Bohossian May, 96

BIG = 2%n;

correct = 1;

load primes.txt; % ilk 1000 asal say
p = primes(3:r + 2); % 2 ve 3’U ¢ikar

hp = fix(p/2) + 0.1; % hp : yari p

p =p *ones(1, n); % kolonlari giftle

hp = hp * ones(1, n);
fori=1:n,L(i))=2 " (i - 1);end;

forx=0:27~n-1,
fory=0:2"n-1,
Ax = fix((x * ones(1, n)) ./ L);
Ay = fix((y * ones(1, n)) ./ L);
A = Ax - Ay;
A =rem(ones(r, 1) * A+ BIG * p, p);
A=A+ ((signChp-A)-1)/2)." p;
positives = size(find(~(A - 1)),1);
bit = (positives > t);
correct = correct & (bit == (x > y));
end;
end;

return;
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