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ÖZET 

 

Gelişen internet ağı beraberinde alıcı-verici arasındaki arz ve talebi karşılama sıkıntısı 

doğurmuştur. Bu iletişim kapasitesinin artışı iletilen verilerin kayıpsız ve sorunsuz bir şekilde 

taşınması için daha kararlı ağ yönetimleri arayışı getirmiştir. Sıkışıklık bir ağın mevcut en 

önemli problemidir. Bu sorunu aşmak için birçok model üzerine çalışmalar yapılmış ve halen 

daha kararlı bir ağ elde etmek için devam etmektedir. Geliştirilen sıkışıklık yönetim 

algoritmaları sıkışıklığa daha farklı bakış açıları ile yaklaşmış ve sıkışıklık ölçütü olarak farklı 

parametreler kullanmışlardır. Bu çalışmada mevcut VEGAS ve Duality modelleri üzerine bir 

kaynak araştırması yapılarak sağladığı avantaj, yöntem ve performanslarını incelenmektedir. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Bilim Kodu  :  
Anahtar Kelimeler  : Sıkışıklık Kontrolü, VEGAS, DUALİTY 
Sayfa Adedi  :  
Proje Yöneticisi  : Yrd. Doç. Remzi YILDIRIM 



 2 

 
 
 
BÖLÜM 1 .................................................................................................................................. 4 
GİRİŞ ......................................................................................................................................... 4 
BÖLÜM 2 .................................................................................................................................. 6 
SIKIŞIKLIK GİDERME VE KONTROL ............................................................................. 6 

2.1. Yavaş Başlama Dengesini Sağlamak ........................................................................... 6 
2.2. Yavaş Başlamayla Dengeye Ulaşma ............................................................................ 7 
2.3. Eşitliği Korumak ........................................................................................................... 9 
2.4. Yolu Adapte Etmek ve Sıkışıklık Gidermek ............................................................. 11 
2.5. Ağ Geçidi Taraflı Sıkışlık Kontrolü .......................................................................... 13 
2.6. RRT ve Varyasyon Dönüşüm İçin Hızlı Algoritma ................................................. 17 

2.6.1. Teori ....................................................................................................................... 17 
2.6.2. Pratik ..................................................................................................................... 18 

2.7. Sıkışıklık Giderme Algoritması İle Yavaş Başlamanın Karışımı ........................... 19 
2.8. Tur Zamanı İle Pencere Ayarlama Etkileşimi ......................................................... 20 
2.9. Pencere Ayarlama Politikası ...................................................................................... 21 
KAYNAKLAR ..................................................................................................................... 22 

BÖLÜM 3 ................................................................................................................................ 23 
GÖZDEN GEÇİRİLMİŞ VEGAS ........................................................................................ 23 

3.1. Giriş .............................................................................................................................. 23 
3.2. TCP VEGAS ................................................................................................................ 24 
3.3. Kaynak Taraması ........................................................................................................ 24 
3.4. Benzetim Ortamı ......................................................................................................... 25 

3.4.1. Benzetim ................................................................................................................. 25 
3.4.2. Topoloji .................................................................................................................. 26 

3.5. Performans Değerlendirmesi ..................................................................................... 26 
3.6. TCP VEGAS’ ın Algoritmaları .................................................................................. 27 
3.7. Tarifnameden Sapmalar ............................................................................................. 28 

3.7.1. Mola Davranışı ....................................................................................................... 28 
3.7.2. Taban RTT lerin Yeniden Ayarlanması ................................................................. 28 
3.7.3. Sabit Bozulması ...................................................................................................... 28 
3.7.4. Tartışma .................................................................................................................. 29 

3.8.Çeşitli Algoritmaların Etkileri .................................................................................... 30 
3.8.1. Karmaşıklığın Azaltılması ...................................................................................... 30 
3.8.2. Çıktı İçin Sonuçlar ................................................................................................. 31 
3.8.3. Yeniden İletimlerin Sonuçları ................................................................................ 32 
3.8.4. Sonuçlar .................................................................................................................. 33 

3.9. Tıkanıklıktan Kaçınmanın Problemleri .................................................................... 36 
3.9.1. Eski Bağlantıların Yanlış Ele Alınması ................................................................. 36 
3.9.2. Israrlı Tıkanıklık ..................................................................................................... 38 
3.9.3. Tartışma .................................................................................................................. 38 

3.10. Sonuçlar ...................................................................................................................... 38 
KAYNAKLAR ..................................................................................................................... 39 

BÖLÜM 4 ................................................................................................................................ 40 
TCP VE SORGU YÖNETİM ALGORTİMASININ DUALİTY MODELİ ..................... 40 

4.1. TCP-AQM’ nin DUALİTY Modeli: .......................................................................... 41 
4.2. RENO/AQM ................................................................................................................ 45 

4.2.1. F,S,H Modeli ......................................................................................................... 45 



 3 

4.3. VEGAS / DROP-TAİL ................................................................................................ 51 
KAYNAKLAR ..................................................................................................................... 52 

 
BÖLÜM 5 ................................................................................................................................ 54 
VEGAS - DUALİTY MODEL .............................................................................................. 54 

5.1. VEGAS Modeli ............................................................................................................ 54 
5.1.1. Ön Hazırlık ........................................................................................................... 54 
5.1.2. Vegasın Nesneleri ................................................................................................. 55 
5.1.3. Çift Problem .......................................................................................................... 56 
5.1.4. Vegas Algortiması ................................................................................................ 59 
5.1.5. Notlar ..................................................................................................................... 60 

5.2. Gecikme, Kayıpsız Tam ve Kayıp .............................................................................. 61 
5.2.1. Gecikme ................................................................................................................. 61 
5.2.2. Kayıpsız Tam ........................................................................................................ 61 
5.2.3. Kayıp ..................................................................................................................... 62 

5.3. Daimi Sıkışıklık: .......................................................................................................... 63 
5.3.1. Fiyat ve Geri Bildirimin Eşitlenmesi .................................................................. 63 
5.3.2. Yayılma Gecikmesi Tahmini ............................................................................... 63 
5.3.3. Sonuç ..................................................................................................................... 66 

5.4. REM’le VEGAS ........................................................................................................... 66 
KAYNAKLAR ..................................................................................................................... 67 

BÖLÜM 6 ................................................................................................................................ 68 
KARARLI VEGAS ................................................................................................................ 68 

6.1. Ağ Modeli ..................................................................................................................... 69 
6.2. VEGAS’ın Kararlılığı ................................................................................................. 70 

6.2.1. Kararlılık ............................................................................................................... 72 
6.2.2. Teorem 1’in Kanıtı ............................................................................................... 74 

6.3. Kararlı VEGAS ........................................................................................................... 77 
6.4. Uygulama ve Derleme ................................................................................................. 83 
6.5. Benzetim Sonuçları ..................................................................................................... 84 
6.6. Sonuç ............................................................................................................................ 87 
KAYNAKLAR ..................................................................................................................... 88 

BÖLÜM 7 ................................................................................................................................ 90 
TCP VEGAS ARACILIĞI İLE MODELLEME ................................................................ 90 

7.1. Temel ............................................................................................................................ 91 
7.1.2. İlgili Çalışmalar .................................................................................................... 92 

7.2. MODEL ........................................................................................................................ 93 
7.2.1 Paket Kayıpsız Model-1 ........................................................................................ 94 
7.2.2 Zaman Aşımsız Model- 2 ...................................................................................... 95 
7.2.3 Bir Tek Zaman Aşımlı Model-3 ........................................................................... 98 
7.2.4 Tam Model ........................................................................................................... 101 

KAYNAKLAR ................................................................................................................... 103 
SONUÇLAR ......................................................................................................................... 104 
 
 
 
 
 
 
 



 4 

 
 

 
BÖLÜM 1 

 
 
 
 
 
GİRİŞ 

 
TCP VEGAS 1994 yılında TCP RENO’ ya bir alternatif olarak ortaya çıktı. Kapasite 

kullanım ölçüsü olarak paket kaybını kullanan RENO dan farklı olarak VEGAS sıkışıklık 
gecikmesini kullanmaktadır. TCP VEGAS TCP için ilk kez Brakmo tarafından sunulan bir 
tasarımıdır. TCP VEGAS geliştirilmiş bir yeniden transmisyon stratejisini içerir. Bu strateji 
iyi parçalanmış tur ölçümlerine ve yavaş-başlangıç ve tıkanıklıktan kaçınma esnasında 
tıkanıklık tespiti için oluşturulan yeni mekanizmalara dayanır. Yaratıcı teknikler ve etkileyici 
performans kazanımları son yıllarda birçok tartışmanın konusu olmuştur. Bu çalışma TCP 
VEGAS’ ın tasarımına taze bir bakış sunmakta ve TCP VEGAS’ ın yeniliklerinin 
avantajlarına ışık tutmaya çalışmaktadır. 

TCP RENO nun sıkışıklık tespiti ve kontrol mekanizmaları parçaların kaybını bir 
sinyal olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu 
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç 
aşamalarını tespit edecek bir mekanizması yoktur. Dolayısıyla TCP RENO kayıpları 
engelleyemez. Dahası, TCP RENO reaktiftir, yani bağlantının mevcut band genişliğini 
bulmak için kayıplar üretmeye ihtiyacı vardır. Öbür taraftan, TCP VEGAS ın tıkanıklık tespit 
mekanizması aktiftir, yani çıktı oranındaki değişiklikleri gözlemleyerek tıkanıklıktaki 
başlangıcı tespit etmeye çalışır. TCP VEGAS bu çıktı ölçümlerinden tıkanıklık penceresi 
ayarlama politikasını çıkarır, bu da bağlantı kayıplar vermeden önce gönderme oranını 
azaltabilmeyi sağlar. 

TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir 
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma 
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye 
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans 
kazanımlarından sorumlu olduğudur. Bu soru şu ana kadar cevapsız kalmıştır.       
TCP paketleri adım adım iletmek için pencere tabanlı akış kontrol sistemi kullanır. Her 
kaynak gönderilebilecek maksimumum paket sayısını içeren: iletilmiş ama bilgilendirme 
yapılmamış pencere boyutu değişkenini içerir. Bir veri gönderilirken kaynak yeni bir paketi 
göndermek için bilgilendirmeyi beklemek zorundadır. Genel stratejinin 2 özelliği önemlidir. 
Birincisi bilgilendirmeler geç kaldığı ve ağ karıştığı zaman algoritma kendi kendine 
zamanlamalıdır ki TCP kaynağı otomatikman yavaşlasın. İkinci olarak pencere boyutu değeri 
kaynağın oranını belirler: her bir döngü zamanında pencere paketi gönderilir. Bu ikinci 
özellik Jacobenin 1988 de yazdığı kitapta açıklanmıştır. Eklenebilir artırılabilir çoklu aktif 
azaltılabilir algoritmayı iddia etmiş. Ağ sıkışıklığına göre pencere genişliğini 
ayarlayabileceğini iddia etmiş. Bu algoritma TCP RENO’ da uygulanmış ve bu algoritmayı 
içeren TCP’nin bir değişkenidir. TCP RENO 3 ana mekanizmadan oluşur: Yavaş başlama, 
sıkışıklığı giderme ve hızlı düzeltme. Kaynak küçük pencere boyutları ile ihtiyatlı olarak 
başlar ve her bilgilendirmeyi aldığı zaman paket boyutu büyültür. Her döngü sonunda pencere 
boyutunu 2 ile çarpar. Pencere boyutu eşik değerine ulaştığı zaman kaynak sıkışıklık kaçınma 
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fazı girer her bilgilendirme aldığı zaman karşılıklı anlık pencere büyüklüğünü daha yavaş 
olarak artırır. Her bir dönüş zamanında bu pencereyi bir paket büyütür. Her çift 
bilgilendirmedeki kayıpları ölçerken kayıp olan paketleri tekrar gönderir. Bunların 
pencerelerini yarıya böler ve sıkışıklık kaçınmalarını da tekrar girer. Bu hızlı tekrar gönderme 
ve hızlı düzeltme olarak adlandırılır. Zaman aşımı sürecinde kayıpları kaynaktan 
belirleyebilmek için sıkışıklık giderme yerine yavaş başlamaya geçilmelidir. 1994 de TCP 
RENO’nun alternatif olarak TCP VEGAS tanıtılmıştır (Brakmo ve Peterson 1995). TCP 
RENO’nun 3 mekanizmasını geliştirir. Bunlardan ilki yavaş başlama ve daha az kayıpları 
meydana getirme sırasında pencere büyüklüğünü daha tutarlı büyütmesidir. İkincisi tekrar 
gönderme mekanizmasını çiftli bilgilendirmenin alınmasının kontrol edildiğinde RENO da 
olduğu gibi üçüncü çiftli bilgilendirmeyi beklemeden yeniden gönderme mekanizmasıdır. Bu 
yöntem ve kayıpları zamanında yönlendirmektedir. Üçüncüsü RENO’ nun davranışlarını 
düzelten yeni bir sıkışıklık giderme mekanizması. VEGAS’ın RENO algoritmasından farkı ağ 
kapasitesinin ne kadar olduğunu öğrenmek için sıkışıklığa teşvik eder, VEGAS kaynağı 
gerçekleşen ve beklediği sıkışıklık saldırısı arasındaki farkı göstererek bekler. VEGAS yol 
boyunca yönlendiricide daha az sayıda paket tamponlanmasını sağlamak için kaynağın 
gönderim boyutunu artırma stratejisidir. Bu yazıda VEGAS’ ın sıkışıklık giderme 
mekanizmasını anlatacağız. İyi bilinir ki dosya büyüklükleri internet üzerinden büyük bir yük 
getirir. Basit olarak TCP bağlantıları kısa olduğu zaman birçok paket büyük TCP 
bağlantılarından oluşur. Bu büyük paketler küçük değildir. TCP tarafından etkin olarak 
kontrol edilmelidir. İleride daha açık anlatılacağı gibi sıkışıklık giderme bant genişliği 
ayırmak olarak belirlenir ve bu paketler tarafından servisin kalitesi tecrübelendirilir        

Bu çalışma şu bölümlerden oluşmaktadır. Bölüm 2 sıkışıklık giderme ve kontrol 
hakkında temel bilgilendirme sunmaktadır. Bölüm 3 de VEGASIN RENO ya alternatif olan 
farklılıkları ve performansı değerlendirilmiştir. Bölüm 4 de TCP sorgu yönetim 
algoritmasının DUALİTY modeli ve 5. bölümde VEGAS’ ın DUALİTY modeli ele alınmış, 
bölüm 6 da TCP VEGAS kararlılık modelleri ayrıntısıyla verilmiştir 7. bölümde TCP VEGAS 
ile modellemeye deyinilmiştir. 
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BÖLÜM 2 
 
 
 
 
 
SIKIŞIKLIK GİDERME VE KONTROL 
 

Bilgisayar ağları son birkaç yıldır çok ilerlemiş ve tecrübe kazanmıştır. Bu gelişme ile 
sıkışıklık problemi meydana gelmiştir. Lokal tamponlama aşımlarından dolayı paketlerin %10 
internet ağ geçitlerinde kayıp olduğu görülmüştür. Bu problemleri incelediğimiz sorunun 
protokolün kendisinden değil zaman transfer protokol uygulamasından kaynaklandığı 
görülüyor: Pencere tabanlı iletim protokolünü gerçekleştirmek için açık olan yollar ağ 
sıkışıklığının cevabını yanlış gösterir. Yanlış eylemlere örnekler vereceğiz ve doğru şeylerin 
oluşması sağlayan basit algoritmaların bazılarını açıklayacağız. Bu algoritmalar paket 
haberleşme prensiplerine dayanarak transfer bağlantılarını güçlendirmekle ağ kararlılığını 
gerçekleştirmeye dayanır. Bu prensipten Algoritmaların nasıl çıkarılacağını göstereceğiz ve 
sıkıştırılmış bir ağda trafiği nasıl etkilediğini göstereceğiz. 

1986’ın Ekiminde internet birkaç seri sıkışıklık çökmesi getirmiştir. Bu bant 
genişliğindeki ani düşmeden çok şaşırdık ve bu problemin neden kötüye gittiğini düşünmeye 
başladık. Özellikle,  4,3 BSD (BERKELEY UNİX) TCP yanlış hareket etimi ya da bitmeyen 
ağ koşullarında daha iyi çalışmaya başlayacağını merak ettik.  

 
2.1. Yavaş Başlama Dengesini Sağlamak  
 

Bu zamandan sonra 4 BSD TCP ye 7 yeni algoritma daha eklendi 
1- Çevrim zamanı değişim tahmini 
2- Logaritmik yeniden gönderim zamanlayıcı bitimi 
3- Yavaş başlama 
4- Daha girişken alıcı bilgilendirme politikası 
5- Sıkışıklıkta dinamik pencere boyutlandırma 
6- Karn’s tekrar gönderimlerin bitimini sıkıştırmış 
7- Hızlı yeniden gönderim  

Ölçümlerin ve β test edicilerin raporları tavsiye ediyor ki internetteki sıkışıklık 
durumları ile ilgilenmenin iyi olması için bu doküman arkalarındaki bağlantıları ve 1 ve 5. 
maddeler için açık bir tariftir. 6 numaralı algoritma BEL haberleşme enstitüsü tarafından 
değiştirilmiştir kaynak [1] da tanımlanmıştır. 7 numaralı algoritma AFS (Arpanet) tarafından 
yayınlanmıştır. Algoritma 1 ve 5 bir gözlemden ileri çıkar. TCP bağlantısının akışı veya 
İSOTP–4 veya Zerox NSSPP bağlantısı paketlerin korunması prensibine tabi olmalıdır. Bu 
prensibe tabi olursa sıkışıklık çökmesi kurallardan istisna olur. Bu sıkışıklık kontrolü 
muhafazayı ihlal etmek ve onları onarmakta yer bulmayı sağlar. Paketlerin korunmasıyla 
bağlantı için dengeyi kastediyoruz. Örneğin veri iletiminde tam pencere ile kararlı çalışmak, 
paket akışı fizikçiler tarafından ılımlı olarak adlandırılır. Yeni paket, eski paket ağdan 
ayrılmadan ağa verilmez. Akışın fiziği sıkışıklığın yüzünde bu özellikledeki sistemin düzgün 
olmasını haber verir. İnternetin incelenmesi kısmi olarak düzgün olmadığını gösterir. Bu zıtlık 
nedendir? Paket korunmasının başarısız olmasına üç neden vardır. Bağlantı dengeye 
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gelmemiştir veya gönderici eski paket çıkmadan yeni paket göndermiştir veya dengeye yol 
boyunca kaynağın sınırlarından dolayı ulaşılamamıştır. Aşağıdaki bölümlerinde bunları 
inceleyeceğiz kaynak [2], [3]. 
2.2. Yavaş Başlamayla Dengeye Ulaşma 
 

Başarısızlık Paket kaybından sonra başlama veya yeniden başlama bağlantıdandır. 
Korunma özelliğine başka bir bakış söylenebilir ki gönderici 2. paketi gönderebilmesi için 
bilgilendirme şekil 2.1 de olduğu gibi kullanır. Alıcının bilgilendirme üretmeye başladığı 
zaman ağdan daha hızlı bir veri paketi alınamayacaktır.  

 
Şekil 2.1. Pencere akış kontrolü. 

 
Yüksek bant genişliğindeki ağın gönderici ve alıcılarının şematik gösterimi daha 

yavaş, uzun mesafeli bir ağ bağlanmıştır. Gönderici şu anda başlamış ve arkadan arkaya bir 
pencere varmıştır. Bu ilk paketlerin bilgilendirilmesi göndericiye gelmek üzere sol hunide 
bulunan ağızdaki dikey çizgi ve dikey boyutlar bant genişliğidir, yatay boyutlar ise zamandır. 
Her parçalanmış kutu bir pakettir. Bant genişliği × zaman = bit’tir böylelikle kutunun alanı 
paket boyutudur. Bitlerin sayısı paketler ağ boyunca gittiği sürece değişmez. Böylelikle paket 
zamanda küçültülmüş daha küçük uzun bant genişliğine sıkıştırılır. Yoldaki en küçük 
bağlantıda bp  zamanı minimum paket boşluğunun genişliğini ifade eder. Paket hedefe 
ulaşmak için şişe boynunu geçerken paketin iç aralığında değişim olmaz. Alıcının paket 
aralığı br pp = dir. Alıcı işlev zamanı bütün paketler için aynıysa alıcıdaki bilgilendirmeler 
arasındaki boşluk brr ppA == dir. Zaman çizelgesi bp  paketler için yeterince büyük ise 
bilgilendirmeler içinde yeterince büyüktür ki dönüş yolu boyunca bilgilendirme aralığı 
korunur. Bu göndericideki bilgilendirme aralığı bs pA =  dir. Şöyle ki: ilk gönderimden sonra 
eğer paketler bilgilendirmenin cevabıyla birlikte gönderildiyse gönderici paketleri boşluğu 
yoldaki en yavaş hatta paket zamanı ile örtüşecektir.  

Protokol şekil 2.1 deki gibi kendi kendini zamanlamalıdır. Kendi kendini zamanlama 
sistemi bant genişliğini otomatik artırır ve varyasyonları geciktirir ve geniş bir dinamik ararlık 
meydana getirir. TCP 800 Mbit/sn taşıma kanalından 1200 bit/sn radyo bağlantısına kadar bir 
aralıkta değişebileceği düşünülmesi önemlidir). Fakat aynı şey kendi kendine zamanlamalı 
sistemi çalışması başlamasını zorlaştırdığı zaman kararlıdır. Data akışı meydana getirmek için 
bilgilendirme olmalıdır fakat bilgilendirmeyi elde edebilmek içinde bilgi akışı olmalıdır 
kaynak [4]. 

Zamanlamayı başlatmak, transferdeki verinin büyüklüğünü ölçülebilir artırmak için 
yavaş başlama algoritmasını geliştirdik. Bunla birlikte kendimiz övüyoruz ki bu algoritmanın 
tasarımı ustaca bir iş Uygulaması ehemmiyetsiz ve yeni durum değişkeni ve göndericideki 
kodun 3 çizgisi şekil 2.2 deki gibidir.  
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Şekil 2.2. Yavaş başlamanın kronolojisi. 

 
Yatay yön zamandır. Devamlı zaman çizgisi bir dönüş zamanı parçasına bölünmüştür. 

Sayfanın aşağısına doğru artan şekilde Dikey olarak istiflenmiştir. Gri numaralı kutular 
paketlerdir. Beyaz numaralı kutular bilgilendirme mesajlarıdır. Her bir bilgilendirme geldiği 
zaman 2 paket üretilir. Birisi bilgilendirme için yeni paketin gönderildiği paket, ikincisi 
paketin sistemi terk ettiğini gösteren bilgilendirme ki sıkışıklık penceresini bir paketle bu 
bilgilendirme açar. Şekil 2.2 açıkça gösterir ki zamanda logaritmik olarak pencereye bir paket 
açma politikasına neden olduğunu gösterir.  Eğer yerel ağ uzun mesafeli ağdan daha hızlıysa 
bilgilendirmelerin iki paket aynı zamanda şişe boynuna varır. Bu iki paket yığın olarak birinin 
en tepesinde görülür. Bunlardan birisi ağ geçidin çıkış sorgusunda bir boşluk kaplayacağını 
gösterir. Bu kısa sorgu logaritmik olarak ağ geçidinde artar ve şişe boynunda w boyutundaki 
paketlerin W/2 tampon kapasitedeki paketlere dönüşmesini gerektirir. 

 
—Sıkışıklık penceresi ekle CWND hr bir bağlantı durumuna 
—Kayıttan sonra başlarken ve yeniden başlarken, CNWD yi bir palet için belirle 
—Her yeni veri için her bilgilendirme CNWD yi bir paket artırır.  
—Gönderirken alıcının reklâm penceresini ve CNWD sini minimum değerde gönder 

 
Aslında yavaş başlama penceresi artışı yavaş değildir. Zamanı WR 2log  olarak alır r 

dönüş zamanı olduğu zaman ve w paketlerin pencere boyutu olduğu zaman şekil 2.2 deki gibi 
Bu performansın ihmal edilebilir etkisine sahip olmak için yeteri kadar çabuk pencere açar 
manasına gelir. Hatta geniş bant genişliğindeki hatlar için ürünleri geciktirir ve algoritma 
yoldaki maksimum mümkün olan en yüksek iki veri bağlantısını garantiler.  
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Şekil 2.3. TCP nin yavaş başlamasız davranışı. 

 
2 tane san 3/50 ve san 3,5 makine arasındaki TCP bağlantısının başlangıç verileri. Bu 

2 san makine ip ağ geçidi tarafından farklı bağdaştırıcılara bağlı 230 KB/sn noktadan noktaya 
bağlantıyı içermektedir. Bağlantının pencere boyutu 16 KB dır ve hat bant genişliği ağ 
geçidinde 30 tane tampon paket mevcuttur. Gerçek yol 6 tane düğüm ihtiva eder öğle geçidi 
bant genişliği sorgusu tam pencere için yeterli kapasitededir ama ağ geçidi sorgusu yalnız 
başına yeterli değildir. Her bir nokta 512 byte paket içerir. X aksı gönderilen paketlerin 
zamanıdır. Y aksı paket başlığındaki ardışık numaralardır.  Noktaların yatay dizisi arka arkaya 
paketleri işaret eder ve aynı y deki ve farklı x deki 2 nokta yeniden gönderim işaret eder. 
Grafikteki arzı edilen davranış şeklin sol alt tarafından üst sağ tarafına doğru kısmen düzgün 
bir hattır. Çizginin eğimi gerekli bant genişliğine eşit olabilir. Hiçbir şey bu durumda arzu 
edilen davranışa benzemez. Çizgili kısım gösterir ki 20 KB/sn bant genişliği bu bağlantı için 
mümkündür.  Bu bant genişliğinin %35 i kullanılmıştır. Geri kalan kısmı tekrar gönderimler 
için kullanılır. Hemen hemen her şey 54 KB den 58 KB ye kadar gönderilen 5 kez iletilir.  

Yavaş başlamasız da tezat olarak 10 b/sn Eternet 56 KB/sn Arpanet ile görüştüğü 
zaman ağ geçidi ile ilk ağ geçidi sıçraması yol bant genişliğinde 200 kez gelen paketlerin 8 
nin patladığını görürüz. Bu paketlerin patlaması devamlı yeniden göndermenin sıklıkla kalıcı 
bir başarısızlığına götürür.(Şekil 2.3 ve 2.4) 

 
2.3. Eşitliği Korumak 
 
Tur Zamanı: İyi bir tur zamanı tahmin edicisi yeniden gönderim zamanlayıcısının çekirdeği 
ağır yüklü ortamlar hariç herhangi bir protokol uygulamasının önemli bir özelliğidir. Kaynak 
[5] ve [6] de tipik problemde izah edildiği gibi sıklıkla yamanmıştır.  Bir hata dönüşümü 
tahmini Rσ  dönüş zamanı r olsun. Sorgulama teorisinde biliyoruz ki r ve r nin varyasyonları 
yüklenme ile çabuk bir şekilde yükselir. Eğer yüklenme p ise maksimum varan sayısı değeri R 
ve Rσ  formüldeki gibi ölçülür 1)1( −− p . Bunu somutlaştırmak için ağ %75 kapasite ile 
çalıştığında Arpanet son nisanda çökmüş 16 faktör tarafından dönüş zamanı değiştiği tahmin 
edilir. TCP protokol özellikleri alçak geçirgen filtreye dayalı olarak dönüş zamanını tahmin 
etmeyi önerir. 

MRR )1( αα −+←  
Bu formülde R en yüksek RTT tahmini değeridir. Bu formülde M en yakın 

bilgilendirme veri paketi tur zamanı ölçüm değeri ve α  filtre kazanç sabiti tavsiye edilen 0,9 
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değeri ile R tahmini değeri güncellendiği zaman yeniden gönderim zaman aşımı aralığı RTO 
bir sonraki gönderilen veri paketinde βR olarak atanır.  
 

 
Şekil 2.4. TCP yavaş başlama davranış başlangıcı. 

 
Aynı koşullarda önceki Şekil 2.3 gibi aynı günde aynı ağ yolunda aynı tamponlama ve 

pencere boyutu ile bunların dışındaki makinelerle 4.3 + TCP yavaş başlamayı kullanıyorlar. 
Yeniden gönderimde hiçbir bant genişliği harcanmıyor. Ama 2 saniye yavaş başlamada 
harcanıyor. Böylelikle bu bölümdeki efektif bant genişliği Şekil 2.3 dekinden 2 kat daha iyi 
olarak 12 KB/sn oluyor. Daha önceki şekle bakmaksızın, işlemin eğimini 20 KB/sn ve işlemin 
boyunu 2 saniye daha düşmesine etki ediyor. Örneğin bu işlem 1 dakika sürerse efektif bant 
genişliği 19 KB/sn olur. Yavaş başlamasız efektif bant genişliği ile 7 KB/sn da kalır.   

 

 
Şekil 2.5. RFS 793 yeniden gönderim zamanlayıcı performansı. 

 
İşlem verisi iyi oluşturulmuş arpa net bağlantısındaki her paketinin dönüş zamanını 

gösterir. X aksı paket numaralarıdır ki paketler ardışık numaralandırılmıştır 1 den başlar ve y 
aksı paketin gönderiminden gönderenin aldığı bilgilendirmeye kadar geçen zamanı gösterir. 
İşlemin bu parçasına kadar hiçbir paket kaybolmamış ve tekrar iletilmemiştir. Paketler nokta 
şeklinde ifade edilir. Noktalı çizgiler sırayı daha kolay takip etmek için onları bağlar.  Düz 
çizgiler RFS 793 kuralına göre yeniden gönderim zamanlayıcının davranışını gösterir.  
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RTT değişimi kaynak [7] de olduğu gibi β parametresi ile hesaplanır. β =2 değerinde 
% 30 yüklemeye adapte edebilir. Bu noktadan sonra paketlerin geri gönderimi artarak 
yüklemeye cevap verir. Dönüşümde sadece ertelenir. Bu ağı gereksiz iş yapmaya zorlar, bant 
genişliğini boşa harcamaya paketleri çiftlemeye zorlar. Örneğin bu ateşe benzinle gitmeğe eş 
değerdir. Biz ucuz bir dönüşüm metodu geliştirdik ve yeniden gönderim zamanlayıcı 
sonuçları sahte yeniden gönderimleri özellikle elemine eder. Sabit değerler kullanmak yerine 
β yaklaşımının güzel tarafı düşük yük de ve yüksek yükte performansı geliştirmesidir. 
Özellikle yüksek gecikmedeki yollarda uydu bağlantıları gibi (şekil 2.5 ve 2.6) başka 
zamanlayıcı hataları geri gönderimden sonra kaybolur. Eğer paket birden çok kere yeniden 
gönderilirse yeniden gönderimler nasıl yer almalıdır? Transferin son noktasında ağın 
bilinmeyen bir topolojisi gömülmüş ve bilinemez. Konuşmanın sayısının değişimi sabit 
oluyor ve sadece bir şekil çalışan logaritmik düşüş düğümüne sahip ama bunun ispatı bu 
yazının ispatıdır. Kaynak [1],[8],[9]. 
 

 
 

Şekil 2.6. Asıl ve değişen yeniden gönderim zamanlayıcısı performansı. 
 

Yukarıda ki aynı veri ama sabit çizgi ek A da ki algoritmaya göre hesaplanmış yeniden 
gönderim zamanlayıcısını gösterir. 

İspatı idare etmek için ağın iyi bir yaklaşımda, doğrusal sistem olduğunu not edin. Bu 
elementlerin tamamı doğrusal operatörler, gecikmeler, kazanç durumları ve benzerleri gibi 
davranırlar. Doğrusal sistem teorisi söyler ki sistem kararlı ise kararlığı logaritmiktir. Bu 
kararlı olmayan sistemleri logaritmik zamanlayıcı düşümleri gibi bazı logaritmik düşümler 
kararlı hale getirilebilir. 

 
 
2.4. Yolu Adapte Etmek ve Sıkışıklık Gidermek 
 

Eğer zamanlayıcı iyi bir şekle sahip ise bazı şeyler güvenebiliriz ki gecikme paketlerin 
kaybı veya zamanlayıcının kırılmamasındandır. Bu noktada bir şeyler bunun hakkında 
yapılabilir. Paketler 2 sebepten dolayı kaybolabilir. İletim sırasında zarar görmüş olabilir veya 
ağ sıkışmış olabilir ve yolun herhangi bir yerinde uygun olmayan tampon kapasitesine 
sahiptir. Birçok ağ yolunda hasar oranı % 1 den küçüktür ki ağdaki sıkışıklıktan dolayı bu 
medyana gelir. Sıkışıklık giderme stratejisi kaynak [10] de arz edildiği gibi 2 elamana 
sahiptir. Son noktaya işareti iletebilir ki sıkışıklık meydana gelir veya meydana gelmek 
üzeredir. Ve son nokta eğer sinyal alınmışsa sıkışıklığı düşürmek için bir politikaya sahip 
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olmak zorundadır. İşaret alınmamışsa araçlaşmayı yükseltmek gerekir. Eğer paket kayıpları 
hemen hemen her zaman sıkışıklıktan dolayı ve nerdeyse her zaman, zaman aşımı paket 
kayıplarından kaynaklanırsa ağın sıkışıklığının işareti için iyi bir adaya sahibiz. Sıkışıklık 
giderme stratejisinin başka bölümü, son düğüm hareketi DEK/İSO ve kendi TCP mize göre 
neredeyse aynıdır ve ağın ilk sıralama zaman seri modeline göre direk olarak takip eder. 
Maksimum sorgu uzunluğu tarafından ağ yükünün bazı uygun uzunluktaki sabit girişler 
üzerinden ölçüldüğünü kabul edelim.  

Sıkışmamış ağlarda! iL  girişin yükü ise örnekleme zamanı ile karşılaştırıldığı zaman!

iL  daha yavaş değişeceğini söyleyebiliriz. Örneğin 

NLi =  
Eğer n sabit ise ve ağ sıkışıklığı söz konusu ise bu sıfırıncı sıra modeli bozulur. En 

yüksek sorgu uzunluğu 2 terimin toplamı olur. Bu hesapların yukarıdaki n değeri yeni trafiğin 
maksimum varış değeri için ve trafik parçası için yeni hesap terimi en son geliş zamanından 
ve varış zamanı trafik etkisine kadardır. 

1−+= ii LNL γ  
Taylor seri açılımın ilk 2 terimi yukarıdaki formüldür. Sonuç olarak 3 terime ihtiyaç 

duyulacağının bir sebebi vardır. Ağ sıkışık olduğu zaman γ  büyük olmalıdır ve sorgu boyu 
logaritmik olarak artan şeklide başlamalıdır. Sorgu büyüklükleri çok hızlı sıkıştırıldığında 
trafik kaynağında sadece sistem kararlı olur. Pencere büyüklüğünü ayarlamakla pencere 
bağımlı protokol kaynak kontrolüne yüklenebilir. W gönderici politikası ile sonlanır. 
Sıkışıklıkta:    

)1(1 <= − ddWW ii  
Örneğin pencere boyutunun çoklu aktif düşümü sıkışıklık daimi kaldığında zaman 

çizelgesinde logaritmik düşme meydana gelir. Eğer sıkışıklık yoksa γ  sıfır civarında 
olmalıdır ve yük yaklaşık sabit olmalıdır. Ağ bildirimleri düşmüş paketler tarafından talep 
aşırı olduğu zaman bağlantı daha az paylaşım kullanıyorsa hiçbir şey göndermez. Bağlantı 
hali hazırdaki limitleri bulabilmek için kendi bant genişliğini yükseltmek zorundadır örneğin 
başkası ile yolunuzu paylaşabilirsiniz ve her bir elde edilebilir bant genişliğinde bir pencerede 
birleşir. Eğer kapanırsa bant genişliğinin %50 si zayi olur. Yalnızca pencere boyutunuz 
büyümediği zaman büyüme politikası ne olmalıdır?  İlk düşünülen simetrik, çoklu aktif 
artırım, daha uzun zaman sabiti imkânı,  dbbWW ii *11,1 ≤<= −   hatadır. Bunun için 
analitik sebep bu gerçeklerle yapmaktır ki ağı doyuma götürmek kolaydır. Ama düzeltmek 
zordur. Bu yüksek tahmin edilmiş bant genişliği maliyetlidir. Ama logaritmik olarak zaman 
sabiti hemen hemen ihmal edilebilir. Pencere boyutundaki sabit, küçük değişiklikler yapmakla 
tahmin etmeden en iyi yükselme politikasını belirleyeceğiz. Sıkışma olduğu zaman şu eşitlik 
geçerlidir: 

)( max1 WuuWW ii <<+= −  
Hat bant genişliği, üst protokol örneğin en geniş yüklenmemiş yol için makul 

penceresi maxW eklenebilir artırımdır. Çoklu aktif düşüş politikası tavsiye edilir ve TCP de bu 
politika uygulanır. Bu iki uygulamanın tek farkı d ve n sabitlerinin seçimidir. Burada 0,5 ve 1 
değerinin kullanıyoruz. Yazının devam eden kısmında bütün analiz yer almaktadır. Sıkışıklık 
kontrol algoritması için bu konu önemsiz gibi gözükebilir ama değildir. Yavaş başlama gibi 3 
kot çizgisi vardır. 1-CWND ile Herhangi bir zaman her aşımında hali hazırdaki pencere 
boyutunun yarısını yap (bu çoklu aktif düşümdür). 2- yeni veri için bilgilendirme CWND yi 
1/* CWND kadar artırır, bu eklenebilir artırımdır. 3- gönderirken alıcı reklâm penceresini ve 
CWND yi minimum gönder. Bu algoritmanın sıkışıklık giderme olduğunu not edin. Daha 



 13 

önceden tanımlanan yavaş başlamaya dâhil değildir. Sinyal karışıklığını paket kaybettiğinde 
yeniden başlamaya sebep olacaktır.  Yukarıdakilere ek olarak yavaş başlama nerdeyse hemen 
hemen gerekli olacaktır. Ama her sıkışıklık giderme ve yavaş başlamada zaman aşımı 
tarafından tetiklenir ve sıkışıklık penceresini artırır. Bunlar sıklıkla karışmıştır. Bunlar aslında 
tamamen farklı nesneler ile bağımsız algoritmalardır. Farkı anlayabilmek için iki algoritmada 
ayrı olarak ele alınmıştır. Fakat pratikte beraber uygulanmalıdır. Ek B de yavaş başlama 
sıkışıklık giderme algoritmalarını beraber tanımlanmıştır. Şekil 2.7 den 2.12 ye kadar 
sıkışıklık gidermeli ve gidermesiz TCP bağlantılarının davranışlarını gösterir. Sıkışıklığı 
benzetmek için Test şartlarına rağmen örneğin 16 KB pencereler iletilebilir. Bu test senaryosu 
pratiktekinden çokta uzak değildir. Arpanet IMP uçtan uca protokolü herhangi ağ geçidi 
çiftleri arasında 8 paketin gönderilmesine izin verir. Varsayılan 4,3 BSD boyutu 8 pakettir ( 4 
KB). Bu ardışık gönderme Barkaly deki herhangi 2 kaynakta ve bitteki herhangi iki kaynakta 
UCB-MİT IMF yolunda ağ kapasitesini aşabilir ve gösterildiği gibi davranabilir. Kaynak [11], 
[12].  
 
2.5. Ağ Geçidi Taraflı Sıkışlık Kontrolü 
 

İletimin son noktasındaki algoritma ağ kapasitesinin aşmadığını garantiler.  Bunlar bu 
kapasitede uygun paylaşımı garantilemez. Sadece ağ geçitlerindeki akışların sıkışıklığında 
paylaşımları kontrol etmek ve uygun yerleri kontrol etmek için yeterli bilgi var mı? Bit 
sonraki adımla ağ geçidinin sıkışıklık belirleme algoritmasını görürüz kaynak [7]. 

 

 
Şekil 2.7. Çoklu iletişim test kurulumu. 

 
Çoklu ardışık TCP iletişim paylaşımı şişe boynu bağlantılı etkileşimi bu kurulumla 

test edilecek. 1 MB transfer (2048–512 byte veri transfer paketleri) 3 saniyede başlatılmıştır. 
LBL deki 4 makineden ayrı olarak UCB deki 4 makineye her makinede ki 1 iletim çifti 
yukarıda noktalı olarak gösterildiği gibi bütün trafik 234 KB/sn İP yönlendiricisine 
bağlanarak gitmektedir. LBL deki Cısam dan UCB deki Cartan İP yönlendiricisine mikro 
dalga bağlantı sorgusu 50 paketi tutabilir her bir bağlantı 16 KB (32-512 byte paket) 
pencereye verilir. Bu herhangi iki bağlantı mümkün olan tampon lamayı aşabilir ve 4 bağlantı 
% 160 oranında sorgu kapasitesini aşabilir.  

 
Bu algoritmanın amacı mümkün olduğunca kısa süre son noktaya sinyali 

göndermektir.  Ama ağ geçidinin trafiksiz kalacağı kadar erken değil. Paket düşümlerini 
sıkışıklık sinyali olarak kullanmaya devam etmeyi planladığımız zaman ağ geçidi kendi 



 14 

kendini yanlış davranmaktan kurtarır. Sunucu basitçe düşmüş paketlere sahiptir. Paketlerin 
birden çok uygun bağlantı kullanmaya çalıştığını ağ geçidi söyler. Bu son nokta algoritmasına 
benzer.  Ağ geçidi algoritması sıkışıklık gidermeyle son nokta değiştirilmese dahi sıkışıklığı 
azaltmalıdır. Ve düğümler en az sayıdaki paket düşümü ve uygun paylaşım bant genişliğine 
sahip olacaktır. Sıkışlık giderme uygulandığında  

Logaritmik olarak sıkışıklık arttığında erken tanımlamak önemlidir. Eğer erken 
tanımlanmışsa göndericinin küçük artırımlarıyla pencereler bunu tamir eder. Bunun dışında 
çok büyük artırımlar ağa yeterli yedek kapasiteyi vermek için gereklidir. Ama trafiğin bir 
anda patlama eğilimi gerçekçi planlama saçma olmayan bir problemdir. Jain sorgu yeniden 
oluşturma noktaları arasındaki azami değere dayanarak bir şekil amaçlamıştır. Bu iyi bir 
patlama filtrelemesine dayanır. Ama yüksek yük altında veya uygun 2. Sıralı dinamikte 
dönüşüm problemi olduğunu düşünebiliriz. Armaks modelindeki dönüş zamanı / sorgu 
uzunluğu tahminindeki daha önceki çalışmalarımız gibi kullanmayı planlarız. Kaynak [13]. 

 

 
Şekil 2.8. Çoklu ardışık TCP ler sıkışıklık gidermesiz. 

 
4 ayrı TCP haberleşmesinden sıkışıklık giderme yol üzerinde şekil 2.7 üzerinde 

gösterilmiştir. 11 000 paketin 4000 i yeniden iletim için gönderilmiştir (örneğin paketlerin 
yarısı yeniden iletilmiştir). Bağlantı bant genişliği 25 KB/sn olduğunda her bir 4 haberleşme 6 
KB/sn la iletilmelidir. Bunların dışında bir haberleşme 8 KB/sn a sahiptir. İkisi 5 KB/sn bir 
diğeri 0,5 KB/sn ve 6 KB/sn kaybolmuştur.  

Başlangıç sonuçları bu ilerlemenin yüksek yüklemede başarılı çalışacağını tavsiye 
eder, trafikte İkinci sıralı etkilerden muaftır ve her saniye kilo paketleri yeteri kadar 
yavaşlatmaz. 
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Şekil 2.9. Sıkışıklık gidermeli çoklu ardışık TCP ler. 

 
Şekil 2.7 de gösterilen yol üzerinden sıkışıklık giderme kullanılarak 4 farklı TCP 

iletişimi gerçekleştirilmiştir. 8281 paketin 89 u yeniden iletim için gönderilmiştir. Örneğin 
paketlerin %1 yeniden gönderilmek zorunda kalınmıştır. İletişimlerin 2 tanesi 8 KB/sn ve 2 
tanesi 4,5 KB/sn dır. Örneğin bütün bağlantı bant genişlikleri şekil 2.11 de hesaplanmıştır. 
Yüksek ve düşük bant genişliği göndericileri arasındaki fark alıcıdan kaynaklanır. 4,5 KB/sn’ 
lik göndericiler 4,3 BSD lik alıcılarla haberleşir. Bu ACK nin %35 penceresinin solmasına 
veya 200 mili saniye geçmesine kadar gecikir. Örneğin 5 ya da 7 paket ACK gecikmesi 
maksimum değerde ise. Bu göndericinin her bir bilgilendirmede 5 ile 7 paket patlamanın 
iletilmesi manasına gelir. 8 KB/sn göndericiler 4,3 + BSD alıcılarla haberleşirler bu 
bilgilendirmenin en fazla bir paketini geciktir. Bilgilendirmenin saat kuralından dolayı yazan 
minimum bilgilendirme frekansının diğer bütün paketlerde olmasına inanır. Örneğin gönderici 
en son 3 paketi iletebilir: kayıp olma ihtimali aniden yükselir. Göndericinin Eski tip alıcılar 
ile konuşması 3 kez kayıp değeri yeniden gönderim beklemesinin daha fazla zaman 
harcayacağı anlamına gelir ve sıkışıklık gidermeden dolayı en büyük pencere boyutu daha 
küçülür (Daha yüksek kayıp değerleri 1,8 veya 0,500 üçe katına çıkabilir). 

 

 
Şekil 2.10.Yeni ve eski TCP ler tarafından kullanılan toplam bant genişliği. 
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Sıkışıklık giderme kullanılmadan 4 adet gönderici tarafından kullanılan toplam bant 
genişliğini ince çizgi gösterir. Maksimum 5 saniye olan değerler ve 25 KB/sn bağlantı bant 
genişliğine normalleştirilir. Kablodaki göndereceğinden %25 daha fazla maksimum değerde 
göndericinin gönderebileceğini not edin. Kalın çizgi sıkışıklık giderme ile gönderici için aynı 
verileri içerir. Her TCP nin doğru pencere boyutunda küçük başlamadan dolayı bulduğunda 
İlk 5 sn için veri düşüktür. Sonra 20 sn civarında sıkışıklık kontrolü ayarlamadan dolayı ani 
artış meydana gelir.  Kalan zamanda gönderici kanalın kablonun bant genişliğinde hareket 
eder (110 sn civarındaki aktivasyon bant genişliğidir).  80 sn civarındaki aktivite şekil 2.9 
deki düz spotun yansımasıdır.  
 

 
Şekil 2.11. Yeni ve eski TCP lerin etkili bant genişliği. 

 
Şekil 2.10 eski TCP lerin şişe boyunu bant genişliğinden % 25 den fazla kullandığını 

göstermiştir. Bu şişe boynu sorgusu dolduğu zaman göndericilerin % 25 i çıkarılır. Eğer bu 
çıkarım yeniden iletilmişse 25 KB/sn nin tamamı bağlı bant genişliğine iletilir. Örneğin 
onların davranışları sosyal olmayabilir ama kendi kendini yıkıcı değildir. Ama şekil 2.8 de 
bağlı bant genişliklerinin % 25 civarı sayılmamıştır.  Şimdi her 5 sn için girişlerin toplam veri 
bilgilendirmelerini maksimuma getirdi, bu etkili veya iletilmiş bağlantının bant genişliğini 
verir. İnce çizgi yine eski TCP yi gösterir. Bağlantı bant genişliğinin % 75 veri için kullanılır. 
Yeniden iletilme ihtiyacı duyulmayan yeniden iletim paketleri tarafından hatırlatmalar 
kullanılmalıdır. Kalın çizgide yeni TCP ler için alınmış bant genişliğini gösterir. Aynı yavaş 
başlama vardır ve bağlantı bant genişliğinde operasyonu uzun dönem boyunda takip eden bir 
geçici durum başlar.   
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Şekil 2.12. Pencere ayarlama detayları. 

 
En uzun zaman 5 sn olduğundan dolayı eski TCP verilerinde tepeleri yumuşatmak 

gerekir. Sıkışıklık giderme pencere politikası şekil 2.10 da ve 2.11 de yapılması zordur. 
Burada 3 sn süreliğine sıkışıklık kontrolü için veri bilgilendirmeyi etkili bir şekilde 
gösteriyoruz. Paket düşürüldüğü zaman gönderici pencere dolana kadar gönderir. Sonra 
yeniden gönderimin zaman aşımı dolana kadar durur. Düşen paketten sonra alıcı 
bilgilendirme verisini gönderemediğinde bu çizimden büyüklüğü gönderenin pencere 
büyüklüğüne eşit olan negatif tepe görmeyi umarız.  Eğer bir sonraki girişte yeniden 
gönderim gerçekleşirse aynı büyüklükteki pozitif tepe görmeyi umarız. Bu tepelerin 
yüksekliği gönderici tepe boyutunun direk ölçümüdür. Veri açıkça 15, 33 ve 57. saniyelerde 3 
olayı da gösterir ve pencere boyutu logaritmik olarak düşer. Noktalı çizgiler 6 pencere 
boyutunda kareye dolar bu olayda belirtildiği gibi dolma zamanı değişkeni 28 sn dir. Ağ 
geçidindeki uzun zaman sabiti sıkışıklık giderme algoritmasının eksikliğinden kaynaklanır. 
Ağ geçidinde çalışan düşme algoritması ile zaman sabiti 4 sn civarında olur.  

 
 
2.6. RRT ve Varyasyon Dönüşüm İçin Hızlı Algoritma 
 
2.6.1. Teori  
 

Asıl dönüş zamanı yaklaşımı için RFC 793 algoritması tahmin edici sınıfın en basit bir 
örneğidir. Geçen 20 yıl zarfında bu algoritma yaklaşımları kontrol teorisini 
devrimselleştirmiştir kaynak [14]. RTT nin (Run Trip Time – gidiş-dönüş zamanı) yeni ölçüm 
değeri m verilmiştir. TCP aşağıdaki formülle maksimum RTT yaklaşımına güncellenmiştir.  

gmga +−← )1(  
Bu formülde g kazanç demektir ve 0 ile 1 arasındadır, sinyalin gürültü gücüne 

bağlıdır. Bu daha hassas yapar ve daha hızlı hesapla sağlar. Aşağıdaki formülü elde 
edebilmek için g ile terimleri çarpıp yeniden sağlarsak  

)( amgaa −+←  
Bir sonraki ölçümün tahmini a değeri olarak düşünelim (m-a) bu tahmindeki hatadır. 

Ve yukarıdaki formül tahmin hatasındaki çeşitli parçalar ve eski tahmin değerine dayana yeni 
bir yaklaşım yapılabileceğini söyleriz yukarıdaki formülle.  Tahmin hatası iki elemanın 
toplamıdır. Birincisi ölçümdeki gürültüden kaynaklanan rasgele, tahmin edilemeyen hata 
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ikicisi a nın yanlış seçiminden kaynaklanan hatalar. Rasgele hata rE  yi çağırır ve eE  yaklaşık 
hatasına  

er gEgEaa ++←  
eşittir. egE  terimi a yı verir. Sağ taraflındaki yükselme rgE  nin rasgele taraftaki yükselmeyi 
verir.  Birçok örnekten sonra rasgele vuruşlar birbirini iptal eder. Bu algoritma doğru 
maksimum bir noktada birbirine yaklaşmaya mail eder. Fakat g bir uzlaşmayı tasvir eder.  Biz 
büyük g değeri istedik eE yi etkilemeyecek şekilde ama küçük rgE  den kaynaklanan 

hasarları azaltması için. eE  terimi gerçek maksimum değere gittiğinde g nin hangi değerini 
kullandığınız önemli değildir. Hemen hemen her zaman daha büyük değerler yerine daha 
küçük değerleri kullanmak daha iyidir. Tipik olarak kazanç 0,1 ile 0,2 arasında seçilir. 
Kazancı toplamadan önce ham verinize uzun bir bakış için iyi bir fikirdir. 
Açıktır ki doğru averaj ve anın standart sapması arasın da a rasgele olarak salınır. Aynı 
zamanda a logaritmik olarak doğru averaj değerinde birleşmeye değerinde 1/g zaman 
sabitinde. Böylelikle daha rgE kararlı a yı verir. Doğru averajı elde etmek için daha uzun 
zaman harcanır. 
M deki farklı ölçüm değerlerini almak istersek TCP yeniden gönderim zamanlayıcısına iyi bir 
değer hesaplamasını söyleyin. 2σ  değişimi kalıcı bir seçimdir. Çünkü matematiksel bazı 
özellikleri vardır. Değişimi hesaplamak (m-a) nın karesini almayı gerektirir. Böylelikle bunun 
için bir tahmin edici bir tam sayı değeriyle çarpılmasını gerektirir aynı zamanda birçok 
uygulama aynı ünitede ve a ve m deki gibi değişimi ister. Böylelikle değişimin karekökünü 
kullanmak için zorlanırız. Değişim ölçümü asıl tahmin veya sapma hatasını hesaplamak için 
kolaydır.  ( am − ) nın ortalamasının maksimumu aynı zamanda  

( ) 2222 σ=−≥−= ∑∑ amammdev  
ilk sapma standart sapmadan daha tutucu yaklaşım değişimde olduğu zaman. 
Sdev ve mdev arasında basit bir ilgi vardır genellikle örneğin tahmin hatası normal 
dağıtılmışsa sdevmdev 2/2 π= dir.  Sdev den mdev’e gitmenin faktörü )25.12/( ≈π  
civarındadır. Mdev sdev in iyi bir yaklaşık değeridir ve hesaplaması daha kolaydır. 
 
2.6.2. Pratik  
 

Hızlı tahmin ediciler ortalama a için ve asıl sapma v için verilmiş olan ölçüm m 
yukarıdan takip eder. Her tahmin edici RFS 793 algoritmasının 2 durumun olduğu anlamına 
gelir. 

)( vErrgvv
gErraa
amErr

−+←
+←
−≡

 

daha hızlı hesaplamak için yukarıdaki eşitlikl tam sayı aritmetiğinde olmalıdır ama eşitlik  
g<1 parçasını içerir böylelikle bazı ihtiyaç duyulan ölçümler her şeyi tam sayı değeri olarak 
tutmaya ihtiyaç duyar. İkin karşılıklı kuvveti örneğin ng 2/1=  (bazı n ler için) genel olarak 
iyi bir seçimdir. Ölçüm öteleme ile uygulanabildiğinde: ½ ile çarpmak aşağıdaki eşitliği verir. 

)(22
22

vErrvv
Erraa

nn

nn

−+←
+←
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Hatayı minimize etmek için a ve v nin, sa ve sv nin ölçülmüş versiyonlarını ölçülmemiş 

versiyonlarına göre tutmak gerekir. 
8
1125. ==g ’de tutmak c de bunu belirtmek  

;
);3(

msa
sam

=+
>>=−

 

;
);3(

;
)0(

msv
svm
mm
meger

=+
>>=−

−=
<

 

a ve v için aynı kazancı kullanmak gerekli değildir. RFS 793 de 0,1 e yaklaşmak tavsiye 
edilir. Zamanlayıcıyı güçlendirmek için cevabı daha hızlı getirmek için RTT yi değiştirmek 
için v ye daha geniş kazanç vermek iyi bir fikirdir. Kısmen pencere gecikmelerinden dolayı 
zamanlayıcıyı güçlendirmek ve cevabı daha hızlı getirmek için RTT yi değiştirmek ve v ye 
daha geniş kazanç vermek iyi bir fikirdir. Özellikle pencere gecikmesinin yanlış seçiminden 
dolayı pencere boyutunun çarpımı RTT yapısının tam değeri vardır. Bunu filtrelemek için a 
tahmincisinde 1/g en azından pencere boyutu kadar geniş ve 1/g v tahmincisinde pencere 
boyutundan daha küçük olabilir.  

0.25 kazancını kullanarak sapmada ve yeniden gönderim zamanlayıcısı hesaplamada, 
RTO a+4v olarak son zamanlayıcı kodu aşağıdakine benzer.  

;
);3(

msa
sam

=+
>>=−
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Sıklıkla bu hesaplama yaklaşık RTO ya doğrulanır. sa kesmesinden dolayı m-a yı 
hesapladığında, sa bir sonraki değere yuvarlanmış doğru asıl değere yaklaşır. Sv de buna 
benzer şekildedir. Böylece ortalamada her birinde eğimin yarısı vardır. RTO hesaplaması bu 
değerin yarısına yuvarlanmalıdır ve saatin yaklaşımı ile rasgele faz göndermek için hesaba bir 
bölme eklemeye ihtiyacı vardır. Böylece 1.75 bölme eğimi yardımı 4v de yaklaşık olarak 
hesaplanan yarım bölme yuvarlanması + 1 bölme faz doğrulamasına eşittir. 

 
2.7. Sıkışıklık Giderme Algoritması İle Yavaş Başlamanın Karışımı 
 

Gönderici sıkışıklık kontrolü için iki algoritma arasında atlamak da iki durum 
değişkeni gönderici tutar: yavaş başlama/ sıkışıklık pencere, CWND ve eşik boyutu, ssthresh. 
Göndericinin çıkış rutini her zaman CWND nin minimumunu gönderir ve pencere alıcı 
tarafından sunulur. Zaman aşımında hali hazırdaki pencere boyutunun yarısı ssthresh de kayıt 
edilir. Bu sıkışıklık giderme algoritmasının çoklu aktif düşümünün parçasıdır. Daha sonra 
CWND bir pakete e ayarlanır bu yavaş başlamayı başlatır. Yeni veri bilgilendirildiğinde 
gönderici 
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Böylelikle yavaş başlama Sıkışıklık giderme güvenli operasyon noktası olduğunu 
düşündüğünde biran önce başlar. Daha sonra sıkışıklık giderme biter ve yolda mümkün olan 
daha büyük bant genişliğinin olmasını sorgulamak için yavaşça pencere boyutunu artırır. Not 
edin ki eğer CWND tam sayı ölçeklendirilmediğinde ise yukarıdakinden başka durumlar 
yanlış işler. Bir paket parçası örneğin eğer maksimum pencere yol için w paketi ise CWND 0 
ile w aralığını kapsamalıdır en azından 1/w çözümü ile.  Paketlerin gönderimi maksimum 
iletim biriminden yol için daha küçük olduğunda etkinliği azaltır. Uygulayıcı dikkat etmelidir 
ki parçalı bölmeli CWND küçük paketler de gönderilimi sonuç vermez. Nedensel TCP 
uygulamasın da içeren saçma pencere giderme kodu küçük paketlerden korumalıdır. Ama bu 
noktada dikkatlice kontrol edilmelidir. 

 
2.8. Tur Zamanı İle Pencere Ayarlama Etkileşimi 
 

Bazı TCP bağlantıları çok düşük hızlarda olduğu zaman özellikle örneğin çevirmeli ağ 
yeniden iletim zamanı ve sıkışıklık pencere ayarlaması arasında bir etkileşim meydana 
getirebilir. Ağ yolları 2 sınıfa bölünebilir. Gecikme baskın, sakla ve ilet ve/veya aktarma 
gecikmeleri RTT yi belirler. Ve baskın bant genişliğinde bağlantı bant genişliği ve ortalama 
paket boyutu RTT yi belirler baskın bant genişliğinde bant genişliğinin yolu ve sıkışıklık 
giderme pencere artımı wΔ  RTT yi artırır. 

b
wR Δ≈Δ  

Eğer RTT değişkeni yolu V küçük veri RΔ  4V yi aşabilir. Yeniden gönderim zaman aşımı 
meydana gelir ve birkaç turdan sonra SSTHRESH küçük değerlerle biter. RTO hesaplaması 
yavaş başlama sırasında çok büyük yeniden gönderim zaman aşımı tiplerinden korunmak için 
tasarlanmıştır. Özellikle RTT değişkeni ve RTO hesaplamasında 4 ile çarpılmıştır. Şimdi 
açıklanacak sebep yüzünden; yeniden gönderim i, RTO i yavaş başlamasının sonunda yeniden 
gönderim zaman aşımı hesaplanmışsa bir sonraki dönüşte asıl RTT eşit ya da küçüktür. 
Gecikmenin en kötü durumu pencereden kaynaklanan durumdur. Her bir çevrimde R ikiye 
katlar (pencere boyutu ikiye katlandığı zaman) buda ii RR 21 =+  ( iR  yavaş başlamanın i. 
seferinin RTT değeridir) ama  

2/1 iiii RRRV =−= −  
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bu durumda yeniden gönderim zaman aşımı meydana gelmez. Pencereden büyümesinden 
dolayı yeniden gönderim zaman aşımı sıkışıklık giderme pencere artımından dolayı meydana 
gelebilir. Sadece paket artırımı pencerede değişebilir değişebildiğinde. Böylelikle paket 
boyutu s için birçok s–1 paketleri olabilir. Herhangi bir v artımı için yeteri kadar uzundur en 
son pencere artımımdan dolayı hiçbir şeyi bozmaz ama bu problem baskın bant genişliği 
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yolundan farklı olarak. Artırımlar 12 paketten daha fazla olduğunda yol için saçma büyük bir 
pencereye uygulanır. Asıl sapma tahmini v’nin filtre zamanın bozulma zamanı kazancı RTO 
hesaplamasındadır. Burada bir kişi bu zaman aşımını göz ardı etmelidir ve onların etkileri yol 
için daha uygun bir şeyler olması için basitçe pencereyi düşürecektir. 

Bunla birlikte yavaş başlama ve sıkışıklık giderme bu tür yeniden gönderimleri 
tetiklememek için tasarımlanmıştır. Daha yüksek seviye protokoller ile etkileşim sıklıkla 
şöyledir: uygulama protokolleri SMTP gibi görüşme açısını vardır. Küçük paketler durup ve 
bekleyip değişebilir, örneğin bütün mail mesajları ve haberlerin metinleri gönderildiği zaman 
veri transferi ile devam edebilir. Maalesef görüşme sıkışıklık penceresini açar böylelikle veri 
transferinin başlangıcı ağa yavaş başlama olmadan birkaç paket düşer. Ve baskın bant 
genişliği yolunda RTO dan daha hızlı bu paketler sonucunda RTT artımı kaydedilebilir. 
Yavaş başlama eğer TCP uygulaması faz değişimini tespit ederse aynı zamanda bu problemi 
giderir. Bu algılama basittir çünkü en azından bir tur zamanı için hiçbir şey 
göndermediğimizden dolayı hat boştur. RTT yi görmek için diğer yol son gönderilenden 
sonra hattı boşaltmak için geçen zamandır. Böylelikle en azından bir RTT için hiçbir şey 
gönderilmemişse yavaş başlamayı güçlendirmek için bir paketi bir sonraki gönderim CWND 
yi ayarlar. Örneğin bağlantı durum değişkeni lastsnd son paketin gönderildiği zamanı tutarsa 
takip eden kod TCP çıkış rutininde erken görünmelidir: 
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eğer iletimde hiçbir veri yoksa gönderilen bütün veriler bilgilendirilmişse sonuçsuzluk 
doğrudur. Böylece eğer “iletimde hiçbir şey yoksa ve uzun süredir hiçbir şey göndermemişse 
yavaş başlama”. Bizim deneylerimiz ister hali hazırdaki RTT varsayımı, ister RTO yaklaşımı 
uzun süre için kullanılabilir.  
 
2.9. Pencere Ayarlama Politikası 
 

Düşürme terimi olarak ½ yi kullanmanın sebebi 7/8 e karşı olarak 15 de, aşağıdaki el 
dalgası vardır: paket düştüğünde ya başlıyor olursunuz veya düşüşten sonra yeniden başlıyor 
olun ya da değişiklik göstermez gönderim durumunda olursunuz. Eğer başlarsanız siz 
bilirsiniz ki hali hazırdaki pencere boyutunun yarısı çalışır. Örneğin pencerenin paketlerinin 
değeri kayıpsız değiştirilmiştir ki yavaş başlama bunu garanti eder. Bu sıkışıklık ta pencereyi 
en geniş boyutuna ayarlarsınız ki boyutunu yavaşça artırarak çalışırsınız. Eğer bağlantı 
şaşmadan çalışıyorsa ve bir paket düşmüşse yeni bir bağlantının başladığı muhtemeldir ve 
bant genişliğinizin bir kısmını alır. Genellikle p<0.5 ile ağımızı çalıştırırız. Böylece olasıdır ki 
bant genişliğini paylaşan iki iletişim açıkça vardır. Örneğin pencerenizi yarıya düşürmelisiniz 
çünkü bant genişliği sizin için yarıya düşmüştür ve aynı bant genişliğini paylaşan ikiden daha 
fazla iletişim varsa pencerenizi yarılamak muhafazakârdır. Bununla birlikte iki değişikliğin 
faktörü pencere boyutunda büyük performans cezası olarak görülür. Sistem terimlerinde 
maliyet ihmal edilebilir: sadece geniş sorgu oluştuğunda hali hazırda ki paketler düşürülür. 
İSO IP ile dahi “sıkışıklık tecrübeli” bit göndericileri güçlendirmek için ve pencereleri 
düşürmek için sorguya takılırız çünkü sorguyu dağıtmak için aşırı olmayan bant genişliği 
mümkün olmasıyla şişe boynu %100 kapasiteyle çalışmaktadır. Eğer paketler karışmışsa bazı 
göndericiler 2 RTT için kapanır. Açıkça sorguyu boşaltmak için zamana ihtiyaç duyulur eğer 
bu göndericiler doğru pencere boyutu ile yeniden başlarsa sorgu yeniden oluşmaz. Sistem 
herhangi bir şişe boynu bant genişliği kaybetmeden gecikme minimuma düşer. Bir paket 
artırımı 0.5 azaltışından daha az tatmin edicidir. Aslında bu kesinlikle hemen hemen çok 
geniştir. Eğer algoritma w pencere boyutunu birbirine yaklaştırırsa O( 2w ) paketleri 
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eklenebilir artırım politikası ile düşümler arasında vardır. %1 den küçük değerde ortalama 
düşüşler için vururuz ve buluruz ki arpa nette dört ağın test ettiğimiz en kötü durumu, 
pencereler 8-12 pakete yaklaşır buda bir paketin %1 artırımı için ortalama düşüş değerine 
götürür. Ama ağ geçidinde hiçbir şey yapmadığımız zaman pencere maksimuma yaklaştırırız. 
Ağ geçidi paketleri düşmeden kabul edebilir.  
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BÖLÜM 3 

 
 
 
 
 

GÖZDEN GEÇİRİLMİŞ VEGAS 
 
        TCP VEGAS ın yaratıcı teknikleri son yıllarda birçok tartışmanın konusu olmuştur. 
Birçok çalışma TCP VEGAS ın TCP RENO ya kıyasla daha iyi performans sağladığını ortaya 
koymuştur. Ancak bu iki teknikten hangisinin performans kazanımlarından tamamen sorumlu 
olduğu henüz bilinmemektedir. Bu çalışma TCP VEGAS ın ayrıntılı bir performans 
değerlendirmesini sunmaktadır. TCP VEGAS ı çeşitli yeni mekanizmalara ayrıştırarak ve bu 
mekanizmaların her birinin performansını değerlendirerek şunu gösterdik: performans 
kazanımı esas olarak, TCP VEGAS ın yavaş başlangıç ve tıkanıklık giderilmesi için olan yeni 
teknikleri sayesinde başarılmaktadır. TCP VEGAS ın yaratıcı tıkanıklıktan kaçınma 
mekanizmasının ise sonuç üzerinde çok az bir etkisi olduğunu gösterdik. Dahası, bu 
mekanizmanın bazı problemler sergilediğini bulduk. 
 
3.1. Giriş 
 
       TCP VEGAS TCP için ilk kez Brakmo tarafından sunulan yeni bir tasarımıdır. TCP 
VEGAS geliştirilmiş bir yeniden iletim stratejisini içerir. Bu strateji iyi parçalanmış tur 
ölçümlerine ve yavaş-başlangıç ve tıkanıklıktan kaçınma esnasında tıkanıklık tespiti için 
oluşturulan yeni mekanizmalara dayanır. Yaratıcı teknikler ve etkileyici performans 
kazanımları son yıllarda birçok tartışmanın konusu olmuştur. Bu çalışma TCP VEGAS ın 
tasarımına taze bir bakış sunmakta ve TCP VEGAS ın yeniliklerinin avantajlarına ışık 
tutmaya çalışmaktadır. 
       TCP RENO nun tıkanıklık tespiti ve kontrol mekanizmaları parçaların kaybını bir 
sinyal olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu 
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç 
aşamalarını tespit edecek bir mekanizması yoktur. Dolayısıyla TCP RENO kayıpları 
engelleyemez. Dahası, TCP RENO reaktiftir, yani bağlantının mevcut band genişliğini 
bulmak için kayıplar üretmeye ihtiyacı vardır. Öbür taraftan, TCP VEGAS ın tıkanıklık tespit 
mekanizması aktiftir, yani çıktı oranındaki değişiklikleri gözlemleyerek tıkanıklıktaki 
başlangıcı tespit etmeye çalışır. TCP VEGAS bu çıktı ölçümlerinden tıkanıklık penceresi 
ayarlama politikasını çıkarır, bu da bağlantı kayıplar vermeden önce gönderme oranını 
azaltabilmeyi sağlar. 
       TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir 
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma 
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye 
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans 
kazanımlarından sorumlu olduğudur. Bu soru şu ana kadar cevapsız kalmıştır. Bu soruyu 
cevaplandırmak için TCP VEGAS ı kendi algoritmalarına ayırdık ve bu algoritmaların her 
birinin performans üzerindeki etkileri değerlendirilmiştir. 
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3.2. TCP VEGAS 
 
       Daha önce yayınlanan ve TCP VEGAS ı tanımlayan çalışmalara göre TCP VEGAS 
TCP RENO dan şu sebeplerle farklıdır: TCP VEGAS yeniden transmisyon stratejisini 
etkileyen 3 yenilik getirmektedir. Birincisi, TCP VEGAS gönderilen her bir parça için RTT yi 
ölçer. Ölçümler iyi parçalanmış saat değerlerine dayanır. Bu ölçümler kullanılarak her bir 
parça için bir mola periyodu ölçülür. Kopya bir onay (ACK) alındığında TCP VEGAS mola 
süresinin bitip bitmediğini kontrol eder. Mola süresi bittiyse, parça yeniden iletilir. İkinci 
olarak, kopya olmayan bir ACK alınırsa ki, bu hızlı bir yeniden iletimden sonraki ilk veya 
ikincidir, TCP VEGAS zamanlayıcının bitip bitmediğini kontrol eder ve başka bir parçayı 
yeniden iletebilir. Üçüncüsü, birden fazla parça kaybı olduğunda ve birden fazla hızlı yeniden 
iletim gerçekleştiğinde, tıkanıklık penceresi sadece ilk hızlı yeniden iletim için azaltılır. 
Tıkanıklık kaçınma mekanizması: TCP VEGAS tıkanıklıktan kaçınma esnasında tıkanıklık 
penceresini devamlı olarak artırmaz. Bunun yerine, başlangıç tıkanıklığını tespit etmeye 
çalışır. Bunu ölçülen çıktı ile beklenen çıktıyı karşılaştırarak yapar. Tıkanıklık penceresi bu 
iki değer ancak birbirine çok yakın olursa artırılır. Bu şu anlama gelir: eğer yeterli şebeke 
kapasitesi varsa beklenen sonuç, çıktı başarılabilir. Tıkanıklık penceresi, ölçülen çıktı 
beklenen çıktıdan az ise azaltılır; bu durum başlangıç tıkanıklığı için bir işaret olarak kabul 
edilir. 
Geliştirilmiş yavaş-başlangıç mekanizması: Benzer bir tıkanıklık tespit mekanizması yavaş 
başlangıç sırasında uygulanır. Bunun amacı tıkanıklık kaçınma aşamasına ne zaman 
geçileceğine karar vermek içindir. Beklenen ve gerçekleşen çıktının sağlıklı bir 
karşılaştırmasını yapabilmek için tıkanıklık penceresinin sadece her bir diğer RTT kadar 
büyümesine izin verilir. 
       Kaynak [1] de, ek bir algoritma sunulmaktadır. Bu algoritma mevcut bant genişliğini 
yavaş başlangıç sırasında ACK aralığından alamaya çalışır. Ancak, bu algoritma deneyseldir 
ve TCP VEGAS ın değerlendirmesinde kullanılmamıştır. Dolayısıyla bizde bunu 
değerlendirmemizden çıkardık. 
       Hem kaynak [1] hem de [2] internette TCP VEGAS için %37 ile %71 arasında daha 
iyi çıktı rapor ediyorlar. Kayıplar ise beşte bir ile yarısı kadardır. Simülasyonlar bu ölçümleri 
teyit etmektedir, ayrıca şunu göstermektedir: VEGAS TCP RENO nun çıktısını kötü 
etkilememekte ve TCP VEGAS TCP RENO dan daha az doğru değildir. 
 
3.3. Kaynak Taraması 
 
       TCP VEGAS ın tıkanıklık kaçınma konusundaki yeni teknikleri, bunun TCP 
performansı üzerindeki etkileri, rakip TCP RENO bağlantılarının varlığında TCP VEGAS ın 
davranışı daha önce araştırmacılar tarafından araştırılmış konulardır. Şimdi daha önce yapılan 
bu çalışmaları kısaca gözden geçirelim: 
       Ahn kaynak [3] de TCP VEGAS ile bazı canlı internet deneyleri gerçekleştirdi. Bir 
TCP RENO alıcısına % 20 daha hızlı ve bir TCP Tahoe alıcısına % 300 daha hızlı transfer 
gerçekleştiğini rapor ediyor. Her iki senaryo içinde TCP VEGAS ın daha az parçayı yeniden 
ilettiği, daha düşük RTT ortalaması ve varyansına sahip olduğu bulundu. WAN’ da yapılan 
deneyler şunu ortaya çıkardı ki, TCP VEGAS yüksek tıkanıklık durumlarında daha yüksek 
çıktı verirken, TCP RENO TCP VEGAS ı düşük tıkanıklık durumunda geride bıraktı. 
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       Akıcı bir model ve benzetimler ile MO kaynak [4] TCP VEGAS ın TCP RENO nun 
tersine uzun gecikmeli bağlantılara karşı eğilimli olmadığını ve TCP VEGAS ın TCP RENO 
nun varlığında doğru oranda bant genişliği alamadığını göstermiştir. 
      Hasegawa kaynak [5] TCP VEGAS ın tıkanıklık kaçınma mekanizmasının TCP 
RENO dan daha sağlam olduğunu bulan analitik bir model kullanmıştır. TCP VEGAS 
bağlantısının tıkanıklık penceresi sabit bir değere dönüşebilir. Ancak şunu da bulmuştur: bu 
mekanizma bazen değişik dolanım hızına sahip birçok bağlantıyı doğru bir şekilde sağlamada 
başarısız olur. 
       Bir Wan emülatörünün veya bir uydu bağlantısının yardımıyla, Zhang [6] uzun 
gecikme bağlantıları üzerinde çeşitli TCP versiyonlarının performansını araştırdı. TCP 
VEGAS TCP Tahoe ve TCP RENO nun ancak yarısı kadar çıktı iletti ancak diğer TCP lere 
oranla çok daha az yeniden iletim yaptı. 
       Ahn kaynak [7] yüksek hızlı geniş alan paket şebekelerin benzetimini hızlandırmak 
için yeni bir teknik geliştirdi. Değerlendirme bölümü TCP VEGAS ın küçültülmüş bir 
versiyonunun sonuçlarını sunmaktadır. Bu tıkanıklık tespiti ve pencere ayarlama tasarısını 
gigabit şebeke üzerinde göstermektedir. Deneylerde, TCP VEGAS TCP RENO nun ancak 
yarısı kadar çıktı elde etmektedir. 
       TCP VEGAS ın bu kadar sınırlanmış bir versiyonu Bolliger kaynak [8] tarafından da 
değerlendirilmiştir. TCP nin çeşitli versiyonları kullanıcı seviyesi protokolleri olarak 
uygulanmış ve internette değerlendirilmiştir. TCP VEGAS ın TCP RENO ya oranla birden 
fazla parça kaybından dolayı daha az molaya neden olduğu gösterilmiştir. Diğer taraftan, TCP 
VEGAS TCP RENO ya oranla daha fazla tetiklenmemiş molaya neden olmaktadır. 
Tetiklenmemiş molalar iyileşmeye girmek için kaçırılan fırsatları yansıtır. Bu çalışmada, TCP 
VEGAS ın çıktısı TCP RENO ya oranla çok az daha kötüdür. 
       Danzig, VEGAS ın yeni tıkanıklık kaçınma mekanizmasını içermeyen daha önce 
yayınlanmış bir versiyonunu değerlendirdi. Kaynak [2] deki iddiaları yeniden 
üretemeyecekleri için yazarlar TCP VEGAS ın yeni tıkanıklık kaçınma mekanizmasının 
performans gelişiminde önemli rolü olduğuna kanaat getirmişlerdir. 
       Son 3 çalışma biraz çelişkilidir, kaynak [7] ve [8] şu sonuca varmamıza neden olabilir: 
Tıkanıklıktan kaçınma esnasında TCP VEGAS ın yeni davranışının çıktı üzerinde olumsuz bir 
etkisi vardır. Fakat olumlu bir etkisi olacağını öngörmektedir. Maalesef, TCP VEGAS ın çıktı 
gelişimini gösteren çalışmalar rapor edilen hız artımlarından TCP VEGASın hangi 
algoritmalarının sorumlu olduğunu gösterememiştir. Bu çalışma bu soruya benzetimlere 
dayanarak yanıt aramaktadır. Ayrıntılı bir değerlendirmeye geçmeden önce sonraki bölüm 
benzetim ortamını tanıtmakta ve TCP VEGAS ve TCP RENO için bir başlangıç performans 
değerlendirmesi sunmaktadır. 
 
 
3.4. Benzetim Ortamı 

 
       Bu bölüm TCP VEGAS ın yeni algoritmalarının etkisini incelemek maksadıyla 
kullanılan benzetim ortamını tanımlamaktadır.  
 
3.4.1. Benzetim 
 

Benzetimimizi x-sim adındaki, x-çekirdek tabanlı bir şebeke benzetimi üzerinde 
yaptık. Bu ortamda, gerçek x-çekirdek protokol uygulamaları benzetilmiş bir şebeke üzerinde 
çalıştırılır. Bizim x-sim seçimimiz şu iki gözleme dayanmaktadır: Birincisi, TCP VEGAS ı 
tanımlayan orijinal çalışmalardaki değerlendirmeler de x-sim ile yapılmıştır. Bu gerçek bizi 
TCP VEGAS ın farklı bir uygulamasını kullanarak yanlış bir yargıya varmama konusunda 
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güven sağlamaktadır. İkincisi, TCP VEGAS ın üretim koduna dayanan bir uygulamasını 
değerlendirmek istedik. Bu gereksinim x-sim tarafından sağlanmaktadır; çünkü bunun TCP 
VEGAS uygulaması doğrudan TCP RENO nun BSD uygulamasından alınmıştır. 
       TCP RENO ve x-çekirdekteki TCP VEGAS ın ilk uygulamalarında 2 değişiklik 
yaptık. Bu iki değişiklik TCP VEGAS ın yaratıcıları kaynak [9] tarafından bir çalışmada 
önerilmiş ve mevcut TCP RENO nun FreeBSD ve NetBSD sine uygulanmıştır. Bu 
değişikliklerden bir tanesi algoritmadaki bir modifikasyondur. Bu algoritma yeniden iletim 
mola değerini ölçer. Diğeri ise bir kontrolün tamiridir. Bu kontrol tıkanıklık penceresini hızlı 
iyileştirmeden sonra azaltmak içindir. 
 

 
 

Şekil 3.1. Benzetim için ağ topolojisi. 
 
3.4.2. Topoloji 
 

Deneylerimiz için şekil 2.1 de sunulan topolojiyi kullandık. Daha önce yapılan 
çalışmalarla kıyaslanabilir olması için ilk VEGAS çalışmasındaki topolojinin tamamen 
aynısını seçtik. Aynı sebepten dolayı, kullanılan parça büyüklüğü 1.4 KB dır. Rotalayıcı 
kuyruk büyüklüğü 10 parçadır, rotalayıcı kuyruk disiplini FIFO dur. Ancak, tıkanıklıkla ilgili 
olmayan etkileri engellemek için daha büyük gönderici ve alıcı tampon büyüklükleri seçtik. 
(örneğin 50 KB yerine 128 KB) TCP alıcıları geciktirilmiş onayları kullanmamaktadır; TCP 
VEGAS ın tıkanıklık tespit mekanizması RTT deki değişimlere reaksiyon gösterdiği için 
geciktirilmiş onaylar performansı çok kötü etkileyebilir kaynak [10] de görüldüğü gibi. 
Kaynak [1] ve [2] deki bazı deneyleri tekrar ederek şebeke topolojisi ve benzetimi doğruladık. 
Bizim TCP RENO versiyonumuz orijinal versiyondan çok az daha kötü performans sergiledi. 
Bu farkın sebebi mola değerinin RTO daha muhafazakâr hesaplanmasıydı. Kaynak [11] de 
önerildiği gibi daha önceki versiyonda 2 ile çarpılan değer burada 4 ile çarpıldı. 

 
3.5. Performans Değerlendirmesi 
 
       TCP VEGAS ın performansını kavramak için 1MB lık bir verinin sunucu HI dan 
sunucu H3 e transferini benzeşimledir. Bu farklı dereceler ve ters trafik tipleri için yapıldı. H2 
den H4 e akan ters trafik TRAFFIC adı verilen, internet trafiğini benzetim eden ve Toplib 
kaynak [12] tabanlı bir x-çekirdek protokolüdür. Her tip deney 50 kez çalıştırıldı. Tablo 3.1 
ve 3.2 bu deneylerin sonuçlarını göstermektedir. Düşük ters trafik durumunda ara varış 
zamanı 0.1 sn yüksek ters trafik durumunda ise 0.03 sn olmuştur. Çıktı dikkate alındığında 
TCP VEGAS TCP RENO dan her 4 senaryoda da daha iyi performans (% 40 dan % 120 ye 
kadar) göstermiştir. Dahası, TCP VEGAS TCP RENO dan % 6 ile % 65 daha az yeniden 
iletim yapmıştır. 
       Bu sonuçlar, TCP VEGAS ın kısmi olarak etkileyici gelişmeler sağladığı ve daha az 
yeniden iletim sonucunu verdiği yönünde rapor veren diğer çalışmaları doğrulamaktadır. 
Tablo 3.1 ve 3.2 bizim için daha ayrıntılı bir değerlendirme yapmamızı sağlayacak ve TCP 
VEGAS ın içindeki ayrı algoritmaların uygulamaları hakkında başlangıç noktası olacaktır.  
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Tablo 3.1.             Tablo 3.2. 

  
3.6. TCP VEGAS’ ın Algoritmaları 
 
       Algoritmaların değerlendirmesi için kaynak [13] daki kopyalar ile k2  faktöriyel 
tasarımı yaklaşımını kullandık. Bu yöntem arayışı bize her birinin 2 seviyesi olan k 
faktörlerinin etkisine karar verme imkânı sağladı. TCP VEGAS da bu faktörler değişik 
algoritmalardır. Faktör seviyeleri açık ve kapalı durumlarıdır. Bunlar TCP VEGAS 
algoritmasının Kapalı olma durumunda TCP RENO nun kullanılabilmesi için kullanılıp 
kullanılmadığını gösterir.  
       Bir k2  faktöriyel tasarımı her bir faktörün bağımsız olarak açılıp kapanabilmesini 
gerektirir. Bu yüzden, ilk önce TCP VEGAS ın kaynak kodunu güncellemek zorundaydık. 
Bunun amacı çeşitli algoritmaları birbirinden ayırmak ve her bir algoritmanın ayrı olarak 
seçilebilmesini sağlamaktır. Bu değişiklikler kaynak kodunun yakın incelemesini gerektirdi. 
Bu inceleme şunu ortaya çıkardı: TCP VEGAS kaynak [1] ve [2] de bahsedilen 
değişikliklerden biraz daha fazla değişiklik ihtiva etmektedir. TCP VEGAS daki yeni 
algoritmaların tam listesi aşağıda sunulmuştur.  
 

A. Yavaş başlangıç sırasında tıkanıklık tespiti 
B. Tıkanıklıktan kaçınma esnasında tıkanıklık tespiti 
C. Daha saldırgan hızlı yeniden iletim mekanizması 
D. Kopya olmayan ACK lar için ek yeniden iletimler 
E. Çok fazla parça kaybı durumunda tıkanıklık penceresinin azalmasının önlenmesi 
F. Bir iyileştirmeden sonra tıkanıklık penceresinin sadece 114 ile azalması. 
G. Başlatma sırasında ve moladan sonra iki parça büyüklüğünde bir tıkanıklık penceresi 

(TCP RENO bu durumlarda tıkanıklık penceresinin büyüklüğünü bir parça olarak 
ayarlar). 

H. Patlamadan kaçınma bir seferde 3 parçaya gönderilebilecek parça sayısını sınırlar.  
I. Eğer gönderici uyum sağlayamazsa tıkanıklık penceresi artırılmaz, yani tıkanıklık 

penceresinin büyüklüğü ile yarım kalan veri miktarı arasındaki fark 2 en fazla 
büyüklükteki parçadan daha büyüktür. 

J. Sivri sindirme çıktı oranını en fazla mevcut oranın 2 katı kadar sınırlar (bu algoritma 
normal olarak kapalıdır). 

 
Algoritmaları birbirinden ayırırken, gerekli kod değişikliklerini minimum seviyede 

tuttuk. Bunun sebebi TCP VEGAS ın bizim uygulamamız ve ilki arasında davranışsal 
farklılıklardan kaçınmak içindir. Uygulamamızda şunu doğruladık: bizim TCP VEGAS 
versiyonumuz bütün algoritmaları kapatıldığında TCP RENO uygulamasıyla aynı sonuçları 
üretti. Benzer şekilde, TCP VEGAS versiyonumuz bütün algoritmaları açık durumda orijinal 
TCP VEGAS uygulamasıyla benzer sonuçları verdi. 
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3.7. Tarifnameden Sapmalar 
 
            Bölüm 3.6 TCP RENO ile ilgili daha önce tanımlanmamış değişiklikleri listeledi. 
Buna ilave olarak, TCP VEGAS ın kaynak koduyla ilgili incelememiz ve değerlendirmemiz 
bazı senaryoları ortaya çıkardı. Bu senaryolarda TCP VEGAS uygulaması, düşünülen şeyi 
veya orijinal çalışmalarda tanımlanan şeyleri pek başaramamaktadır. 
 
3.7.1. Mola Davranışı 

 
Yavaş başlangıçta ve tıkanıklıktan kaçınmada, TCP VEGAS tıkanıklık penceresinin 

güncellenmesi için gerekli stratejiyi değiştirip değiştirmeyeceğini belirlemek için her bir RTT 
yi 1 kez kontrol eder. Yavaş başlangıçta, tıkanıklık penceresinin üslü açılımını bırakıp 
bırakmadığını ve tıkanıklıktan kaçınmaya geçip geçmediğini kontrol eder. Tıkanıklıktan 
kaçınmada, tıkanıklık penceresinin lineer olarak artırılıp artırılmamasını, bir sonraki RTT 
esnasında sabit tutulup tutulmaması veya bir parça tarafından hemen azaltılıp azaltılmamasını 
kontrol eder. Tıkanıklıktan kaçınma esnasındaki bir mola durumunda, TCP VEGAS ın daha 
önce yayımlanan sürümü hemen üslü açılıma düşememekte, bunun yerine pencere sadece 
lineer olarak açılmaktadır. En kötü durumda, bu muhafazakâr açılış molanın artık 
onaylanmasından önce bütün veri gönderilene kadar muhtemelen tüm RTT ler için geçerli 
olur. Bir mola durumunda tıkanıklık penceresini güncellemesi için gerekli olan stratejisini 
hemen değiştirmesi için TCP VEGAS ı değiştirdik.  

 
3.7.2. Taban RTT lerin Yeniden Ayarlanması 
 

Yukarıda bahsedilen kontrol icra edilirken TCP VEGAS taban RTT yi son RTT 
esnasında sadece bir parça iletilmişse yeniden ayarlar. Bu yeniden başlama yardımıyla, TCP 
VEGAS rotalama değişiklikleriyle başa çıkabilir ki bu rotalama değişiklikleri minimum RTT 
yi artırır. TCP VEGAS tıkanıklık penceresi için minimum büyüklükte iki parça 
görevlendirdiği için, bu yeniden başlama göndericinin uyum sağlayamaması veya gönderecek 
veri olmaması durumunda ancak tetiklenir. 

Ender durumlarda, bu yeniden başlama taban RTT sinin çok küçük bir değere 
ayarlanması neticesini verebilir. Bu numara mevcut şebeke durumlarıyla alakasız olabilir. 
Simülasyonumuzda hiç rotalama değişikliği olmadığı için ve göndericimizin her zaman 
gönderecek verisi olduğu için kodun parçasını etkisiz kıldık ve değerlendirmelerimiz için 
taban RTT yi yeniden başlattık. 

 
Tablo 3.3. 

 
3.7.3. Sabit Bozulması 
 
       Tıkanıklıktan kaçınmada,  TCP VEGAS ın tıkanıklık tespit tasarısı her bir RTTT yi 
kontrol eder. Kontrolün konusu şebeke şartlarının tıkanıklık penceresi ayarlama politikasında 
bir değişikliği öngörecek kadar değişip değişmediğidir. Tıkanıklık penceresinin nasıl 
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ayarlanması gerektiğine karar vermek için, TCP VEGAS beklenen çıktı ile ölçülen gerçek 
çıktıyı karşılaştırır. Beklenen çıktı şu şekilde hesaplanır:  
 

baseRTT
windowSize

ected =exp      (3.1) 

 
Pencere büyüklüğü halen iletim halindeki byte ların sayısıdır. Gerçek çıktı ise şu şekilde 
hesaplanır: 
 

rtt
rttLenactual =      (3.2) 

 
rttlen son RTT esnasında iletilen byte ların sayısını yansıtır. rtt ise son RTT esnasında kabul 
edilen parçaların ortalama RTT sidir.  
Daha önce yayımlanan TCP VEGAS uygulamasında. Pencere büyüklüğü şu şekilde 
hesaplanmıştı: 
 

6).0,min(max.. ackedsegunasndnxtsnd −+−    (3.3) 
 
Maxseg en fazla parça büyüklüğü, cevaplanmış son ACK tarafından kabul edilen byte 
sayısıdır. Eşitlik (3.2) ile numaralandırılan rttlen, şu şekilde hesaplanır:  
 

seqbegnxtsnd .. −      (3.4) 
 
begseq bir önceki gerçek ve beklenen hesaplama esnasındaki sndnxt nin değeridir. Begseq in 
onaylanması gerçek ve beklenenin hesaplanmasını tetikler. Eşitlik (3.6) ve (3.8) e göre 
aşağıdaki sabitler tutmalıdır: 
 

actualected ≥exp      (3.5) 
 

Tablo 3.3 bu sabitin tek bir kayıptan dolayı oluşacak bir mola durumunda nasıl ihlal 
edilebileceğini göstermektedir. Tablo 3.3 bu sabitin ihlaline sebebiyet veren olayların zaman 
serisini göstermektedir. Her bir olay için her bir olay işlendikten sonra snd.nxt, snd.una ve 
begseq in değerleri gösterilmektedir. Sütunların sıralaması (soldan sağa) değişkenlerin 
güncellendiği ve denklemlerin hesaplandığı sıraya benzer şekildedir. Moladan sonra ulaşan 
iki ACK gerçek ve beklenenin yeniden hesaplanmasını tetikler. Her iki durumda da sabit ihlal 
edilir yani beklenen gerçekten küçüktür. 
       İlk ihlal birden fazla parçayı onaylayan büyük bir ACK nın sonucudur. Bu problemi 
gidermek için çalışmamızda kullandığımız TCP VEGAS uygulamasındaki eşitlik (3.3) teki 
son terimi kaldırdık. İkinci problemin sebebi birden fazla RTT önce gönderilen veri üzerinden 
gerçek band genişliği hesaplanmasıydı. Begseq i bir moladan önce gönderilen verinin ACK 
tarafından onaylanması durumunda yeniden başlatarak çözdük. Bu şekilde, gerçek band 
genişliğinin hesabı moladan önce gönderilen veriyi içermeyecektir. 
 
3.7.4. Tartışma 
 
      Bu tamirler TCP VEGAS ın performansını nasıl etkiler. Birincisi 7-A da belirtilen 
çözüm daha iyi performansa neden olabilir. Çünkü tıkanıklık penceresinin yavaş başlangıçta 



 30 

uygun şekilde açılmasına izin verir. Çünkü eğer gönderici yanlışlıkla tıkanıklık penceresini 
tıkanıklıktan kaçınma stratejisine göre ayarlamaya devam etme durumundan daha hızlıdır bu. 
       İkincisi, tıkanıklıktan kaçınmada eğer tıkanıklık penceresi açılacaksa şu şart tutmalıdır 
(a pozitif ve genellikle 1 e ayarlanır). 
 

α<− baseRTTactualected *)(exp    (3.6) 
 
      Eğer TCP VEGAS ın değişmezi ihlal edilirse beklenen ve gerçek arasındaki fark 
negatiftir. Eşitlik (3.6) tutar ve tıkanıklık penceresi yanlışlıkla artırılabilir. Bu hareket 
düşünülenden daha girişken bir pencere açılımına sebep olabilir. Bu yüzden, ihlal problemini 
çözerek TCP VEGAS ın daha az girişken olmasını bekliyoruz. 
       Tablo 3.4 ve 3.5 tablo 3.1 ve 3.2 nin sonuçlarını tekrar ediyor ve ilave olarak 
bahsedilen tamirler yapılmış olan TCP VEGAS versiyonunun sonuçlarını da göstermektedir. 
Dikkat edilirse TCP VEGAS ve TCP RENO deneylerinde Tablo 3.4 ve 3.5 in 1. ve 3’üncü 
sıraları TCP VEGAS ı ters trafik olarak kullanılmıştır. TCP RENO deney sonuçlarının Tablo 
1 ve 2 de sunulanlardan farklı olmasının sebebi budur. TCP VEGAS deneyleri için tablo 3.4 
ve 3.5 in 2. sırası geliştirilmemiş, TCP VEGAS ileri ve ters trafik için kullanılmıştır. 
       Tamirler tüm 4 durum için az daha az çıktı, 4 durumdan 3 ünde de az daha fazla 
yeniden iletim sonucunu vermiştir. Hepsinden öte, TCP VEGAS* orijinal versiyonuna kıyasla 
benzer bir performansı başarmıştır. Çalışmanın geri kalanında TCP VEGAS ifadesi TCP 
VEGAS* yerine kullanılacaktır. 
 
3.8.Çeşitli Algoritmaların Etkileri 
 
3.8.1. Karmaşıklığın Azaltılması 
 
       Bölüm 3.6 da özetlendiği gibi, TCP VEGAS TCP RENO üzerinde 10 ilave algoritma 
kullanır. Tam bir rk2  faktöriyel tasarımı şunları gerektirir:  k=10 algoritmasının her bir 
mümkün birleşimi seçilmelidir ve bölüm 3.5 tanımlanan deney belirli bir ayarlama için r defa 
çalıştırılmalıdır kaynak [13]. Bu yöntem bize şunu sağlar: her bir algoritmanın etkisini ve 
algoritmaların tüm muhtemel etkileşimlerinin etkilerinin ölçmeyi sağlar. k=10 algoritmaları 
için deney 1210 −  mümkün etkilerle sonuçlanır, çoğunluğu daha ziyade küçüktür. 
 

     
Tablo 3.4.                Tablo 3.5. 

 
Karmaşıklığı azaltmak ve deneylerimizin açıklayıcılığını artırmak için algoritmaları 

etkiledikleri aşamalara (yavaş başlangıç, tıkanıklıktan kaçınma, iyileştirme vs.) göre 3 gruba 
kümelendirdik. rk2  faktöriyel tasarımı her biri bir faktörü temsil edecek şekilde k=3 ile 
ayarladık. Faktör seviyelerindeki açık ve kapalı şu anlama gelir: ya belirli bir aşamayı 
etkileyen tüm algoritmalar on durumundadır ya da tümü kapalı durumundadır. Bu tasarım 
performansı 123 −  ye etkileyen tüm muhtemel faktörleri ve faktörlerin etkileşimini azaltır. 
Algoritmalar şu şekilde kümelenmiştir. 
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Yavaş başlangıç: tıkanıklık tespiti (bölüm 3.6 da sunulan algoritma A) ve iki parça 
büyüklüğünde tıkanıklık penceresi (G) Tıkanıklıktan kaçınma: tıkanıklık tespiti (B)Tıkanıklık 
iyileştirme: daha girişken hızlı yeniden iletim stratejisi (C), yeni veri için ACK üzerinden 
yeniden iletim (D), tıkanıklık penceresinin 1/4 azaltılması (F), tıkanıklık penceresinin çok 
azaltışından kaçınma (E) patlamadan kaçınma algoritması (H), tıkanıklık penceresi artışı 
olmaması algoritması(I), ve sivri sindirme algoritması (J) her zaman kapalıdır. 
Her bir deney 50 kez tekrarlanır.  TCP VEGAS ın çıktısı üzerinde 3 aşamada ve kaynak [13] 
da tanımlanan yöntemi uygulayarak yeniden iletim sayıları üzerinde algoritmaların etkilerine 
karar verdik. 
 
3.8.2. Çıktı İçin Sonuçlar 
 

Z3 faktöriyel tasarımı aşağıdaki şekilde algoritmaların belirli bir birleşimi için y 
çıktısını ölçmemizi sağlar. 
 

+⋅+⋅+⋅+= recreccacassssmean xqxqxqqy  
 
aşama i deki tüm algoritmalar açık ise ix  1 ve eğer kapalı ise –1 (ss: yavaş başlangıç, ca: 
tıkanıklıktan kaçınma, rec: iyileştirme, kurtarma), q1 aşama i deki algoritmaların etkileridir ve 
i ve J aşamasındaki algoritmaların etkileşiminin etkisini gösterir. meanq  tüm deneylerin 
çıktısının ortalamasıdır. 

 
Tablo 3.6. 

 
       Tablo 3.6 düşük TCP RENO ve TCP VEGAS ters trafiğinin sonuçlarını sunmaktadır. 
Tablo 3.6 tüm rk2 =400 deneyleri için ortalama çıktıları rapor etmekte ve tüm faktörlerin q 
etkilerini ve ortalama çıktı üzerindeki etkileşimlerini rapor etmektedir. Y çıktısı için 
ortalamayı hesaplayabiliriz: örneğin, tüm algoritmaların yavaş başlangıçta, tıkanıklıktan 
kaçınmanın açık olduğu, kurtarma deki tüm algoritmaların kapalı olduğu ve ters trafik için 
TCP RENO’ nun kullanıldığı bir yapılandırma için aşağıdaki şekilde hesaplanabilir:  
 

+⋅⋅⋅+⋅ casscass xxq _  

reccassreccass xxxq ⋅__  
 
       Tablo 3.6 deki değişim yüzdesi kolonları y çıktısının değişiminin ne kadarının q 
etkisiyle açıklanabileceğini gösterir, dolayısıyla bir faktörün önemi için bir ölçüdür. Ölçümler 
50 kez tekrarlandığından dolayı, deneysel hatalara atfedebileceğimiz toplam değişim yüzdesi 
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belirlenebilir. Hata satırı bu değişimi rapor eder. Dahası, % 90 satırında verilen değer 
ortalama çıktı için % 90 güven aralığında hesaba ve her bir etkinin hesabına imkân verir. O 
ihtiva eden güven aralıkları belirli bir faktörün veya faktör birleşiminin istatistiksel olarak 
belirgin olmadığı anlamına gelir. 
       Tablo 3.6 dan şu sonucu çıkardık: düşük TCP RENO ters trafiği için, sonuç üzerinde 
en büyük etkiye TCP VEGAS ın yavaş başlangıçtaki yeni algoritmaları sahiptir, daha sonra 
kurtarmadakiler gelir. Tıkanıklıktan kaçınma esnasında TCP VEGAS ın tıkanıklık tespit 
mekanizması değişimin yalnızca % 2 sinden sorumludur. Aşamalar arasındaki etkileşimler 
çıktı üzerinde yalnızca küçük bir etkiye sahiptir veya istatistiksel olarak önemli değildir. 
Çıktıdaki farklılaşmanın % 45 i deneysel hatalardan dolayıdır. 
       Düşük TCP VEGAS ters trafiği için, değişimin % 28 i kurtarma esnasındaki 
geliştirilmiş algoritmalarla açıklanabilir. Bunu yavaş başlangıç esnasındaki değişimler takip 
eder. Değişimin % 3 ü tıkanıklıktan kaçınma esnasındaki değişikliklerle açıklanabilir. 
Aşamalar arasındaki etkileşim yine küçüktür veya istatistiksel olarak önemli değildir. 
Değişimin hemen hemen yarısı deneysel hatalardan dolayıdır. 
 

 
Tablo 3.7. 

 
       Yüksek ters trafik senaryolarının verisi Tablo 3.7 de görülmektedir. TCP RENO ters 
trafik durumunda, dominant etki iyileştirme esnasındaki değiştirilmiş davranıştır. Diğer tüm 
etkiler ya çok küçüktür ya da istatistiksel olarak önemli değildir. Şunu not etmek gerekir ki, 
TCP VEGAS ın yeni tıkanıklıktan kaçınma mekanizması, performans üzerinde küçük bir 
negatif etkiye sahiptir. Deneysel hatalar toplam değişimin 1/3 ünü oluşturmaktadır. 
       Yüksek TCP VEGAS ters trafik senaryosundaki sonuçlar TCP RENO senaryosundaki 
sonuçlara benzerdir, şöyle ki, iyileştirme esnasındaki değişim deneyde görülen değişimin 
çoğunu oluşturmaktadır. Yine tıkanıklıktan kaçınma esnasındaki değiştirilmiş davranışın 
etkisi negatiftir. 

 
3.8.3. Yeniden İletimlerin Sonuçları 
 

Tablo 3.8 düşük ters trafik için yeniden iletilen veri miktarı üzerinde üç aşamanın 
etkisini sunmaktadır. Hem TCP VEGAS hem de TCP RENO ters trafiği için, yavaş 
başlangıçtaki değişimler dominanttır. Bunu tıkanıklıktan kaçınmadaki değişimler takip eder. 
Şunu da not etmek gerekir ki, iyileştirmedeki modifikasyonlar ve yavaş başlangıç ve 
tıkanıklıktan kaçınmadaki geliştirmeler arasındaki etkileşimler yeniden iletilen veri miktarını 
artırmıştır. 
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Tablo 3.8. 

 
       Yüksek ters trafik durumunda, tablo 3.8 da da görüldüğü gibi deneysel hata hem TCP 
VEGAS hem de TCP RENO ters trafiği için değişimin % 90 ını açıklamaktadır. Aşamaların 
ayrı olarak yeniden iletim sayısı üzerindeki etkisi deneysel hataya kıyasla ihmal edilebilir 
seviyededir. Bu sürpriz değildir çünkü TCP VEGAS TCP RENO ya kıyasla ilk sırada yüksek 
ters trafik durumunda tablo 3.5 deki gibi yeniden iletim sayısını azaltma konusunda başarılı 
gözükmemektedir. 
 
3.8.4. Sonuçlar 
 
3.8.4.1 Yavaş Başlangıç 
 
       Düşük ters trafik senaryolarında yavaş başlangıçtaki değişimler önemlidir, özellikle 
ters trafik TCP RENO ise. Paket izlerinin bir incelemesi şunu ortaya çıkarmıştır: TCP 
VEGAS ın tıkanıklığa duyarlı pencere güncelleme stratejisi, başlangıç yavaş-başlangıcında 
molalardan kaçınma konusunda başarılıdır. TCP RENO nun tıkanıklık penceresinin daha hızlı 
ve tepkisiz açılımı bu aşamada mevcut band genişliğine fazla yüklenmeye ve parça 
kayıplarına sebep olabilir. Böyle bir zarar ancak bir mola ile giderilebilir. Ters trafik düşük 
olduğu için, transferler kısadır. Bu yüzden, bir mola çıktıyı kötü şekilde etkiler. TCP VEGAS 
yavaş başlangıçtaki başlangıç tıkanıklığını hissederek, molalardan kaçınabilir ve dolayısıyla 
TCP RENO dan daha iyi performans gösterir. Her bir algoritmanın bir faktörü temsil ettiği 
(A-G) daha detaylı 27 deneyin değerlendirmesi şunu göstermektedir: yavaş başlangıçtaki 
tıkanıklık tespiti gerçekte tüm algoritmalar içinde en yüksek pozitif etkiye sahiptir. (% 25) 
yavaş başlangıçtaki ikinci değişim ise ihmal edilebilir bir etkiye sahiptir. Başlangıç yavaş-
başlangıcında mevcut bant genişliğine fazla yüklenilmesi problemi diğer araştırmacılar 
tarafından da tanınmıştır, TCP VEGAS ın yayınlanmasından beri bu problemi işleyen bazı 
çalışmalar yayımlanmıştır. Yavaş-başlangıçtaki mola ihtimalini azaltarak, tıkanıklık tespiti 
aynı zamanda yeniden iletim sayısını da azaltmayı başarır. Deney değişimin % 50 sinin 
bununla açıklanabileceğini göstermektedir. İlginç olan şudur ki, değişimin %3 ünden sorumlu 
olan G algoritması yeniden iletim miktarını artırmaktadır. Dolayısıyla tıkanıklık penceresini 
iki parça halinde başlatmak fazla saldırgan olabilir. 
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Tablo 3.9. 

 

 
Tablo 3.10. 

 
Yüksek ters trafik senaryosunda, yavaş-başlangıçtaki değişimlerin neredeyse hiç etkisi 

yoktur. Yüksek ve ters trafik senaryolarındaki değişimlerin etkileri konusundaki bu 
uyumsuzluk ve çelişki daha yakından bir incelemeyi gerektirmektedir. Bu maksatla, bir WAN 
senaryosu için benzetimlerimizi tekrar ettik. WAN senaryosunun topolojisi Bölüm 3.4.2 de 
tanımlanana benzerdir. Darboğaz bağlantısının gecikmesi 400 ms, bant genişliği 1.SM bit/sn 
ve kuyruk yönlendiricisinin büyüklüğü 50 parçadır. Yüksek ters trafiği benzettik. Tablo 3.10 
WAN senaryosunda TCP VEGAS ve TCP RENO tarafından elde edilen çıktıları 
göstermektedir. TCP VEGAS ın performans gelişiminin orijinal topolojiye oranla daha az  (% 
10-20) etkili olduğunu not ettik. Tablo 3.11 üç aşamanın etkilerini ve TCP VEGAS ın çıktısı 
üzerindeki etkileşimleri listelemektedir. Yavaş başlangıçtaki değişimlerin çıktıyı olumsuz 
etkilediğini görmek ilginçtir. Bu gözlem yüksek ters trafik durumlarında şu anlama gelir: TCP 
VEGAS ın yavaş başlangıçta başlangıç tıkanıklığını hissetmesi ve tıkanıklıktan kaçınmaya 
geçmesi fazla muhafazakârdır ve performans gelişimleri (TCP RENO ya kıyasla) 
iyileştirmedeki değişimlere atfedilmelidir. WAN senaryosundaki yeniden iletilen veri 
miktarını incelediğimizde, yavaş başlangıç değişimlerinin yeniden iletim sayısını azaltmaya 
da yardım etmediğini bulduk. 
 
3.8.4.2. Kurtarma 
 
       İyileştirmedeki değişimler çıktı üzerindeki en büyük etkiye sahiptir. Yavaş başlangıç 
değişimlerinin biraz daha etkili olduğu düşük TCP RENO ters trafik durumu hariçtir. TCP 
VEGAS ın daha girişken hızlı yeniden iletim politikası (C) nın tek başına performans 
kazanımından sorumlu olduğundan şüphe edilebilir. Ancak, 72 deneyinin değerlendirmesi 
şunu ortaya çıkarmaktadır: yüksek ters trafik durumunda tıkanıklık penceresini sadece 114 (F) 
kadar azaltmak en büyük etkiye sahiptir (%28 TCP RENO ters trafiği için ve yaklaşık % 7 
TCP VEGAS ters trafiği için). Bunları yeni veri için ACK lar tarafından tetiklenen yeniden 
iletimler takip eder (D: RENO: %9, VEGAS: %2). Daha hızlı girişken yeniden iletim 
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politikasının etkisi (C) daha da küçüktür (RENO %3, VEGAS %2). İyileştirmedeki tıkanıklık 
penceresinin çok azaltılmasından kaçınan ( E ) algoritmasının çıktı üzerinde hiçbir etkisi 
yoktur.  
 

 
Tablo 3.11. 

 
F algoritmasının TCP VEGAS ın performansını geliştirmesinin iki sebebi vardır. 

Birincisi, tıkanıklık penceresini yalnızca 114 daraltmak veya yarıya bölmek yerine 
iyileştirmeden sonra daha geniş bir tıkanıklık penceresi sonucunu verir. İkincisi, F algoritması 
iyileştirme davranışını değiştirir. Tıkanıklık penceresinin ikiye bölerek, TCP RENO yaklaşık 
yarım RTT kadar beklemelidir. Ta ki: yeteri kadar kopya ACK ların ulaşıp tıkanıklık 
penceresinin mevcut duran veriden daha fazla olmasını sağlayana kadar. Diğer taraftan, TCP 
VEGAS bir RTT nin sadece ¼ ü kadar beklemelidir. F algoritması kayda değer çıktı gelişimi 
ile sonuçlansa da bunu diğer bağlantıların pahasına yapabilir. Mesela, yüksek TCP RENO ters 
trafikte F değişimin % 28 inden sorumludur, fakat TCP VEGAS da yalnızca % 7 sinden 
sorumludur. Bu sonuçlar şuna işaret etmektedir: F algoritması VEGAS ın darboğaz band 
genişliğinden daha geniş bir pay almasına izin vermektedir. Bu mantık şu gözlemle de 
desteklenir: TCP RENO genellikle TCP VEGAS ters trafiği üzerinde çalıştırılırken daha 
düşük çıktı verir. TCP RENO nun gerçekte TCP VEGAS ters trafiği ile yarışırken 
kaybettiğini ve TCP VEGAS ın TCP RENO dan band genişliği çalabildiğini bulduk. 
Tıkanıklık iyileştirmesindeki değişimler en büyük etkiye sahip olduğu için bu asimetri veya 
adaletsizlik veya yanlışlık için ana olarak sorumludurlar. 
       D algoritması fazla parça kaybından dolayı molalardan kaçınmaya yardım eder. 
Kaynak [8] de gösterildiği gibi TCP RENO daki molaların çoğunluğu fazla parça kaybından 
kaynaklanır. Dolayısıyla, bu molaların sayısını azaltmak için yapılan değişiklikler çok faydalı 
olur. TCP VEGASın hızlı yeniden iletim politikasının sonuçları Jacobson un kaynak [14] 
kanıtı destekler. Jacobson yeni politikanın muhtemelen sadece ihmal edilebilir bir performans 
kazanımıyla sonuçlanacağını iddia etmiştir. E algoritmasının çıktı üzerinde neredeyse hiçbir 
etkisinin bulunmaması gerçeği şunu gösterir: D algoritması tarafından düzeltilemeyen fazla 
parça kaybı durumlarının bir mola vermeden devam ettirilmesi çok zordur. Bunun sebebi 
büyük olasılıkla daha fazla hızlı yeniden iletimin tetiklenebilmesi için tıkanıklık penceresinin 
çok küçük olmasıdır. Özetle, TCP VEGAS ın tıkanıklık iyileştirmesi için olan tekniklerinin 
özellikle fazla parça kaybı ile ilgili olan D algoritmasının çok etkili olduğu görülmüş ve TCP 
RENO ya kıyasla etkileyici bir performans sergilemesinden ana olarak sorumlu olduğu tespit 
edilmiştir. Etkili olmasına rağmen, F algoritması doğruluk açısından problemli olabilir. Şunu 
da not etmeliyiz ki, TCP RENO nun fazla parça kaybı ile mücadelede olan problemleri diğer 
araştırmacılar tarafından da işaret edilmiştir. Kaynak [5], [10], [15], [16]. Yakın geçmişte, bu 
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problemleri çözmek için TCP RENO nun verisini ve tıkanıklık iyileştirme mekanizmasını 
iyileştirmek için birkaç çözüm önerisi getirilmiştir. 
 
3.8.4.3. Tıkanıklıktan Kaçınma 
 
       Deneylerimiz gösterdi ki, TCP VEGAS ın muhtemelen en yaratıcı özelliği, yani 
tıkanıklıktan kaçınma esnasındaki tıkanıklık tespit mekanizması, gerçekte en az etkisi olandır. 
Hatta TCP ters trafik senaryosunda etkisi negatiftir. Tablo 3.12 bu sonuçları özetlemektedir. 
Bu tablo Tablo 3.9 daki sonuçları tekrar etmekte, ilave olarak TCP VEGAS ın bir 
versiyonunun çıktılarını göstermektedir. Bu sürüm, tıkanıklıktan kaçınmada tıkanıklık tespit 
mekanizmasını ayırmaktadır. Bu rakamlar TCP VEGAS ın tıkanıklıktan kaçınma 
mekanizmasının yalnızca orta seviyede etkili olduğunu anlatmaktadır. Dahası, yalnızca TCP 
VEGAS ın yeni tıkanıklıktan kaçınma mekanizmasını içeren bir TCP VEGAS versiyonu TCP 
RENO ya kıyasla düşük ters trafik yüklemelerinde çok küçük bir gelişme kaydetmiştir ve 
hatta yüksek ters yükleme durumlarında daha düşük çıktı sonucunu vermiştir. 
      TCP VEGAS ın tıkanıklıktan kaçınma mekanizması yüzünden daha iyi performans 
göstermesi beklenir, çünkü: TCP VEGAS paket kaybından kaçınmak için tıkanıklık 
penceresini aktif olarak küçük miktarlarda bir kerede bir parça kadar azaltabilir. Bir paket 
kaybı bir tıkanıklık penceresinde büyük miktarda azalmaya neden olur. Bu yüzden, paket 
kaybından sonra, küçük orandaki azalmaların çıktıyı oranın yarıya bölünmesinden daha az 
etkilemesi beklenir. Ancak, bu çalışma ve diğer çalışmaların sonuçları kaynak [7], [8] bu 
umudu kırar. Sonuçta, deneye dayalı, deneysel kanıtlar tıkanıklıktan kaçınma mekanizmasının 
çok muhafazakâr olduğunu göstermektedir.  
       Yeniden iletilen verinin miktarı üzerindeki etki dikkate alındığında TCP VEGAS ın 
tıkanıklık tespit mekanizmasını oldukça başarılı bulduk. Ancak, şunu da not etmek gerekir ki, 
hem yüksek hem de alçak ters trafik için, diğer faktörler azalmaya bu mekanizmadan daha 
fazla katkıda bulunmaktadır. 
 

 
Tablo 3.12. 

 
3.9. Tıkanıklıktan Kaçınmanın Problemleri 
 
       Sekizinci bölümde gösterildiği gibi, TCP VEGAS ın yeni tıkanıklıktan kaçınma 
mekanizmasının çıktı üzerindeki etkisi orta seviyededir. Bu bölüm bu mekanizmanın 
doğruluk problemleri de sergileyebileceğini göstermektedir. 
 
3.9.1. Eski Bağlantıların Yanlış Ele Alınması 
 
       Tıkanıklıktan kaçınmada, TCP VEGAS aşağıdaki şart karşılandığında tıkanıklık 
penceresini azaltmaya başlar. P pozitiftir ve genellikle 3 e ayarlanmıştır, terimlerin tanımları 
için bölüm 8-c ye bakın: 
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pencere büyüklüğünün rttlen e eşit olduğunu farz edersek, iletim halindeki parçaların sayısı 
son RTT esnasında gönderilen parçaların sayısına tekabül eder. Bu varsayım TCP Vega 
dengeye ulaştığında geçerlidir. Yukarıdaki durum aşağıdaki için doğrudur: 
 

rtt
baseRTT

windowSize
−

>
1

β  

 
       Bir TCP VEGAS bağlantısının tıkanıklık olmayan bir şebekede başlatıldığı bir 
senaryoyu düşünün. Bu bağlantının baseRTT1 i minimum mümkün R1T ye oldukça yakındır. 
Eğer şebekede sonradan tıkanıklık olursa ölçülen RTT artar ve baseRTT/rtti azalır. Bizim 
benzetim topolojimiz için, 0.5 den küçük faktörler gözlemledik. Şimdi, ikinci bir bağlantının 
başlatıldığını farz edin. Şebekede tıkanıklık olduğu için, ikinci bağlantının tahmini baseRTT2 
si baseRTT1 den daha büyük, bu yüzden baseRTTIrtt2 de baseRTT/rtti den daha büyüktür 
(rtt1=rrr2 olduğu kabul edilerek). Bu şu anlama gelir: tıkanıklık penceresi büyüklüğünün 
azalmasını tetikleyen pencere büyüklüğü kritik değeri ikinci bağlantıda birinci bağlantıdan 
daha büyüktür. Bu yüzden, ikinci bağlantı birinci bağlantıdan daha yüksek band genişlikleri 
başarır.  
 

 
Şekil 3.2. Darboğaz paylaşımın ilişkisi. 

 
       Şekil 3.2 TCP VEGAS ın tıkanıklıktan kaçınma mekanizmasının doğruluk problemini 
göstermektedir. Grafik ayrı ayrı zamanlara göre düzenlenmiş 5 bağlantının tıkanıklık pencere 
büyüklüklerini göstermektedir. Bağlantılar bir darboğazı paylaşır ve 1 saniyelik aralıklarla 
başlatılır. İlk bağlantı en fazla diğer bağlantıların sebep olduğu tıkanıklığa reaksiyon gösterir 
ve dengede, onun tıkanıklık penceresi en küçüktür. Diğer taraftan, en son başlatılan bağlantı 
en büyük tıkanıklık penceresini başarır ve darboğaz band genişliğinin en geniş payını alır. 
İkinci bağlantının tıkanıklık penceresinin büyüklüğü dengedeki ilk bağlantınınkine benzerdir. 
Şunu da not etmek gerekir ki; t=3 sn deki ilk bağlantının tıkanıklık penceresi büyüklüğü, 
dengedeki son bağlantının tıkanıklık penceresinin büyüklüğüne tekabül eder. Ancak, ilk 
bağlantı t=3 sn de tıkanıklık penceresini azaltmaya zorlanırken, son bağlantı pencere 
büyüklüğünü ayarlamak zorunda değildir. 
       Tıkanıklık penceresini artırmayı tetikleyen algoritma benzer bir problem yaşar. 
Aşağıdaki şart sağlandığında tıkanıklık penceresi artırılır ve a genellikle 1 e ayarlanır. 
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Bir A bağlantısı için sağ taraftaki terim daha büyük olduğundan, tıkanık bir şebekede 
başlatıldığından, daha sonra bir B bağlantısı için,  şebeke tıkanık değilken başlatıldığından, 
şart B tipi bağlantılardan ziyade A tipi bağlantılar tarafından sağlanır. Yine, bu şu anlama 
gelir: A tipi bağlantılar adil olmayan bir bağlantı band genişliği payı elde eder.  
      Şunu da not etmek gerekir ki; TCP RENO nun tıkanıklıktan kaçınma stratejisi de 
adaleti garanti etmez. Ancak, her bağlantı zaman zaman kayıplar verdiğinden ve kendinden 
güdülenen paket kayıplarından ötürü, en azından diğer bağlantılar için yetişme şansı vardır. 
TCP VEGAS da durum böyle olmayabilir, çünkü TCP VEGAS özellikle kendinden 
güdülenen kayıpları engellemeye çalışır. 
 
3.9.2. Israrlı Tıkanıklık 
 
     Bölüm 3.9.2 de tartışılan probleme ilave olarak, ısrarlı tıkanıklık durumlarında ki TCP 
VEGAS davranışı vardır. Böyle bir durumda, bir TCP VEGAS bağlantısı baseRTT yi 
olduğundan fazla tahmin eder ve onun a ve 8 parçaları arasında iletimde olduğunu düşündüğü 
halde, gerçekte, iletim halinde daha pek çok parçası vardır. Problemin detaylı bir tanımı 
kaynak [21] de vardır. 
 
3.9.3. Tartışma 

 
Bölüm 3.9.2 de tanımlanan problemi yenmek için öneriler olmuştur. Bu önerilerden 

biri, baseR1T yi ısrarlı tıkanıklık durumunda daha büyük bir değere ayarlamaktır örneğin 
kaynak [21] de olduğu gibi. Bölüm 3.9.1 daki problem benzer bir şekilde yenilebilir. baseRTT 
yi yeniden ayarlamak rotalama değişiklikleri durumunda yeterli bir ölçü olabilse de;  
minimum RTT nin gerçekte daha büyük olabileceği yerde, iki problemin olacağı durumlarda 
yeterli bir çözüm değildir. Çünkü temel RTT tanım olarak bağlantı tıkanık değilken bir 
parçanın RTT sidir. Dolayısıyla, baseRTT yi minimum ölçülen RTT den daha büyük bir 
değere ayarlamak bu tanımı ihlal eder ve tıkanıklıktan kaçınma mekanizmasının teorik 
temeline gölge düşürür.  

 
3.10. Sonuçlar 

 
       Bizim TCP VEGAS değerlendirmemiz daha önce yapılan kaynak [2], [3] ve TCP 
VEGAS ın TCP RENO dan önemli derecede daha yüksek çıktıyı başarabileceğini gösteren 
çalışmaları doğrulamaktadır. Daha önce yapılan çalışmalara ilave olarak, TCP VEGAS 
üzerinde yaptığımız derin analizler,  TCP VEGAS ın yaratıcıları tarafından performans 
konusunda önerilen TCP VEGAS ın çeşitli algoritmalarının ve mekanizmalarının etkisini 
belirlememizi sağladı. 
       Deneyimiz gösterdi ki; TCP VEGAS ın yavaş başlangıç ve sıkışıklıktan kurtarma 
teknikleri çıktı üzerinde en fazla etkiye sahiptir. Çünkü fazla parça kaybından dolayı oluşan 
molalardan kaçınabilirler. Bu yüzden, TCP VEGAS TCP RENO nun çok bilinen bir 
problemini halletmekte oldukça başarılı görünmektedir. Ancak, TCP VEGAS ın en yaratıcı 
özelliği olan tıkanıklıktan kaçınma esnasındaki tıkanıklık tespit mekanizması ya çok az etkiye 
veya hatta negatif etkiye bile sahiptir. Dahası, tıkanıklıktan kaçınma mekanizmasının rakip 
bağlantılar arasında doğrulukla ilgili problemler sergileyebildiğini bulduk. Sonuç olarak, TCP 
VEGAS ve TCP RENO nun bir sonuca varacak karşılaştırmalı değerlendirmesi için TCP 
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VEGAS ın yavaş başlangıç ve tıkanıklık iyileştirme tekniklerinin TCP RENO daki 
benzerleriyle karşılaştırılması gerekir. Biz tartışmayı TCP VEGAS ı geliştirenler tarafından 
incelenen bir senaryo ile sınırladık. Değişik senaryolar hala değişik incelemeleri 
gerektirebilir. 
       TCP gibi nakil protokolleri performans üzerindeki etkileri ve birbirleriyle etkileşimleri 
genellikle anlaşılamayan birçok karmaşık algoritmaları içine alır, örneğin tıkanıklık kontrolü 
için, veri kurtarma için. Bizim faktör analizi yaklaşımımız böyle bir protokolün çeşitli 
algoritmalarının etkinliği ve bu algoritmaların etkileşimi konusuna bir ışık tutmamızı sağladı. 
Gelecekteki protokol geliştiricileri bu tip performans analizi ve deneylerine imkân sağlamak 
için tasarım ayrıştırma ve uygulamada erken davranma konusunda cesaretlendirmek istiyoruz. 
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BÖLÜM 4 
 
 
 
 
 
 
TCP VE SORGU YÖNETİM ALGORTİMASININ DUALİTY 
MODELİ 
 

Sıkışıklık kontrolü ağ kaynaklarını paylaşmak için dağıtılmış algoritmadır. İki elemana 
sahiptir. İlki kendi yolundaki sıkışıklığa cevap veren dinamik olarak ayarlanan değerin 
kaynak algoritması (pencere boyut), ikincisi tam ve kesin olarak sıkışıklık ölçümleri ve geri 
gönderimleri tam veya kesin olarak kaynakların bu bağlantıyı güncelleyen bağlantı 
algoritmasıdır. Kaynak algoritması hali hazırdaki internette kaynak algoritması TCP 
tarafından taşınır. Ve bağlantı algoritmaları aktif sorgu yönetim AQM şemaları örneğin 
DROP TAİL veya RED tarafından taşınır. Farklı protokoller farklı ölçümler sıkışıklığı 
ölçmek için kullanılır. Örneğin TCP RENO kaynak [1], [2] ve bunların değişkenleri kayıp 
olasılığını sıkışıklık ölçümü olarak kullanır ve TCP VEGAS kaynak [3], sorgu gecikmesi 
sıkışıklık ölçümü olarak kullanır kaynak [4]. Her biri tam olarak bağlantıda güncellenir ve 
tam olarak Uçtan uca kayıp veya gecikmeyle kaynağa geri besleme yapılır. Bu yazımızda 
uçtan uca sıkışıklık kontrolünün genel bir modelini sunacağız ve çeşitli TCP-AQM 
protokolleri tarafından belirlenen kapalı döngülü sistemlerin eşitlik özelliklerini anlamak için 
uygulayacağız. Temel fikir sıkışıklık kontrol işlemini düşünmektir. Dağıtılmış hesaplama 
kaynak ve hat tarafından ağ üzerinde gerçek zamanlı olarak küresel en uyguluk problemini 
çözmek için kaynak [5] incelenmiştir. Buradaki elemanlar toplam kayan araç kaynak 
konularını kapasite değişkenlerine maksimize etmek içindir. Kaynak değerlerini birincil 
değişkenler olarak derleyeceğiz. Sıkışıklık ölçümlerini çift değişkenler olara ve TCP-AQM 
protokollerini dağıtılmış birincil çift algoritma olarak bu en uygun şekle sokma problemi 
çözmek için ve ilgili çift problemi çözmek için kullanacağız. Farklı protokoller örneğin 
RENO VEGAS RED REM gibi 1 bunların hepsi aynı ilk örnek problemi farklı araç 
fonksiyonları ile çözer ve bu fonksiyonları açıkça sunacağız. Daha fazla olarak bütün bu 
protokoller Eşitlikteki çift problemi çözmek için sıkışıklık ölçümlerini üretir (langrange 
çarpanı).  

Bu model geniş ağın TCP-AQM kontrolü altındaki geniş ağın eşitlik özelliği için 
kullanılır. Örneğin gecikme sorgu uzunluğu, kayıp ihtimalleri. Aşağıda en uygun şekle sokma 
problemleri için kaynak [4] çalışarak anlaşılabilir. Eğer problem konkav program olursa bu 
özellikler nümerik etkili olarak hesaplanabilir.  

Araç en üst düzeye çıkarma ile TCP-AQM algoritmaları arasında her iki yönde 
gidilebilir. Genel araç fonksiyonu ile başlayacağız örneğin: kendi uygulamamızda gibi ve 
TCP-AQM algoritmasını toplam araçları maksimize etmek için kaynak [5], [6], [7], [8], [9] 
olduğu gibi sunacağız. Zıt olarak TCP-AQM algoritmasını ve aşağıdaki araç fonksiyonlarını 
belirlemek için ters algoritma tasarlayabiliriz. Bu uçtan uca kontrol durumudur: uçtan uca 
sıkışıklık ölçümleri alınır alınmaz TCP algoritması birleşik bağlantı sıkışıklık ölçümlerinin 
toplamına ulaşır.  
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4.1. TCP-AQM’ nin DUALİTY Modeli: 
 

Geri dönüş sıkışıklık kontrolünde kaynaklar kendi yollarında ki cevabın sıkışıklık 
bilgisine göre kendi değerlerini ayarlar. Bu bir geri beslemedir ister kesin tampon artışı olsun 
ister tur gecikmesi olsun. Farklı şemalar farklı sıkışıklık ölçümleri benimser.  Örneğin TCP 
RENO paket kayıpları tarafından sıkışıklığı ölçer, TCP VEGAS sorgulayarak sorgu gecikme 
kullanarak, RED (Rasgele Erken Belirleme) sorgu uzunluğu ile ve REM (Rasgele Logaritmik 
İşaretleme) performans ölçümü ile eşleri bozulan ölçümler ile ölçer (Örneğin kayıplar ve 
gecikmeler). RED veya REN ile bu ölçümler ister paket düşümleri olsun ister ihtimal 
işaretlemeleri olsun haritalanır. Bu sıkışıklık ölçümleri kontrol döngüsünü kapatarak kaynak 
değerlerine cevabın geri dönüşünü verir. Anahtar fikir birincil değişken olarak kaynak 
değerlerini düşünmektir Sıkışıklık ölçümü veya kayıp / ihtimal işaretleme eşitliği çift 
değişken olarak ele alınır.  
 

 
Şekil 4.1.TCP-AQM nin çiftli modeli. 

 
 

 
Şekil 4.2. TCP’nin Duality modeli. 

 
Bağlantıların seti olarak L ağa modellenmiştir. Belirli kapasiteler ),( Llcc l ∈=  olarak 

belirlenmiştir. Kaynağın C seti tarafından s ile indekslenmiş paylaşılmıştır. Her s kaynağı 
bağlantının LLs ∈  nı kullanır. sL  , SL×   matrisini belirler. 
 

⎩
⎨
⎧ ∈

=
durumlardadiger
Lleger

R s
ls 0

1
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Her s kaynağı ile ilgili )(txs  iletim değeri t zamanında paket/saniyedir. Her l bağlantısı ile 
ilgili sayısal sıkışıklık ölçümü 0)( ≥tpl  t zamanındadır. Kaynak [10] ün yazılışı 

∑= s slsl txRty )()(  l bağlantısında toplam kaynak değeri olsun. ∑= l slss tpRtq )()(  Uçtan 
uca kaynak için sıkışıklık ölçümü olsun. Vektör yazılışı;  
 

)()()()( tpRtqveyatRxty T==  
 
burada S

+ℜ de )),(()( Sstxtx s ∈=  ve )),(()( Sstqtq s ∈= dır. Ve S
+ℜ de )),(()( Lltptp l ∈=  

ve )),(()( Lltyty l ∈= dır. S kaynağı )(txs  kendi değerini belirler ve uçtan uca sıkışıklık 
ölçümü )(tqs  yolunun, fakat x(t) veya p(t) vektörü değil, q(t) nin diğer bileşenleri değil. 
Benzer olarak l hattı yalnızca yerel sıkışıklık )(tpl  ve akış değeri )(tyl  olarak belirlenir. 

)(txs  kaynak değeri her devir için sF fonksiyonuna )(txs  ve )(tqs  ye bağlı olarak ayarlanır: 
bütün s ler için 

))(),(()1( tqtxFtx ssss =+      (4.1) 
dir  
Bağlantı sıkışıklık ölçümü )(tpl )(tpl  ve )(tyl  ye bağlı olarak her periyotta ayarlanır. Ve 
bazı iç vektör değişkenleri )(tvl  örneğin l bağlantısındaki sorgu uzunluğundaki gibi bu bazı 
fonksiyonlar ( lsHG ) ile modellenir. Bütün l ler için 

))(),(),(()1( tvtptyGtp lllll =+     (4.2) 
))(),(),(()1( tvtptyHtv lllll =+     (4.3) 

lG  negatif olmayan böylelikle 0)( ≥tpl  dır. Burada sF  TCP algoritmasını (RENO veya 
VEGAS) modeller ve ( lsHG )  ve AQM modeli: bir sonraki bölümü görünüz. Biz genellikle 
AQM yi lG   

),( ssss qxFx =  
olarak düşünürüz. İç değişken )(tvl  kesin referans olmadan ve lH  adaptasyonu olmadan 
eşitlik (4.1) ve (4.3) (x,p) varsayarız. Eşitlik (4.1) in tamamlanmış noktası sx  eşitlik değeri ile 
uçtan uca sıkışıklık ölçümü sq  arasında bir ilişkiyi tam olarak belirler. 

0)( >= sss xfq       (4.4) 
 sF devamlı değişken ve 0/ ≠∂∂

sqsF  inde açık A seti: { }0,0),(: >>= ssss qxqxA  formül 
olduğunu varsayalım. Sonra kesin fonksiyon teoreminden tek devamlı değiştirilebilir sf  
fonksiyonu { }0>sx  dan { }0>sq  dan örneğin eşitlik (4.4) gibi var olsun sx ve sq  arasındaki 
tabloyu genişletmek için A nın kapanması (4.5) eşitliği ile belirlenir sonsuzdur.  
 

{ }0),0(0inf)0( =≥= ssss qFqf     (4.5) 

)0,( sx  noktası = sss xxF =)0,(  ise eşitlik (4.6) belirlenir.  
0)( =ss xf        (4.6) 
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Her s kaynağı için araç fonksiyonu belirlenir eşitlik (4.7) deki gibi 
 

0)()( ≥= ∫ ssssss xdxxfxU    (4.7) 

değişkene bağlı olarak tektir. İntegrallenebilir olması sU  nin devamlı fonksiyon olduğunu 
gösterir. Böylelikle 0)( ≥= sss qxf  bütün sx  değerleri için. sU  Azalmayandır. sf  
Azalmayan fonksiyonu iddia etmek mantıklıdır. Daha sert daha fazla sıkışıklık daha düşük 
değerlere eşittir. Bu sU  yi konkav yapar ve eğer sf  keskin inişli ise sU  keskin, keskin 
konkavdır 2. türev 0)( <′′ ss xU  olana kadardır. Araç fonksiyonun artışı açgözlü kaynağa 
uygulanır. Daha büyük değerler daha yüksek araçlara yöneltir ve konkavlık azalan geri 
dönüşleri sağlar. 

Şimdi toplam araç eşitliklerini kaynak [11] deki maksimize etmenin problemini 
düşünün  

necRxxU ssx
')(max

0
≤∑≥

     (4.8) 

Sınırlama söyler ki her l bağlantısında akım değeri ly  , lc  kapasitesini aşamaz. En uygun 
değer vektörü *x  eşitlik (4.8) deki nesne fonksiyonu devamlı ve uygun çözümü olduğu zaman 
elde edilebilir. Tektir eğer sU  keskin konkav ise. Paylaşılan bağlantı boyunca kaynak çiftli 
ise(kapasite sınırlaması) *x ın çözümü direk olarak bununla birlikte mümkün olan bütün 
kaynakların koordinasyonunu gerektirir. Ve büyük ağlarda olanaklı değildir. Eşitlik (4.1) ve 
(4.3) deki anlamanın anahtarı x(t) yi öncelikli değişken, p(t) yi çiftli değişkeni ve 

),,(),( LlSsGFGF ls ∈∈=  dağıtılmış öncelikli çiftli algoritma eşitlik (4.8) deki öncelikli 
problemi çözmek ve Langrange çiftini çözmek için düşünülür.  
 

∑∑ +−
≥≥

l
llssss

s xp
cpqxxU

s

))((maxmin
00

   (4.9) 

 
Böylelikle çift değişken ağdaki sıkışıklığın kesin ölçümüdür. Çift problem öncelikli problem 
uygun olduğu zaman en uygun çözüme sahiptir. Eşitlik (4.1)-(4.3) birincil ve çiftli problemin 
çözümü olarak tanımlayacağız ve (F,G) her birincil ve çiftli değişkende beraber yaklaşacaktır 
her problemi çözmek için.  

(F,G,H) ın tanımını özetleyebiliriz.  
C1: bütün Ss∈  ve Ll∈  , sF ve lG  nin negatif olmayan fonksiyonlar için (4.1)-(4.3) 

ün eşitlik noktalarını içerir. 
C2: bütün Ss∈  sF  devamlı değişken ve 0/ ≠∂∂

sqsF  ve { }0,0),( >> ssss qxqx  sf  4 
numaralı fonksiyonda yükselmeyendir. 

C3: eğer ),,( lllll vpyGp =  ve ),,( lllll vpyHv =  ll cy ≤  eğer 0>lp  sa.  
C4: her Ss∈ , sf  keskin azalan için C1 durumu ( ) 0))(,( ≥tptx  ı ve 0, ** ≥px  

garanti eder. C2 sU  araç fonksiyonunu ve varlığını garanti eder. C3 birincil uygun 
tamamlayıcı ( ** , px ) gevşekliğini garantiler. Son olarak C4 durumu *x  en uygun tekliğine 
garanti eder. 

Teorem1: C1 ve C2 deki tahminleri düşünün. ( ** , px ) eşitlik (4.1)-(4.3) ün olsun. 
Daha sonra ( ** , px ) eşitlik (4.8) deki birincil problemi çözer ve eşitlik (4.9) daki çiftli 
problem ile eşitlik (4.7) tarafından verilmiş olan araç fonksiyonunu da çözer. Eğer sadece C3 
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tutulursa. Daha fazla olarak C4 önermesini göz önünde bulundurursak Us keskin konkav olur 
ve en uygun değer vektörü *x  tek olur 

İspat: Eşitlik (4.7) deki sU  nin tanımlamasından sonra C4 ele alındığı zaman ikinci 
iddia ispatlanır. Böylelikle ilk iddiayı ispatlamamız yeterlidir. DUALİTY teorisi ile Kaynak 
[11] (x*,p*) öncelikli çift en uygundur. Eğer *x  sadece öncelikli uygunsa,  p* çiftli uygunsa, 
tamamlayıcı sarkıklık devam ediyorsa ve  

( )*
0

* ,maxarg pxLx
x≥

=       (4.10) 

8 in Lagrangian’ nı L olduğu zaman 
( ) ∑ ∑ ∑−+=

s l s
slsllss xRcpxUpxL )()(,  

Böylelikle ilk iddia yı ispat etmek için (4.10) numaralı eşitliği oluşturmamız gereklidir. Şimdi  
 

∑ ∑∑

∑ ∑ ∑

+⎟
⎠
⎞⎜

⎝
⎛ −=

⎟
⎠
⎞⎜

⎝
⎛ −+=

≥

≥

≥

s l
ll

l
llssssx

s l s
slsllssx

x

cppRxxU

xRcpxU

pxL

**

0

*

0

*

0

)(max

)(max

),(max

 

 
 sU  nin yapılması ile eşitlik (4.7) ve (4.4) den şunu elde ederiz ki herhangi bir eşitlik için 

0* >sx , ( ** , px ) olduğu zaman 

∑===′
l

llssssss pRqxfxU **** )()(     (4.11) 

Eğer 0* =sq  eşitlik (11) eşitlik (6) ile elde edilir. Eğer 0* =sx  eşitlik (5) den elde edilirse 
*)0()0( sss qfU ==′       (4.12) 

fakat eşitlik (11)-(12)  

0),( ** ≤
∂
∂

px
x
L

s

 

‘e uygulanır ki  
Eğer 0* >sx  olduğu zaman. Böylelikle ),( *pxL  konkavdır x de. Karush-kuhntucer 
durumunda gerekli ve uygundur *x  ),( *pxL  0≥x  da maksimize edebilmek için. Böylelikle 
ispat tamamlanmış olur.  

Birçok TCP-AQM protokollerinde farklı dağıtılışmış öncelikli çift algoritmalarla 
küresel en uygun şekle sokma eşitlik (4.8) ve eşitlik (4.9) çiftli problemlerini farklı araç 
fonksiyonları Us ile modellenebilir. Bu hesaplamada kaynaklar ve bağlantılar tarafından 
internet üzerinde gerçek zamanlı sıkışıklık kontrol formunda taşınır.  Teorem 1 bu tip 
yaklaşımları kabul eden (F,G,H) geniş protokol sınıflarını karakterize eder. Bu izah uçtan uca 
kontrolün sonucudur. Uçtan uca sıkışıklık ölçümü alınır alınmaz TCP algoritması 
bağlantıların sıkışıklı ölçümlerinin toplamı gibi davranır. Bazı TCP ve AQM algoritmasındaki 
iddialarda (C1-C3 iddiasında gibi bölüm2 de) tipik olarak yeterlidir. Us araç fonksiyonun 
tanımı TCP algoritması sadece Fs ye dayalıdır. AQM nin rolü (G,H) 1-3 deki problemin 
tamamlayıcı gevşekliğinden emin olmak içindir ki memnun etmiştir (durum 3). Tamamlayıcı 
gevşeklik için basit bir yaklaşım vardır: AQM giriş değerini kapasiteye bütün şişe boynu 
bağlantıları için araçlanmayı maksimize etmeyi seçmek zorundadır. Herhangi bir AQM sorgu 
işlemlerini kararlı hale getirir. Bu özellik çift problemi çözen langrang çarpanını p* ı üretir. 
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Takip eden bölümde teorem 1 i REM ile RED ile TCP ren oyu yaklaştıracağız teorem 1 
uygulayarak ve TCP VEGAS DROP TAİL ile. İlk olarak (F,G,H)’ı protokol 
tanımlamalarından çıkaracağız ve daha sonra kesin olarak uygun hale getiren Us protokolü 
araç fonksiyonunu çıkarmak için eşitlik (4.7) yi kullanacağız. Tablo 4.1 özetlenmiştir. 
 

 
Tablo 4.1. TCP-AQM algoritmasının model yazılışları. 

 
4.2. RENO/AQM 
 

TCP için biz sadece sıkışıklı giderme fazını modelleriz ve diğer önemli yaklaşımları 
ihmal ederiz. Örneğin yavaş başlama ve hızlı gönderim/hızlı düzeltme. AQM için sıkışıklığın 
ölçüsü ile sıkışıklık ölçüsünün geri dönüşü arasında ayırt edicilik kullanışlıdır. TCP RENO 
örneğin kayıp olasılığını sıkışıklığın ölçüsü olarak kullanır. Bu sıkışıklık ölçümünün değeri 
Ya paketleri düşürerek ya da bu olasılık ile ECN bitini ayarlayarak kaynağa geri beslenir. Bu 
yazıda sıkışıklık ölçümünün tasarımı ve onun eşitlik özelliği ile ilgileneceğiz. Ve bizim AQM 
modelimiz geri besleme mekanizmasını yakalamaz. İster paketlerin düşümü ister ECN bitini 
ayarlamak için İşaretleme metodunu kullanırız.  
 
4.2.1. F,S,H Modeli 
 

Bu alt bölümde TCP RED, RENO, REM modellerini sunacağız. Bu modellerin 
uygulanması aşağıdaki alt bölümde verilmiştir. AIMD nin ortalama hareketini sadece 
modelleyeceğiz ve TCP RENO [2] ile örneğin NEW RENO SACK ve benzeri arasında ki 
farkları çıkarmayacağız. Bütün bu protokoller eğer tur zamanında işaret yoksa her bir tur 
zamanında pencereyi artırır ve bunun dışında pencereyi yarılar. İki çeşit çoklu aktif azaltma 
vardır. RENO nun eski versiyonlarında işaretleme belirlendiğinde her seferinde pencere 
yarılanır. RENO nun yeni versiyonlarında tur zamanında bir ya da daha fazla işaret ve ise bir 
kere yarılanır. RENO nun eski versiyonlarına RENO–1 yeni versiyonlarına RENO–2 
diyeceğiz. Aşağıda görüldüğü gibi farklı araç fonksiyonlarına ve kayıpsızlık özelliklerine 
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açıkça sahiptirler. Her sürüm için paket işaretleme olasılığını sıkışıklığın ölçümü olarak 
çıkarırız. 

DROP TAİL altında tam tamponlama ile varmış olan paket düşürülür. Markala 
olasılığının dinamikleri için uygun olan ifadeyi bilmeyiz. Kullanılan kayıp değerin modeli 
örneğin kaynak  [12] ve [9] de tamponsuz sorgu içindir. [ ]+∑−=+

s s txctp )(/1)1( . bu model 
eşitlik (4.8) i çözme ceza fonksiyonu gelişimi için uygundur ama DUALİTY gelişimi için 
uygunluk bağımlılığından dolayı değil. Böylece RED e REM için sadece model sunarız. 

)(tws  pencere boyutu olsun sD  (Yayılma + eşitlik sorgu gecikmesi) sabit olduğunu 
iddia ettiğimiz tur zamanı eşitliği olsun. Literatürde alışıldığı şekliyle örneğin 1 kaynak [11], 
[13] sss Dtwtx /)()( =  tarafından belirlenmiş olsun ve t zamanında kaynak değeri olsun. 
Zaman birimi birçok tur zamanının sıralamasındadır ve kaynak değeri )(txs zaman 
çizelgesinde ortalama değer olmalıdır. Dinamikler tur zamanı çizelgesinden daha küçüktür 
akışkan model tarafından yakalanmamıştır.  
 
4.2.1.1.RENO–1 
 

L hattında t zamanında )(tpl işaretleme olasılığı olsun. Anahtar yaklaşımı yaparız ki 
uçtan uca işaretleme olasılığı )(tqs kaynak algoritması bağlantı işaretleme olasılığının toplamı 
olarak davranır  

∑=
l

llss tpRtq )()(       (4.13) 

)(tpl küçük olduğunda bu anlamlıdır. ∏ ∑∈ ∈
≅−−=

Ll Ll lls tptptq )())(1(1)( olduğunda T 

periyodunda )(txs paketlerinin değerini her bir birim zamanı için iletir ve bilgilendirmeleri 
yaklaşık aynı değerde alır( pozitif ve negatif). İddia edilir ki bütün paketler bilgilendirilmiştir. 
Ortalamada s kaynağı )(txs  ))(1( tqs− pozitif bilgilendirme sayısını her bir birim zamanı için 
alır ve her pozitif bilgilendirme )(tws pencereyi büyültür ( )(/1 txs  ile), )(txs  )(tqs  negatif 
bilgilendirme birim zaman için ve pencerenin yararlanmasında ortalama alır. Böylece t 
periyodunda penceredeki net değişim kabaca  
 

3
)(4
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1)()(
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tw
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tqtx s

ss
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ss −−  

Daha sonra RENO–1 in Fs kaynak algoritması aşağıdaki formülle verilir. 
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İkinci derecen terim özellikle belirtir ki eğer değer çift kat olursa çoklu aktif düşüş frekansın 
iki katı büyüklüğün iki katıyla meydana gelir. 
 
4.2.1.2 RENO -2  
 

Pencere RENO–2 artırımı her bir tur zamanı sD  için 1 le eğer işaretleme yoksa eğer 
bir ya da daha fazla işaretleme varsa her bir tur zamanında pencere bir kere yarılar. Bunu 
aşağıdaki gibi modelleriz: her bir t periyodunda (bir kısım tur zamanın sıralamasında), 
pencere sD/1  ile )(ˆ1 tqs− olasılığı ile artırılır ve ss Dtw 3/)(2 ile azaltılır )(tqs olasılığı ile, 
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)(ˆ tqs uçtan uca olasılık olduğunda s yolunda en azından bir paket t periyodunda 
işaretlenmiştir. Tekrar )(tpl olasılık olarak not edelim ki paket t periyodunda işaretlenmiştir 
ve )(ˆ tqs uçtan uca paket işaretleme olasılığı 13 tarafından verilir. )(ˆ tqs  yi aşağıdaki gibi 
modelleriz  

)()()(ˆ tqtwtq sss =  
)(tws  pencere boyutu olduğunda. Bu sağlanır eğer paketler aynı pencerede birbirinden 

bağımsız olarak işaretlenmişse ve paket işaretleme olasılığı )(tqs küçükse 
))(1(1)(ˆ tqtq ss −−= durumunda. Daha sonra t periyodunda pencere boyunda ki değişim  
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böylelikle RENO-2 kaynak algoritması ))()(( tqtxF sss  
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   (4.15) 

 
İle verilir.  
 
4.2.1.3. RED 
 
RED kaynak [14] iki iç değişken ihtiva eder. Ani sorgu boyu )(tbs ve ortalama sorgu boyu 
)(trl  

[ ]+−+=+ llll ctytbtb )()()1(      (4.16) 
 

)()()1()1( 1 tbtrtr llll αα +−=+     (4.17) 
‘e göre güncellenmişlerdir. 

)1,0(∈lα olduğu durumda. Daha sonra (bunun ılımlı versiyonu) RED )(tpl olasılığı ile paketi 
işaretler. Böylece )(trl  nin doğrusal büyüyen fonksiyonu: 
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   (4.18) 
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olduğunda  
Bu eşitlikler (4.16)-(4.18) bu G,H modelini RED için belirler.   
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4.2.1.4 REM 
 

REM kaynak [15] aynı zamanda iki iç değişken ihtiva eder. Ani sorgu uzunluğu 
)(tbl ve )(trl ücret olarak adlandırılan bir değer. RED deki gibi )(tbl eşitlik (4.16) tarafından 

modellenmiştir. )(trl ücreti 
  

[ ]+−++=+ llllll ctyttrtr )()(()()1( βαγ     (4.19) 
 

1>γ  ve 11 >α sabit olduğunda güncellenir. Paketleri işaretler olasılıkla ki )(trl ücretinde 
logaritmiktir. 
 

)(1)( tr
l

ltp −−= φ       (4.20) 
 

1>φ olduğunda. Pratikte eşitlik (19) la  
 

[ ]+−+−+=+ lllllll ctybtbtrtr )()ˆ)((()()1( αγ  
 

ile yer değiştirebilir. 0ˆ ≥lb  hedef eşitlik geri bildirim olduğunda. Daha büyük lb̂  daha 
genellikle daha yüksek araçlaşmaya yöneltir. Özellikle geniş bir şekilde sorgu 
dalgalandığında kaynak [15]. Bu sürüm ile eşitlik sorgu uzunluğu teorem 3 de aşağıda 

ll bb =* dir 19 0=lb  ayarlanmasına dayanır. Logaritmik işaretleme olasılığı eşitlik (4.20) 
yaklaşık uçtan uca fiyat )(trl  s kaynağında ∑∈Ll

için yararlıdır. RENO tarafından 
kullanılmadığı zaman diğer yükseltme fonksiyonları kullanılabilir kaynak [15] de açıklandığı 
gibi. Örneğin işaretleme olasılığı )(trl  fiyatında doğrusal olabilir.  
 

{ }1),(min)( tprtp ll =       (4.21) 
 
bazı 0>ρ  sabitleri için. 0 olamayan hedef sorgu büyüklüğü *

lb  versiyonları ile ve doğrusal 
işaretleme olasılığı kaynak [16] un kontrolüne denktir. Diğer verilen AQM’ nin uyarlanabilir 
sanal sorgusu gibi kaynak [9] aynı zamanda eşitlik (4.2) – (4.3) ün formunda modellenebilir. 
Eşitlik (4.16),(4.19), ve (4.20) –(4.21) eşitlileri (G,H) REM için model belirler. 
 
RENO’nun Araç Fonksiyonları: 
 

Bu alt bölümde RENO–1 ve RENO–2 nin araç fonksiyonlarını çıkaracağız. 
Göstereceğiz ki RED veya REM ile hem birincil hem de çiftli problem çözülür. Not edin ki 
bu at bölümlerin sonuçları RENO–1 ve RENO–2 kaynaklarına ve hem RED hem REN 
bağlantılarını içeren ağa uygulanır. 
Yardımcı önerme 2: (F,G,H) fonksiyonları RENO -1 ve RENO -2, RED ve REM (14–21 
eşitlikleri) modeli c1 c2 c4 durumlarını karşılar. 
 
İspat: açıkça c1 durumu belirlenmiştir. Hem RENO–1 hem RENO–2 durumu için 0>sx , Fs 
devamlı diferansiyelleşebilir ve 0/ ≠∂∂ ss qF  olduğunda RENO–1 için  
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)(:
32

3
22 ss
ss

s xf
Dx

q =
+

=      (4.22) 

RENO–2 için  
 

)(:
)32(

3
22 ss
ssss

s xf
DxDx

q =
+

=     (4.23) 

 
Böylece )( ss xf hem RENO–1 hem de RENO–2 için açıkça düşer. Onların araç 

fonksiyonlarının keskin konkavlığı uygulanır. Böylece c2 ve c4 durumları sağlanır. Eşitlik 
(4.22) ve (4.7) yi karşılaştırarak, RENO–1 in araç fonksiyonu eşitlik (4.14)  

⎟⎟⎠

⎞
⎜⎜⎝

⎛
= −

ss
s

ss Dx
D

xU
3
2tan2/3)( 1     (4.24) 

benzer olarak RENO–2 nın araç fonksiyonu (4.15) 

32
log

1
)(

+
=

ss

ss

s
ss Dx

Dx
D

xU      (4.25) 

dir. 
Not edin ki RENO–1 ve RENO–2 nin araç fonksiyonları VEGAS tan farklı olarak kullanılır. 
0 bant genişliği almak için birçok şişe boynu bağlantıları kat eden kaynaklar için bu 
mümkündür (uçtan uca fiyat 1 birim olduğunda). Aşağıdaki sonuçlar RENO ya RED veya 
REM ile teorem–1 uygulanır. Bu çıkarır ki RED ile eşitlik sorgu uzunluğu örnekteki probleme 
dayanır (ağ topolojisi, yönlendirme kaynakların sayısı vb.) ve RED parametreleri ve böylece 
yük arttığı sürece kaçınılmaz büyüme gerçekleşir. RED parametreleri statik ya da dinamik 
olarak ayarlanabilir. Eşitlik sorgu uzunluğunu küçültmek için ama sadece potansiyel kararlı 
olmayışının sarf edilmesi ile; aşağıdaki örnekleri görünüz. Karşılaştırmada REM ile eşitlik 
sorgu uzunluğu yükten bağımsız 0 dır. 
 
Teorem 2.1 RENO–1 ve RENO–2 kaynaklarının ve RED ve REM bağlantılarını içeren ağın 
eşitliği ),( ** px olsun. Daha sonra ),( ** px birincil eşitlik (4.8) ve çiftli problem eşitlik (4.9) 
eşitlik (4.24) de RENO–1 için ve eşitlik (25) de verilen RENO–2 kaynakları için verilen araç 
fonksiyonları ile çözer. Daha fazla olarak eşitlik değer vektörü *x  tektir. Eğer l bağlantısı 
RED de uygulanırsa daha sonra eşitlik sorgu uzunluğu *

lb  ll bb >* - yi sağlar 0* >lp  ile. Eğer l 
bağlantısı REM e uygulanırsa daha sonra 0* =lb dır. 
İspat: yardımcı önerme 2 tarafından c1 c2 c4 14-21 in kombinasyonları tarafından sağlanır. 
Verilen ),( ** px eşitliği birincil çiftli en uygun olduğunu göstermek içindir. C3 ün aynı 
zamanda sağlandığını kontrol etmemiz gerekir. 16 dan ll cy ≤* hem RED hemde ren ile ve 
böylece birinci uygunluk sağlanır. Düşün ki 0* >lp  eğer l hattı RED de uygulanırsa eşitlik 
(4.17) ve (4.18) den  
 

0** ≥>= lll brb       (4.26) 
 
oluşur. Ama 0* >lb  ll cy =*  de uygulanır. Eğer l hattı REM de uygulanırsa 0* >lp ve 

0* >lr da uygulanır.  
Böylece eşitlik (4.19) dan  
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0** =−+ llll cybα       (4.27) 
 
Oluşur. ll cy ≤* yi biliriz. Eğer ll cy ≤* ise eşitlik (4.16) 0* =lb  a uygulanır. Ama bu eşitlik 
(4.27) yede yalanlanır. Böylece ll cy =*  (ve 0* =lb ). Hem RED hem ren ile tamamlayıcı 
gevşeklik gösterilir ve böylece c3 sağlanır ve ),( ** px  birincil çiftli en uygundur. 
 Daha fazla olarak eşitlik (4.26) gösterir ki ll bb >* - 0* >lp  RED ile olduğunda. REM 
ile takip eden elemanlar gösterir ki 0* =lb dır. Bu ispatı tamamlar. 
 
NOTLAR 
 

Eşitlik (4.22) ve (4.23) ilişkileri uygulanır ki RENO–1 ve RENO–2 büyük sD  ile 
kaynakları birbirinden ayırır. İyi bilindiği gibi birçok daha önceki çalışmalarda örneğin 
kaynak [13], [14], [17], [18] daha fazla olarak eşitlik (4.22) RENO 1 için  

sss

s

s
s

qDq
q

D
x

12/312/3 ≅
−

=  

gibi yeniden yazılabilir. sq  olasılığı küçük olduğunda daha önceden geniş bir şekilde ilişki 
belirlenmiştir. Bazı yazarlar [16] [19]iddia eder ki RENO penceresini 1 ile büyütür her tur 
zamanında belirleyici olarak. Bu 1 in yerine eşitlik(4.14) de ))(1( tqs−  yi yerine koymaya 

dayanır. Bu model sss qDx /2/3=  ü verir  
 

2

2/3)(
ss

ss Dx
xU −=      (4.28) 

Uygun araç fonksiyonu ile [19] ve [12] de kullanıldığı gibi (sabit terimleri ihmal ederek). 
RENO–2 için eşitlik (4.23)  

222
3

)32(
3

ssssss
s DxDxDx
q ≅

+
=  

 
yaklaştırılabilir. 32 ≥ssDx  olduğunda veya sq  küçük olduğunda. Daha sonra RENO–2 eşitlik 
(4.28) de verilen RENO1 deki gibi aynı araç fonksiyonuna sahiptir. DUALİTY teorisi ile 
verilen çift en uygun p, x değer vektörü  

)(1 sss qUx −′=       (4.29) 
da verilir. ∑= l llss pRq  olduğunda uygun değer vektörüdür. RENO nun değer ayarlaması 
işlemiş eşitlik (4.14) veya (4.15) bu stratejinin yumuşatılmış versiyonu olarak düşünülebilir. 
Aşağıdaki durumda )()( 1

sss qUyx −′=  eşitlik (4.29) tarafından belirlenen hedef değeri olsun. 
Verilen RENO–1 in veya RENO–2 nin araç fonksiyonunu kullanarak daha sonra RENO1 için 
eşitlik (4.24) kullanılarak aşağıdaki  

)(
1
2
31)()( 1

tq
q

D
qUyx

s

s

s
sss

−
=′= −  

Elde ediliyor. Değer artırımını (14) hedef değerinin )(txs terimleri olarak yeniden yazılabilir. 
+

⎥⎦
⎤

⎢⎣
⎡ −+=+ )()(

3
)(2

)()1( 22 txtx
tq

txtx ss
s
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Böylece değeri atamadan )1( +txs direk olarak )(txs  hedef değerine bir adımda RENO–1 hali 
hazırdaki )(txs değerine gider hedef değer )(txs den onların karesinin farkının orantısal 
değerini ekleyerek, RENO 2 için 23 den hedef değer 3/))()()(2 22 txtxtq sss − karşılamalıdır. 
Böylece aşağıdaki gibi )(txs  hedef değerinin terimleri olarak yazılabilir. 

)3)(()(
3)(

+
=

ssss
s DtxDtx
tq  

Böylece eşitlik (4.25) de Fs hedef değeri )(txs  nin terimleri olarak yeniden aşağıdaki gibi 
yazılabilir. 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+

−+=

+

)3)(2)((
)3)(2)((

11)(

)1(

2
sss

sss

s
s

s
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Örneğin değeri yükseltin eğer )()( txtx ss < ve diğer durumlarda.  
3.Bu gelişme burada alınmış kaynak [20] de ki gibi takip eder. ll HG  tarafından tamamen 
sorgu yönetim mekanizması modellenmiştir. Kaynak [21] deki model işaretleme olasılık 
fonksiyonunu sF  nin bir parçası olarak ihtiva eder, işaretleme araç fonksiyonuna AQM ye 
aynı zamanda TCP algoritmasına bağlıdır. 
 
4.3. VEGAS / DROP-TAİL 
 

VEGAS ın çiftli modeli kaynak [4] de geliştirilmiş ve doğrulanmıştır. Bu bölümde asıl 
sonuçları özetleyeceğiz. Eşitlik sorgu uzunluğunu ayarlamak için yeterince geniş tampon 
boyutu olan durumu düşünürüz. Böylelikle VEGAS kaynakları tek eşitliğe gelir. Bu durumda 
eşitlikte paket kaybı olamaz. [4] de gösterilmiştir ki VEGAS sorgu gecikmesini sıkışıklık 
ölçümü olarak kullanır. lll ctbtp /)()( =  )(tbl t periyodundaki sorgu uzunluğu olduğunda. 
Güncelleme kuralları böylelikle ))(),(( tptyG lll  

+

⎥
⎦

⎤
⎢
⎣

⎡
−+=+ 1
)(

)()1(
l

l
ll c

tytptp     (4.30) 

Tarafından verilmiştir (eşitlik (4.16) nın her iki tarafı cl ye bölünmesi ile elde edilir). 
Böylece VEGAS için AQM her herhangi bir iç değişkene bağlı kalmaz. Verilen )(txs  

)(
)(

tq
d

tx
s

ss
s

α
=       (4.31) 

tarafından verilmiş ve hedef değeri olsun, sα VEGAS ın parametresi olduğunda ve sd  
s kaynağının tur zaman yayılma gecikmesi olduğunda. Kaynak değeri için güncelleme kuralı 
daha sonra ))(),(( tqtxF sss olarak  

))()((11)()1( 2 txtx
D

txtx ss
s

ss −+=+     (4.32) 

tarafından verilir.  
1,01)(1 −>= zegerz Olduğunda eğer z>0,- sssss qdxx /α== 1 eğer z<0 ve 0 eğer 

z=0 ise. Eşitlikte sssss xdxU /)( α=′  veya sssss xdxU log)( α= elde ederiz. Aşağıdaki 
sonuçlar 18 de ispatlanır. Kısmen uygulanır ki her bir bağlantıda basit konkav programı 
çözerek sorgu uzunluğunu hesaplayabiliriz. 
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Teorem4. VEGAS/DROP TAİL ın ),( ** px eşitlik (4.30)-(4.32) de modellendiği gibi 
birincil (4.8) ve çiftli problem (4.9) eşitliği ile çözülür, araç fonksiyonu Us  

sssss xdxU log)( α=  
Tarafından verilen. Daha fazla *x  tektir ve iyi orantılanmıştır. L bağlantılarında ki eşitlik 
sorgu uzunluğu *

ll pc  dır. Teorem de verilen araç fonksiyonu ile VEGAS ın değer ayarlaması 
eşitlik (4.32) eşitlik (4.29) un yumuşatılmış versiyonu olarak teoremde verilen araç 
fonksiyonu ile çıkarılabilir. )1( +txs  değerini ayarlamak yerine bir adımda )(txs hedef 
değerine (4.29) tarafından belirlenir, VEGAS )(txs hali hazırdaki değerine gider. 2/1 sD ile her 
adımda hedef değer )(txs yaklaşır.  
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BÖLÜM 5 

 
 
 
 
 
VEGAS - DUALİTY MODEL  
 

Ağdaki küresel en uygun olma problemini çözmek için dağılmış öncelikli çift 
algoritma kaynak tarafından taşınır. TCP IP VEGAS sıkışıklık kontrol mekanizmasını çoklu 
bağlantılı ve çoklu kaynaklı modelini tanımlarız. Bu model gecikmelerin ve TCP VEGAS ın 
kayıp özelliklerinin kökenini anlamamızı sağlar. Ağ uygun tamponlama olduğu zaman ağ 
kapasitesinin uygun ağırlıkta olduğu varsayılarak VEGAS kararlığını belirtir. Bundan 
korunmak için REM aktif sorgu yönetimini ne kadar kullanacağımız tavsiye eder ve bu 
sıkışıklıktan kaynaklanan sonuçların mekanizmasını açıklar.  
 
5.1. VEGAS Modeli 
 

Bu VEGAS modelinin gösterildiği bölümdür ve VEGAS ın nesnelerini gösterir. 
VEGAS ın algoritması çiftli bir metottur problemlerin çoğunu çözmek için. Bu çabanın hedefi 
VEGAS ın kararlılığını daha iyi anlamakla anlamakla olur. 
 
5.1.1. Ön Hazırlık 
 
 Yönlendirmeli ağ çoklu yönlü L tarafından modellenmiştir. İletim kapasitesi lc  ile 
Ll∈ eleman ve sonsuz tamponlama boşluğu. s kaynaklar tarafından paylaşılmıştır. s kaynağı 

l(s) alt setine dönüşür )(sL alt eleman hatlarını LsL ⊆)( dönüştürür. Zs değeri iletildiğinde 
)( ss xU  değerine ulaşır.( örneğin her saniyedeki paketler) Tur zamanı çiftleme gecikmesi s 

kaynağı için ds olsun. Her L hattı için { })()( sLlSslSs ∈∈=  L hattını kullanan kaynak 
setleri olsun. Tanımlama )(sLl∈ , )(lSs∈  olduğu zamandır.  
 VEGAS ın bir tercümesine göre kaynak gerçek değeri ve tahmin edilen değerinin 
farkını gösterir ve penceresindeki artırımlar veya azatlımlar bir sonraki tur zamanında alfa s 
parametresinden daha büyük veya daha küçük olmasına bağlı olarak. Eğer fark sıfırsa pencere 
boyutu değişmez. Senkron parçaları zaman modeline göre bunu modelleriz )(tWs  zamanında 
pencerenin kaynağı olsun ve )(tDs  uygun tur zamanı olsun (sorgu gecikmesi + çiftleme) her 
bir ayrı zaman için )(/1 tDs  ( bir paketin pencere boyunun değişimini modelleriz her dönüş 
zamanı için her ayrık zaman da )(/1 tDs  nin değişimi tarafından). Bu s kaynağı aşağıdakine 
göre penceresini ayarlar VEGAS kaynak algoritması 
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kaynak yazıda [1] ss DtW /)( beklene değer olarak belirtilmiştir. ss dtw /)(  asıl değerdir. 
)(/)(/)( tDtwdtw ssss −  Arasındaki fark DİFF dir. Asıl uygulama tur zamanı çiftleme 

gecikmesi ds daha sonra belirlenecek tur zamanı en az değeri tarafından tahmin edilir. αs 
birimi KB/sn yi söyler. αs in önemi bölüm 3 de açıkladık. [1] in açıklamasında DİFF i αs ve 
sβ arasından tutmak için pencereyi ayarlar. ss βα < için ss βα = Olduğunu basitçe öne 

süreriz. Bu VEGAS ın özünü oluşturur. ss βα <  Kullanımın etkisi [2] tarafından 
açıklanmıştır. 

)(/)(:)( tDtwtw sss = bant genişliğini t zamanında s zamanı için ifade etsin. )(tWs pencere 
boyutu - Bant genişliği gecikme ürünü )(twd ss s yolunda tamponlanan toplam geri bildirim a 
eşittir. Buda kaynak[1] deki durumla sd  nin çarpılmasıdır. Görüyoruz ki pencerenin kaynak 
artırımı ya da azatlımı toplam geri bildirim )()( txdtw sss −  ssdα den daha küçük ya da büyük 
olması bağlıdır. Bu ikinci VEGAS algoritma yaklaşımıdır. Bölüm 5.1 de 3. yaklaşımı 
açıklayacağız. Eşitlik (5.1) sadece kaynak dinamiklerini belirler ve ağ davranışını tamamen 
açıklamaz. )(tDs  dönüş zamanı gecikmelerini belirleyen bağlantı dinamiklerini ihtiva eder 
aynı zamanda. )(tDs  gecikmesi s kaynağının )(tws  penceresine sadece değildir aynı 
zamanda diğer kaynakların paylaşılan bağlantı üzerinde olmasına da bağlıdır. 
 
5.1.2. Vegasın Nesneleri 
 

VEGAS eşitliğini şu anda yorumlayabiliyoruz. Detaylı ağ dinamiklerini ihtiyacı 
olmadığı için takip eden alt başlıkta bütün özelliklerini erteliyoruz. 
Algoritma birleştiği zamanı ( )Ssww s ∈= .**

 ve dönüş zamanı eşitliğini gösterir. 

( )SsDD s ∈= .**
 gerçekleşir.  

içinSsbütün
D
w

d
w

s
s

s

s

s ∈=− α*

**

    (5.2) 

 
İlk sonucumuz gösterir ki VEGAS kaynakları sahiptir eşitlik (5.3) ile  

sssss xdxU log)( α=      (5.3) 
Eşitlik (5.1) fayda fonksiyonlarıdır. Bundan daha fazla VEGAS ın nesneleri kaynak 
değerlerini seçmek içindir. ( )Ssxx s ∈= ,   

∑≥ s
ssx
xU )(max

0
     (5.4) 

 

                      
Llcx

lSs
ls ∈≤∑

∈

.
)(

              (5.5)
 

Us hizmet fonksiyonu tam olarak iç bükey artışlıdır. VEGAS kaynağının çok arttığı anlamına 
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gelir (fayda değer artışı). Ama azaltan bir geri dönüş vardır (dış bükeylik). Bağımlılık belirtir 
ki toplam kaynak değeri herhangi bir hatta kapasiteyi aşamaz. Eşitlik (5.4) ve (5.5) öncelikli 
problemi belirttik. X değer vektörü bağımlılığı mümkün kılabileceğini belirtti ve mümkün 
olan x öncelikli uygunluğa uygunluk olarak adlandırılır (veya basitçe uygun). Tek uygun 
değer vektörü objektif fonksiyonun kesin iç bükey olduğunda mevcuttur ve devamlıdır, 
mümkün çözüm seti yoğundur. 
 
Teorem. 1: ( )Ssww s ∈= ,**

 VEGAS ın eşitliği olsun ( )SsDD s ∈= ,**  dönüş zamanı eşitliği 
olsun ki (2) eşitliğini gerçekleştirsin. Paketler birebir bütün hatlara sunulsun sonra kaynak 
değerlerinin eşirliği ( )Ssxx s ∈= ,**  formül tarafından belirlensin. Bu değer eşitlik (5.3) ve 
(5.5) için Tek uygun çözüm dür. 
İspat: Karush-Kuhn-Tucker teoremi tarafından uygun kaynak değer vektörü 0* ≥x  Sadece ve 
sadece ( ) 0,** ≥∈= Llpp s  olduğu zaman uygundur. Bütün s ler içinde  

∑
∈

==′
)(

*
*

* )(
sLl

l
s

ss
ss p

x
d

xU
α

      (5.6) 

Bütün l ler için 0* =lp  dır . Bağlantının toplam kaynak değeri llSs s cx <∑∈ )(
*

 kapasitesinden 

kesin küçüktür. (tamamlayan sarkıklık). p* vektörünü bağlantılar sağlar ki Geri bildirim un 
eşitliğini ispat ediyoruz. Ve bu eşitlik uygun değerdedir. 
*
lb  geri bildirim eşitliğinin l bağlantısındaki değeri olsun. *

lb  ın parçası s kaynağına ait olan 

ilk giriş ilk çıkış servis disiplini altında hat kapasitesi olduğu zaman *
l

l

s b
c
x+  lc  dır. Böylelikle 

kaynak s ∑∈

+

)(
*

sLl l
l

s b
c
x eşitliğinde onun yolunda içerir. Pencere boyutu bant genişliği gecikme 

ürünü + toplam yoldaki geri bildirime eşitliği zaman  
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Olur. Böylelikle eşitlik (5.2) de *** / sss Dww =  
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Eşitliğini elde ederiz son eşitlik (5.7) den takip ederiz. 

l

l
l c
bp
*

* =  

  
‘nü belirlemekle ve terimleri yeniden düzenleyerek formül 6 ya ulaşırız.. Açıkça x* geri 
bildirim sınırsız büyüdüğü zaman x* uygun olmalıdır. Eşitlik (5.7) nin tersini söylemlidir. Hat 
l bağlantıdaki 0* =lp  geri bildirim eşitliği. Eğer toplam kaynak değeri kapasiteden kesinlikle 
küçükse tamamlayıcı sarkıklık durumu aynı zamanda gerçekleşir.  
 
5.1.3. Çift Problem 
 

Teorem 1 de VEGAS birbirine yaklaşırsa eşitlik (5.3 – 5.5) deki uygunluk problemini 
eşitliğin çözdüğü savunulur. Burada soru VEGAS algoritmasının veya daha karışık olan 
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eşitlik (5.16—5.19) belirlemelerinin mi kalacağıdır. Aslında birbirine yaklaşacağıdır. 
Birbirine sert yaklaşma analizi zordur çünkü güncelleme fonksiyonu doğrusal ve devamlı 
değildir. Kaynak [3] analizinde iki kaynağın tek bağlantıda paylaşımını görürüz. Bu alt 
bölümde 4 ve 5 deki çift problem için ve sonrasında VEGAS algoritmasını eğim atma 
algoritması ele alacağız. Bu eğim atış algoritması yeterince küçük adım ölçüleri ile birbirine 
yaklaşma sağlandığı zaman ispat edilebilir. Bunu Yaklaşık algoritma yaklaşımı olarak ima 
etmediğimizde eğim atış algoritmasının kaydı için VEGAS ı tavsiye eder. Bundan daha fazla 
bu izah VEGAS ağ modelinin tamamına yöneltir bir sonraki bölümde açıklanacağı gibi 
kaynak[4] duality gelişmelerini görmekle başlayacağız. Kaynak [4]; [5] eşitlik (5.4) ve (5.5) i 
ve çift problemi çözmek için ve tartılmış eğim fırlatma algoritmasını tanıtır. Bundan sonraki 
alt başlıkta VEGAS algoritmasını tanıtacağız. Bu algoritmanın yaklaşık versiyonu olarak. Her 
bir l bağlantıya bağlı olarak Pl çift değişkendir. Eşitlik (5.4) ve (5.5) Lagrangian kaynak [6] 
ve eşitlik (5.4) ve (5.5) in çift problem belirtildiği gibi: 
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Eşitlik (5.4) ve (5.5) in çift probleminin fonksiyon ),(max:)( 0 pxLpD x≥= gibidir. İlk 
terimin xs den artırılabilir olduğunu fark edin ve 

∑ ∑∑ ∑
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s sLl
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Böylelikle çift problem çift vektörü seçmektir. ),( Llpp l ∈= öyle ki 
s

sssx

s
s pxxUpB

s

−=
≥

)(max)(
0

     (5.9) 

∑
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=
)(sLl
l

s pp        (5.10) 

olduğunda  

∑ ∑+=
≥ s l

llsp
cppBpD ))(:)(min *

0
     (5.8) 

çiftli değişken lp  yi l bağlantısındaki her birim bant genişliği fiyatı olarak açıklayacağız. 
Sonra sp  eşitlik (5.10) da s yolunda her bant genişliğinin fiyatıdır. Böylelikle )( s

s px  eşitlik 
(5.9) da kaynak s ye bant genişliği maliyetini temsil eder. s

ssss pxxUx −)(.  net sx  
değerindeki iletimin karıdır. Ve )( s

s pB maksimum s kazancı p5 (ölçülebilir) verilen fiyatta 
gerçekleştirilebilen maksimum s kazancı olarak belirtilir. Verilen fiyat vektörü 0≥p  s 
kaynağı tek )( s

s px değerini ikna edebilir ki formül9 u maksimum değere getirir sadece lokal 
bilgilere dayanarak. Daha fazla olarak Duality teori tarafından kaynak [6] fiyat vektörü p* 
eğer çiftli uygun eşitlik (5.8) e minimize ise )( *s

s px ilk uygun değeri aynı zamanda tek uygun 
değeri olur.  

Bu yazının kalanında bağlantı fiyatını lp  olarak ifade edeciğiz. ∑∈
=

)(sLl l
s pp  yol 

fiyatı(s kaynağının) ve vektör p )( . Llpp l ∈=  basitçe fiyattır. VEGAS için pl bağlantı fiyatı l 
bağlantısındaki sorgu gecikmesi olarak döner: aşağıdaki bölümü görün. Uygun p* gölge 
fiyattır (Lagrangian çarpımı). *

lp  yorumlayıcısı ile uç artırım toplam ∑s ss xU )(  l nin cl 
kapasitesindeki uç artırımı için tekrarlayan eğim izdüşümü algoritması kaynak [5] deki çift 
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problemi çözmek için tasarlanmıştır. Çift objektif fonksiyonu d nin ))(( tpD∇ eğimini not 
edin. Fiyatlar eğim )(( tpD  yi küçültmek için ters yönde yararlanmıştır.  
 

+∇Θ−=+ ))(()()1( tpDtptp γ  
 
Burada 0>γ  sabittir. ).( Lldiag ∈=Θ θ  Pozitif dik ölçülür matristir ve { }zz .0max=+

 
elemandır. Çift problemin yapısı dağıtılmış merkezleşme ve yukarıdaki algoritmaların 
yapısına müsaade eder.  

)(tx s  nin yerine koyulan p, )(tp ile eşitlik (5.9–5.10) maksimize eden tek kaynak değerini 

gösterir ve ∑∈
=

)(
)()(

lSs s
l txtx  l deki toplam kaynak değerini gösteri. ∑∈

=
)(

)()(
lLl l

s tptp  

s kaynağını yol fiyatını gösterir. Sonra sssxs xdxU log)( α= VEGAS ın araç fonksiyonu ile 
eğim atış algoritması yaklaşım uygulaması takip etmesi [6] olarak görülebilir.  
 

)(
)(

tp
d

tx s
ss

s
α

=       (5.12) 

 
olduğu zaman  
 

[ ]+−+=+ l
l

l ctpxtptp ))(()()1( 1γθ     (5.11) 
 
Açıklamak için )(tx l  l bağlantısında bant genişliği için talepleri göstereceğini not edin ve lc  
mevcut olanı gösterir. Böylelikle fiyat arz ve talep kanunlarına göre ayarlanır. Eğer arz talebi 
aşarsa fiyatı yükseltir değilse düşürür. [4] algoritmasında 1=lθ  özel bir durum vardır. γ  
büyütme faktörü kaynak [5] deki zaman bağımlı Hessian matrisi ))((2 tpD∇  tersi olarak 
seçilmiştir. Eşitlik (5.12) tarafında kaynak s eşitlik (5.9-5.10) un tek yükseltici değerine atar. 
Ekonomideki arz fonksiyonu gibidir. )(tps  yol fiyatı ne kadar büyükse (yol ne kadar 
sıkışmışsa) kaynak değerleri o kadar küçüktür. Algoritmanın merkezleştirilmemiş doğası her 
hat ve har kaynak sadece lokal bilgileri tek başlarına güncellendiğine dikkat edin. Takip eden 
sonuçlar söyler ki ölçülmüş eğim atış algoritması eşitlik (5.11) ve (5.12) tarafından belirlenir. 
Tekil uygun kaynak değerine gider. VEGAS ı Bu algoritmanın yaklaşık versiyonu olarak 
düşünüldüğünde bu teorem kararlılığının altını çizer.  
Teorem 2: lθ  adım boyutu yetirince küçük olduğunda herhangi bir 0)0( ≥x başlangıç 
değerinde başlarken ve 0)0( ≥p  fiyatları her limit noktası ( **.px ) (x(t),p(t))  durumun eşitlik 
(5.10) ve (5.12) tarafından oluşturulur Kaynak [5].  
İspatı aynı zamanda ( **.px ). ın uygunluğu garantileyen adım büyüklüğünün sınırını açık 
eder. )(max: sLL Ss∈=  ve )(max: lSS Ll∈=  belirle. L  kaynak tarafından kullanılan en uzun 

yolun uzunluğudur. Ve S  en sıkışık bağlantıyı paylaşan kaynakların sayısıdır. )(tx s  kaynak 

değerini üstten sınırlı olduğunu düşünün şöyle ki 22 /)(/ xdtxd sss αα ≥  bütün s ler için. 
Büyüklük faktörü ll c/1=θ  olduğu zamana VEGAS algoritmasını özelleştirin. Düşünün ki hat 
kapasitesi alttan sınırlı. Teorem 2.2 nin sonucu aşağıdadır.  

2

2
xSL
dcαγ =  
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5.1.4. Vegas Algortiması 
 

VEGAS algoritmasını yaklaşık olarak ölçülmüş eğim fırlatma algoritması olarak 
düşünürüz. Bu algoritma adapte olabilen sıkışıklık kontrolünden daha yakındır. Bağlantı 
algoritması (5.11) sıkışıklık ölçümünü )(tpl )(tps  hesaplanır ve kaynak algoritması eşitlik 
(5.12) iletim değerini sıkışıklık geri dönüş )(tps  ye adapte eder. Bu algoritmayı uygulamak 
için VEGAS-kaynak bağımlı mekanizma iki kabulü göstermelidir. 1-Bağlantı ücretlerinin 
nasıl hesaplandığı ve 2- yol ücretlerine her bir kaynak için onların değerlerini ayarlamak için 
nasıl geri dönüldüğü. Bunları göreceğiz ilki ücret ayarlaması eşitlik (5.11) Her bir 
bağlantıdaki tampon işlem tarafından gerçekleşir. 2. yol ücretleri kesin olarak dönüş zamanı 
boyunca kaynağa geri beslenir. Verilen yol ücreti )(tps , s kaynağı yaklaşık Eşitlik (5.12) nin 
versiyonudur.  
Özellikle l bağlantısının giriş değerini s kaynağından )(txs  de t zamanında düşünün. Daha 

sonra l bağlantısındaki toplam giriş değeri ∑∈
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)()(

lSs s
l txtx  olsun ve l bağlantısında 

tampon aralığı )(tbl , [ ]+−+=+ l
l

ll ctxtbtb )()()1(  ‘e dayandırılarak oluşur. 
Her iki tarafı cl ye bölmekle  
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eşitlik elde edilir. 
lll ctbtp /)()( =  belirlerken eşitlik (5.13) (5.11) in aynısıdır y=1 ile ve ölçüm faktörü 

ll ct /1)( =θ  olduğu zaman. )(txs  , )(txl  kaynak değeri hariç tutulur. Eşitlik (5.12) den kesin 
olarak farklıdır. Daha sonra açıklandığı gibi… 
1 den tekrar çağrılır ki VEGAS algoritması )(tws   

ssssssssss ddtxtwveyaddtxtw αα >−<− )()()()(   (5.14)  
eşitliğe dayanarak güncellenir. 
2.1 in ispatındaki gibi bu değer geri bildirime bağlanır böylelikle ücretler yolda  
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eşitlik gibidir.  
Eşitlik (5.14) numaralı koşulda  
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ss
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oluşur. 
VEGAS kaynağı haki hazırda ki kaynak değeri )(txs  ye hedef değeri )(/ tpd s

ssα  yi 
karşılaştırır. Pencere artırılmış veya azaltılmış )(/1 tDs  ile karşılaştırılır. Bir sonraki periyotta 
hali hazırdaki kaynak değeri )(txs  hedef değerinden )(/ tpd s

ssα  daha küçük ya da daha 
büyük olmasına dayandırılır. Ayarlamada eşitlik (5.12) algoritması hedef değerine bu değeri 
ayarlar.  
Özetle VEGAS algoritmasını aşağıdaki doğrusal olmayan değerlerle göstermiş olduk. 
VEGAS Ağ Modeli  
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[ ] içinkaynaklarısbütüntvtwtw sss
++=+ )()()1(     (5.17) 

Böylelikle )(:)( tpdtD s
ss +=  s nin tur zamanıdır, [ ] { }zz ,0max=+  dir, ve 

fonksiyon 1 (A) göstericisinden 1 e eşittir. Eğer A doğru ve 0 sa. Bu lineer olmayan sistem 
eğim fırlatma algoritması eşitlik (5.11-5.12) nin yaklaşık versiyonu (5.8)-(5.10) daki çift 
problemi için olarak düşünülebilir.. Eşitlik (5.16)-(5.19) un tamamlanmış noktası tarafından 
verilmiştir ve ss

s
s dpx α=** 0* =sx  kadar ve l

l cx ≤*  İle eğer 0* >lp  Eşitliği ile karşılar Tam 
olarak Karush-Kuhn-Tucker durumu önceki eşitlik (5.3)-(5.5) problemi için mevcuttur. 
Böylelikle eşitlik toplam araç fonksiyonuna maksimize olur teorem 2. 1 de açıklandığı gibi. 
 
5.1.5. Notlar  
 
Teorem 2.2 deki uygun durumda kararlılık için 0>γ  a ihtiyaç duyar yeterince küçük 
olmasına. Kaynak VEGAS algoritması bunun la birlikte 1=γ  i idea eder (eşitlik (5.11)- 
(5.16) yı karşılaştırın). Şimdi y yi yeniden tanıtmak için bir yol tanımlayın. Her iki tarafı 

eşitlik (5.13) ile çarparsak 1>γ  tarafından ve 
l
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)( γ=  ile belirleyerek,  
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oluşturulur. 
Burada fiyatlarda ağırlıklı sorgu gecikmesi kullanılarak, fiyat ihtiyaç duyulmayan y nın adımı 
ile bulunur. Daha sonra (15) 
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ye geliştirir. 
Araç fonksiyonunu modifikasyonlar güncellememelidir aynı zamanda eşitlik değeri )(tws  
eşitlik (5.18) e dayanarak ayarlanmalıdır. Böylelikle eşitlikte ** /)( sss

s xdtp α=   1=γ  için bu 
ihtiyaç eşitlik (5.20) ile beraber duruma bağlı VEGAS algoritmasını (14) den  

ddtxtwveyaddtxtw s
ssss

s
sss γ

α
γ
α

>−<− )()()()(  

geliştirir. 
Bu büyüklük sα  yi γ/1  kez daha büyük kullanmak için örneğin 10 KB/sn in birimi 

olarak kullanmak yerine KB/sn sα  için kullanmak. γ  ( sα nin birimi) bütün kaynaklarda aynı 
olduğunu not edin. Daha küçük gama kaynak değerlerinin dönüşümünü kesinleştirir, ama 
dönüşüm daha yavaş olur. Kararlılık ve cevap verilebilirlilik arasındaki duyarlılık mevcuttur 
herhangi bir geri dönüş kontrol sisteminde. Daha küçük γ  aynı zamanda daha büyük eşitlik 
geri bildirim eşitliğine sebep olur γ/)()( tpctb lll =  olduğunda. Bu zorluk ücret 
hesaplamadan tampon işlemi tekleştirmekle işaretleme tanıtılarak üstesinden gelinebilir. 
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sα  kullanmak için bu değerler γ/1 kere daha büyük 10 KB/sn birim kullanır alfa s için 
KB/sn ın dışında γ  ( sα  nin birimi) bütün kaynaklarla aynı olmalıdır. Daha küçük y değeri 
kaynak değerlerinin dönüşümüdür ama dönüşüm daha küçük olur. Kararlılık ile cevap 
verilebilirliği arasında gerilme vardır herhangi bir geri dönüş sisteminde. Daha küçük γ  aynı 
zamanda daha büyük ger bildirimine sebep olur. γ/)()( tpctb lll =  olduğunda. Bu zorluk fiyat 
hesaplamadan tampon işlemi çiftleştirmeme için işaretleme tanımlanarak aşılabilir.  
 
 
 
5.2. Gecikme, Kayıpsız Tam ve Kayıp 
 
5.2.1. Gecikme 
 

Daha önceki bölümde VEGAS algoritmasının 2 eşitlik yaklaşımı tanımlanmıştır. İlki 
kaynağı değerini ayarlar böylelikle asıl değerini bulmak için sα  ile sβ  KB/sn arasında 
tahmin edildiği değerinden daha küçüktür. sα  ( 1/ds tipik olarak) ve sβ  ( tipik olarak 3/ ds) 
VEGAS algoritmasının parametresi iken. Bu umulan değer maksimum mümkün olan hali 
hazırdaki pencere boyutudur. Yolda herhangi bir sorgulama yoksa gerçekleşir. Bu değerin 
mantığı maksimum ağ alt araçlandırmasına çok yakındır. Ve sıkışıklıktan daha uzaktır. 2. 
yaklaşım VEGAS kaynağı ssdα  (tipik olarak 1) ile ssdβ  (tipik olarak 3) arasında ki yolda 
tamponlanan paketlerin sayısını korumak için değerini ayarlar. Böylece ekstra kapasite 
avantajı sağlar mümkün olduğu zaman. Duality model 3. yaklaşımı tavsiye eder. Tamponlama 
işlemin dinamikleri l hattında (eşitlik (5.11) ve (5.13) karşılaştırarak) bir bağ kurar  
 

l

l
l c

tbtp )(
)( =       (5.21) 

Bu da bağlantı ücreti )(tpl  hatlarında sorgu gecikmesinin t zamanındaki paket varışı ile 
yüzleşmesidir.  Yol ücreti ∑∈

=
)(

)()(
sLl l

s tptp  uçtan uca sorgu gecikmesidir (dağınık 

gecikme hariç). Bu sıkışıklık sinyalidir ve kaynak değerini ayarlar ve kaynak tur zamanı ile 
(tahmin edilen) üretim gecikmesi arasındaki fark alınarak hesaplanır. Daha sonra eşitlik (5.12) 
VEGAS kaynak setine uygulanır. Sorgu gecikmesinin yayılımının gecikmesinin değeri 
orantısaldır. Orantısal sabit sα  ile sβ  arasındadır. Ne kadar büyük sorgu gecikmesi olursa o 
kadar keskin sıkışıklık ve değer düşümü olur. Bu VEGAS ın yaklaşımı ren ile birlikte 
kullanıldığında VEGAS ı değiştirmek için kullanılır. Aşağıdaki bölümü görünüz. Aynı 
zamanda eşitlik (5.12) den takip eder ki bant genişliği sorgu gecikmesi genişliği kaynağın 
ürünü yolda tamponlanmış ekstra paketler. 
 

ss
s

s dpx α=**       (5.22) 
Sorgu teorisinde Little in kanunudur. Eşitlik (5.22) ye ilişkin sp* ye uygulanır. sp* Artmalıdır. 
*
sx  kaynakların sayısıyla böylelikle azalmalıdır. Yolda tamponlanan bazı ekstra paketleri 

tutmak için her kaynağın kakıştığı yeniden oluşmasıdır bu.  
 
5.2.2. Kayıpsız Tam 
 



 62 

Buna rağmen bunu zamanda tanımadık. VEGAS ın iki eşit uygun uygulaması vardır.  
Her biri algoritmada belirsizliğin farklı yaklaşımlarındandır. İlki asıl koda dayanan alfa s ve 
beta s parametrelerini belirler her tur zamanı için byte olarak. İkincisi kaynak [9] deki 
yazısına dayanarak her inicin biten terimleri olarak belirler. Bu iki byte’ın (paketlerin) bu iki 
uygulama iyilik üzerinde kesin etkisi vardır: ikinci kayırma kaynakları geniş yayılan 
gecikmesiyle. 
 
Bizim modellememizin terimlerinde “log” araç fonksiyonu (5.1) *x eşitlik değeri iyi yayılır 
kaynak [7], [8] herhangi diğer uygun değer vektörü x için  

0*

*

≤
−∑

s

ss
ss x

xx
dα  

 e sahibiz. ilk uygulaması alfa ss d/αα = kaynak yayılım gecikmesine ters olarak orantılıdır. 
daha sonra ssssss xxdxU loglog)( αα ==  araç fonksiyonları bütün kaynaklar için uygundur 
ve eşitlik değeri iyi oranlıdır. ve yayılım gecikmesinin bağımsızlığıdır. Buna oransal iyilik 
(Pf) uygulaması deriz. 2. uygulama αα =s eşitliğine sahiptir bütün kaynaklar için. Daha 
sonra araç fonksiyonları ve eşitlik değerleri oransal iyi olur, kaynakların oransal ağırlığı ile 
yayılım gecikmeleri eşitlik (5.22) uygulanır ki eğer iki kaynak r ve s yüzleri yol fiyatı ile 
aynıysa örneğin tek sıkışık bağlantılı ağda eşitlik değeri yayılım gecikmesine orantılıdır. 

s

s

r

r

d
x

d
x **

=  

Çoklu sıkışıklıklı bağlantılı ağda yayılım gecikmesi tarafından araca ağırlık verir. Eğer 
yayılma gecikmesi kaynak yolunda sıkışıklık bağlantıların sayısına orantılı ise ikinci 
uygulama olan ağarlıklı orantısal iyiliği çağırırız (WPF). Bunun pencereyi eşitlemeye çalışan 
TCP RENO ile uyumu  
 

****
ssrr DxDx =  

 
ve böylelikle bant genişliğinin yarısında kaynak 2 kere tur zamanı gecikmesi gönderir. Bu 
bağlantılar aleyhinde davranma yüksek yayılma gecikmesi ile kaynaklarda iyi bilinir örneğin 
kaynak [10,…,14] aslında aynı yöntem kayıp ihtimalini çiftli değişken olarak varsayarak 
burada geliştirilmiştir. [5; Low et al. 2002] RENO ya uygulanmıştır. RENO  
 

s

ss

s
ss

Dx
D

xU
2

tan2)( 1−=  

araç fonksiyonuna gösterildiği gibi sahiptir.  
 
5.2.3. Kayıp 
 

Eşitlik geri bildirimi lll cpb ** =  ile uygun hale getirmek için sağlanan L bağlantılarının 
tamponu yeterince büyüktür. VEGAS kaynağı eşitlik (5.5) deki uygunluk durumuna borçlu 
olan eşitlikte herhangi bir kayıptan dolayı etkilenmeyecektir. Paketler kaybolana dek pencere 
boyutunu doğrusal olarak artırmakla hangi pencerenin çarpılabilir azaltılmış olduğuna bağlı 
olarak ağın ek kapasitesi için araştıran bu TCP-RENO ya bir ayarlamadır. Belirlenmiş tur 
zamanı ve akıllıca ona reaksiyon göstermeyle bu da dikkatlice açılmış sıkışıklık bilgisi 
tarafındandır. VEGAS devamlı boşaltma döngüsünden ve sıkışıklıktan düzeltmeden kaçınır. 
Bu kaynak [1] de deneysel sonuçlardan teyit edilmiştir. Kaynak [1] ve [14] da belirtildiği gibi 
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eğer tampon yeterince geniş değilse eşitlik ulaşılamaz kayıp kaçınılmaz olur ve VEGAS 
RENO döner. Bunun sebebi eşitliğe ulaşma çabasındandır. VEGAS kaynaklarının hepsi kendi 
yollarında tamponu ağ da artırarak αsds paketlerin sayısına ulaşmaya çalışır. Bu aklın kabul 
edebileceği şekilde VEGAS ın RENO üzerindeki performans geliştirmeleri detaylı deney 
çalışmaları göreli çeşitli mekanizmalar ile belirlemesini açıklar. Bu çalışma belirlemiştir ki 
VEGAS ın kayıp düzeltme mekanizması sıkışıklı giderme mekanizması değildir. Çok büyük 
bir yardım sağlamıştır. Bu açıkça eşitliğe ulaşmaktan VEGAS korumak için olabildiğince 
küçük tampon olursa umulmalıdır. [Hengartner et al. 2000] de yönlendirici tampon büyüklü 
10 parçadır: yönlendirici tampon büyüklüğü 19 parçadır, arka taraf trafiği ile kolayca 
doldurulabilir. VEGAS geri bildirimi için küçük boşluk bırakılabilir. Tampon büyüklüğünün 
etkisi ve VEGAS ın yeniden gönderimi aşağıda benzeterek gösterilmiştir.  
 
5.3. Daimi Sıkışıklık: 
 

Bu bölüm daimi sıkışıklık problemini açıklamaktadır. Hem VEGASın tampon 
işleminin sömürücüsü fiyat belirlemek için hem de yayılma gecikmesini tahmin etmek için 
ihtiyaçlarını açıklar. Gelecek bölümde rasgele logaritmik işaretleme (REM) tarafından nasıl 
meydana geldiği açıklanacak kaynak [15]. ECN kaynak [16; 17]da daha önceki açıklandığı 
formda gibi.  
 
5.3.1. Fiyat ve Geri Bildirimin Eşitlenmesi 
 

VEGAS tampon işleminde güvenir lll ctbtp /)()( =  fiyatını hesaplamak için eşitlik 
fiyatları sıkışıklık kontrol algoritmasına dayanmaz ama problem durumu yalnızca: ağ 
topolojisi, bağlantı kapasitesi, kaynakların sayısı, onların yönlendirmeler iş ve araç 
fonksiyonları gibi. Kaynakların sayısı artarsa eşitlik ücreti ve geri bildirim )( **

lll cpb =  yap. 
Eğer her kaynak αα =ssd  paketlerini ağda tamponlanmış olarak tutarsa eşitlik back logu alfa 
n paketleri olur, kaynağın n numarası lineerken  

 
5.3.2. Yayılma Gecikmesi Tahmini 
 

Modelimizde iddia ediyoruz ki kaynak ds tur zamanı yayılma gecikmesini bilir 
pratikte minimum tur zamanı değerini belirler daha sonradan anlaşılacağı gibi. Hata 
yönlendirme değişikliği olduğu zaman oluşabilir veya yeni bir bağlantı başladığında kaynak 
[3]. İlk olarak yönlendirme daha uzun yayılma gecikmesinden hali hazırdaki yönlendirmeye 
değiştiğinde, kaynak onu büyültmek zorunda olduğunda yeni yayılma gecikmesi büyümüş tur 
zamanı olarak alınır. Daha sonra penceresini küçültür.  

İkinci olarak kaynak başladığında tur zamanını belirler sorgu gecikmesi yolundaki 
paketlere dayanarak sorgu gecikmesi dâhilinde. sd  yayılma gecikmesini yüksek tahmin eder 
ve ssdα  paketlerinden daha fazla yolda koymaya çalışır. Daimi sıkışıklığa önderlik eder. 
Kararlılık ve iyilikten yaklaşık hataların etkisini göreceğiz. 

Her s kaynağı yaklaşık ( ) )(1:)(ˆ tdtd sss ε+= kendisinin tur zamanı yayılma gecikmesi 
ds 1 deki VEGAS algoritmasında olduğunu düşünün. sε  farklı kaynaklar için farklı olabilen 

yüzde hata. Doğal olarak 1)(/)(1 −≤<− tdtD sssε  bütün t ler için iddea ederiz ki yaklaşım 

)()(0 tDtd ss ≤<  sağlar. Eşitlik pencereleri ( )Ssww s ∈= ,**
 ve ilgili eşitlik tur zamanı 

( )SsDD s ∈= ,**  
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içinlerSsbürün
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w
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s ∈=− α*

**

ˆ     (5.23) 

doğrular. Bir sonraki sonuç söyler ki yaklaşım hatası (3) den 
 

sssssssss xdxdxU εαε ++= log)1()(    (5.24) 
araç fonksiyonunu etkili bir şekilde değiştirir. 
Teorem 5.1: Eş yayılma gecikme tahmininde hata yüzdesi olsun. ( )Ssww s ∈= ,**

 VEGASaın 
eşitlik penceresi olsun ve ( )SsDD s ∈= ,**

 ilgili eşitlik tur zamanı olsun örneğin eşitlik (5.23) 
ü sağlasın. İlk giren ilk çıkar prensibine göre bütün hatlarda paketlerin sunulmuş olduğunu 
düşünün. Daha sonra eşitlik kaynağı değeri ( )Ssxx s ∈= ,**  *** / ss Dwx =  tarafından 
belirlenmiştir. bu eşitlik (5.24) de verilen araç fonksiyonu ile eşitlik (5.4) ve (5.5) in en uygun 
çözümüdür 
İspat: teorem 2.1 in ispatına dayanır 
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   (5.25) 

Eşitlik (5.6) (5.25) eşitliğiyle değiştirildiğini düşünün. Bağlantılarda eşitlik geri bildirimi p*, 
gibi bir vektörü sağladığını göstermek için ve böylelikle eşitlik değerleri uygundur. Yaklaşık 
yayılma gecikmesini ** )1(ˆ

sss dd ε+=  
*
sd ın eşitlik (5.23) deki doğru değerlerinde 
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elde etmek için düşünün. ∑∈
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sLl llssss cbxdxw  Kullanarak 
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sahip oluruz.  
bu eşitlik (5.25) i kabul eder 

l

l
l c

bp
*

* =  ü belirleyerek ve terimleri yeniden düzenleyerek. 

Teorem 2.1 in ispatında x *  uygun olmalıdır ve sınırsız geri bildirimin dışında 
büyüyebilmelidir. Tamamlayıcı gevşeklik durumunu yalanladığı doğrulanmalıdır. Böylelikle 
ispat tamamlanır.  
Teorem 5.1 anlamı iki parçalıdır. İlki yanlış yayılma gecikmesi uygular ve VEGAS 
algoritmasının kararlılığını düzenini bozmaz. Değerler basit olarak değişik eşitlik peşine 
gider. İkincisi yayılma gecikmesi yaklaşımında nispi hatayı bildiğimiz zaman yeni eşitlik 
değerleri hesaplamamıza izin verir ve böylelikle iyiliği tayin eder. Bu tip bilgiler elde 
olmadığında kaliteli hata yaklaşımın etkisinin kıymetini belirler  
Örneğin r ve s kaynağının aynı yol ücretinde olduğunu gördüğünüz düşünün. Eğer 0 yaklaşım 
hatası varsa onların eşitlik değeri ağırlıkları ile orantılıdır. 
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hata ile onların değeri eşitlik (5.26) de anlatılmıştır.  
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Böylelikle geniş pozitif hata genellikle daha yüksek eşitlik değerine yönlenir. Diğer 
kaynakların zarar görmesi için. PF uygulama için ssrr dada = olduğu zaman eğer kaynaklar 
aynı mutlak hataya sahipse ssrr dd εε =  kayan değerleri sε+1 ye orantılıdır.  
Bununla birlikte VEGAS yayılma gecikmesi tahmininde hatanın varlığında kararlı olabilir. 
Hata 2 probleme sebep olabilir. İlki aşırı tahmin eşitlik kaynak değerini yükseltir. Bu fiyatları 
yukarı çeker ve hatta tampon geri bildirimlerinde kalıcı sıkışıklıklara yöneltir. İkincisi hata 
kaynaklarının araç fonksiyonlarını bozar. Yeni kaynakların tarafını tutarak iyi olmayan a 
eşitliklerine götürür. Bunu basit bir örnekle gösteririz örnek aynı zamanda teorem 4.1 in 
uygulamasını da kapsar.  
 
Örnek: Kalıcı sıkışıklık 
 

C pkts/ms kapasitesi ile bir bağlantı düşünün ve n kaynakları tarafından sonsuz tampon 
paylaşılmış olsun. Hepsi d ms ortak tur yayılma gecikmesi ve α  pkts/ms ni düşünün. Bu da 
bütün kaynaklar yayılma gecikmesini açıkça bilirse her biri α d pkts yi eşitliğini kendi 
yolunda tutar.  

Şimdi başarılı olarak kaynağın aktif olduğunu düşünün. t kaynağı, Ntt ,...,1, =  t 
periyodunun başlangıcında kaynaklar 1,...,1 −t  eşitliğe ulaştıktan sonra aktif hale gelir. Daha 
sonra t kaynağının yaklaşık yayılma gecikmesi sorgu gecikmesi p(t)  yi 1,...,1 −t  
kaynaklarına bağlı olarak ihtiva eder. L periyodunda sadece 1 kaynağı aktiftir böylece 1 
kaynağı yayılma gecikmesini doğrulukla tahmin eder. sdd =1  ve cdp /)1( α= in sorgu 
gecikmesini üretir. Kaynak 2 tarafından yayılma gecikmesinin tahmininde bu bir hatadır. 
örneğin )1(2 pdd +=  cxx =+ *

2
*
1  olduğunda periyot 2 de 1 ve 2 kaynaklar p(2) nin eşitlik 

sorgu gecikmesini üretir ki teorem 4.1 in ispatı olarak eşitlik (5.25) i gerçekler. 
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e sahip oluruz.  Sonuç olarak eşitlik sorgu gecikmeleri başarılı periyotlarda  
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 (5.27) 

c
dp α=)1(       (5.28) 

 
Tarafından ters olarak hesaplanabilir. T periyodunda daha sonra eşitlik sorgu uzunluğu cp(t) 
pkts. dir. Eşitlik değeri )(txn  n kaynağı için t periyodunda tn ,...,1=  (5.25) nolu eşitlikten 
verilir. 
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5.3.3. Sonuç 
 

Kalıcı sıkışıklığı VEGAS ın orijinal benzetiminde görmedik. 3 faktörden dolayı 
olabilir. İlki ve en önemlisi ağda uygun olmayan tampon kapasitesi olduğunda VEGAS ın 
orijinal uygulaması RENO ya dönmüştür.  İkinci olarak bizim benzetiminde düşünüldüğü gibi 
yönlendirme değişiminin olasılığını alamamıştır ama diğer taraftan ispat kaynak [18] 
deneyindeki problemde olduğu gibi yönlendirme değişimini ileri sürer. Son olarak bağlantının 
durumu seri olarak başlar. Pratikte bağlantıların devamı gelir ve gider böylece bütün 
kaynaklar yayılma gecikmesi + ortalama sorgu gecikmesini gösteren temel RTT değerini 
ölçebilir.  
 
5.4. REM’le VEGAS 
 

Kalıcı sıkışıklık, kaynaklara sıkışıklığı taşıyan vazgeçilemeyen geri bildirim sıkışıklık 
ölçümü olarak sorgu gecikmesine güvenen VEGAS’ın sonucudur. Bu bölüm [5] de tanıtılan 
REM (Rasgele logaritmik işaretleme) nin nasıl olduğunu REM in bu durumu düzeltmede 
kullanılabileceğini gösterir. Bizim hedefimiz VEGAS ın eşitlik değeri tahsisi en son bölümde 
tasvir edilen kalıcı sıkışıklık tehlikesi olmaksızın korumaktır. Bu log araç fonksiyonunu da 
korur ve VEGAS ın orantısal iyiliğini de korur. Bölüm 2.1 de anlatılan VEGAS ın bu 3 
açıklamasını çağıralım. Eşitlik değer tahsisini korumak için 3. yaklaşımı kullanıyoruz ki 
VEGAS kaynağı eşitlik (5.12) de belirtildiği gibi Yol ücretinin Tur zamanı gecikmesi 
olmadığı durumlarda yayılma gecikmesi oranının yol ücretine orantılı olmasını sağlar. Bunun 
dışında REM algoritması kullanarak geri beslenmiştir ve hesaplanmıştır, aşağıda 
açıklanmıştır. AQM nin amacı tampon aşımından dolayı olası düşmeler ve işaretlemeler 
tarafından kayıp sinyalleri yerine koymak değildir. Ama amacı yol ücretini geri besleme 
olabilir. 

 
REM de amacımızı gerçekleyen iki fikir vardır. İlki REM temiz tampon ve değeri 

seçmeye çabalar ve yüksek yararlanma ve düşük sorguya yöneltir. Küçük sorular ile 
minimum tur zamanı yayılma gecikmesi için en uygun yaklaşım olabilir. Bununla birlikte tur 
zamanı kaynağa fiyat bilgilerini daha fazla iletmez. REM in ikinci fikri belirlenen düşme veya 
işaretleme değerlerinden onların yol ücretlerini kaynağın tahmin etmesine izin verir. REM i 
şimdi özetleyebiliriz; kaynak [5] in tasarım mantığı, performans değeri ve parametre 
ayarlamaları için görün. 
 
Her l hattı )(tpt  yi günceller t periyodunda. Toplam giriş değeri )(txl  ve tampon işgali l 
hattında   )(tbl  ye dayanarak 
 

[ ]+−++=+ ))()(()()1( l
l

lltt ctxtbtptp µγ    (5.30) 
 

0>γ  ve 2.10 << lµ  olduğunda y parametresi değerin dönüşümünü değerin geri bildirimi nu 
kontrol eder. Böylece )(tpl  artırılmıştır ağarlıklı )(tbl  geri bildirimi nun toplamı ve 
değerdeki hatalı seçimler l

l ctx −)( , m tarafından ağırlaştırılmıştır,  
Pozitiftir ve diğer durumlarda düşürülmüştür. Eşitlikte bu ağırlıklı toplam sıfırdır.(eşitlik 
ücreti 0* >lp  olan sıkışıklık bağlantısında). 0* =lb  ve l

l cx =*
 uygulanılan nokta. Bundan 
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dolayı eğer l
l cx ≠*

 se sorgu uzunluğu *
lb eşitlik içinde olmaz böylece l

l cx =* dir. Bu 
0* =lb olmasını sağlar ağırlıklı toplam 0 olduğu zaman. Bu özellik her yüksek yararlanma ve 

düşük kayıpta gecikmeye sebep olur.  
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BÖLÜM 6 
 
 
 
 
 
KARARLI VEGAS 
 

Mevcut TCP VEGAS algoritmasının ağ gecikmesi varlığında kararsız hale 
gelebileceğini gösteriyor ve bunu kararlı hale getirecek bir modifikasyon öneriyoruz. Kararlı 
VEGAS algoritması tümüyle kaynak-tabanlı kalmaya devam etmekte ve herhangi bir ağ 
desteğine gereksinim duymaksızın uygulanabilmektedir. Burada, ağ bazıları aktif dizi 
yönetimli olan, bazıları olmayan bir hatlar karışımından meydana geldiğinde kararlı VEGAS 
algoritması için adım adım bir derleme stratejisini ortaya koyuyoruz. 

 
İlk olarak, VEGAS ve RENO arasındaki performans farkını karşılaştırmak için 

yapılmış kaynak [1], [2], [3] gibi kapsamlı deneylerin sonuçları. VEGAS’ ın işleyişi ve uygun 
özellikleriyle ilgili olarak kaynak [4], [5] ve [6]’te de çalışılmıştır; ancak bu yazılar yalnızca 
bir boğum hattını ele almakta ve işleyişe ilişkin bu çalışmada ağ gecikmesi hesaba 
katılmamaktadır. Optimizasyon tabanlı modeller kaynak [7] ve [8]’de genel bir VEGAS 
ağının analizi için kullanılmaktadır. Özel olarak, kaynak [8] ve [9]’te herhangi bir TCP/AQM 
(Active Queue Management- Aktif kuyruk yönetimi) protokolünün toplam faydayı maksimize 
etmek için Internet üzerinde dağıtılmış bir birincil-ikili algoritmanın icrası olarak 
yorumlanabileceği gösterilmektedir. Aynı zamanda kullanıcı faydasının ise TCP algoritması 
ile tanımlandığı çoğunlukla ve açıkça gösterilmektedir. Kaynak [7], [10], [11], [12], [13]. Bu 
modeller çoğu zaman denge yapısı üzerine odaklanır ve ağ gecikmesini uygun bir şekilde ele 
almazlar. Bu iş dizisini tamamlamak için, burada bölüm 6.1 de tanımlanan, VEGAS’ın bir 
denge çevresindeki doğrusal kararlılığını analiz etmek için açık bir şekilde ileri ve geri 
tutarsız gecikmeler içeren çok-hatlarda çok-kaynaklı bir model kullanıyoruz. Önceki analitik 
çalışmayla karşılaştıracak olursak, gecikmenin VEGAS üzerindeki etkisini ve bunu nasıl 
kararlı hale getireceğimizi anlamak için küresel doğrusal olmayan işleyişi feda ediyoruz.  

 
İkinci olarak, bu metin en son kaynak [14], [15], [16], [17] ve [18]’de geliştirilen 

doğrusal dağılımlı ve gecikmeli sistemin kararlılığı kuramından güç almaktadır. Özel olarak, 
bir TCP/AQM algoritması doğrusal kararlılık için keyfi ağ gecikmeleri ve kapasitelerini 
oluşturan [14]’de tasarlanmaktadır. Bu algoritma statik kaynak algoritmalarını kullanan 
kaynak [11] ve [19]’teki “ikilik” algoritmalar sınıfında yer alır ve kararlılığa taviz 
vermeksizin yüksek fayda ve hızlı tepkiyi sağlamak için ağ gecikmeleri ve kapasitelerinin 
karmaşık ölçeklemesini devreye sokar. Bununla birlikte, keyfi olarak ölçeklenebilen bu 
kararlılık formu özel bir kaynak kullanım fonksiyonunu ve böylece de oran tahsisinde özel bir 
uygunluğu dikte eder. Kaynak [14]’deki TCP/AQM, ağ gecikmeleri üzerinde bilinen bir 
sınırlama olması koşuluyla, yavaş bir sure ölçeği üzerindeki herhangi bir fayda fonksiyonu ya 
da uygunluğu takip etmek için kaynak algoritmasına daha yavaş bir sure ölçeği dâhil ederek 
kaynak [17]’dekine genişletilmektedir. 

 
Bu iş dizisinin ana anlayışı kontrol altındaki geri besleme döngüsü üzerindeki kazancı 

sürdürmek için kaynak cevaplarını gidiş-dönüş süresiyle ve hat cevaplarını kapasiteleriyle 
azaltmaktır. Bu da ortaya koyar ki, VEGAS hat algoritması kaynak [14] ve [17]’de kullanılan 
kapasiteyle ilgili kesinlikle doğru bir ölçeklemeye sahiptir Kaynak [8]. Kapasiteyle ilgili bu 
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yerleşik ölçekleme, RENO ve varyantlarının tam tersine, potansiyel olarak VEGAS’ın yüksek 
bant genişliğine göre ölçeklenebilir olmasını sağlamaktadır. Bununla birlikte, VEGAS’ın 
kaynak algoritması gecikme söz konusu olduğunda kaynak [14] ve [17]’dekilerden farklı bir 
ölçeklemeye sahiptir. Bölüm 6.3 VEGAS’ın büyük gecikmelerde kararsız hale gelebileceğini 
gösteren uygun kararlılık koşulunu ortaya koyuyor. Bölüm 6.4 de bunu kararlı hale getirmek 
için küçük bir modifikasyon öneriyoruz.  Bölüm 6.5 de ise, VEGAS kaynaklarının bir kuyruk-
temizleme AQM algoritması kullanan ya da kullanmayan bir yönlendiriciler karışımı ile 
çalışmasına izin veren aşamalı bir derleme stratejisini tanımlıyoruz. En nihayet bölüm 6.6 da 
VEGAS’ın dinamiği ile kararlı versiyonunu karşılaştıran benzetim sonuçlarını sunuyoruz. 

 
RENO ve varyantlarının tersine, VEGAS’ın özellikle yüksek hızlı ağlarla uyum 

sağladığı görülmektedir. RENO ve varyantlarının ağ kapasitesi arttıkça kararsız hale 
geldikleri görülmektedir kaynak [20], [21]. RENO aynı zamanda dengede kontrol için 
güvenilir kullanımı güç olan aşırı derecede küçük bir kayıp olasılığı oluşturmak zorundadır. 
Diğer taraftan, VEGAS kapasiteyi doğru olarak ölçeklemektedir.  Dahası, denge kuyruk 
gecikmesi düşük kapasitede aşırı olabilirken kapasite arttıkça düşürülmektedir. Kuyruklar ve 
yeniden-yönlendirme nedeniyle yayılma gecikme tahminindeki kaynak [5], [8] hata gibi diğer 
sorunlar yüksek kapasitede arabellekler daha sık temizlendiğinden daha az sert 
olabilmektedir.  

6.1. Ağ Modeli 
Bir ağ sonlu c = (cl, l G L) kapasiteye sahip L sayıda hat seti kısıtlı kaynak olarak 

modellenir. Bunlar r ile indekslenen N sayıda kaynaktan oluşan bir set tarafından paylaşılır. 
Her r kaynağı L x N yönlendirme matrisi ile tanımlanan bir hat setini kullanır. 

!!
Rlr =

1 eger l linkinderkaynaklarıkullanılırsa
0 dıger durumlarda
⎧
⎨
⎩

 

Her bir hatta karşılık gelen 1 değeri daha sonra “fiyat-price” olarak adlandıracağımız bir 
)(tpl  yoğunluk ölçüsüdür. Aşağıda göreceğimiz gibi, )(tpl   hat 1’deki ölçeklenmiş kuyruk 

gecikmesidir. Her bir r kaynağı paket/sn olarak bir )(txr  oranı oluşturur. Biz bu metinde esas 
olarak bir denge çevresinde doğrusal model ile ilgileniyoruz; bu yüzden r kaynağından hat 1’e 
doğru ileri yönlü gecikme dengesini rl

τ  ile ve hat 1’den r kaynağına geri yönlü gecikme  

)(:)( rll
l

lrr tpRtq τ−=∑      (6.1) 

ve hat 1’in toplam kaynak oranını gözlediğini varsayıyoruz.  
 

)(:)( rlr
r

lrl txRty τ−=∑      (6.2) 

dengesini ise rl
τ  ile simgeliyoruz. t süresinde r kaynağının kendi yolunda toplam fiyatı 

gözlemlediğini Tr denge gidiş-dönüş süresini temsil etsin. 
LlTrrlrl ∈∀=+ , ττ  

Olduğunu var sayıyoruz. O halde kaynak [8] TCP VEGAS’ı ilgili kuyruk yönetimi ile 
birlikte, aşağıdaki dinamik sistem olarak modeller: 
  



 70 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

>−
=

+ 0)())((1

0)())((1

)(
tpegercty

c

tpegercty
c

tp
lll

l

lll
l

l     (6.3) 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

rr

rr

r
r d

tqtx
gn
stT

tx
α

)()(1
)(
1)( 2

     (6.4) 

 
burada,  eğer z > 0 ise { }zz ,0max)( =+ }, 1)sgn( =z , ,  z < 0 ise -1 ve z = 0 ise 0’dır. rα  bir 
VEGAS protokol parametresi, rd  ise r kaynağının gidiş-dönüş yayılım gecikmesidir. )(tpl  
fiyatı hat 1’deki kuyruk gecikmesini ve )(tqr r kaynağının uçtan-uca kuyruk gecikmesini 
gösterir Kaynak [8]. Bölüm 6.3 de tanımlanan r kaynağının gidiş-dönüş süresi rT  denge 
değeri ile, )(:)( tqdtT rrr += olarak tanımlanır.  

 
VEGAS algoritmasının bir yorumlanma biçimi, her r kaynağının kendi yolundaki 

kuyruklarda arabelleğe alınan paketlerin rrdα  sayısını oluşturmak için kendi oranını ya da 
pencereyi ayarladığı şeklindedir. Hat algoritması eşitlik (6.3) arabellek süreci tarafından 
otomatik olarak yürütülür. Kaynak algoritması eşitlik (6.4) hatlarda ara belleğe alınan 
paketlerin )()( tqtx rr  sayısının rrdα ‘den küçük ya da büyük olmasına göre pencereyi her 
gidiş-dönüş süresinde 1 adet artırır ya da azaltır. Denge durumunda rrrr dqx α=**  ve özel 
denge oranlarında ),....,1,(: ** Nrxx r ==   hat kapasitesi sınırlamalarına konu olan ∑r rr xU )(  
toplam faydayı   

rrrrr xdxU log)( α=  
 

fayda fonksiyonları ile maksimize eder kaynak [8] de olduğu gibi. Bu nedenle VEGAS tartılı 
oransallık uygunluğu hedefine ulaşır kaynak [10],[14] ve [17]’nin hat algoritması VEGAS hat 
algoritması eşitlik (6.3) ile benzerdir. Tek fark, burada c’nin dengedeki kuyruğu temizlemek 
için gereken gerçek hat kapasitesinden tam anlamıyla küçük olan sanal kapasiteyi 
göstermesidir.  Burada )(tpl  aynı girdi tarafından beslenen, ancak sanal bir kapasiteye 
yönlenen bir hattaki “sanal” kuyruk gecikmesi olarak yorumlanabilir. Kaynak [14] ve [17]’de 
gösterildiği gibi, lp ’yı lc/1  ölçeğinde küçültmek, sanal ya da gerçek, gecikmeye ağ 
kapasitesine bağlı olarak gerçek ölçeklemeyi sağlayacak olan şeydir. Kararlı VEGAS’ın hem 
sanal ve hem de gerçek kuyruk gecikmelerine genelleştirilebilecek şekilde hatlar karışımından 
oluşan bir ağ içinde kademeli olarak nasıl derlenebileceğini açıklayacağız. 
 
6.2. VEGAS’ın Kararlılığı 
 

VEGAS kaynak algoritması eşitlik (6.4) süreksizdir. Bu durum denge çevresinde 
yalpalanmaya neden olabilir. Orijinal VEGAS algoritması denge noktasını bir sete 
genişleterek yalpalanmanın önüne geçer. Hatlarda arabelleğe alınan paketlerin sayısı  

)()( tqtx rr [ ]rrrr dd βα ,  ile rr βα < )(txr  aralığında olduğu sürece kaynak oranı ya da pencere 
değişmeden kalır. Bununla birlikte, rr βα <  kaynak [6] koşulu ile uygunluğun kontrolü 
zordur. Burada, kaynak [8]’de olduğu gibi rr βα =  olarak düşünüyoruz. 
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Bu kesimde, VEGAS algoritmasının eşitlik (6.4) bir sürekli yaklaşımını sunuyor ve bu 
yaklaşıma dayanan yeterli bir doğrusal kararlılık koşulunu türetiyoruz. Bu koşul, gecikme 
arttığında bir VEGAS ağının kararsız hale gelebileceğini ortaya koymaktadır. Sonraki 
kesimde ise süreksizliğe bağlı yalpalanmanın önüne geçmek için gerçekte bu sürekli 
fonksiyonun (kararlı bir versiyonunun) eşitlik (6.4) yerine kullanılmasını önereceğiz. 
Yaklaşıklık Modeli: 

)(tan2)sgn( 1 zz η
π

−≅  

olduğuna dikkat edelim. Limit ∞→η  ‘a giderken yaklaşıklık kesin haline gelir. Bu nedenle, 
yine )()( tqdtT rrr +=  iken eşitlik (6.4)’ün aşağıdaki yaklaşıklığını ele alalım: 
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),( ** px  denge noktasını düşünelim. Logaritmik fayda fonksiyonu tam anlamıyla konkav  

olduğundan *x  oranları benzersizdir. Yönlendirme matrisi R’nin full-rank olduğunu 
varsayalım, o halde denge fiyatları da ),...,1,( ** Llpp l ==  benzersiz olacaktır. Dahası, 
modelde yalnızca boğum hatlarının içirildiğini ve öyle ki, tüm l değerleri için 

0* >rp olduğunu düşünelim. Denge durumunda, kaynak oranı *
rx   ve toplam fiyat *

rq    

rrrr dqx α=**  
koşulunu sağlarlar. Denge noktası çevresindeki doğrusallaştırma  
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O halde birinci derece için burada, 
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ve *
rrr qdT += . Bu nedenle, Laplace domain’inde 
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Hatlarda, ),( **

ll py  denge noktaları lr cy =*  koşulunu sağlarlar. Hat algoritmasını eşitlik (6.3)  
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dengesi çevresinde doğrusallaştırarak birinci derece için  
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ve bunun Laplace dönüşümü olan 

 )(1)( sy
sc

sp l
l

l δδ =       (6.8) 

 
eşitliğini elde ederiz. 
Özet olarak, VEGAS’ın doğrusallaştırılmış modeli eşitlik (6.6), (6.7) ve (6.8)’de 
tanımlanmaktadır. İşaretlemeyi basitleştirmek için metnin devamındaki genelleştirmede 
herhangi bir kayba neden olmaksızın tüm kaynakların aynı hedef kuyruk uzunluğuna sahip 
olduklarını, yani tüm 9r değerleri için αα =rrd  olduğunu var sayıyoruz aksi halde, a’yı takip 
eden kararlılık sonuçlarındaki rrdα ’yı minimum olacak şekilde alın. 
 
6.2.1. Kararlılık 
 

Kaynak [14]’i takip ederek, eşitlik (6.1)-(6.2) hata eşitliklerini matris formu içinde 
Laplace şeklinde 

)()()( sxsRsy δδ =       (6.9) 
{ } )()()( spsRediegsq TsTr δδ −= −     (6.10) 

olarak ifade edebiliriz. Burada, 
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Yönlendirme matrisi R(0)=R denge değerleri arasındaki statik ilişkiyi belirler, örneğin; 

**** )0(,)0( pRqxRy T==     (6.11) 
 
Herhangi bir sonlu a değeri veri iken )(aθ   a’nın (artan) bir fonksiyonu olarak 

a=θθ tan       (6.12) 
 ‘nın (0, π/2)’sindeki benzersiz çözüm olsun. 
VEGAS’ın kararlılığını ilk olarak maksimum pencere boyutu ile ve daha sonra da minimum 
kuyruk gecikmesi terimleriyle karakterize edeceğiz. Aşağıdaki sonuçlar eğer denge pencere 
boyutu yeterince küçük ise teorem 1, ya da aynı anlama gelmek üzere, denge kuyruk 
gecikmesi yeterince büyükse önerme 2 VEGAS’ın doğrusal kararlılığa sahip olduğunu 
söylemektedir. 
Teorem 1: Tüm r değerleri için ve bazı  0k   değerleri için rrr TxTk max0 ≥  olduğunu var 
sayalım. M, herhangi bir kaynak yolundaki hat sayısının üst sınırı olsun, ∑≥

l lrRM max  
eşitlik (6.3) ve eşitlik (6.5) ile tanımlanan VEGAS modeli, eğer πηη /2:ˆ =  ve 

θθθ /sinsin =c  iken  
 

2
0

sinmax
MkTx

cTx
rr

rrr

αηθ >⎟⎟⎠

⎞
⎜⎜⎝

⎛  



 73 

ise, ),,,( ****
rllr qpyx denge noktası çevresinde yerel olarak asimptotik kararlılığa sahiptir. 

Bölüm 6.2.2 de kanıtlanmıştır. )(⋅θ  sert bir şekilde arttığı ve sinc(-) sert bir şekilde azaldığı 
için Teorem 1’deki kararlılık koşulunun sol tarafının rrTx

*  pencere boyutunda hızlı bir şekilde 
arttığına dikkat edin. Bu sebeple kararlılık koşulu maksimum pencere boyutunda bir limite 
sahiptir. α=**

rr qx   olduğunda bu koşul doğrudan kuyruk gecikmesi üzerinde bir limite 
dönüşür. Aşağıdaki önermenin sol tarafı rrTq

*   durumunda kuyruk gecikmesinde daha düşük 
bir sınır ima ederek hızlı bir artış göstermektedir. 
 
Önerme 2: Bazı 0k   değerleri için tüm rrr TxTk max0 ≥  olduğunu var sayalım. M, herhangi 
bir kaynağın yolu üzerindeki hat sayısının üst sınırını temsil etsin, ∑≥

l lrRM max  

πηη /2:ˆ =  ve θθθ /sinsin =c   iken, eğer  

2
0*

*

.
ˆ

sin

/
min Mk

T
qc

Tq

r

r

rr

r
>

⎟⎟⎠

⎞
⎜⎜⎝

⎛
α
ηθ

 

ise, eşitlik (6.3) ve (6.5)’te tanımlanan VEGAS modeli ),,,( ****
rllr qpyx  denge noktası 

etrafında yerel olarak asimtotik kararlılığa sahiptir. 
 
Sonraki sonuç kaynak yolunda birden fazla hat olduğunda kararlılık koşulunun 

sağlanamadığını göstermektedir. 
Önerme 3: Eğer bir kaynak birden fazla hatt sahipse, yani birden fazla l için 1=lrR ’i 
karşılayan bir r değeri var ise, kararlılık koşulu sağlanamaz.  Kanıt: Teorem 1 ve Önerme 
2’deki koşullar aynıdır, bu nedenle Önerme 2 ile çalışacağız. 2/)( πθ <⋅  olduğu için 10 ≥k  
tanımı gereğince πθ /2(.)sin >c . Bu nedenle, Önerme 2’deki kararlılık koşulu 

π
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T
q

r

r

r

2min
*

>  sonucunu ima eder. Eğer 2≥M   ise eşitliğin sağ tarafı 1’den büyüktür.  Ama 

*
rrr qdT +=   olduğundan eşitliğin sol tarafı 1’I geçemez. 

 
Kararlılık koşulunun yalnızca çoklu hat durumunda yeterli olduğu üzerine odaklanıyoruz. 
Bununla birlikte, bu tek-hat tutarlı-kaynak durumunda hem zorunlu ve hem de yeterlidir. 
Şimdi, bu durum için kararlılık bölgesini ve protokol parametresi  rrdαα =  ‘nin etkisini 
açıklayacağız. Örnek 1: Tutarlı kaynaklı tek hat (c,d, N)N sayıda tutarlı kaynak tarafından 
paylaşılan c kapasiteye sahip ve gidiş-dönüş yayılım gecikmesi d olan bir tek hat düşünelim. 
Bu olay için, Teorem 1’in kanıtındaki tüm r kaynakları için ,, 00 TTrr ==αα  ve 0wwr =  
olacaktır. Bu bize kararlılık koşulunun (M=1 ve k0=1)  
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  (6.13) 

hem gerekli ve hem de yeterli olduğunu ima eder. Denge miktarları  *
rq ve rT ’nin hedef 

kuyruk uzunluğu α’ya bağlı olduğuna dikkat edin. Protokol parametresi α’nın kararlılık 
üzerindeki etkisine dair bir bakış edinebilmek için daha basit bir koşula bakıyoruz. 

Yukarıda da dikkat çekildiği gibi, 
2

)( πθ <⋅ ,  olduğundan gerekli koşul 
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icinlerrbutun
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olacaktır. Simetri gereğince *
rr qdT +=  ve  cNxq rr // ** αα ==  olduğundan bu koşul 

Ncd απ
⎟
⎠
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⎝
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     (6.14) 

‘a eşdeğerdir.  Bu nedenle, VEGAS kararlılığı için gerekli bir koşul bant-genişliği gecikmesi 
sonucunun küçük olmasıdır. Buna ilaveten, daha büyük hedef kuyruk uzunluğu α ya da daha 
fazla N kaynak sayısı ile kararlılık bölgesinin daha geniş olmasıdır.  
 
6.2.2. Teorem 1’in Kanıtı 
 

Kanıt üç adımda gerçekleştirilir. İlk olarak,  döngü kazanç matrisinin Nyquist 
yörüngelerinin N sayıda karmaşık jω fonksiyonunun konveks gövdesinde dâhil olduğunu 
göstermek için kaynak [15] ve [17] argümanını takip ediyoruz. İkinci adımda yeteri kadar 
büyük bir ω düzeyinde, bu fonksiyonlardan en azından bir tanesi  -7T faz gecikmesine sahip 
olduğunda uygun koşullar altında bu fonksiyonların tümünün birim döngüye dâhil olduklarını 
ve bu nedenle karmaşık düzlemde -1’i kuşatamayacaklarını göstereceğiz. Üçüncü adımda ise 
bu koşulun teoremde yer alan koşul olduğunu göstereceğiz. 
 
Adım 1: Kaynakta görülen dönüş oranı doğrusallaştırılmış eşitlik (6.6), (6.8), (6.9) ve  (6.10) 
eşitlikleri kullanılarak  
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olarak tanımlanır. Kararlılık için, bu fonksiyonun özgün değerlerinin karmaşık düzlemde s = 
jω, ve  0≥w  için -1 değerini çevrelemeyeceğini göstermek yeterlidir. 
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eşitliğinin değerlerindekiyle aynı biçimdedir. Neigen yörüngesini ve başlangıç noktasının 
konveks gövdesini temsil ederken kaynak [15]’ten, L(jω)’nin dalga bandı 
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koşulunu sağlar. Eşitlik (6.11) gereğince tüm mutlak satır toplamları 1’e eşit olduğundan  
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koşulunu sağlar. Bu nedenle, 
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olsun. Şimdi, teorem koşulu altında hiçbir )( jwrΛ düzeyinde konveks kombinasyonunun 
kritik -1 noktasını çevrelemeyeceğini gösteriyoruz. 
 
Adım 2:  

rr aa min0 =   ve rr TT max0 =  olsun; rw  Nr ,...,1,0=  , (0, π/2) aralığında  
0tan ≥= raTawTw rrrrr       (6.17) 

koşulunu sağlayan değer olsun. Tüm r değerleri için açıkça rww ≤0   olacaktır. Burada 
)( jwrΛ   özgün değer —tv faz gecikmesine sahipken rw 1≥r , kritik frekanstır. Bu nedenle, 

rwww ≤< 0 , için )( jwrΛ  ‘nun konveks kombinasyonu -1’I çevreleyemez; çünkü tüm r 
değerleri için faz ))(( π−>Λ jwr . Şimdi 0ww ≥ , için tüm  )( jwrΛ i değerlerinin birim döngü 
içinde yer aldığını ve bu nedenle bunların konveks kombinasyonunun -1 değerini 
çevreleyemeyeceğini göreceğiz. or TTk ≥0 , olduğundan, 0ww ≥  değeri için 
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Burada son eşitlik (6.17)’yi ve (6.12)’deki θ(.) tanımını takip etmektedir.  
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böylece teoremdeki kararlılık koşulunu sağlamış oluruz. 
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6.3. Kararlı VEGAS 
 
Bu kısımda, bir VEGAS kaynaklar ağını kararlı hale getirmek için her bir kaynak için bir PD 
(proportianal differential- oranlı diferansiyal) kontrolcüsü öneriyoruz. VEGAS algoritmasını 
eşitlik (6.5)  
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şeklinde geliştiriyoruz. 

Burada )()( tqdtT rrr += , )()(
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)()(.)( tTtx
w
a

t rrr
µη =      (6.21) 

Burada w parametresi her gidiş-dönüş süresi için pencere boyutundaki maksimum 
değişimi belirler. İlk VEGAS için, maksimum değişim her döngü dolaşımı için 1 pakettir. a>0 
ve )1,0(∈µ  parametreleri kararlılığı garanti altına alacak şekilde seçilecektir (aşağıya 
bakınız). Genel kazanç parametresi )(trη  mevcut pencere boyutu ile oranlıdır: pencere boyutu 
arttıkça yanıt daha hızlı olacaktır. Diferansiyel terimindeki )(trκ kazancı döngü zamanının r 
kaynağının uçtan-uca kuyruk gecikmesine bölümü ile orantılıdır ve )(tqr  ‘nin bir 
normalleştirmesi olarak hizmet eder. Ek diferansiyel terimi )()( tqt rr κ  ise )(tqr  ‘nin gelecek 
değerini tahmin eder. Bu terim olmadan, eğer hatlarda arabelleğe alınan paketlerin sayısı 

)()( tqtx rr ) rrdα   ile karşılaştırmalı olarak küçük ise kaynak oranı )(trκ artacaktır. Bu terim 
olduğunda,  )()( tqtx rr  küçük bile olsa fiyatlar hızla büyüyor olsa bile, yani )(tqr   büyük olsa 
bile kaynak, oranını düşürebilecektir. Kaynak [22]’deki bağlantı algoritmasında aynı 
zamanda, AQM tasarımının uygun değer kontrol formülasyonundan destek alan bir 
diferansiyel teriminin de kullanıldığına dikkat ediyoruz. 

Hem eşitlik (6.18) ve hem de eşitlik (6.19)’un orijinal VEGAS’la aynı denge noktasına 
sahip olduklarını ve her ikisinin de aynı birinci-derece eşitlikleri doğru sallaştırdığını 
görüyoruz: 
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ve Laplace dönüşümü ise  
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şeklindedir. rη  ve rκ ’ı öyle seçmiştik ki, eşitlik (6.22)’deki öncü-gecikme düzenleyicisi tüm 
kaynaklar için genel bir sıfır a ve aµ  kutbuna sahiptir. Tersine, kaynak [17]’deki algoritma 
fayda fonksiyonlarının kısıtsız seçimine bağlı olarak,  rµ  ‘nin r’ye bağlı olmasına izin 
vermektedir. Bu nedenle kaynak [17]’den biraz farklı bir kararlılık kanıtına ihtiyacımız var. 
 
Teorem 4: Tüm r değerleri için ve bazı k0. değerleri için rrr TTk max0 ≥ olduğunu var 
sayalım. M, her bir kaynak yolu üzerindeki hat sayısının üst sınırı olsun,  ∑≥

l lrr RM max  . 
Verili her bir a >0 ve )1,0(∈µ  değeri için eğer 
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ise  ya da aynı anlama gelmek üzere          
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ise eşitlik (6.3)’te ve eşitlik (6.18)—(6.21) arasında tanımlanan geliştirilmiş VEGAS modeli  
),,,( **** qpyx  denge noktası etrafında yerel olarak kararlılığa sahiptir. 

Kanıt: Kanıt iki adımdan oluşmaktadır. İlk olarak, döngü kazanç matrisinin Nyquist 
yörüngelerinin N sayıda karmaşık jω fonksiyonunun konveks gövdesinde dâhil olduğunu 
göstermek için kaynak [15] ve [17] kanıtlarını takip ediyoruz. İkinci adımda yeteri kadar 
büyük bir ω düzeyinde, bu fonksiyonlardan en azından bir tanesi  -7T faz gecikmesine sahip 
olduğunda uygun koşullar altında bu fonksiyonların tümünün birim döngüye dâhil olduklarını 
ve bu nedenle karmaşık düzlemde -1’i kuşatamayacaklarını göstereceğiz. 
 
Adım 1: Doğrusallaştırılmış eşitlik (6.22), (6.8), (6.9) ve (6.10) kullanılarak kaynaklarda 
görülen dönüş oranı  
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şeklinde yazılabilir. Burada  
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eşitlik (6.25) ve (6.21)’i kullanan kanıt  
( ) 1)()( ≤− jwRjwR TT ρ  

sonucunu verir. Kaynak [15]’teki durum o halde )( jwL  ‘nın tüm kendine özgü değerlerinin 
konveks gövdeye sahip olacağını ima eder. 
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A(-) ‘nin r’den bağımsız olduğuna dikkat edin. Genelleştirilmiş Nyquist kararlılık ölçütü 
nedeniyle kaynak [23]  eğer eşitlik (6.26)’daki set -1 değerini çevrelemiyorsa sistem 
kararlıdır.  
 
Adım 2: rw , r kaynakları için faz )( rrTjwΛ∠  ‘nin  —π’ye eşit olduğu kritik frekans olsun: 
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Genelleşmede kayıp olmadan, tüm r değerleri için rTT ≥1 olduğunu var sayabiliriz. O halde 
tüm r değerleri için rr TwTw 11 = olduğundan yine tüm r’ler için rww ≤1  ‘dir. Böylece, 1ww ≤  
iken eşitlik (6.26)’nın konveks gövdesi -1’I çevreleyemez. 1ww ≥   iken eşitlik (6.26)’daki set  
-1 değerini çevrelemez.. Şimdi bunun teoremdeki koşullarla ima edildiğini göstereceğiz. 

1ww ≥ , için 011 / kTwTwwT rrr ≥≥  Büyüklüğün  
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ωT ‘nin hızlı bir şekilde azalan bir fonksiyonu olduğuna dikkat edin.  
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Bu sebeple, tüm r değerleri için 
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φ teoremde tanımlı şeklinde iken son eşitsizlik tüm r değerleri için  

φ
µ
µπ =−−≥ −

2
1tan

2
1

rrTw  

sonucunu ima eder. 
 
Bu durumda teoremdeki eşitlik (6.24) koşul eşitlik (6.27)’nin sağlanmasını garanti eder. 

α=**
rr qx  olduğundan eşitlik (6.23) ve (6.24) koşulları eşdeğerdedir. Bu nedenle ispat 

aşağıdaki denklemle tamamlanmaktadır. 
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burada 0 < µ < 1 ve a > 0. O halde, tüm r değerleri için ω > 0, 
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)1,0(∈µ olduğundan, 0)( =′ whr ’ın çözümü  
r

r T
uaw =* ,’nın faz )(whr ’ı minimize eden 

çözümü kontrol edilebilir. Bu nedenlerden bağımsız olarak,  
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ve böylece denklem takip eder. 
 
Teorem 4’ün çıkarımları üzerinde duralım. Tutarlı döngü tamamlanma süresinde, yani k = 1 
iken eşitlik (6.24) kararlılığı  
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haline gelir. M bir kaynak yolundaki boğum hatlarının sayısının bir sınırını gösterir. Tipik 
olarak 10’dan az olmaktadır. |f-  döngü gidiş-dönüşündeki kuyruk gecikmesinin toplam döngü 
süresine oranıdır; her iki nicelik bir VEGAS kaynağında kullanılabilir durumdadır. Mevcut ağ 
için, bu oran uzun gecikme rotaları için 5’ten az küçük olarak görünmektedir. Bu yüzden, 
tasarım parametreleri a ve µ ‘nın kararlılık koşulunun sağ tarafının 100’den fazla olmasını 
garanti edecek şekilde seçimi güvenli görünmektedir. Şekil 6.1’e göre, bu durum küçük a ve µ 
değerleri seçilmesini gerektirmektedir (söz gelimi, a = 0.01 ve  µ = 0.001).  
 

 

Şekil 6.1.    
*
r

r

q
MT ’nin üst limiti 

 
Eşitlik (6.20) ve eşitlik (6.21)’deki tanımı hatırlarsak; atqtTtkappa rrr /))(/)(()( =  de 

)/)()(()( wtTtxat rrr µη =  Küçük a büyük bir kappar(t), değerini ima etmektedir. Bunun 
anlamı kararlı VEGAS’ın fiyat değişimine )(tqr  daha hızlı tepki gösterdiğidir. Küçük  µa ise 
küçük bir  η, değerini ima etmekte, bu da denge çevresindeki eşitlik (6.18)’in eğiminin küçük 
olduğunu göstermekte ve kazanç genelinde daha yumuşak bir eğim olduğunu ortaya 
koymaktadır. Tutarsız döngü-zamanı olayı için, yani 10 >k durumu için, kararlılığı garanti 
altına almak için tutarlılık durumundan daha küçük bir a değeri gerekmektedir.  
 
Örnek 2: Tutarlı kaynaklı tek hat (c, d, N) 
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Orijinal VEGAS kararlılığı ile doğrudan bir karşılaştırma yapabilmek için Örnek 
1’deki kurgunun aynısını düşünüyoruz: N sayıda tutarlı kaynak tarafından paylaşılan c 
kapasiteye sahip ve gidiş-dönüş yayılım gecikmesi d olan bir tek hat.  Bu olay için yeterli 
koşul,  
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    (6.29) 

şeklinde sadeleştirilmesiyle eş değerdir. Bu nedenle, orijinal VEGAS’ ta olduğu gibi, bu aynı 
zamanda daha büyük kuyruk uzunluğu α ya da daha fazla N kaynak sayısı ile daha büyük bir 
kararlılık bölgesine de sahiptir. Buna ek olarak, orijinal VEGAS’ ın kararlılığı için (29)’un 
sağ tarafının (14)’ün sağ tarafından büyük olabilmesi gibi α ve N veri iken kararlı VEGAS 
küçük bir (a > 0, µ € (0,1)) değeri seçebilir. Bu durum Şekil 6.2’ de gösterilmektedir. Şekilde, 
eşitlik (6.14) ve (6.29)’daki kararlılık bölgeleri VEGAS ve kararlı VEGAS için sırasıyla (a,µ) 
= (0.5,0.015)ve  α = 20 paket, N = 100 kaynak için diyagrama dökülmüştür.  

 
Şekil 6.2. Örnek 1 ve 2’nin kararlılık bölgeleri: tutarlı kaynaklar tarafından paylaşılan tek hat. 

 
Kararlılık koşulu yalnız başına yeterlidir. Gerçekten, a ve  µ için daha az tutucu 

değerler kullanılabilir. Örneğin, 100* =rrqMT  için f )()( *
rrr jwTqMT Λ⋅ ’nin Nyuquist dağılımı 

Şekil 6.3’te, Örnek 2’deki a = 0.1 ve µ G [0.001,0.015] senaryosu için diyagrama 
dökülmüştür. Bu a ve µ değerleri Teorem 4’teki kararlılık koşulunu sağlamasalar bile, 
Nyquist dağılımda da görüldüğü gibi, ağ gerçekten de kararlıdır. 
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Şekil 6.3.    Nyquist Kararlılık  a = 0.1, µ = [0.001 : 0.015] 

icin
q
MTjwT

r

r
r 100)( * =Λ . 

6.4. Uygulama ve Derleme 

TCP VEGAS’ın en çekici özelliği yüksek hızlı büyük gecikmeli ağlar için 
uygunluğudur. Bu rejimde pencere boyutu büyüktür ve TCP RENO ya da varyantları denge 
düzeyinde aşırı derecede küçük bir kayıp olasılığı oluşturmak zorundadırlar. Bu kadar küçük 
bir olasılığa güvenmek büyük sorunları da beraberinde getirmektedir.  

Diğer taraftan, VEGAS’ın her ikisi de gecikmenin bir yoğunluk ölçüsü olarak 
kullanımından ileri gelen iki avantajı daha vardır. İlk olarak, VEGAS’ın kesinlikli hat 
algoritması ağ kapasitesiyle ilgili yerleşik bir ölçeklemeye sahiptir. Bu kararlı kaynak 
algoritmasıyla bir aradadır ve böylece potansiyel olarak daha büyük bant genişliği gecikme 
sonucunu ölçekleyebilir. İkincisi, bir kaynağın her gecikme ölçüsü ikili-değerli kayıp ya da 
işaretlemenin ortaya koyduğundan daha ince bir yoğunluk tahmini ortaya koyar. Kapasite 
büyüdükçe, α parametresini ölçekleyerek yoğunluk işaretinin (gecikmenin) gücünü sağlamak 
için kaynakta ölçekleme yapmak daha kolaylaşmaktadır.  

Gecikmenin düşük bant genişliğinde dengeye ulaşmak için VEGAS’ta aşırı ölçüde 
olabilmesi sorunu geniş bant rejiminde çok daha az şiddetlidir. Buna ek olarak, yayılım 
gecikmesi tahminindeki hatayla ve süreğen yoğunlukla ilgili sorun kaynak [5], [8] da yüksek 
kapasiteyle birlikte arabelleklerin daha sık boşaltılmasıyla kolaylaşmaktadır. Gecikmenin 
yoğunluk kontrolünde kullanımına ilişkin başka konular bulunmakla birlikte, ECN çok geniş 
kapsamlı derlenmedikçe bu sorunların kontrol için aşırı derece küçük kayıp olasılığının 
kullanılmasına güvenilmek zorunda kalınması şeklindeki temel güçlükten daha önemli 
olmadıkları görülmektedir. 

Şimdi kararlı VEGAS için yeni AQM ve ECN’nin kademeli derlenmesiyle çalışmak 
için uygulanabilir ve tutarlı bir strateji tanımlıyoruz. VEGAS daki hat algoritması kuyruk 
gecikmesini şu şekilde hesaplamaktadır: 

))((1)( ll
l

l cty
c

tp −=      (6.30) 

VEGAS’ın ağ kapasitesiyle yerleşik ölçeklenebilirliğini veren, q’ya bölünmedir. Kaynak 
[8]’de de incelendiği gibi, VEGAS yoğunluk fiyatlarını otomatik olarak hesaplamak için 
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sıfırdan-faklı bir kuyruk gecikmesi oluşturmak pahasına, arabellek sürecini kullanır. Bunlar 
VEGAS’ın kesin bir şekil 6.3 de çözdüğü fayda en yüsek düzeye çıkarma problemi için 
kullanılan Lagrange çarpanlarıdır. Kaynak [14] ve [17]’nin ölçeklenebilir şemadaki hat 
algoritması, )(tpl  fiyatını hesaplamak için gerçek hat kapasitesi q yerine biraz daha küçük 
olan (mesela, q’nun %95’i)  sanal bir hat kapasitesini kullanıyor olması haricinde eşitlik 
(6.30)’daki ile aynı ifadeyi kullanır. Sanal bir kuyruk kullanmanın avantajı fiyatlar sıfırdan-
farklı değerlere yakınlaşırken gerçek kuyruğun dengede temizlenecek olmasıdır. Kuyruklar 
şimdi boş olduklarından kuyruk gecikmesi artık yoğunluk işaretçisi olarak hizmet 
etmeyecektir. ECN işaretlemesi fiyatları açıkça geri beslemek için kullanılmalıdır. 

 
Şimdi her iki tipten hatta sahip olan bir ağ hayal edelim; bu hatlardan biri kuyrukları 

temizlemek için ne ECN’yi kullanır ne de AQM’i işletirken diğeri bnu kullanıyor olsun. İlk 
tip bir kuyruk oluşturmakta ama işaretlememekte, ancak ikincisi kuyruk gecikmesine sahip 
değilken kaynakları işaretler akımı göndermektedir. Bir kaynak iki tip geri besleme sinyalini 
gözlemektedir. Birinci tip l hatlarından gelen toplam kuyruk gecikmesi ve ikinci tip hatlardan 
REM tahmini sonrasında gelen toplam fiyatlar. Bu iki işaret yalnızca birbiriyle 
etkileşmemekte, bunların toplamları kaynak yolundaki toplam fiyatı da açıkça ortaya 
çıkarmaktadır. Bu nedenle, her iki işareti gözleyerek ve bunları toplayarak kaynak kontrol için 
gerekli bilgiyi otomatik olarak temin etmekte ve bunu yaparken yol üzerindeki hatların tipi ve 
sayısı konusunda bir bilgiye sahip olmamaktadır. ECN yoluyla AQM’ye daha ve daha fazla 
hat dönüştürüldükçe, kaynak algoritmasının yükseltilme ihtiyacı da artmaktadır. Tek etki 
kuyruk gecikmesinin düzenli olarak azalmasıdır. 
 
6.5. Benzetim Sonuçları 
 

VEGAS ve kararlı VEGAS algoritmalarının farklı sayılarda kaynaklar, tutarlı ve 
tutarsız kaynaklar, tekli ve çoklu boğum hatları ile ve dinamik senaryolar içindeki 
davranışlarını incelemek için geniş kapsamlı ns-2 simülasyonları oluşturduk kaynak. Yer 
sınırlaması nedeniyle, burada yalnızca tek boğumlu hatla ilgili önceki kesimlerde ele 
aldığımız teoriyi doğrulayan ve kararlı VEGAS’ ın yüksek hızlı büyük gecikmeli pencere 
boyutunun paket olarak büyük olduğu ağlarda uygunluğunu gösteren en basit sonuçları 
açıklayacağız. Diğer benzetim sonuçları bu metnin dergi versiyonunda ele alınmaktadır. 

 
Örnek 1 ve 2’deki N sayıda tutarlı kaynak tarafından paylaşılan tek boğum hattı 

üzerinde duran senaryoları benzettik. Simülasyonlar iki yönlendirici üzerinden alışıldık N 
sayıda kaynağın N sayıda hedefe bağlandığı uçbirim kullanmaktadır. Kaynaklar ve bunların 
yönlendiricisi arasındaki erişim hatları sıfır gecikmeli boğumsuz ve iki yönlendirici arasındaki 
hat ise yalnızca tek boğumlu ve 1 KB sabit paket boyutlu c Gbps kapasiteye sahiptir. 
Yönlendiriciler arası gecikme d/2 ms.’dir. Droptail ve kuyruk kapasitesiyle ilgili FIFO 
prensibine göre (ilk giren-ilk çıkar) çalışan yönlendiriciler 40K pakete ayarlıdır ve paket 
kaybı olasılığı ihmal edilebilir düzeydedir.  Paket gönderimine tüm kaynaklar eş zamanlı 
olarak başlarlar.α = 20 paket ve N = 100 olarak sabitleyip c ve d’yi farklılaştırıyoruz. Şekil 
6.4’te de görüleceği gibi, Şekil 6.2 bölgesinde üç farklı (c, d)’den oluşan üç farklı benzetim 
seti sunuyoruz. 
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Şekil. 6.4.   Tutarlı kaynak ve tek boğumlu ağ topolojisi : (α, N) = (20 pkts, 100 flows). 

Kararlı VEGAS için, (a, µ) = (0.5, 0.015). 

Simülasyon (a) her iki kararlılık bölgesinin kesişimin deki küçük kapasite ve gecikme 
içindir.  Simülasyon (b) kapasiteyi 10 kat artırır, benzetim (c) ise (a)’da kullanılan gecikmeyi 
10 kat artırır. Hem (b) ve hem de (c) orijinal VEGAS kararlılık bölgesinin dışındadır, ancak 
halen daha kararlı VEGAS ’ın kararlılık bölgesi içindedir. Hem orijinal VEGAS ve hem de 
kararlı VEGAS için her kaynağın hedef kuyruk uzunluğunu α = 20 paket ve N = 100 “flows”  
olarak oluşturuyoruz.  

Şekil 6.4’ün son iki kolonu kaynak [8]’den hesaplanan denge kuyruk uzunluğu ve 
denge pencere boyutunu göstermektedir. 

Simülasyon sonuçları Şekil 6.5’te gösterilmektedir. Her olay için ilk dağılım boğum 
hattında ara belleğe alınan toplam kuyruk uzunluğunu göstermektedir. İkinci dağılımlar N 
kaynak üzerinden alınan ortalama pencere boyutudur. Beklendiği gibi,  orijinal VEGAS (b) ve 
(c) olaylarında kararsızlık gösterirken kararlı VEGAS kararlı kalmaktadır. 
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(a) c = 800 Mbps (100 pkts/ms) ve d = 10 ms 

 

 
(b) c = 8 Gbps (1000 pkts/ms) ve d = 10 ms 

 

 
 

(c) c = 800 Mbps (100 pkts/ms) ve d = 100 ms 

Şekil 6.5. Denge yakınında kuyruk uzunluğu ve ortalama pencere boyutu (α = 20 pkts, 
N = 100). 

Kararlı VEGAS’ın pencere boyutunun büyük olabildiği yüksek hızlı büyük gecikmeli 
ağlardaki performansını görmek için çok küçük akım sayıları kullanıyoruz; N=3, (c,d)=(3.2 
Gbps, 100ms.). Aynı zamanda, α = 400 paket olarak ayarlıyoruz ki, böylece yayılım 
g9ecikmesinin yaklaşık %3’üne kuyruk gecikmesi olarak izin verilmektedir. Burada [8]’den 
hesaplanan denge pencere boyutu yaklaşık olarak kaynak başına W* = 13,700 pakettir. Şekil 
6,6’da görüldüğü gibi, kararlı VEGAS 10 ms’den daha kısa sürede neredeyse denge pencere 
boyutuna ulaşmaktadır, buna karşın orijinal VEGAS’ın doğrusal artış hızı bunun çok 
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gerisinde kalmaktadır. Kararlı VEGAS bunun yanında aynı zamanda iyi bir düzenlilik 
durumuna sahiptir. 

 

 

Şekil 6.6.yüksek hızlı ağ için hızlı yaklaşma c = 3.2 Gbps, d =100 ms ve (α, N)=(400 pkts, 3). 

6.6. Sonuç 

Bu bölümde, tutarsız ileri ve geri yönlü gecikmelere sahip genel birçok-hatlı çok-
kaynaklı kurgu içinde VEGAS kararlılığının detaylı bir analizini sunduk. VEGAS’ın gecikme 
varlığında kararsız olabileceğini ortaya koyan bir kararlılık koşulu türettik. VEGAS’ı büyük 
ağ gecikmeleri halinde kararlı hale getirecek küçük bir modifikasyon önerdik. 

VEGAS ağ kapasitesiyle yerleşik ölçeklenebilme özelliği nedeniyle özellikle yüksek 
hızlı ağlarda caziptir. Yüksek bant genişliği rejiminde VEGAS’ ın sürekli yoğunlukla ilişkili 
potansiyel sorunu azaltılabilmektedir. Bunun yanı sıra, RENO’ nun yapmak zorunda olduğu 
gibi aşırı derece küçük kayıp olasılığına dayanan kontrol zorunluluğundan kaynaklanan temel 
nitelikteki güçlükten kaçınmaktadır.  Bu avantajlarına rağmen, gecikme tabanlı yoğunluk 
kontrolüyle ilgili çözümlenmesi gereken, özellikle kademeli derleme ile ilgili sorunlar da 
mevcuttur. Biz burada bunun bir yönünü, yani ağ ECN-tabanlı bir AQM’e taşındığında 
VEGAS kaynağı nasıl sorunsuz çalışacağını tanımladık. 
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BÖLÜM 7 
 
 
 
 
 
TCP VEGAS ARACILIĞI İLE MODELLEME 
 

TCP VEGAS ın önceki analitik modelleri kayıpsız ağlar için geliştirilmiştir. Bu bölüm 
TCP VEGAS ın basit ve uygun analitik modelini geliştirmiştir. Paket kayıplarıyla huzur 
içinde büyür. Benzer modeller TCP RENO için daha önce geliştirilmiştir. Bunla birlikte 
RENO nun tamamlayıcılarından daha farklı olarak VEGAS için çeşitli yaklaşımların farklı 
olarak davranmaya ihtiyacı vardır. Amaçlanan model değişik bir mekanizma sunar ki yavaş 
başlama, sıkışıklık giderme ve sıkışıklık düzeltme sırasında VEGAS ı çalıştırır. Bu sonuçlar 
basit TCP VEGAS ın geçerli modelini ihtiva eder bununla eşitlik temelli UDP akımları, 
belirlemek için basit formüller, ölçülmüş paket kayıp değerlerinden, ister ağ tamponları aşırı 
iletilmiş olsun isterse TCP VEGAS akışı hedeflenen değere ulaşmış olsun gibi başka 
akımların değer kontrolleri için kullanılabilir.  

 
Geçmişte araştırmalar tek TCP akımının çeşitli sayıdaki analitik modelini Tur zamanın 

fonksiyonu ve paket kayıp değeri olarak arz etmiştir. Bu modeller bu ağ parametrelerinde 
Örneğin UDP akışları kaynak [1], [2] deki gibi TCP performansının duyarlılığını anlamamızı 
sağlamıştır ve diğer tip internet akışlarını kontrol etmek için çeşitli ilerlemelerin 
sağlanmasında kullanılmıştır. Bu bütün modeller TCP nin değişik geniş yerleştirmelerini 
adresler, TCP RENO olarak adlandırılan örneğin kaynak [3], [4], [5], [6], [7] deki gibi. 
TCP nin başka bir değişkeni TCP VEGAS olarak arz edilir. VEGAS birçok yeni tekniği 
görevlendirir ki birlikte belirli gelişmeler sonuçlanabilir. Bunun la aynı zamanda paket 
kayıpları azalır. Bu gelişmelerden bir kısmı geçmişte uygulanmıştır. Bazı durumlarda 
alternatif mekanizmalar kullanmak TCP nin farklı formlarında örneğin TCP VEGAS, TCP 
yeni RENO gibi sadece pencere boyutunu bir kez küçültür çoklu paketle aynı pencereden 
düştüğü zaman. TCP RENO pencere boyutunu gönderilen her 3 lü çiftleme ACK si için 
küçültür. Bazı diğer yenilikler hala iyi anlaşılamamıştır ve geniş olarak yayılmamıştır. 
Örneğin VEGAS sıkışıklığı giderme algoritması bazı anahtar avantajlara sahiptir. Paket 
kayıplarından sakınmada olduğu gibi aynı zamanda bağlantılara karşı eğimi düşürerek 
gecikmeleri daha uzun üretmeyle yapar. Bu modellerin bütünü TCP nin bir değişkeni 
tarafından geliştirilmiş geniş çapta kullanılanıdır ve TCP RENO olarak adlandırılır.  

 
TCP nin diğer bir elemanı TCP VEGAS olarak ifade edilebilir. VEGAS yeni birkaç 

tekniği çalıştırır ki birlikte uygun ilerleme sağlanır daha az paketleri oluşur. Bu ilerlemelerden 
bazıları alternatif mekanizmalar kullanılarak önceden bazı durumlarda uygulanmıştır. Örneğin 
VEGAS gibi TCP yeni RENO aynı pencereden çiftli paketler düşürüldüğünde sadece pencere 
boyutunu bir kere düşürür. TCP RENO her üçlü çift ACK (bilgilendirme) alındığında pencere 
boyutunu düşürür. Bazı diğer yaklaşımlar hala tam olarak anlaşılamamıştır ve geniş bir 
şekilde kullanılmamaktadır. Örneğin VEGAS sıkışıklık giderme algoritması Paket kayıplarını 
önleme yönünde bazı anahtar avantajlara sahiptir. TCP VEGAS ın performansı başka akış 
tipleri ile etkileşimi olan karışık ağ ortamlarında tam olarak anlaşılamamıştır. Önceleri 
benzetimle kullanılmıştır veya VEGAS ın analitik modellerinin davranışları kayıpların 
olmadığı ortamda TCP VEGAS ın analitik modeli paket kayıplarının durumuna göre takip 
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eder, başka akımlar ile ağ paylaşımı tarafından bizim bilgimizde dâhil olmayan daha önceden 
amaçlanmış protokol performansını ve mekanizmayı anlamamızda önemli bir araç olabilecek.  

 
TCP VEGAS ın çeşitli gösterimleri RENO daki karşılıklarından biraz farklı olarak 

davranmaya ihtiyacı vardır. Bu sıkışıklık belirlemeyi ve giderme algoritmalarını içerir ve yeni 
bağlantılar düzeltme mekanizmaları içerir. Protokollerin bu özelliklerini yakalamak için statik 
eşit zaman girdilerine akışları böleriz ve rasgele çeşitli girişler aracılığı ile kapalı form çözüm 
üretiriz. Hem çiftli ACK ler hem de zaman aşımlarının formlarında kayıp işaretlemeleri 
maksimum pencere boyutunun etkisi ile modellenmiştir kaynak [8] 

 
Bu model zamanda VEGAS ın mekanizmasını yeni bir set olarak birleştirerek dereceli 

geliştirilmiştir. Bu VEGAS tarafından görevlendirilen farklı mekanizmaların arkasındaki 
sezgiyi analitik olarak karakterize ederek test etme imkânı bize sağlar. Aynı zamanda 
ölçülmüş paket kayıpları olasılığından TCP VEGAS akımı hedeflenen düşük eşik değerini 
sağlayıp sağlamadığını belirlemek için kapalı form ifadeyi elde ederiz.  

 
7.1. Temel 

 
Bu bölüm açıkça TCP VEGAS ın yeniliklerini göstermektedir. İlk önemli yaklaşım 

TCP RENO dan açıkça ayrılan VEGAS sıkışıklık giderme mekanizmasıdır. TCP RENO ağ da 
sıkışıklık olduğunu gösteren sinyali paketlerin kaybı olarak kullanır. Gerçekte RENO 
bağlantının mümkün olan bant genişliğini bulabilmek için kayıplar yaratmaya ihtiyacı vardır. 
VEGAS ın amacı sıkışıklığı önceden belirlemektir. Ve daha sonra paket kayıplarının olabilme 
olasılığını önlemeye çalışarak azaltmaktır.  

Ağ sıkışıklığı belirlemek için her tur zamanı RTT, TCP VEGAS hali hazırdaki 
pencere boyutu ( W ) kullanır. En yakın RTT ve minimum RTT kısa sürede belirlenir 
hesaplamak için  

 

RTT
baseRTTRTTWbaseRTT

RTT
W

baseRTT
Wdiff −=⎟
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⎞⎜

⎝
⎛ −=    (7.1) 

 
(RTT – temel RTT) toplam yol sorgu gecikmesi olduğunda ve W/RTT hali hazırdakinin 
yaklaşığı olduğunda bu iki değerin ürünü ağda geri bilgilendirilen bu akışın paketlerin 
sayısının yaklaşığıdır. VEGAS sıkışıklık giderme algoritmasının amacı bu sayıyı 2 eşik değeri 
tarafından belirlenen alfa ve beta sabit bir aralıkta tutmaktır. Böylece bir kere bütün RTT 
yavaş başlama madunda değilken TCP VEGAS pencere boyutunu aşağıdaki gibi ayarlar  
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Alternatif olarak fark temel RTT kaynak [9] ile α  ve β  eşik değerlerinin paketlerin standart 
birimlerinde belirlendiği durumda böylece bu sonuçlar bağlantının eşit olmayan 
davranışlarında farklı temel RTT ile bölünebilir kaynak [10]. Paketlerin birimlerinde ki fark 
ve eşik değerlerine sahip olduğunun farkında olduğumuz bütün VEGAS uygulamaları ve 
benzetimleri bu yazının hatırlatıcısı olduğu iddia edilir. Eşik değerlerinin her versiyonu 
sıkışıklık istemeksizin elde edilebilir bant genişliğini yararlı hale getirebilmek için değer 
göndererek ayarlama yapar.  
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 VEGAS ın diğer bir özelliği RENO dan daha tutucu olarak yavaş başlama hareketi ile 
geliştirilebilir olmasıdır. Özellikle VEGAS eğer fark eşik değerini aşmışsa (veya kayıp 
oluşmuşsa)bütün diğer RTT ler için farkı kontrol eder ve yavaş başlama ihtiva eder. Bunun 
dışında pencere büyüklüğü çiftlemiştir. Basitlik için bu yazının kalanında 2/)( βαγ +=  ü 
ileri süreceğiz. Bu algoritma VEGAS ın Aktif olan sıkışıklık belirlemeleri ve kayıp giderme 
mekanizmaları diğer bir durumudur. Pencereyi çiftlemek bütün diğer RTT lerde aynı zamanda 
iyi bir temel RTT nin ölçümünü belirlemeyi sağlar. 
  
TCP VEGAS da son 4 yeni mekanizma sıkışıklık düzetme mekanizmasıdır. İlki 2 paketin 
pencere boyutu başlangıç sırasında ve zaman aşımından sonra kullanılmıştır. İkincisi VEGAS 
her bir paket gönderildiğinde ve çift bilgilendirme geldiğinde zamanı kaydeder eğer çok 
önceden gönderilmişse uygun tane zamanlayıcı değeri belirlenir. Gönderici eski bilgilendirme 
paketini yeniden iletir. RENO daki gibi 3 lü çiftli ACK her zaman paket yeniden 
gönderimlerinde sonuç verir ama uygun tane zamanlayıcı daha önceden kayıpları belirler. 1 
veya 2 çiftli ACK den hemen sonra yeniden gönderimleri paketlemeye yöneltir. Eğer yeniden 
gönderim oluşuyorsa bir sonraki 2 normal ACK nin her birinde aynı zamanda 
bilgilendirilmemiş en eski paketin yeniden gönderimini tetikler eğer uygun tane zamanlayıcı 
süresi dolmuşsa. Not edin ki uygun tane zamanlayıcının süresinin dolmasından dolayı paket 
yeniden gönderimi belirli ACK ler almaya devam eder. 3.su paket yeniden gönderimi çiftli 
ACK tarafından tetiklendiğinde sıkışıklık pencere boyutu sadece hali hazırdaki RTT den son 
pencere boyutu azalması daha az olduğunda azalır. Yeniden gönderimden sonra çiftli olmayan 
ACK tarafından tetiklenir, pencere boyutu küçülmez. Not edin ki çoklu kayıplar tek 
pencerede meydana geldiğinde VEGAS sıkışıklık pencere boyutunu bu ilk kayıplar için 
düşürür. 4. sü kayıplardan dolayı pencere küçültülür, çiftli ACK tarafından belirlenir VEGAS 
pencere boyutunu RENO da ki gibi %50 yerine % 25 küçültür. 
  
Eğer kayıp bölümü yeterince fazla ise uygun tane zamanlayıcı tetiklenmesi için kontrol eder, 
hiçbir ACK gönderilmez. Kayıplar RENO tipi baya tane zaman aşımı tarafından belirlenir. Bu 
yazının hatırlatıcısında belirtilmediği sürece zaman aşımı terimi bayağı tane zaman aşımı 
olarak gösterilir. 
 
7.1.2. İlgili Çalışmalar  

 
 Birçok analitik modelde tek TCP RENO nun durumu için ölçülmüş kayıp değeri ve 
ortalama RTT nin fonksiyonu olarak transfer edilir. Mathis et al. [6] da zaman aşımlarını 
ihmal ederek TCP RENO nun sıkışıklık gidermesini analiz etmiştir. Pad-hye et al. Kaynak [5] 
de zaman aşımlarını ihtiva eden daha tamamlayıcı bir çalışma sağlamıştır onların sonuçlarını 
kullanarak ve başlangıç- yavaş başlamayı ihtiva ederek analizde Cardwell et al. [3] TCP 
RENO transferinin keyfi boyutunun yaklaşık model ortaya çıkarmıştır. Kaynak [5] deki model 
Goyal et al. in kaynak [7] tarafından yeniden ziyaret edilmiştir. Ve yeniden incelenen 
versiyonu sunulmuştur. Farklı bir gelişme Misra et al. [4] tarafından yapılmıştır. TCP RENO 
nun kararlı davranışı akıcı analiz kullanılarak modellenmiştir. Bizim modelleme gelişmemiz 
kaynak [5] dekine benzerdir. Burada her tur temelinde akışı analiz ederiz. Başka taraftan 
bizim gelişmemiz VEGAS ın çok farklı davranışlarının analizinden farklıdır kaynak [9], [11], 
[12]. Bu model aşamalı olarak VEGAS mekanizmasının yeni bir seti ile ilişkilendirilerek 
geliştirilmiştir.  
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Değişken Açıklama 

βα ,  Paketlerde ölçülmüş VEGAS ın eşik değerleri 

γ  Yavaş başlamadan çıkmak için eşik değeri (α + β)/2 

P Kayıt bölümler arasında iletilmiş ortalama paketlerin 
sayısının tersi  

baseRTT Akış sırasında belirlenmiş Minimum tur zamanı  

RTT Keyfi tur zamanı  

R Transfer için ortalama tur zamanı  

W Zamanda keyfi bir noktada pencere boyutu 

maxW  Alıcı tarafından bildirilen maksimum pencere boyutu 

0W  Kararlı geri bildirim durumunda ortalama pencere boyutu 

0t  İlk  TO nun TO serisinde Ortalama süresi  

Tablo 7.1: Model notasyonu. 

7.2. MODEL 
 
Model notasyonu tablo 7.1 de özetlenmiştir. Model giriş parametreleri R ve p. Temel 

RTT, maxW  0t  βα ,  kaynak [3], [5], [7]. 
 
Daha önceki başarılı TCP RENO modeli boyunca TCP VEGAS davranışlarını daireler 

şeklinde modelledik. Data pencerelerinin her dönüşte iletildiği gibi ve dönüş süresi RTT ye 
eşit olduğu ve pencere boyutundan bağımsız varsayılır. İddia ediyoruz ki farklı turlarda 
oluşan paket boyutları bağımsızdır ama paket kaybolduğunda geriye kalan bütün paketlerde 
kaybolur. 

 
Bir ileriki iddia temel RTT kısmen akış boyunca kararlı ise ihtiyaç duyulur ki rasgele 

seçilmiş girişler boyunca akış boyuna eşittir.  Bölüm 4 deki deney gösterir ki bu iddia pratik 
olan ağ durumunda gerçekleşir. Eğer bu devam etmezse modeller akışın her kısmına 
uygulanabilir ve farklı temel RTT değerleri elde edilir 

 
Aşağıda devam eden akışlar için ilk olarak TCP VEGAS ı düşünürüz ki paket kayıpsız 

olmasına sebep olur, zaman aşımı olmayan akışlar tarafından takip edilir, tek zaman aşımı 
olayı ardışık paket iletimleri için ile takip eder ve sonunda bu deneyimi taşır. Her durunda 
VEGAS ın genişletilmiş bir setini modelleriz ve bunlar için kapalı form ifade hesaplarız 
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7.2.1 Paket Kayıpsız Model-1 
 
 Tahmin edilen TCP VEGAS ın pencere boyutunun dönüşümü şekil 7.1 deki gibi paket 
kayıpsız olduğunda akış yavaş başlama ile pencere ikiye eşit olmakla beraber başlar. Ve 
pencere boyutu fark her diğer RTT ler farkı γ  yi aştığında veya maxW  a pencere boyutu 
ulaştığında çiftlenir (genel durumda) . Bundan sonra akış sıkışıklık gidermeye kalır.  
  
Bir nokta düşünün ki yavaş başlama periyodunda sonraki keyfi nokta olsun. lossnW −0

0  

noktadaki tahmin edilen pencere boyutunu temsin etsin. W gerçek pencere boyutunu temsil 
etsin ve RTT en son ölçülen tur zamanı olsun daha sonra zamanda bu noktadaki farkın değeri 
1. eşitlikle verilsin. 
  
İddia ediyoruz ki 2 neden den dolayı ortalama fark değeri yaklaşık beta olsun. İlki A-B 
VEGAS ın iyiliğini büyütür ve γ = β uygulanır,  başlangıç yavaş başlama periyodunda 
pencere boyutunun çiftlenmesi β DİFF i aştığında ortadan kaybolur. Daha fazla olarak ağdaki 
uygun sıkışıklık olmamsından kaynaklanan RTT fazla kararsız olmaz ve bu bir kere farkı β ya 
küçültür. Bu göreli sabit olarak kalmasını sağlar. Ağın çapraz trafiğinin geniş çeşitliliği ile 
TCP VEGAS ın genişletilmiş benzetimi sırasında belirlendiği gibi. İkinci olarak kayıpsız 
durumda RTT temel RTT civarında kararsız davranacaktır ve böylece sıkışıklık giderme 
algoritması mümkün olduğunca yüksek sorgulanmış paketlerin sayısını tutacaktır. Eşitlik 1 in 
her iki tarafında ki ihtimali alarak, RTT düşük değerli olduğu iddia edilir ve pencere 
boyutundan bağımsızdır, WEW lossno /0 =−

 için çözümdür ve maksimum pencere boyutu maxW  
ı hesaplar, (3) eşitliğini elde ederiz büyük transfer hesaplaması sırasında  

⎟
⎠
⎞⎜

⎝
⎛

−
×=−

max0 ,min W
baseRTTR
R

W lossno β     (7.3) 

 

Zaman 
Şekil 7.1:Umulan pencere boyutu hesaplaması: kayıpsız. 
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Şekil 7.2: Umulan pencere boyutunun serbest kayıp olduğu zaman hesaplanması 

 
Böylelikle yavaş başlama durumu sırasında ihmal edilebilir. Buda ortalamada TCP 

VEGAS lossnoW −
0  paketini her turda iletir. max0 WW lossno <− olduğunda eşitlik (7.4)  ortaya çıkar 

 

baseRTTRlossno −
=Λ −

β
     (7.4) 

 
Kayıp ihmal edilebilir olduğu zaman (bütün VEGAS ortamlarında) TCP VEGAS 

böylelikle yukarıdaki eşitlik tarafında yaklaştırılır. Bu eşitlik gösterir ki VEGAS bunları 
düşürmek için kullanılan ölçüm, a sıkışıklığını belirleyen veya elde edilebilir bant genişliğini 
belirleyen baseRTTR −  dir. Tahmin edilen sorgu gecikmesi aynı şişe boynu paylaşımı akımı 
için yaklaşık olarak aynı olması umulur, uygun temel RTT her akış için iddia edilir. Böylece 
denklem 4 de gösterildiği gibi kayıp ihmal edilebildiğinde TCP VEGAS büyük yayılma 
gecikmeleri ile akışa karşı maili yoktur RENO da olduğu gibi. Bu 21 ve 4 deki sonuçlar ile 
örtüşür ve ilerde belirtilecek olan 4.4.1 deki gibi 

 
7.2.2 Zaman Aşımsız Model- 2 
 

TCP kaynakları gibi RENO ile TCP VEGAS akımı şişe boynu bağlantısını 
paylaştığında veya kontrol edilemeyen çapraz trafikle kayıplar tecrübe edilebilir. Bu bölümde 
göstereceğiz ki bu tip kayıplar olur ama bütün kayıp parçaları çiftlenmiş ACK lar tarafından 
belirlenir (1 ile 3 arasında herhangi bir sayı). Kayıp bölümleri paketlerin serisi olduğu yerde 
tek turda kaybolur. Bu iddianın verilmesi, kayıp bölümler oluştuğunda VEGAS pencere 
boyutunu ¼ küçültmekle turda ilk kaybı belirlemiş gibi hareket edecektir. Daha iler ki 
paketler aynı turda kaybolacaktır. Çünkü daha sonraki pencere boyutunda hiçbir azalma 
olmayacaktır. Pencere boyutu düştüğünde VEGAS sıkışıklık gidermeye devam eder. 
Denklem 2 ye dayanarak pencere boyunu ayarlar.  

 
Kayıp bölümleri ile kayıpsız periyotlara aralık diyeceğiz (LFPs). Ilk yavaş başlama 

periyodunu dikkate almadan büyük transfer sırasında ihmal edilebilir bir etkiye sahiptir. Akış 
uygun kesin LFPs serisini içerir. 2 durum düşünürüz: ilki p nin yeterince küçük değerleri için 
akış uygun geri bildirim durumuna ulaşır ki kayıpsız akışı karakterize eder, şekil 7.2a da 
gösterildiği gibi gerekli bütün LFP de. İkincisi büyük p için akış bu duruma asla ulaşmaz. 
Şekil 7.2b de gösterildiği gibi. Not edin ki p b deki durumdan a daki durama düştüğünde 
umulan maksimum pencere boyutu LFPs ler için W0 boyunca uygun geri bildirime ulaşamaz. 
Buda analizdeki basitlik için rasgele şekil 7.2a umulan pencere değişimini gösterir. Bunun 
dışında rasgele LFP nin umulan pencere boyunun değişimini gösterdiğini iddia ederiz. Bölüm 
3.2.1 ve 3.2.3 bu durmun her biri için göreli olarak rasgele LFP nin değerini hesaplar. Daha 
fazla olarak akışın kesin analizi LFPs nin her tipinin katışımıdır. Daha ileri çalımlarda göz 
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atılabilir. Böylece model doğrulanması bu yazının daha sonraki bölümünde gösterir ki bu 
yaklaşık model gerçekçidir. Bölüm 3.2.2 model girişlerinden Ortalamada ister LFPs uygun 
geri bildirim durumuna erişsin bunu belirlemek için basit bir formül ortaya koyar. Bu formül 
modelde kullanılır ve eşitlik temelli değer kontrolünde de kullanılabilir, bölüm 3.2.1 den veya 
bölüm 3.2.3 deki formülden belirlenebilir.  
 
7.2.2.1 Kararlı Geri Bildirimler Erişilebilir 

 
 Tahmin edilen pencere boyutu geri bildirilebilir durum sırasında ( 0W )  kayıpsız 
durumdakine benzer olarak çıkarılabilir. Bununla birlikte ağda ki sıkışıklığın derecesi kararsız 
olduğunda VEGAS ağda ki geri bildirimi ayarlar α  ve β  arasında ve böylece umulan fark 
değeri 2/)( βα + ye atanır. Beta yerine eşitlik (7.5) gider.  
 

⎟
⎠
⎞⎜

⎝
⎛

−
×+= max0 ,

2
min W

baseRTTR
RW βα

    (7.5) 

 
LFP nin devamını çıkarmak için ortalama paket sayısını LFP sırasında iletilen ortalama paket 
sayısını hesaplamak için DLFP ve LFP nin tahmin edilen süresinde ihtiyacımız vardır. 22 deki 
gibi benzer yapıda delilleri kullanarak LFP nin devamı bu iki önermenin oranıdır. LFPP  iki 
kayıp aralığındaki iletilen tahmin edilen paketlerin sayısı olarak ifade edilebilir (Örneğin 1/p). 
Artı ilk gönderilen paketlerin ilk kayıp zamanı arasında iletilen paketlerin sayısı ve 22 de 
kayıpların gönderici tarafında belirlendiği zaman kaynak [5]: 

11
0 −+= W

p
PLFP       (7.6) 

LFPD yi hesaplamak için şekil 7.2a daki notasyonu kullanabiliriz. EFDELFP DDD +=  olsun. D 
den E ye durumu sırasında VEGAS ideal olarak her bir tur tarafından pencere boyutunu 
artırır. Ortalamada 4/0W  turu için  

RWDDE ×=
4
0       (7.7) 

E den F ye durumu sırasında VEGAS her tur da 0W  paketlerin ortalamasını iletir. Böylece 
düşük değişiklik ideası bu durum sırasında pencere boyutu umulan tur sayısı bu durum içinde 
umulan iletilmiş paketlerin sayısına eşittir. 

 R
W
PPD DELFP

EF ×
−

=
0

      (7.8) 

olduğunda  
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     (7.9) 

eşitlik (7.6) ve (7.9) u kullanarak ve basitleştirerek eşitlik (7.10) elde edilir.  
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     (7.10) 

 
Sonuç olarak eşitlik (7.6) ve (7.10) birbirine bölünerek eşitlik (7.11) bulunur. 
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0W  eşitlik (7.5) de verildiğinde not ederiz ki bu analiz TCP VEGAS için basit bir formüle 

gider. Bu durumda eşitlik (7.5) in devamında yerine koyarsak gösterir ki paket kayıpları 
oluştuğunda (örneğin ağda akılın diğer tiplerinden dolayı) daha uzun ortalana RTT ile 
bağlantılara karşı bazı eğilimler vardır. Bu eğilim basit bir karakteristiğe sahip değildir ama 
bölüm 4.4.1 de genel bir bakış atılacaktır. 
 
 
 
7.2.2.2. Elde edilebilir kararlı geri bildiğim için durumlar  

 
Eşitlik (7.11) sadece kayıp bölümler olduğunda medya gelir W 0W  a ulaştıktan sonra. 

Bu da )1/1( 0 −+≤ WpPDE  eşitlik (7.9) kullanılarak: 

32367
32

0
2
0 +−

=
WW

p     (7.12) 

eğer (7.12) eşitliği (7.5) ile beraber kullanılırsa ilerde sunulacak analizi kullanmış oluruz. 
 
 
7.2.2.3. Ulaşılamaz uygun geri bildirim  

 
Kayıp bölüm oluştuğunda ortalamadan uygun geri bildirimden önce ulaşılırsa VEGAS 

ın davranışı şekil 7.2b de resmedildiği gibi RENO ya benzerdir. Sıkışıklık giderme 
mekanizması RENO ya döner böylelikle uygun farklılıklar vardır sıkışıklık düzeltme 
mekanizmasında W ′  hesaplamak için not edin LFP sırasında VEGAS ideal olarak pencere 
boyutunu her bir turda bir kere büyültür. ( LFPP′ ) is 1/p + 1−′W    
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iletilen paketlerin umulan sayısı 1/1 −′+Wp dir. Böyle eşitlik (7.13) oluşur LFP de umulan 
turların sayısı 4/W ′ dür. 
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Şekil 7.3. SS2SS devir örneği. 
 
Yukarıdaki eşitlik gösterir ki eğer kararlı geri bildirime asla ulaşamamışsa Ortalama yayılma 
gecikmesi ile ters orantılıdır TCP ren odaki gibi. Genel olarak TCP VEGAS ın bağımlılığı 
böylece (R) de RENO daki gibi açık değildir. İki uç noktası vardır. Birincisi P=0 daki gibi ve 
VEGAS böylece R ye bağlı değildir. İkincisi p yeterince geniş olduğu durumda uygun geri 
bildirime asla ulaşılamaz ve VEGAS burada R ye ters orantılıdır. Bu iki uç nokta için p 
arttığında bunun bağımlılığı R de daha güçlü olur ter orantılı bağımlılığa ulaşana kadar.  
 
7.2.3 Bir Tek Zaman Aşımlı Model-3 
 

TCP VEGAS ın yeni yaklaşımı zaman aşımlarının modeli olarak uygulanacaktır. Bu 
durumda kayıp bölümler çiftli ACK ler ve zaman aşımları tarafından belirlenecektir. Zaman 
aşımları kayım bölümlerinden sonra oluşmuşsa yeterli çiftli ACK kayıp paketlerin yeniden 
gönderimini tetiklemek için göndericiye yeterli değildir.  
  

İşlenmemiş tane zamanlayıcı paket için süresi geçtiğinde VEGAS t periyodu için 
bekleme konumunu alır ve daha sonra yavaş başlamaya gider ve pencereyi iki olarak ayarlar. 
Her RTT de iki kez yumuşatılmış RTT ortalaması artı 4 kez RTT değişkeni olarak To 
hesaplanır. 
  

Burada iddia ediyoruz ki bütün zaman aşımı serileri tek bir zaman aşımını içerir. Biz 
ilk olarak VEGAS kararlı geri bildirim durumunda olduğunda bütün kayıp bölümlerin 
oluştuğu durumu analiz ettik. Bu senaryo altında akışın davranışı birbirine yakın istatistiksel 
olan uygun aralıklara Şekil 7.3 de pencere boyutu değişiminin umulduğu duruma bölünebilir. 
Bu aralıkların her birine yavaş başlamadan yavaş başlamaya periyodu deriz (SS2SSS). 
Rasgele SS2SS periyodunu burada çıkarmak için tahmin edilen iletilmiş paketlerin sayısını ve 
periyodun umulan süresini hesaplarız. Bunu yapmak için SS2SS i aşağıdaki periyotlara 
böleriz (şekil 7.3): (1) yavaş başlama periyodu (SSP) ikide pencere boyutunun başladığı gibi 
ve bütün diğer turları çiftlediği gibi daha sonra yavaş başlama eşik değerine ulaşır. Eşitlik 
(7.2) iletim periyodu (TP) kararlı geri bildirim durumuna ulaşana kadar bir tur tarafından 
pencere boyutu artırıldığı sırada ve akım kararlı geri bildirim durumunda kayıp bölümler 
oluşana kadar. Eşitlik (7.3) eğer TP TO (time out) ile bitmezse birbirini takip eden kayıpsız 
periyotlar (LFPS) serisi ilk olarak n–1 LFPS ile takip eder çiftli ACK ler tarafından belirlenen 
kayıp bölümler ile bitirilir ve n. LFP “kaypsız devir” TO tarafından belirlenen kayıp 
bölümlerle biter. Eşitlik (7.4) tek zaman aşımı. Buda  
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SSSS DnDDD

PnPPP
+++
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=Λ 2      (7.15) 

XP  X ve XD  ortalama periyodun süresi periyodunda ortalama iletilen paketlerin sayısı olarak 
ele alınır. Bu terimler SS2SS periyodunun bütün bileşenleri için bundan sonraki 3 bölümde 
tek tek çıkarılacaktır. 
 
7.2.3.1 Yavaş Başlama ve İletim fazı (TP) 
  

SSP(yavaş başlama periyodu) ve TP(iletim periyodu) şekil 7.3 de a noktaları ile b 
noktaları ve b ile d arasında ayrı ayrı olarak gösterilmiştir. A dan D ye periyodu birbirini takip 
eden kayıp bölümleri ile başlar ve biter 
Böylece 
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0 −+=+= W

P
PPP TPSSPAD      (7.16) 

Pencere boyutu iki olduğunda yavaş başlama başladığında ve yavaş başlamanın eşik değerine 
ulaşılana kadar her diğer RTT de çiftlenir 
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başlangıç pencere boyutu Wo/2 nin dışındayken rasgele TP nin analizi LFP nin analizine 
benzerdir. Umulan. Böylece b ve c için şekil 7.3 de 
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   (7.18) 

durumun (c den d ye) umulan süresi 0/WPCD dür. BCSSPADCD PPPP −==  olduğunda eşitlik 
(7.16-7.18) i kullanarak  
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7.2.3.2 Kayıpsız Periyot Serileri (LFPS) 

 
Eşitlik (7.6) ve (7.10) LFP de gönderilen paketlerin umulan sayısını, umulan süresini 

ayrı ayrı olarak verir. n için bir formül çıkarmak için umulan LFPS lerin ardışık sayısı SS2SS 
periyodunda, şekil 7.3 den not ederiz ki kayıp bölümlerin kırılması TO (Time out), TOP  
tarafından belirlenir. )1(1 +−= npTO olarak verilmiştir. n için bunu çözerek 

TO

TO

p
p

n
−

=
1       (7.20) 

TOP olasılığı TCP RENO için çıkarılmıştır. Kayıp bölümlerden sonra 3 çiftli ACK 
lerden az olma olasılığı analiz edilerek çıkarılmıştır. VEGAS kilit farkı vardır ki paketler 3 
çiftli ACK den daha az yetinebilir. Zaman aşımı meydana gelme olasılığını düşürebilir. 14 de 
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RENO ya oranla TCP VEGAS ın performansı yüksek kazancı katkıda bulunmadığı iddia 
ediliyor. Bununla birlikte benzetimlerimizin sonuçları gösteriyor ki kayıplarımızın dışında 
çiftli ACK ler tarafından belirlenmiş büyük çoğunluk bir ve ya iki ACK den sonra belirlenir 
kaynak [12] ve kayıp değerleri bir çiftli ACK nin %5 den daha büyüktür sadece tek bit çiftli 
ACK birçok durum için kaybı belirlemeye yeterlidir. TOP  nun basit analizi aşağıdaki sonuca 
sevk etmiştir. İddia eder ki çiftli ACK tarafından bütün kayıplar gelen ilk çiftli ACK 
tarafından belirlenir. A(w,k) w dışında k paketlerinin bilgilendirildiğin olasılığı olarak ele 
alınsın. C(w,k)  pencere boyutu ile turda kayıp bölümler olduğu verilsin. W nun turundan 
alınmış k paketlerinin olasılığı olsun böylece 
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kayıp bölümlere sahip olan W paketlerinin turu verilsin. Çiftli ACK siz olmaya yönelten 
senaryo ve böylece turda zaman aşımı 1: bütün pencere kayıp tur veya 2: w siz i paketleri 
alıcıya ulaşır, alıcı i ACK leri gönderir. Gönderici i yeni paketleri gönderir ve bütün i 
paketleri kaybolur. 0W  ın tekrar çağrılması kayıp bölümler oluştuğunda umulan pencere 
boyutundadır.  
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7.2.3.3. Zaman Aşımı 
 

TO (time-out) sırasında hiçbir paket iletilmez böylece  
0,0 TDp TOTO ==     (7.22) 

 
Eşitlik (7.6), (7.10), (7.16), (7.17), (7.19) ve (7.22) eşitlik (7.15) in yerine koyduğumuzda 
aşağıdaki yaklaşık TCP VEGASın akışının durumunu sadece bir TO oluştuğu durumda elde 
ederiz.  
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olduğunda  

Bu ifade VEGAS ın daha önceki formülünden daha karışıktır. Zaman aşımsızlığı iddia 
eder. Ama r nin bağımlılığı bölüm 3.2.3 de açıklanmıştır. N nin değeri eşitlik (7.20), (7.21) ve 
(7.5) nolu eşitliklerle hesaplanabilir.  
 
7.2.3.4 Kararlı Geri Bildirim  
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 Yukarıdaki analizlerden eşitlik (7.12) ile birlikte tamamen düzeltmek için TO dan akış 
mümkündür. Ortalamada, kararlı geribildirim durumuna daha sonraki kayıp bölge oluşmadan 
önce ulaşılır. Buda )1/1( 0 −+≤ WppAC  Veya  

8log16103
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00
2
0 ++−

≤
WWW

pAC      (7.26) 

dır. 
Eşitlik (7.12) veya (7.26) bağımlılıklarının olmadığı zamanki durumlarda VEGAS 

ortalamada kesin kayıp bölgesi arasında kararlı geri bildirim durumuna ulaşamaz. Pencere 
değişimi bu durumda şekil 7.3 dekine benzer. TP ve LFPS keskin tepe noktalarına sahip olur. 
İfadeyi daha basitleştirmekle aşağıdaki eşitlik bu durumlarda VEGASın tahmin edildiği gibi 
kullanılır. 
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LFPP′  ve LFPD′  çıkarılan SSP ve TP için analizler bölüm 3.3.1 deki gibi uygundur. 
2/0W  yerine pencere boyutu 2/W ′  iletimin iki faz arasında olduğunda yer alır. Asıl 

yaklaşım bu analizi tutmak için umulan pencere boyutu TP nin sonunda kayıp oluşuğunda 
bölüm 3.2.3 ile aynıdır LFP için örnek 0W . 
 
7.2.4 Tam Model 
 

TO (zaman aşımı, time-out) oluştuğunda sonraki TO lar ilkiyle arka araka oluşabilir. 
Burada iletilmiş tahmin edilen paket sayısını TO serileri sırasında ve umulan bu tip serilerin 
süresi TOP  ve TOD  terimi için daha doğru yaklaşımlar sağlamak adına formül 15 de 
çıkarabiliriz. TO tarafından takip edilen İki paketin çevrimi ile 3 durum belirleyebiliriz. A) 
ister paket kayıp olsun ister olasılık 2

0 )1( p−=ρ olsun B) sadece ikinci paket kayıp olma 
olasılı )1(1 p−=ρ  c) her bir paket kayıp olma olasılığı ile p=2ρ  (Verilen ilk kayıpla ikinci 
kayıp 1 olasılığı ile meydana gelir). Not edin ki olasılıklar toplamı 1 dir. 1 durumunda TO 
serilerinin sonunda sinyaller c yeni bir TO ya sebep olur. B durumunda yeni TO ya sebep olur 
eğer sadece bir fazladan paket tek ACK nin alıcı tarafından geri gönderilen cevabı olarak 
iletildiğinde, aynı zamanda kayıptır. Burada bizim analizimizi basitleştirmek için iddia ederiz 
ki bu her zaman olur. Örneğin b durumunda her zaman daha sonraki TO lara sebep olur. 
Böylece TO turları acilen takip eder. Olasılık daha sonraki TO lar oluştuğunda 21 ρρ +  dir. 
Rasgele TO serisinde M ardışık TO ların sayısı olsun. Daha sonra ilk TO verildiğinde  
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Ve umulan ardışık TO ların sayısı EM  
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dir 
Pencere boyutu iki olduğunda her TO dan sonra )/(2 MEP seriesTO =−  dir. Son TO dan 

sonra turdaki iletilen iki paketi hariç tutarız. Bir sonraki SSP (eşitlik (7.17) yi görünüz) ye tur 
dahil edildiğinde. Son olarak umulan iletilmiş paketlerin sayısı rasgele TO serileri sırasında  
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İlk TO ların süresi OT  dır ve her yeni TO için süre ikiye katlanır. Süre 64 to a ulaşılana kadar. 
Daha sonraki TO larda süre sabit kalır. TO serilerin süresi aşağıdaki gibidir. 
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Tarafından verilmiştir. Yukarıdaki eşitlikten parantez içindeki değeri veririz d(p) gibi örneğin 

)(pdD seriesTO =− Eşitlik (7.15) TOP  ve TOD  yı daha uygun bir yaklaşım olan seriesTOP −  ve 

seriesTOD −  yerine tek TO da koyarız. SS2SS periyodunun geriye kalan analiz açıkça daha 
önceki bölümde tasvir edildiği gibidir. Böyle 15 denkleminde  
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yi elde ederiz. 
n değişkeni eşitlik (7.20) ve (7.21) denkleminden hesaplanabilir. SS2TO eşitlik (7.25) de 
verilmiştir, 0W  eşitlik (7.5) de verilmiştir. Eşitlik (7.4) ve (7.32) denklemlerinin seti TCP 
VEGAS ın toplam Hem kayıpları hem de kayıpsız senaryoyu içeren modelini meydana 
çıkarır. Eşitlik (7.12) ve (7.26) durumlarında verilen bağımlılıklar sağlanır. 
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SONUÇ 
 
Bu çalışmada TCP RENO üzerine geliştirilen VEGAS ın sıkışıklık sorununa getirdiği 

yaklaşım ele alınmıştır. Farklı protokoller sıkışıklık ölçüleri için farklı ölçüler kullanır. 
Örneğin RENO kayıp olasılığını kullanır ve VEGAS gecikmeyi sorgular. 

 
VEGAS ağ kapasitesiyle yerleşik ölçeklenebilme özelliği nedeniyle özellikle yüksek 

hızlı ağlarda caziptir. TCP RENO nun sıkışıklık tespiti ve kontrol mekanizmaları parçaların 
kaybını bir işaret olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu 
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç 
aşamalarını tespit edecek bir mekanizması yoktur. VEGAS yüksek bant genişliği rejiminde 
potansiyel sıkışıklık sorunu azaltılabilmektedir. Bunun yanı sıra, RENO’ nun yapmak zorunda 
olduğu gibi aşırı derece küçük kayıp olasılığına dayanan kontrol zorunluluğundan 
kaynaklanan temel nitelikteki güçlükten kaçınmaktadır. Bu avantajlarına rağmen, gecikme 
tabanlı yoğunluk kontrolüyle ilgili çözümlenmesi gereken, özellikle kademeli derleme ile 
ilgili sorunlar da mevcuttur. REM temiz tampon ve değeri seçmeye çalışır ve yüksek 
yararlanma ve düşük sorguya yöneltir. Küçük sorular ile en az tur zamanı yayılma gecikmesi 
için en uygun yaklaşım olabilir.  

 
VEGAS ın RENO algoritmasından farkı ağ kapasitesinin ne kadar olduğunu öğrenmek 

için sıkışıklığa teşvik etmesidir. VEGAS kaynağı sıkışıklık saldırısını, gerçekleşen ve 
beklediği arasındaki farkı göstererek bekler. VEGAS yol boyunca yönlendiricide daha az 
sayıda paket tamponlanmasını sağlamak için kaynağın gönderim boyutunu artırma 
stratejisidir. 

 
TCP VEGAS ın sıkışıklık tespit mekanizması aktiftir, yani çıktı oranındaki 

değişiklikleri gözlemleyerek tıkanıklıktaki başlangıcı tespit etmeye çalışır. TCP VEGAS bu 
çıktı ölçümlerinden tıkanıklık penceresi ayarlama politikasını çıkarır, bu da bağlantı kayıplar 
vermeden önce gönderme oranını azaltabilmeyi sağlar. 

 
Duality modelin temel fikri genel sıkışıklık problemlerini çözmek için ağ üzerinde 

kaynak ve hatlar tarafından taşınan dağıtılmış algoritmayı sıkışıklık kontrolü olarak 
yorumlamasıdır. Duality model VEGAS algoritmasına yeni bir yorum katmıştır. Kaynak 
yolundaki gecikmenin değerini sorgulamak için kendi gecikmesini belli bir oranda tutar. 
VEGAS bu gecikme oluşumunu minimum tam tur zamanı olarak kabul eder. 
        

TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir 
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma 
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye 
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans 
kazanımlarından sorumlu olduğudur.  
 


