
!

REMZI YILDIRIM
BİLGİSAYAR AĞLARINDA SIKIŞIKLIK VEGAS VE DUALİTY PROTOKOLLERİ MODELLERİ

REMZI YILDIRIM

REMZI YILDIRIM
Prof. Dr. Remzi YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM
2016- AYBÜ-ANKARA

REMZI YILDIRIM

REMZI YILDIRIM
(ÖDEV)

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

BİLGİSAYAR AĞLARINDA SIKIŞIKLIK

VEGAS VE DUALİTY

PROTOKOLLERİ MODELLERİ

Danışman:

Yrd. Doç. Dr. Remzi YILDIRIM

HAZİRAN 2006

ANKARA

REMZI YILDIRIM

REMZI YILDIRIM

 1

BİLGİSAYAR AĞLARINDA SIKIŞIKLIK KONTROLÜ VE

VEGAS VE DUALİTY MODELLERİ

 (Yüksek Lisans Dönem Projesi)

Mehmet MİNTAŞ

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Haziran 2006

ÖZET

Gelişen internet ağı beraberinde alıcı-verici arasındaki arz ve talebi karşılama sıkıntısı

doğurmuştur. Bu iletişim kapasitesinin artışı iletilen verilerin kayıpsız ve sorunsuz bir şekilde

taşınması için daha kararlı ağ yönetimleri arayışı getirmiştir. Sıkışıklık bir ağın mevcut en

önemli problemidir. Bu sorunu aşmak için birçok model üzerine çalışmalar yapılmış ve halen

daha kararlı bir ağ elde etmek için devam etmektedir. Geliştirilen sıkışıklık yönetim

algoritmaları sıkışıklığa daha farklı bakış açıları ile yaklaşmış ve sıkışıklık ölçütü olarak farklı

parametreler kullanmışlardır. Bu çalışmada mevcut VEGAS ve Duality modelleri üzerine bir

kaynak araştırması yapılarak sağladığı avantaj, yöntem ve performanslarını incelenmektedir.

Bilim Kodu :
Anahtar Kelimeler : Sıkışıklık Kontrolü, VEGAS, DUALİTY
Sayfa Adedi :
Proje Yöneticisi : Yrd. Doç. Remzi YILDIRIM

 2

BÖLÜM 1 .. 4
GİRİŞ ... 4
BÖLÜM 2 .. 6
SIKIŞIKLIK GİDERME VE KONTROL ... 6

2.1. Yavaş Başlama Dengesini Sağlamak ... 6
2.2. Yavaş Başlamayla Dengeye Ulaşma .. 7
2.3. Eşitliği Korumak ... 9
2.4. Yolu Adapte Etmek ve Sıkışıklık Gidermek ... 11
2.5. Ağ Geçidi Taraflı Sıkışlık Kontrolü .. 13
2.6. RRT ve Varyasyon Dönüşüm İçin Hızlı Algoritma ... 17

2.6.1. Teori ... 17
2.6.2. Pratik ... 18

2.7. Sıkışıklık Giderme Algoritması İle Yavaş Başlamanın Karışımı 19
2.8. Tur Zamanı İle Pencere Ayarlama Etkileşimi ... 20
2.9. Pencere Ayarlama Politikası .. 21
KAYNAKLAR ... 22

BÖLÜM 3 .. 23
GÖZDEN GEÇİRİLMİŞ VEGAS .. 23

3.1. Giriş .. 23
3.2. TCP VEGAS .. 24
3.3. Kaynak Taraması .. 24
3.4. Benzetim Ortamı ... 25

3.4.1. Benzetim ... 25
3.4.2. Topoloji .. 26

3.5. Performans Değerlendirmesi ... 26
3.6. TCP VEGAS’ ın Algoritmaları .. 27
3.7. Tarifnameden Sapmalar ... 28

3.7.1. Mola Davranışı ... 28
3.7.2. Taban RTT lerin Yeniden Ayarlanması ... 28
3.7.3. Sabit Bozulması .. 28
3.7.4. Tartışma .. 29

3.8.Çeşitli Algoritmaların Etkileri .. 30
3.8.1. Karmaşıklığın Azaltılması .. 30
3.8.2. Çıktı İçin Sonuçlar ... 31
3.8.3. Yeniden İletimlerin Sonuçları .. 32
3.8.4. Sonuçlar .. 33

3.9. Tıkanıklıktan Kaçınmanın Problemleri .. 36
3.9.1. Eski Bağlantıların Yanlış Ele Alınması ... 36
3.9.2. Israrlı Tıkanıklık ... 38
3.9.3. Tartışma .. 38

3.10. Sonuçlar .. 38
KAYNAKLAR ... 39

BÖLÜM 4 .. 40
TCP VE SORGU YÖNETİM ALGORTİMASININ DUALİTY MODELİ 40

4.1. TCP-AQM’ nin DUALİTY Modeli: .. 41
4.2. RENO/AQM .. 45

4.2.1. F,S,H Modeli ... 45

 3

4.3. VEGAS / DROP-TAİL .. 51
KAYNAKLAR ... 52

BÖLÜM 5 .. 54
VEGAS - DUALİTY MODEL .. 54

5.1. VEGAS Modeli .. 54
5.1.1. Ön Hazırlık ... 54
5.1.2. Vegasın Nesneleri ... 55
5.1.3. Çift Problem .. 56
5.1.4. Vegas Algortiması .. 59
5.1.5. Notlar ... 60

5.2. Gecikme, Kayıpsız Tam ve Kayıp .. 61
5.2.1. Gecikme ... 61
5.2.2. Kayıpsız Tam .. 61
5.2.3. Kayıp ... 62

5.3. Daimi Sıkışıklık: .. 63
5.3.1. Fiyat ve Geri Bildirimin Eşitlenmesi .. 63
5.3.2. Yayılma Gecikmesi Tahmini ... 63
5.3.3. Sonuç ... 66

5.4. REM’le VEGAS ... 66
KAYNAKLAR ... 67

BÖLÜM 6 .. 68
KARARLI VEGAS .. 68

6.1. Ağ Modeli ... 69
6.2. VEGAS’ın Kararlılığı ... 70

6.2.1. Kararlılık ... 72
6.2.2. Teorem 1’in Kanıtı ... 74

6.3. Kararlı VEGAS ... 77
6.4. Uygulama ve Derleme ... 83
6.5. Benzetim Sonuçları ... 84
6.6. Sonuç .. 87
KAYNAKLAR ... 88

BÖLÜM 7 .. 90
TCP VEGAS ARACILIĞI İLE MODELLEME .. 90

7.1. Temel .. 91
7.1.2. İlgili Çalışmalar .. 92

7.2. MODEL .. 93
7.2.1 Paket Kayıpsız Model-1 .. 94
7.2.2 Zaman Aşımsız Model- 2 .. 95
7.2.3 Bir Tek Zaman Aşımlı Model-3 ... 98
7.2.4 Tam Model ... 101

KAYNAKLAR ... 103
SONUÇLAR ... 104

 4

BÖLÜM 1

GİRİŞ

TCP VEGAS 1994 yılında TCP RENO’ ya bir alternatif olarak ortaya çıktı. Kapasite

kullanım ölçüsü olarak paket kaybını kullanan RENO dan farklı olarak VEGAS sıkışıklık
gecikmesini kullanmaktadır. TCP VEGAS TCP için ilk kez Brakmo tarafından sunulan bir
tasarımıdır. TCP VEGAS geliştirilmiş bir yeniden transmisyon stratejisini içerir. Bu strateji
iyi parçalanmış tur ölçümlerine ve yavaş-başlangıç ve tıkanıklıktan kaçınma esnasında
tıkanıklık tespiti için oluşturulan yeni mekanizmalara dayanır. Yaratıcı teknikler ve etkileyici
performans kazanımları son yıllarda birçok tartışmanın konusu olmuştur. Bu çalışma TCP
VEGAS’ ın tasarımına taze bir bakış sunmakta ve TCP VEGAS’ ın yeniliklerinin
avantajlarına ışık tutmaya çalışmaktadır.

TCP RENO nun sıkışıklık tespiti ve kontrol mekanizmaları parçaların kaybını bir
sinyal olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç
aşamalarını tespit edecek bir mekanizması yoktur. Dolayısıyla TCP RENO kayıpları
engelleyemez. Dahası, TCP RENO reaktiftir, yani bağlantının mevcut band genişliğini
bulmak için kayıplar üretmeye ihtiyacı vardır. Öbür taraftan, TCP VEGAS ın tıkanıklık tespit
mekanizması aktiftir, yani çıktı oranındaki değişiklikleri gözlemleyerek tıkanıklıktaki
başlangıcı tespit etmeye çalışır. TCP VEGAS bu çıktı ölçümlerinden tıkanıklık penceresi
ayarlama politikasını çıkarır, bu da bağlantı kayıplar vermeden önce gönderme oranını
azaltabilmeyi sağlar.

TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans
kazanımlarından sorumlu olduğudur. Bu soru şu ana kadar cevapsız kalmıştır.
TCP paketleri adım adım iletmek için pencere tabanlı akış kontrol sistemi kullanır. Her
kaynak gönderilebilecek maksimumum paket sayısını içeren: iletilmiş ama bilgilendirme
yapılmamış pencere boyutu değişkenini içerir. Bir veri gönderilirken kaynak yeni bir paketi
göndermek için bilgilendirmeyi beklemek zorundadır. Genel stratejinin 2 özelliği önemlidir.
Birincisi bilgilendirmeler geç kaldığı ve ağ karıştığı zaman algoritma kendi kendine
zamanlamalıdır ki TCP kaynağı otomatikman yavaşlasın. İkinci olarak pencere boyutu değeri
kaynağın oranını belirler: her bir döngü zamanında pencere paketi gönderilir. Bu ikinci
özellik Jacobenin 1988 de yazdığı kitapta açıklanmıştır. Eklenebilir artırılabilir çoklu aktif
azaltılabilir algoritmayı iddia etmiş. Ağ sıkışıklığına göre pencere genişliğini
ayarlayabileceğini iddia etmiş. Bu algoritma TCP RENO’ da uygulanmış ve bu algoritmayı
içeren TCP’nin bir değişkenidir. TCP RENO 3 ana mekanizmadan oluşur: Yavaş başlama,
sıkışıklığı giderme ve hızlı düzeltme. Kaynak küçük pencere boyutları ile ihtiyatlı olarak
başlar ve her bilgilendirmeyi aldığı zaman paket boyutu büyültür. Her döngü sonunda pencere
boyutunu 2 ile çarpar. Pencere boyutu eşik değerine ulaştığı zaman kaynak sıkışıklık kaçınma

 5

fazı girer her bilgilendirme aldığı zaman karşılıklı anlık pencere büyüklüğünü daha yavaş
olarak artırır. Her bir dönüş zamanında bu pencereyi bir paket büyütür. Her çift
bilgilendirmedeki kayıpları ölçerken kayıp olan paketleri tekrar gönderir. Bunların
pencerelerini yarıya böler ve sıkışıklık kaçınmalarını da tekrar girer. Bu hızlı tekrar gönderme
ve hızlı düzeltme olarak adlandırılır. Zaman aşımı sürecinde kayıpları kaynaktan
belirleyebilmek için sıkışıklık giderme yerine yavaş başlamaya geçilmelidir. 1994 de TCP
RENO’nun alternatif olarak TCP VEGAS tanıtılmıştır (Brakmo ve Peterson 1995). TCP
RENO’nun 3 mekanizmasını geliştirir. Bunlardan ilki yavaş başlama ve daha az kayıpları
meydana getirme sırasında pencere büyüklüğünü daha tutarlı büyütmesidir. İkincisi tekrar
gönderme mekanizmasını çiftli bilgilendirmenin alınmasının kontrol edildiğinde RENO da
olduğu gibi üçüncü çiftli bilgilendirmeyi beklemeden yeniden gönderme mekanizmasıdır. Bu
yöntem ve kayıpları zamanında yönlendirmektedir. Üçüncüsü RENO’ nun davranışlarını
düzelten yeni bir sıkışıklık giderme mekanizması. VEGAS’ın RENO algoritmasından farkı ağ
kapasitesinin ne kadar olduğunu öğrenmek için sıkışıklığa teşvik eder, VEGAS kaynağı
gerçekleşen ve beklediği sıkışıklık saldırısı arasındaki farkı göstererek bekler. VEGAS yol
boyunca yönlendiricide daha az sayıda paket tamponlanmasını sağlamak için kaynağın
gönderim boyutunu artırma stratejisidir. Bu yazıda VEGAS’ ın sıkışıklık giderme
mekanizmasını anlatacağız. İyi bilinir ki dosya büyüklükleri internet üzerinden büyük bir yük
getirir. Basit olarak TCP bağlantıları kısa olduğu zaman birçok paket büyük TCP
bağlantılarından oluşur. Bu büyük paketler küçük değildir. TCP tarafından etkin olarak
kontrol edilmelidir. İleride daha açık anlatılacağı gibi sıkışıklık giderme bant genişliği
ayırmak olarak belirlenir ve bu paketler tarafından servisin kalitesi tecrübelendirilir

Bu çalışma şu bölümlerden oluşmaktadır. Bölüm 2 sıkışıklık giderme ve kontrol
hakkında temel bilgilendirme sunmaktadır. Bölüm 3 de VEGASIN RENO ya alternatif olan
farklılıkları ve performansı değerlendirilmiştir. Bölüm 4 de TCP sorgu yönetim
algoritmasının DUALİTY modeli ve 5. bölümde VEGAS’ ın DUALİTY modeli ele alınmış,
bölüm 6 da TCP VEGAS kararlılık modelleri ayrıntısıyla verilmiştir 7. bölümde TCP VEGAS
ile modellemeye deyinilmiştir.

 6

BÖLÜM 2

SIKIŞIKLIK GİDERME VE KONTROL

Bilgisayar ağları son birkaç yıldır çok ilerlemiş ve tecrübe kazanmıştır. Bu gelişme ile
sıkışıklık problemi meydana gelmiştir. Lokal tamponlama aşımlarından dolayı paketlerin %10
internet ağ geçitlerinde kayıp olduğu görülmüştür. Bu problemleri incelediğimiz sorunun
protokolün kendisinden değil zaman transfer protokol uygulamasından kaynaklandığı
görülüyor: Pencere tabanlı iletim protokolünü gerçekleştirmek için açık olan yollar ağ
sıkışıklığının cevabını yanlış gösterir. Yanlış eylemlere örnekler vereceğiz ve doğru şeylerin
oluşması sağlayan basit algoritmaların bazılarını açıklayacağız. Bu algoritmalar paket
haberleşme prensiplerine dayanarak transfer bağlantılarını güçlendirmekle ağ kararlılığını
gerçekleştirmeye dayanır. Bu prensipten Algoritmaların nasıl çıkarılacağını göstereceğiz ve
sıkıştırılmış bir ağda trafiği nasıl etkilediğini göstereceğiz.

1986’ın Ekiminde internet birkaç seri sıkışıklık çökmesi getirmiştir. Bu bant
genişliğindeki ani düşmeden çok şaşırdık ve bu problemin neden kötüye gittiğini düşünmeye
başladık. Özellikle, 4,3 BSD (BERKELEY UNİX) TCP yanlış hareket etimi ya da bitmeyen
ağ koşullarında daha iyi çalışmaya başlayacağını merak ettik.

2.1. Yavaş Başlama Dengesini Sağlamak

Bu zamandan sonra 4 BSD TCP ye 7 yeni algoritma daha eklendi
1- Çevrim zamanı değişim tahmini
2- Logaritmik yeniden gönderim zamanlayıcı bitimi
3- Yavaş başlama
4- Daha girişken alıcı bilgilendirme politikası
5- Sıkışıklıkta dinamik pencere boyutlandırma
6- Karn’s tekrar gönderimlerin bitimini sıkıştırmış
7- Hızlı yeniden gönderim

Ölçümlerin ve β test edicilerin raporları tavsiye ediyor ki internetteki sıkışıklık
durumları ile ilgilenmenin iyi olması için bu doküman arkalarındaki bağlantıları ve 1 ve 5.
maddeler için açık bir tariftir. 6 numaralı algoritma BEL haberleşme enstitüsü tarafından
değiştirilmiştir kaynak [1] da tanımlanmıştır. 7 numaralı algoritma AFS (Arpanet) tarafından
yayınlanmıştır. Algoritma 1 ve 5 bir gözlemden ileri çıkar. TCP bağlantısının akışı veya
İSOTP–4 veya Zerox NSSPP bağlantısı paketlerin korunması prensibine tabi olmalıdır. Bu
prensibe tabi olursa sıkışıklık çökmesi kurallardan istisna olur. Bu sıkışıklık kontrolü
muhafazayı ihlal etmek ve onları onarmakta yer bulmayı sağlar. Paketlerin korunmasıyla
bağlantı için dengeyi kastediyoruz. Örneğin veri iletiminde tam pencere ile kararlı çalışmak,
paket akışı fizikçiler tarafından ılımlı olarak adlandırılır. Yeni paket, eski paket ağdan
ayrılmadan ağa verilmez. Akışın fiziği sıkışıklığın yüzünde bu özellikledeki sistemin düzgün
olmasını haber verir. İnternetin incelenmesi kısmi olarak düzgün olmadığını gösterir. Bu zıtlık
nedendir? Paket korunmasının başarısız olmasına üç neden vardır. Bağlantı dengeye

 7

gelmemiştir veya gönderici eski paket çıkmadan yeni paket göndermiştir veya dengeye yol
boyunca kaynağın sınırlarından dolayı ulaşılamamıştır. Aşağıdaki bölümlerinde bunları
inceleyeceğiz kaynak [2], [3].
2.2. Yavaş Başlamayla Dengeye Ulaşma

Başarısızlık Paket kaybından sonra başlama veya yeniden başlama bağlantıdandır.
Korunma özelliğine başka bir bakış söylenebilir ki gönderici 2. paketi gönderebilmesi için
bilgilendirme şekil 2.1 de olduğu gibi kullanır. Alıcının bilgilendirme üretmeye başladığı
zaman ağdan daha hızlı bir veri paketi alınamayacaktır.

Şekil 2.1. Pencere akış kontrolü.

Yüksek bant genişliğindeki ağın gönderici ve alıcılarının şematik gösterimi daha

yavaş, uzun mesafeli bir ağ bağlanmıştır. Gönderici şu anda başlamış ve arkadan arkaya bir
pencere varmıştır. Bu ilk paketlerin bilgilendirilmesi göndericiye gelmek üzere sol hunide
bulunan ağızdaki dikey çizgi ve dikey boyutlar bant genişliğidir, yatay boyutlar ise zamandır.
Her parçalanmış kutu bir pakettir. Bant genişliği × zaman = bit’tir böylelikle kutunun alanı
paket boyutudur. Bitlerin sayısı paketler ağ boyunca gittiği sürece değişmez. Böylelikle paket
zamanda küçültülmüş daha küçük uzun bant genişliğine sıkıştırılır. Yoldaki en küçük
bağlantıda bp zamanı minimum paket boşluğunun genişliğini ifade eder. Paket hedefe
ulaşmak için şişe boynunu geçerken paketin iç aralığında değişim olmaz. Alıcının paket
aralığı br pp = dir. Alıcı işlev zamanı bütün paketler için aynıysa alıcıdaki bilgilendirmeler
arasındaki boşluk brr ppA == dir. Zaman çizelgesi bp paketler için yeterince büyük ise
bilgilendirmeler içinde yeterince büyüktür ki dönüş yolu boyunca bilgilendirme aralığı
korunur. Bu göndericideki bilgilendirme aralığı bs pA = dir. Şöyle ki: ilk gönderimden sonra
eğer paketler bilgilendirmenin cevabıyla birlikte gönderildiyse gönderici paketleri boşluğu
yoldaki en yavaş hatta paket zamanı ile örtüşecektir.

Protokol şekil 2.1 deki gibi kendi kendini zamanlamalıdır. Kendi kendini zamanlama
sistemi bant genişliğini otomatik artırır ve varyasyonları geciktirir ve geniş bir dinamik ararlık
meydana getirir. TCP 800 Mbit/sn taşıma kanalından 1200 bit/sn radyo bağlantısına kadar bir
aralıkta değişebileceği düşünülmesi önemlidir). Fakat aynı şey kendi kendine zamanlamalı
sistemi çalışması başlamasını zorlaştırdığı zaman kararlıdır. Data akışı meydana getirmek için
bilgilendirme olmalıdır fakat bilgilendirmeyi elde edebilmek içinde bilgi akışı olmalıdır
kaynak [4].

Zamanlamayı başlatmak, transferdeki verinin büyüklüğünü ölçülebilir artırmak için
yavaş başlama algoritmasını geliştirdik. Bunla birlikte kendimiz övüyoruz ki bu algoritmanın
tasarımı ustaca bir iş Uygulaması ehemmiyetsiz ve yeni durum değişkeni ve göndericideki
kodun 3 çizgisi şekil 2.2 deki gibidir.

 8

Şekil 2.2. Yavaş başlamanın kronolojisi.

Yatay yön zamandır. Devamlı zaman çizgisi bir dönüş zamanı parçasına bölünmüştür.

Sayfanın aşağısına doğru artan şekilde Dikey olarak istiflenmiştir. Gri numaralı kutular
paketlerdir. Beyaz numaralı kutular bilgilendirme mesajlarıdır. Her bir bilgilendirme geldiği
zaman 2 paket üretilir. Birisi bilgilendirme için yeni paketin gönderildiği paket, ikincisi
paketin sistemi terk ettiğini gösteren bilgilendirme ki sıkışıklık penceresini bir paketle bu
bilgilendirme açar. Şekil 2.2 açıkça gösterir ki zamanda logaritmik olarak pencereye bir paket
açma politikasına neden olduğunu gösterir. Eğer yerel ağ uzun mesafeli ağdan daha hızlıysa
bilgilendirmelerin iki paket aynı zamanda şişe boynuna varır. Bu iki paket yığın olarak birinin
en tepesinde görülür. Bunlardan birisi ağ geçidin çıkış sorgusunda bir boşluk kaplayacağını
gösterir. Bu kısa sorgu logaritmik olarak ağ geçidinde artar ve şişe boynunda w boyutundaki
paketlerin W/2 tampon kapasitedeki paketlere dönüşmesini gerektirir.

—Sıkışıklık penceresi ekle CWND hr bir bağlantı durumuna
—Kayıttan sonra başlarken ve yeniden başlarken, CNWD yi bir palet için belirle
—Her yeni veri için her bilgilendirme CNWD yi bir paket artırır.
—Gönderirken alıcının reklâm penceresini ve CNWD sini minimum değerde gönder

Aslında yavaş başlama penceresi artışı yavaş değildir. Zamanı WR 2log olarak alır r

dönüş zamanı olduğu zaman ve w paketlerin pencere boyutu olduğu zaman şekil 2.2 deki gibi
Bu performansın ihmal edilebilir etkisine sahip olmak için yeteri kadar çabuk pencere açar
manasına gelir. Hatta geniş bant genişliğindeki hatlar için ürünleri geciktirir ve algoritma
yoldaki maksimum mümkün olan en yüksek iki veri bağlantısını garantiler.

 9

Şekil 2.3. TCP nin yavaş başlamasız davranışı.

2 tane san 3/50 ve san 3,5 makine arasındaki TCP bağlantısının başlangıç verileri. Bu

2 san makine ip ağ geçidi tarafından farklı bağdaştırıcılara bağlı 230 KB/sn noktadan noktaya
bağlantıyı içermektedir. Bağlantının pencere boyutu 16 KB dır ve hat bant genişliği ağ
geçidinde 30 tane tampon paket mevcuttur. Gerçek yol 6 tane düğüm ihtiva eder öğle geçidi
bant genişliği sorgusu tam pencere için yeterli kapasitededir ama ağ geçidi sorgusu yalnız
başına yeterli değildir. Her bir nokta 512 byte paket içerir. X aksı gönderilen paketlerin
zamanıdır. Y aksı paket başlığındaki ardışık numaralardır. Noktaların yatay dizisi arka arkaya
paketleri işaret eder ve aynı y deki ve farklı x deki 2 nokta yeniden gönderim işaret eder.
Grafikteki arzı edilen davranış şeklin sol alt tarafından üst sağ tarafına doğru kısmen düzgün
bir hattır. Çizginin eğimi gerekli bant genişliğine eşit olabilir. Hiçbir şey bu durumda arzu
edilen davranışa benzemez. Çizgili kısım gösterir ki 20 KB/sn bant genişliği bu bağlantı için
mümkündür. Bu bant genişliğinin %35 i kullanılmıştır. Geri kalan kısmı tekrar gönderimler
için kullanılır. Hemen hemen her şey 54 KB den 58 KB ye kadar gönderilen 5 kez iletilir.

Yavaş başlamasız da tezat olarak 10 b/sn Eternet 56 KB/sn Arpanet ile görüştüğü
zaman ağ geçidi ile ilk ağ geçidi sıçraması yol bant genişliğinde 200 kez gelen paketlerin 8
nin patladığını görürüz. Bu paketlerin patlaması devamlı yeniden göndermenin sıklıkla kalıcı
bir başarısızlığına götürür.(Şekil 2.3 ve 2.4)

2.3. Eşitliği Korumak

Tur Zamanı: İyi bir tur zamanı tahmin edicisi yeniden gönderim zamanlayıcısının çekirdeği
ağır yüklü ortamlar hariç herhangi bir protokol uygulamasının önemli bir özelliğidir. Kaynak
[5] ve [6] de tipik problemde izah edildiği gibi sıklıkla yamanmıştır. Bir hata dönüşümü
tahmini Rσ dönüş zamanı r olsun. Sorgulama teorisinde biliyoruz ki r ve r nin varyasyonları
yüklenme ile çabuk bir şekilde yükselir. Eğer yüklenme p ise maksimum varan sayısı değeri R
ve Rσ formüldeki gibi ölçülür 1)1(−− p . Bunu somutlaştırmak için ağ %75 kapasite ile
çalıştığında Arpanet son nisanda çökmüş 16 faktör tarafından dönüş zamanı değiştiği tahmin
edilir. TCP protokol özellikleri alçak geçirgen filtreye dayalı olarak dönüş zamanını tahmin
etmeyi önerir.

MRR)1(αα −+←
Bu formülde R en yüksek RTT tahmini değeridir. Bu formülde M en yakın

bilgilendirme veri paketi tur zamanı ölçüm değeri ve α filtre kazanç sabiti tavsiye edilen 0,9

 10

değeri ile R tahmini değeri güncellendiği zaman yeniden gönderim zaman aşımı aralığı RTO
bir sonraki gönderilen veri paketinde βR olarak atanır.

Şekil 2.4. TCP yavaş başlama davranış başlangıcı.

Aynı koşullarda önceki Şekil 2.3 gibi aynı günde aynı ağ yolunda aynı tamponlama ve

pencere boyutu ile bunların dışındaki makinelerle 4.3 + TCP yavaş başlamayı kullanıyorlar.
Yeniden gönderimde hiçbir bant genişliği harcanmıyor. Ama 2 saniye yavaş başlamada
harcanıyor. Böylelikle bu bölümdeki efektif bant genişliği Şekil 2.3 dekinden 2 kat daha iyi
olarak 12 KB/sn oluyor. Daha önceki şekle bakmaksızın, işlemin eğimini 20 KB/sn ve işlemin
boyunu 2 saniye daha düşmesine etki ediyor. Örneğin bu işlem 1 dakika sürerse efektif bant
genişliği 19 KB/sn olur. Yavaş başlamasız efektif bant genişliği ile 7 KB/sn da kalır.

Şekil 2.5. RFS 793 yeniden gönderim zamanlayıcı performansı.

İşlem verisi iyi oluşturulmuş arpa net bağlantısındaki her paketinin dönüş zamanını

gösterir. X aksı paket numaralarıdır ki paketler ardışık numaralandırılmıştır 1 den başlar ve y
aksı paketin gönderiminden gönderenin aldığı bilgilendirmeye kadar geçen zamanı gösterir.
İşlemin bu parçasına kadar hiçbir paket kaybolmamış ve tekrar iletilmemiştir. Paketler nokta
şeklinde ifade edilir. Noktalı çizgiler sırayı daha kolay takip etmek için onları bağlar. Düz
çizgiler RFS 793 kuralına göre yeniden gönderim zamanlayıcının davranışını gösterir.

 11

RTT değişimi kaynak [7] de olduğu gibi β parametresi ile hesaplanır. β =2 değerinde
% 30 yüklemeye adapte edebilir. Bu noktadan sonra paketlerin geri gönderimi artarak
yüklemeye cevap verir. Dönüşümde sadece ertelenir. Bu ağı gereksiz iş yapmaya zorlar, bant
genişliğini boşa harcamaya paketleri çiftlemeye zorlar. Örneğin bu ateşe benzinle gitmeğe eş
değerdir. Biz ucuz bir dönüşüm metodu geliştirdik ve yeniden gönderim zamanlayıcı
sonuçları sahte yeniden gönderimleri özellikle elemine eder. Sabit değerler kullanmak yerine
β yaklaşımının güzel tarafı düşük yük de ve yüksek yükte performansı geliştirmesidir.
Özellikle yüksek gecikmedeki yollarda uydu bağlantıları gibi (şekil 2.5 ve 2.6) başka
zamanlayıcı hataları geri gönderimden sonra kaybolur. Eğer paket birden çok kere yeniden
gönderilirse yeniden gönderimler nasıl yer almalıdır? Transferin son noktasında ağın
bilinmeyen bir topolojisi gömülmüş ve bilinemez. Konuşmanın sayısının değişimi sabit
oluyor ve sadece bir şekil çalışan logaritmik düşüş düğümüne sahip ama bunun ispatı bu
yazının ispatıdır. Kaynak [1],[8],[9].

Şekil 2.6. Asıl ve değişen yeniden gönderim zamanlayıcısı performansı.

Yukarıda ki aynı veri ama sabit çizgi ek A da ki algoritmaya göre hesaplanmış yeniden
gönderim zamanlayıcısını gösterir.

İspatı idare etmek için ağın iyi bir yaklaşımda, doğrusal sistem olduğunu not edin. Bu
elementlerin tamamı doğrusal operatörler, gecikmeler, kazanç durumları ve benzerleri gibi
davranırlar. Doğrusal sistem teorisi söyler ki sistem kararlı ise kararlığı logaritmiktir. Bu
kararlı olmayan sistemleri logaritmik zamanlayıcı düşümleri gibi bazı logaritmik düşümler
kararlı hale getirilebilir.

2.4. Yolu Adapte Etmek ve Sıkışıklık Gidermek

Eğer zamanlayıcı iyi bir şekle sahip ise bazı şeyler güvenebiliriz ki gecikme paketlerin
kaybı veya zamanlayıcının kırılmamasındandır. Bu noktada bir şeyler bunun hakkında
yapılabilir. Paketler 2 sebepten dolayı kaybolabilir. İletim sırasında zarar görmüş olabilir veya
ağ sıkışmış olabilir ve yolun herhangi bir yerinde uygun olmayan tampon kapasitesine
sahiptir. Birçok ağ yolunda hasar oranı % 1 den küçüktür ki ağdaki sıkışıklıktan dolayı bu
medyana gelir. Sıkışıklık giderme stratejisi kaynak [10] de arz edildiği gibi 2 elamana
sahiptir. Son noktaya işareti iletebilir ki sıkışıklık meydana gelir veya meydana gelmek
üzeredir. Ve son nokta eğer sinyal alınmışsa sıkışıklığı düşürmek için bir politikaya sahip

 12

olmak zorundadır. İşaret alınmamışsa araçlaşmayı yükseltmek gerekir. Eğer paket kayıpları
hemen hemen her zaman sıkışıklıktan dolayı ve nerdeyse her zaman, zaman aşımı paket
kayıplarından kaynaklanırsa ağın sıkışıklığının işareti için iyi bir adaya sahibiz. Sıkışıklık
giderme stratejisinin başka bölümü, son düğüm hareketi DEK/İSO ve kendi TCP mize göre
neredeyse aynıdır ve ağın ilk sıralama zaman seri modeline göre direk olarak takip eder.
Maksimum sorgu uzunluğu tarafından ağ yükünün bazı uygun uzunluktaki sabit girişler
üzerinden ölçüldüğünü kabul edelim.

Sıkışmamış ağlarda! iL girişin yükü ise örnekleme zamanı ile karşılaştırıldığı zaman!

iL daha yavaş değişeceğini söyleyebiliriz. Örneğin

NLi =
Eğer n sabit ise ve ağ sıkışıklığı söz konusu ise bu sıfırıncı sıra modeli bozulur. En

yüksek sorgu uzunluğu 2 terimin toplamı olur. Bu hesapların yukarıdaki n değeri yeni trafiğin
maksimum varış değeri için ve trafik parçası için yeni hesap terimi en son geliş zamanından
ve varış zamanı trafik etkisine kadardır.

1−+= ii LNL γ
Taylor seri açılımın ilk 2 terimi yukarıdaki formüldür. Sonuç olarak 3 terime ihtiyaç

duyulacağının bir sebebi vardır. Ağ sıkışık olduğu zaman γ büyük olmalıdır ve sorgu boyu
logaritmik olarak artan şeklide başlamalıdır. Sorgu büyüklükleri çok hızlı sıkıştırıldığında
trafik kaynağında sadece sistem kararlı olur. Pencere büyüklüğünü ayarlamakla pencere
bağımlı protokol kaynak kontrolüne yüklenebilir. W gönderici politikası ile sonlanır.
Sıkışıklıkta:

)1(1 <= − ddWW ii
Örneğin pencere boyutunun çoklu aktif düşümü sıkışıklık daimi kaldığında zaman

çizelgesinde logaritmik düşme meydana gelir. Eğer sıkışıklık yoksa γ sıfır civarında
olmalıdır ve yük yaklaşık sabit olmalıdır. Ağ bildirimleri düşmüş paketler tarafından talep
aşırı olduğu zaman bağlantı daha az paylaşım kullanıyorsa hiçbir şey göndermez. Bağlantı
hali hazırdaki limitleri bulabilmek için kendi bant genişliğini yükseltmek zorundadır örneğin
başkası ile yolunuzu paylaşabilirsiniz ve her bir elde edilebilir bant genişliğinde bir pencerede
birleşir. Eğer kapanırsa bant genişliğinin %50 si zayi olur. Yalnızca pencere boyutunuz
büyümediği zaman büyüme politikası ne olmalıdır? İlk düşünülen simetrik, çoklu aktif
artırım, daha uzun zaman sabiti imkânı, dbbWW ii *11,1 ≤<= − hatadır. Bunun için
analitik sebep bu gerçeklerle yapmaktır ki ağı doyuma götürmek kolaydır. Ama düzeltmek
zordur. Bu yüksek tahmin edilmiş bant genişliği maliyetlidir. Ama logaritmik olarak zaman
sabiti hemen hemen ihmal edilebilir. Pencere boyutundaki sabit, küçük değişiklikler yapmakla
tahmin etmeden en iyi yükselme politikasını belirleyeceğiz. Sıkışma olduğu zaman şu eşitlik
geçerlidir:

)(max1 WuuWW ii <<+= −
Hat bant genişliği, üst protokol örneğin en geniş yüklenmemiş yol için makul

penceresi maxW eklenebilir artırımdır. Çoklu aktif düşüş politikası tavsiye edilir ve TCP de bu
politika uygulanır. Bu iki uygulamanın tek farkı d ve n sabitlerinin seçimidir. Burada 0,5 ve 1
değerinin kullanıyoruz. Yazının devam eden kısmında bütün analiz yer almaktadır. Sıkışıklık
kontrol algoritması için bu konu önemsiz gibi gözükebilir ama değildir. Yavaş başlama gibi 3
kot çizgisi vardır. 1-CWND ile Herhangi bir zaman her aşımında hali hazırdaki pencere
boyutunun yarısını yap (bu çoklu aktif düşümdür). 2- yeni veri için bilgilendirme CWND yi
1/* CWND kadar artırır, bu eklenebilir artırımdır. 3- gönderirken alıcı reklâm penceresini ve
CWND yi minimum gönder. Bu algoritmanın sıkışıklık giderme olduğunu not edin. Daha

 13

önceden tanımlanan yavaş başlamaya dâhil değildir. Sinyal karışıklığını paket kaybettiğinde
yeniden başlamaya sebep olacaktır. Yukarıdakilere ek olarak yavaş başlama nerdeyse hemen
hemen gerekli olacaktır. Ama her sıkışıklık giderme ve yavaş başlamada zaman aşımı
tarafından tetiklenir ve sıkışıklık penceresini artırır. Bunlar sıklıkla karışmıştır. Bunlar aslında
tamamen farklı nesneler ile bağımsız algoritmalardır. Farkı anlayabilmek için iki algoritmada
ayrı olarak ele alınmıştır. Fakat pratikte beraber uygulanmalıdır. Ek B de yavaş başlama
sıkışıklık giderme algoritmalarını beraber tanımlanmıştır. Şekil 2.7 den 2.12 ye kadar
sıkışıklık gidermeli ve gidermesiz TCP bağlantılarının davranışlarını gösterir. Sıkışıklığı
benzetmek için Test şartlarına rağmen örneğin 16 KB pencereler iletilebilir. Bu test senaryosu
pratiktekinden çokta uzak değildir. Arpanet IMP uçtan uca protokolü herhangi ağ geçidi
çiftleri arasında 8 paketin gönderilmesine izin verir. Varsayılan 4,3 BSD boyutu 8 pakettir (4
KB). Bu ardışık gönderme Barkaly deki herhangi 2 kaynakta ve bitteki herhangi iki kaynakta
UCB-MİT IMF yolunda ağ kapasitesini aşabilir ve gösterildiği gibi davranabilir. Kaynak [11],
[12].

2.5. Ağ Geçidi Taraflı Sıkışlık Kontrolü

İletimin son noktasındaki algoritma ağ kapasitesinin aşmadığını garantiler. Bunlar bu
kapasitede uygun paylaşımı garantilemez. Sadece ağ geçitlerindeki akışların sıkışıklığında
paylaşımları kontrol etmek ve uygun yerleri kontrol etmek için yeterli bilgi var mı? Bit
sonraki adımla ağ geçidinin sıkışıklık belirleme algoritmasını görürüz kaynak [7].

Şekil 2.7. Çoklu iletişim test kurulumu.

Çoklu ardışık TCP iletişim paylaşımı şişe boynu bağlantılı etkileşimi bu kurulumla

test edilecek. 1 MB transfer (2048–512 byte veri transfer paketleri) 3 saniyede başlatılmıştır.
LBL deki 4 makineden ayrı olarak UCB deki 4 makineye her makinede ki 1 iletim çifti
yukarıda noktalı olarak gösterildiği gibi bütün trafik 234 KB/sn İP yönlendiricisine
bağlanarak gitmektedir. LBL deki Cısam dan UCB deki Cartan İP yönlendiricisine mikro
dalga bağlantı sorgusu 50 paketi tutabilir her bir bağlantı 16 KB (32-512 byte paket)
pencereye verilir. Bu herhangi iki bağlantı mümkün olan tampon lamayı aşabilir ve 4 bağlantı
% 160 oranında sorgu kapasitesini aşabilir.

Bu algoritmanın amacı mümkün olduğunca kısa süre son noktaya sinyali

göndermektir. Ama ağ geçidinin trafiksiz kalacağı kadar erken değil. Paket düşümlerini
sıkışıklık sinyali olarak kullanmaya devam etmeyi planladığımız zaman ağ geçidi kendi

 14

kendini yanlış davranmaktan kurtarır. Sunucu basitçe düşmüş paketlere sahiptir. Paketlerin
birden çok uygun bağlantı kullanmaya çalıştığını ağ geçidi söyler. Bu son nokta algoritmasına
benzer. Ağ geçidi algoritması sıkışıklık gidermeyle son nokta değiştirilmese dahi sıkışıklığı
azaltmalıdır. Ve düğümler en az sayıdaki paket düşümü ve uygun paylaşım bant genişliğine
sahip olacaktır. Sıkışlık giderme uygulandığında

Logaritmik olarak sıkışıklık arttığında erken tanımlamak önemlidir. Eğer erken
tanımlanmışsa göndericinin küçük artırımlarıyla pencereler bunu tamir eder. Bunun dışında
çok büyük artırımlar ağa yeterli yedek kapasiteyi vermek için gereklidir. Ama trafiğin bir
anda patlama eğilimi gerçekçi planlama saçma olmayan bir problemdir. Jain sorgu yeniden
oluşturma noktaları arasındaki azami değere dayanarak bir şekil amaçlamıştır. Bu iyi bir
patlama filtrelemesine dayanır. Ama yüksek yük altında veya uygun 2. Sıralı dinamikte
dönüşüm problemi olduğunu düşünebiliriz. Armaks modelindeki dönüş zamanı / sorgu
uzunluğu tahminindeki daha önceki çalışmalarımız gibi kullanmayı planlarız. Kaynak [13].

Şekil 2.8. Çoklu ardışık TCP ler sıkışıklık gidermesiz.

4 ayrı TCP haberleşmesinden sıkışıklık giderme yol üzerinde şekil 2.7 üzerinde

gösterilmiştir. 11 000 paketin 4000 i yeniden iletim için gönderilmiştir (örneğin paketlerin
yarısı yeniden iletilmiştir). Bağlantı bant genişliği 25 KB/sn olduğunda her bir 4 haberleşme 6
KB/sn la iletilmelidir. Bunların dışında bir haberleşme 8 KB/sn a sahiptir. İkisi 5 KB/sn bir
diğeri 0,5 KB/sn ve 6 KB/sn kaybolmuştur.

Başlangıç sonuçları bu ilerlemenin yüksek yüklemede başarılı çalışacağını tavsiye
eder, trafikte İkinci sıralı etkilerden muaftır ve her saniye kilo paketleri yeteri kadar
yavaşlatmaz.

 15

Şekil 2.9. Sıkışıklık gidermeli çoklu ardışık TCP ler.

Şekil 2.7 de gösterilen yol üzerinden sıkışıklık giderme kullanılarak 4 farklı TCP

iletişimi gerçekleştirilmiştir. 8281 paketin 89 u yeniden iletim için gönderilmiştir. Örneğin
paketlerin %1 yeniden gönderilmek zorunda kalınmıştır. İletişimlerin 2 tanesi 8 KB/sn ve 2
tanesi 4,5 KB/sn dır. Örneğin bütün bağlantı bant genişlikleri şekil 2.11 de hesaplanmıştır.
Yüksek ve düşük bant genişliği göndericileri arasındaki fark alıcıdan kaynaklanır. 4,5 KB/sn’
lik göndericiler 4,3 BSD lik alıcılarla haberleşir. Bu ACK nin %35 penceresinin solmasına
veya 200 mili saniye geçmesine kadar gecikir. Örneğin 5 ya da 7 paket ACK gecikmesi
maksimum değerde ise. Bu göndericinin her bir bilgilendirmede 5 ile 7 paket patlamanın
iletilmesi manasına gelir. 8 KB/sn göndericiler 4,3 + BSD alıcılarla haberleşirler bu
bilgilendirmenin en fazla bir paketini geciktir. Bilgilendirmenin saat kuralından dolayı yazan
minimum bilgilendirme frekansının diğer bütün paketlerde olmasına inanır. Örneğin gönderici
en son 3 paketi iletebilir: kayıp olma ihtimali aniden yükselir. Göndericinin Eski tip alıcılar
ile konuşması 3 kez kayıp değeri yeniden gönderim beklemesinin daha fazla zaman
harcayacağı anlamına gelir ve sıkışıklık gidermeden dolayı en büyük pencere boyutu daha
küçülür (Daha yüksek kayıp değerleri 1,8 veya 0,500 üçe katına çıkabilir).

Şekil 2.10.Yeni ve eski TCP ler tarafından kullanılan toplam bant genişliği.

 16

Sıkışıklık giderme kullanılmadan 4 adet gönderici tarafından kullanılan toplam bant
genişliğini ince çizgi gösterir. Maksimum 5 saniye olan değerler ve 25 KB/sn bağlantı bant
genişliğine normalleştirilir. Kablodaki göndereceğinden %25 daha fazla maksimum değerde
göndericinin gönderebileceğini not edin. Kalın çizgi sıkışıklık giderme ile gönderici için aynı
verileri içerir. Her TCP nin doğru pencere boyutunda küçük başlamadan dolayı bulduğunda
İlk 5 sn için veri düşüktür. Sonra 20 sn civarında sıkışıklık kontrolü ayarlamadan dolayı ani
artış meydana gelir. Kalan zamanda gönderici kanalın kablonun bant genişliğinde hareket
eder (110 sn civarındaki aktivasyon bant genişliğidir). 80 sn civarındaki aktivite şekil 2.9
deki düz spotun yansımasıdır.

Şekil 2.11. Yeni ve eski TCP lerin etkili bant genişliği.

Şekil 2.10 eski TCP lerin şişe boyunu bant genişliğinden % 25 den fazla kullandığını

göstermiştir. Bu şişe boynu sorgusu dolduğu zaman göndericilerin % 25 i çıkarılır. Eğer bu
çıkarım yeniden iletilmişse 25 KB/sn nin tamamı bağlı bant genişliğine iletilir. Örneğin
onların davranışları sosyal olmayabilir ama kendi kendini yıkıcı değildir. Ama şekil 2.8 de
bağlı bant genişliklerinin % 25 civarı sayılmamıştır. Şimdi her 5 sn için girişlerin toplam veri
bilgilendirmelerini maksimuma getirdi, bu etkili veya iletilmiş bağlantının bant genişliğini
verir. İnce çizgi yine eski TCP yi gösterir. Bağlantı bant genişliğinin % 75 veri için kullanılır.
Yeniden iletilme ihtiyacı duyulmayan yeniden iletim paketleri tarafından hatırlatmalar
kullanılmalıdır. Kalın çizgide yeni TCP ler için alınmış bant genişliğini gösterir. Aynı yavaş
başlama vardır ve bağlantı bant genişliğinde operasyonu uzun dönem boyunda takip eden bir
geçici durum başlar.

 17

Şekil 2.12. Pencere ayarlama detayları.

En uzun zaman 5 sn olduğundan dolayı eski TCP verilerinde tepeleri yumuşatmak

gerekir. Sıkışıklık giderme pencere politikası şekil 2.10 da ve 2.11 de yapılması zordur.
Burada 3 sn süreliğine sıkışıklık kontrolü için veri bilgilendirmeyi etkili bir şekilde
gösteriyoruz. Paket düşürüldüğü zaman gönderici pencere dolana kadar gönderir. Sonra
yeniden gönderimin zaman aşımı dolana kadar durur. Düşen paketten sonra alıcı
bilgilendirme verisini gönderemediğinde bu çizimden büyüklüğü gönderenin pencere
büyüklüğüne eşit olan negatif tepe görmeyi umarız. Eğer bir sonraki girişte yeniden
gönderim gerçekleşirse aynı büyüklükteki pozitif tepe görmeyi umarız. Bu tepelerin
yüksekliği gönderici tepe boyutunun direk ölçümüdür. Veri açıkça 15, 33 ve 57. saniyelerde 3
olayı da gösterir ve pencere boyutu logaritmik olarak düşer. Noktalı çizgiler 6 pencere
boyutunda kareye dolar bu olayda belirtildiği gibi dolma zamanı değişkeni 28 sn dir. Ağ
geçidindeki uzun zaman sabiti sıkışıklık giderme algoritmasının eksikliğinden kaynaklanır.
Ağ geçidinde çalışan düşme algoritması ile zaman sabiti 4 sn civarında olur.

2.6. RRT ve Varyasyon Dönüşüm İçin Hızlı Algoritma

2.6.1. Teori

Asıl dönüş zamanı yaklaşımı için RFC 793 algoritması tahmin edici sınıfın en basit bir
örneğidir. Geçen 20 yıl zarfında bu algoritma yaklaşımları kontrol teorisini
devrimselleştirmiştir kaynak [14]. RTT nin (Run Trip Time – gidiş-dönüş zamanı) yeni ölçüm
değeri m verilmiştir. TCP aşağıdaki formülle maksimum RTT yaklaşımına güncellenmiştir.

gmga +−←)1(
Bu formülde g kazanç demektir ve 0 ile 1 arasındadır, sinyalin gürültü gücüne

bağlıdır. Bu daha hassas yapar ve daha hızlı hesapla sağlar. Aşağıdaki formülü elde
edebilmek için g ile terimleri çarpıp yeniden sağlarsak

)(amgaa −+←
Bir sonraki ölçümün tahmini a değeri olarak düşünelim (m-a) bu tahmindeki hatadır.

Ve yukarıdaki formül tahmin hatasındaki çeşitli parçalar ve eski tahmin değerine dayana yeni
bir yaklaşım yapılabileceğini söyleriz yukarıdaki formülle. Tahmin hatası iki elemanın
toplamıdır. Birincisi ölçümdeki gürültüden kaynaklanan rasgele, tahmin edilemeyen hata

 18

ikicisi a nın yanlış seçiminden kaynaklanan hatalar. Rasgele hata rE yi çağırır ve eE yaklaşık
hatasına

er gEgEaa ++←
eşittir. egE terimi a yı verir. Sağ taraflındaki yükselme rgE nin rasgele taraftaki yükselmeyi
verir. Birçok örnekten sonra rasgele vuruşlar birbirini iptal eder. Bu algoritma doğru
maksimum bir noktada birbirine yaklaşmaya mail eder. Fakat g bir uzlaşmayı tasvir eder. Biz
büyük g değeri istedik eE yi etkilemeyecek şekilde ama küçük rgE den kaynaklanan

hasarları azaltması için. eE terimi gerçek maksimum değere gittiğinde g nin hangi değerini
kullandığınız önemli değildir. Hemen hemen her zaman daha büyük değerler yerine daha
küçük değerleri kullanmak daha iyidir. Tipik olarak kazanç 0,1 ile 0,2 arasında seçilir.
Kazancı toplamadan önce ham verinize uzun bir bakış için iyi bir fikirdir.
Açıktır ki doğru averaj ve anın standart sapması arasın da a rasgele olarak salınır. Aynı
zamanda a logaritmik olarak doğru averaj değerinde birleşmeye değerinde 1/g zaman
sabitinde. Böylelikle daha rgE kararlı a yı verir. Doğru averajı elde etmek için daha uzun
zaman harcanır.
M deki farklı ölçüm değerlerini almak istersek TCP yeniden gönderim zamanlayıcısına iyi bir
değer hesaplamasını söyleyin. 2σ değişimi kalıcı bir seçimdir. Çünkü matematiksel bazı
özellikleri vardır. Değişimi hesaplamak (m-a) nın karesini almayı gerektirir. Böylelikle bunun
için bir tahmin edici bir tam sayı değeriyle çarpılmasını gerektirir aynı zamanda birçok
uygulama aynı ünitede ve a ve m deki gibi değişimi ister. Böylelikle değişimin karekökünü
kullanmak için zorlanırız. Değişim ölçümü asıl tahmin veya sapma hatasını hesaplamak için
kolaydır. (am −) nın ortalamasının maksimumu aynı zamanda

() 2222 σ=−≥−= ∑∑ amammdev
ilk sapma standart sapmadan daha tutucu yaklaşım değişimde olduğu zaman.
Sdev ve mdev arasında basit bir ilgi vardır genellikle örneğin tahmin hatası normal
dağıtılmışsa sdevmdev 2/2 π= dir. Sdev den mdev’e gitmenin faktörü)25.12/(≈π
civarındadır. Mdev sdev in iyi bir yaklaşık değeridir ve hesaplaması daha kolaydır.

2.6.2. Pratik

Hızlı tahmin ediciler ortalama a için ve asıl sapma v için verilmiş olan ölçüm m
yukarıdan takip eder. Her tahmin edici RFS 793 algoritmasının 2 durumun olduğu anlamına
gelir.

)(vErrgvv
gErraa
amErr

−+←
+←
−≡

daha hızlı hesaplamak için yukarıdaki eşitlikl tam sayı aritmetiğinde olmalıdır ama eşitlik
g<1 parçasını içerir böylelikle bazı ihtiyaç duyulan ölçümler her şeyi tam sayı değeri olarak
tutmaya ihtiyaç duyar. İkin karşılıklı kuvveti örneğin ng 2/1= (bazı n ler için) genel olarak
iyi bir seçimdir. Ölçüm öteleme ile uygulanabildiğinde: ½ ile çarpmak aşağıdaki eşitliği verir.

)(22
22

vErrvv
Erraa

nn

nn

−+←
+←

 19

Hatayı minimize etmek için a ve v nin, sa ve sv nin ölçülmüş versiyonlarını ölçülmemiş

versiyonlarına göre tutmak gerekir.
8
1125. ==g ’de tutmak c de bunu belirtmek

;
);3(

msa
sam

=+
>>=−

;
);3(

;
)0(

msv
svm
mm
meger

=+
>>=−

−=
<

a ve v için aynı kazancı kullanmak gerekli değildir. RFS 793 de 0,1 e yaklaşmak tavsiye
edilir. Zamanlayıcıyı güçlendirmek için cevabı daha hızlı getirmek için RTT yi değiştirmek
için v ye daha geniş kazanç vermek iyi bir fikirdir. Kısmen pencere gecikmelerinden dolayı
zamanlayıcıyı güçlendirmek ve cevabı daha hızlı getirmek için RTT yi değiştirmek ve v ye
daha geniş kazanç vermek iyi bir fikirdir. Özellikle pencere gecikmesinin yanlış seçiminden
dolayı pencere boyutunun çarpımı RTT yapısının tam değeri vardır. Bunu filtrelemek için a
tahmincisinde 1/g en azından pencere boyutu kadar geniş ve 1/g v tahmincisinde pencere
boyutundan daha küçük olabilir.

0.25 kazancını kullanarak sapmada ve yeniden gönderim zamanlayıcısı hesaplamada,
RTO a+4v olarak son zamanlayıcı kodu aşağıdakine benzer.

;
);3(

msa
sam

=+
>>=−

;)2(
;

);2(
;
)0(

svsvrto
msv
svm
mm
meger

+>>=
=+

>>=−
−=

<

Sıklıkla bu hesaplama yaklaşık RTO ya doğrulanır. sa kesmesinden dolayı m-a yı
hesapladığında, sa bir sonraki değere yuvarlanmış doğru asıl değere yaklaşır. Sv de buna
benzer şekildedir. Böylece ortalamada her birinde eğimin yarısı vardır. RTO hesaplaması bu
değerin yarısına yuvarlanmalıdır ve saatin yaklaşımı ile rasgele faz göndermek için hesaba bir
bölme eklemeye ihtiyacı vardır. Böylece 1.75 bölme eğimi yardımı 4v de yaklaşık olarak
hesaplanan yarım bölme yuvarlanması + 1 bölme faz doğrulamasına eşittir.

2.7. Sıkışıklık Giderme Algoritması İle Yavaş Başlamanın Karışımı

Gönderici sıkışıklık kontrolü için iki algoritma arasında atlamak da iki durum
değişkeni gönderici tutar: yavaş başlama/ sıkışıklık pencere, CWND ve eşik boyutu, ssthresh.
Göndericinin çıkış rutini her zaman CWND nin minimumunu gönderir ve pencere alıcı
tarafından sunulur. Zaman aşımında hali hazırdaki pencere boyutunun yarısı ssthresh de kayıt
edilir. Bu sıkışıklık giderme algoritmasının çoklu aktif düşümünün parçasıdır. Daha sonra
CWND bir pakete e ayarlanır bu yavaş başlamayı başlatır. Yeni veri bilgilendirildiğinde
gönderici

 20

;/1
deg

;1
)(

cwndcwnd
ilse

cwnd
ssthreshcwndeger

=+

=+
<

Böylelikle yavaş başlama Sıkışıklık giderme güvenli operasyon noktası olduğunu
düşündüğünde biran önce başlar. Daha sonra sıkışıklık giderme biter ve yolda mümkün olan
daha büyük bant genişliğinin olmasını sorgulamak için yavaşça pencere boyutunu artırır. Not
edin ki eğer CWND tam sayı ölçeklendirilmediğinde ise yukarıdakinden başka durumlar
yanlış işler. Bir paket parçası örneğin eğer maksimum pencere yol için w paketi ise CWND 0
ile w aralığını kapsamalıdır en azından 1/w çözümü ile. Paketlerin gönderimi maksimum
iletim biriminden yol için daha küçük olduğunda etkinliği azaltır. Uygulayıcı dikkat etmelidir
ki parçalı bölmeli CWND küçük paketler de gönderilimi sonuç vermez. Nedensel TCP
uygulamasın da içeren saçma pencere giderme kodu küçük paketlerden korumalıdır. Ama bu
noktada dikkatlice kontrol edilmelidir.

2.8. Tur Zamanı İle Pencere Ayarlama Etkileşimi

Bazı TCP bağlantıları çok düşük hızlarda olduğu zaman özellikle örneğin çevirmeli ağ
yeniden iletim zamanı ve sıkışıklık pencere ayarlaması arasında bir etkileşim meydana
getirebilir. Ağ yolları 2 sınıfa bölünebilir. Gecikme baskın, sakla ve ilet ve/veya aktarma
gecikmeleri RTT yi belirler. Ve baskın bant genişliğinde bağlantı bant genişliği ve ortalama
paket boyutu RTT yi belirler baskın bant genişliğinde bant genişliğinin yolu ve sıkışıklık
giderme pencere artımı wΔ RTT yi artırır.

b
wR Δ≈Δ

Eğer RTT değişkeni yolu V küçük veri RΔ 4V yi aşabilir. Yeniden gönderim zaman aşımı
meydana gelir ve birkaç turdan sonra SSTHRESH küçük değerlerle biter. RTO hesaplaması
yavaş başlama sırasında çok büyük yeniden gönderim zaman aşımı tiplerinden korunmak için
tasarlanmıştır. Özellikle RTT değişkeni ve RTO hesaplamasında 4 ile çarpılmıştır. Şimdi
açıklanacak sebep yüzünden; yeniden gönderim i, RTO i yavaş başlamasının sonunda yeniden
gönderim zaman aşımı hesaplanmışsa bir sonraki dönüşte asıl RTT eşit ya da küçüktür.
Gecikmenin en kötü durumu pencereden kaynaklanan durumdur. Her bir çevrimde R ikiye
katlar (pencere boyutu ikiye katlandığı zaman) buda ii RR 21 =+ (iR yavaş başlamanın i.
seferinin RTT değeridir) ama

2/1 iiii RRRV =−= −
ve

1

2
3

4

+>
>
=

+=

i

i

i

iii

R
R
R

VRrto

bu durumda yeniden gönderim zaman aşımı meydana gelmez. Pencereden büyümesinden
dolayı yeniden gönderim zaman aşımı sıkışıklık giderme pencere artımından dolayı meydana
gelebilir. Sadece paket artırımı pencerede değişebilir değişebildiğinde. Böylelikle paket
boyutu s için birçok s–1 paketleri olabilir. Herhangi bir v artımı için yeteri kadar uzundur en
son pencere artımımdan dolayı hiçbir şeyi bozmaz ama bu problem baskın bant genişliği

 21

yolundan farklı olarak. Artırımlar 12 paketten daha fazla olduğunda yol için saçma büyük bir
pencereye uygulanır. Asıl sapma tahmini v’nin filtre zamanın bozulma zamanı kazancı RTO
hesaplamasındadır. Burada bir kişi bu zaman aşımını göz ardı etmelidir ve onların etkileri yol
için daha uygun bir şeyler olması için basitçe pencereyi düşürecektir.

Bunla birlikte yavaş başlama ve sıkışıklık giderme bu tür yeniden gönderimleri
tetiklememek için tasarımlanmıştır. Daha yüksek seviye protokoller ile etkileşim sıklıkla
şöyledir: uygulama protokolleri SMTP gibi görüşme açısını vardır. Küçük paketler durup ve
bekleyip değişebilir, örneğin bütün mail mesajları ve haberlerin metinleri gönderildiği zaman
veri transferi ile devam edebilir. Maalesef görüşme sıkışıklık penceresini açar böylelikle veri
transferinin başlangıcı ağa yavaş başlama olmadan birkaç paket düşer. Ve baskın bant
genişliği yolunda RTO dan daha hızlı bu paketler sonucunda RTT artımı kaydedilebilir.
Yavaş başlama eğer TCP uygulaması faz değişimini tespit ederse aynı zamanda bu problemi
giderir. Bu algılama basittir çünkü en azından bir tur zamanı için hiçbir şey
göndermediğimizden dolayı hat boştur. RTT yi görmek için diğer yol son gönderilenden
sonra hattı boşaltmak için geçen zamandır. Böylelikle en azından bir RTT için hiçbir şey
gönderilmemişse yavaş başlamayı güçlendirmek için bir paketi bir sonraki gönderim CWND
yi ayarlar. Örneğin bağlantı durum değişkeni lastsnd son paketin gönderildiği zamanı tutarsa
takip eden kod TCP çıkış rutininde erken görünmelidir:

;1
)(
);_max_(int

=
>−

==

cwnd
rtolastsndnowidleeger
unasndsndidle

eğer iletimde hiçbir veri yoksa gönderilen bütün veriler bilgilendirilmişse sonuçsuzluk
doğrudur. Böylece eğer “iletimde hiçbir şey yoksa ve uzun süredir hiçbir şey göndermemişse
yavaş başlama”. Bizim deneylerimiz ister hali hazırdaki RTT varsayımı, ister RTO yaklaşımı
uzun süre için kullanılabilir.

2.9. Pencere Ayarlama Politikası

Düşürme terimi olarak ½ yi kullanmanın sebebi 7/8 e karşı olarak 15 de, aşağıdaki el
dalgası vardır: paket düştüğünde ya başlıyor olursunuz veya düşüşten sonra yeniden başlıyor
olun ya da değişiklik göstermez gönderim durumunda olursunuz. Eğer başlarsanız siz
bilirsiniz ki hali hazırdaki pencere boyutunun yarısı çalışır. Örneğin pencerenin paketlerinin
değeri kayıpsız değiştirilmiştir ki yavaş başlama bunu garanti eder. Bu sıkışıklık ta pencereyi
en geniş boyutuna ayarlarsınız ki boyutunu yavaşça artırarak çalışırsınız. Eğer bağlantı
şaşmadan çalışıyorsa ve bir paket düşmüşse yeni bir bağlantının başladığı muhtemeldir ve
bant genişliğinizin bir kısmını alır. Genellikle p<0.5 ile ağımızı çalıştırırız. Böylece olasıdır ki
bant genişliğini paylaşan iki iletişim açıkça vardır. Örneğin pencerenizi yarıya düşürmelisiniz
çünkü bant genişliği sizin için yarıya düşmüştür ve aynı bant genişliğini paylaşan ikiden daha
fazla iletişim varsa pencerenizi yarılamak muhafazakârdır. Bununla birlikte iki değişikliğin
faktörü pencere boyutunda büyük performans cezası olarak görülür. Sistem terimlerinde
maliyet ihmal edilebilir: sadece geniş sorgu oluştuğunda hali hazırda ki paketler düşürülür.
İSO IP ile dahi “sıkışıklık tecrübeli” bit göndericileri güçlendirmek için ve pencereleri
düşürmek için sorguya takılırız çünkü sorguyu dağıtmak için aşırı olmayan bant genişliği
mümkün olmasıyla şişe boynu %100 kapasiteyle çalışmaktadır. Eğer paketler karışmışsa bazı
göndericiler 2 RTT için kapanır. Açıkça sorguyu boşaltmak için zamana ihtiyaç duyulur eğer
bu göndericiler doğru pencere boyutu ile yeniden başlarsa sorgu yeniden oluşmaz. Sistem
herhangi bir şişe boynu bant genişliği kaybetmeden gecikme minimuma düşer. Bir paket
artırımı 0.5 azaltışından daha az tatmin edicidir. Aslında bu kesinlikle hemen hemen çok
geniştir. Eğer algoritma w pencere boyutunu birbirine yaklaştırırsa O(2w) paketleri

 22

eklenebilir artırım politikası ile düşümler arasında vardır. %1 den küçük değerde ortalama
düşüşler için vururuz ve buluruz ki arpa nette dört ağın test ettiğimiz en kötü durumu,
pencereler 8-12 pakete yaklaşır buda bir paketin %1 artırımı için ortalama düşüş değerine
götürür. Ama ağ geçidinde hiçbir şey yapmadığımız zaman pencere maksimuma yaklaştırırız.
Ağ geçidi paketleri düşmeden kabul edebilir.

KAYNAKLAR
 [1]. Karn, P., and Partridge, C. Estimating round-trip times in reliable transport protocols.

InProceedings ofSIGCOMM '87 (Aug. 1987), ACM.

[2]. Borrelli, R., AND Coleman, C. Differential Equations. Prentice-Hall Inc., 1987.

[3]. Luenberger, D. G. Introduction to Dynamic Systems. John Wiley & Sons, 1979.

[4]. Jain, R. A timeout-based congestion control scheme for window flow-controlled
networks. IEEE Journal on Selected Areas in Communications SAC-4,7 (Oct. 1986).

[5]. Zhang, L. Why TCP timers don't work well. In Proceedings ofSIGCOMM '86 (Aug.
1986), ACM

[6]. Jain, R. Divergence of timeout algorithms for packet retransmissions. InProceedings
Fifth Annual International Phoenix Conference on Computers and Communications
(Scottsdale, AZ, Mar. 1986).

[7]. Clark, D. Window andAcknowlegement Strategy in TCP. Arpanet Working Group
Requests for Comment, DDN Network Information Center, SRI International, Menlo
Park, CA, July 1982. RFC-813.

[8]. Edge, S. W. An adaptive timeout algorithm for retransmission across a packet
switching network. In Proceedings ofSIGCOMM '83 (Mar. 1983), ACM.

[9]. Hajek, B. Stochastic approximation methods for decentralized control of multiaccess
communications. IEEE Transactions on Information Theory IT-SI, 2 (Mar. 1985).

[10]. Jain, R., Ramakrishnan, K., and Chiu, D.-M. Congestion avoidance in computer
networks with a connectionless network layer. Tech. Rep. DEC-TR-506, Digital
Equipment Corporation, Aug. 1987.

[11]. Aldous, D. J. Ultimate instability of exponential back-off protocol for acknowledg-
ment based transmission control of random access communication channels. IEEE
Transactions on Information Theory IT-33, 2 (Mar. 1987).

[12]. Nagle, J. Congestion Control in IP/TCP Internetworks. Arpanet Working Group
Requests for Comment, DDN Network Information Center, SRI International, Menlo
Park, CA, Jan. 1984. RFC-896.

[13]. Feller, W. Probability Theory and its Applications, second ed., vol. II. John Wiley &
Sons, 1971.

[14]. Ljung, L., and Soderstrom, T. Theory and Practice of Recursive Identification. MIT
Press, 1983.

 23

BÖLÜM 3

GÖZDEN GEÇİRİLMİŞ VEGAS

 TCP VEGAS ın yaratıcı teknikleri son yıllarda birçok tartışmanın konusu olmuştur.
Birçok çalışma TCP VEGAS ın TCP RENO ya kıyasla daha iyi performans sağladığını ortaya
koymuştur. Ancak bu iki teknikten hangisinin performans kazanımlarından tamamen sorumlu
olduğu henüz bilinmemektedir. Bu çalışma TCP VEGAS ın ayrıntılı bir performans
değerlendirmesini sunmaktadır. TCP VEGAS ı çeşitli yeni mekanizmalara ayrıştırarak ve bu
mekanizmaların her birinin performansını değerlendirerek şunu gösterdik: performans
kazanımı esas olarak, TCP VEGAS ın yavaş başlangıç ve tıkanıklık giderilmesi için olan yeni
teknikleri sayesinde başarılmaktadır. TCP VEGAS ın yaratıcı tıkanıklıktan kaçınma
mekanizmasının ise sonuç üzerinde çok az bir etkisi olduğunu gösterdik. Dahası, bu
mekanizmanın bazı problemler sergilediğini bulduk.

3.1. Giriş

 TCP VEGAS TCP için ilk kez Brakmo tarafından sunulan yeni bir tasarımıdır. TCP
VEGAS geliştirilmiş bir yeniden iletim stratejisini içerir. Bu strateji iyi parçalanmış tur
ölçümlerine ve yavaş-başlangıç ve tıkanıklıktan kaçınma esnasında tıkanıklık tespiti için
oluşturulan yeni mekanizmalara dayanır. Yaratıcı teknikler ve etkileyici performans
kazanımları son yıllarda birçok tartışmanın konusu olmuştur. Bu çalışma TCP VEGAS ın
tasarımına taze bir bakış sunmakta ve TCP VEGAS ın yeniliklerinin avantajlarına ışık
tutmaya çalışmaktadır.
 TCP RENO nun tıkanıklık tespiti ve kontrol mekanizmaları parçaların kaybını bir
sinyal olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç
aşamalarını tespit edecek bir mekanizması yoktur. Dolayısıyla TCP RENO kayıpları
engelleyemez. Dahası, TCP RENO reaktiftir, yani bağlantının mevcut band genişliğini
bulmak için kayıplar üretmeye ihtiyacı vardır. Öbür taraftan, TCP VEGAS ın tıkanıklık tespit
mekanizması aktiftir, yani çıktı oranındaki değişiklikleri gözlemleyerek tıkanıklıktaki
başlangıcı tespit etmeye çalışır. TCP VEGAS bu çıktı ölçümlerinden tıkanıklık penceresi
ayarlama politikasını çıkarır, bu da bağlantı kayıplar vermeden önce gönderme oranını
azaltabilmeyi sağlar.
 TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans
kazanımlarından sorumlu olduğudur. Bu soru şu ana kadar cevapsız kalmıştır. Bu soruyu
cevaplandırmak için TCP VEGAS ı kendi algoritmalarına ayırdık ve bu algoritmaların her
birinin performans üzerindeki etkileri değerlendirilmiştir.

 24

3.2. TCP VEGAS

 Daha önce yayınlanan ve TCP VEGAS ı tanımlayan çalışmalara göre TCP VEGAS
TCP RENO dan şu sebeplerle farklıdır: TCP VEGAS yeniden transmisyon stratejisini
etkileyen 3 yenilik getirmektedir. Birincisi, TCP VEGAS gönderilen her bir parça için RTT yi
ölçer. Ölçümler iyi parçalanmış saat değerlerine dayanır. Bu ölçümler kullanılarak her bir
parça için bir mola periyodu ölçülür. Kopya bir onay (ACK) alındığında TCP VEGAS mola
süresinin bitip bitmediğini kontrol eder. Mola süresi bittiyse, parça yeniden iletilir. İkinci
olarak, kopya olmayan bir ACK alınırsa ki, bu hızlı bir yeniden iletimden sonraki ilk veya
ikincidir, TCP VEGAS zamanlayıcının bitip bitmediğini kontrol eder ve başka bir parçayı
yeniden iletebilir. Üçüncüsü, birden fazla parça kaybı olduğunda ve birden fazla hızlı yeniden
iletim gerçekleştiğinde, tıkanıklık penceresi sadece ilk hızlı yeniden iletim için azaltılır.
Tıkanıklık kaçınma mekanizması: TCP VEGAS tıkanıklıktan kaçınma esnasında tıkanıklık
penceresini devamlı olarak artırmaz. Bunun yerine, başlangıç tıkanıklığını tespit etmeye
çalışır. Bunu ölçülen çıktı ile beklenen çıktıyı karşılaştırarak yapar. Tıkanıklık penceresi bu
iki değer ancak birbirine çok yakın olursa artırılır. Bu şu anlama gelir: eğer yeterli şebeke
kapasitesi varsa beklenen sonuç, çıktı başarılabilir. Tıkanıklık penceresi, ölçülen çıktı
beklenen çıktıdan az ise azaltılır; bu durum başlangıç tıkanıklığı için bir işaret olarak kabul
edilir.
Geliştirilmiş yavaş-başlangıç mekanizması: Benzer bir tıkanıklık tespit mekanizması yavaş
başlangıç sırasında uygulanır. Bunun amacı tıkanıklık kaçınma aşamasına ne zaman
geçileceğine karar vermek içindir. Beklenen ve gerçekleşen çıktının sağlıklı bir
karşılaştırmasını yapabilmek için tıkanıklık penceresinin sadece her bir diğer RTT kadar
büyümesine izin verilir.
 Kaynak [1] de, ek bir algoritma sunulmaktadır. Bu algoritma mevcut bant genişliğini
yavaş başlangıç sırasında ACK aralığından alamaya çalışır. Ancak, bu algoritma deneyseldir
ve TCP VEGAS ın değerlendirmesinde kullanılmamıştır. Dolayısıyla bizde bunu
değerlendirmemizden çıkardık.
 Hem kaynak [1] hem de [2] internette TCP VEGAS için %37 ile %71 arasında daha
iyi çıktı rapor ediyorlar. Kayıplar ise beşte bir ile yarısı kadardır. Simülasyonlar bu ölçümleri
teyit etmektedir, ayrıca şunu göstermektedir: VEGAS TCP RENO nun çıktısını kötü
etkilememekte ve TCP VEGAS TCP RENO dan daha az doğru değildir.

3.3. Kaynak Taraması

 TCP VEGAS ın tıkanıklık kaçınma konusundaki yeni teknikleri, bunun TCP
performansı üzerindeki etkileri, rakip TCP RENO bağlantılarının varlığında TCP VEGAS ın
davranışı daha önce araştırmacılar tarafından araştırılmış konulardır. Şimdi daha önce yapılan
bu çalışmaları kısaca gözden geçirelim:
 Ahn kaynak [3] de TCP VEGAS ile bazı canlı internet deneyleri gerçekleştirdi. Bir
TCP RENO alıcısına % 20 daha hızlı ve bir TCP Tahoe alıcısına % 300 daha hızlı transfer
gerçekleştiğini rapor ediyor. Her iki senaryo içinde TCP VEGAS ın daha az parçayı yeniden
ilettiği, daha düşük RTT ortalaması ve varyansına sahip olduğu bulundu. WAN’ da yapılan
deneyler şunu ortaya çıkardı ki, TCP VEGAS yüksek tıkanıklık durumlarında daha yüksek
çıktı verirken, TCP RENO TCP VEGAS ı düşük tıkanıklık durumunda geride bıraktı.

 25

 Akıcı bir model ve benzetimler ile MO kaynak [4] TCP VEGAS ın TCP RENO nun
tersine uzun gecikmeli bağlantılara karşı eğilimli olmadığını ve TCP VEGAS ın TCP RENO
nun varlığında doğru oranda bant genişliği alamadığını göstermiştir.
 Hasegawa kaynak [5] TCP VEGAS ın tıkanıklık kaçınma mekanizmasının TCP
RENO dan daha sağlam olduğunu bulan analitik bir model kullanmıştır. TCP VEGAS
bağlantısının tıkanıklık penceresi sabit bir değere dönüşebilir. Ancak şunu da bulmuştur: bu
mekanizma bazen değişik dolanım hızına sahip birçok bağlantıyı doğru bir şekilde sağlamada
başarısız olur.
 Bir Wan emülatörünün veya bir uydu bağlantısının yardımıyla, Zhang [6] uzun
gecikme bağlantıları üzerinde çeşitli TCP versiyonlarının performansını araştırdı. TCP
VEGAS TCP Tahoe ve TCP RENO nun ancak yarısı kadar çıktı iletti ancak diğer TCP lere
oranla çok daha az yeniden iletim yaptı.
 Ahn kaynak [7] yüksek hızlı geniş alan paket şebekelerin benzetimini hızlandırmak
için yeni bir teknik geliştirdi. Değerlendirme bölümü TCP VEGAS ın küçültülmüş bir
versiyonunun sonuçlarını sunmaktadır. Bu tıkanıklık tespiti ve pencere ayarlama tasarısını
gigabit şebeke üzerinde göstermektedir. Deneylerde, TCP VEGAS TCP RENO nun ancak
yarısı kadar çıktı elde etmektedir.
 TCP VEGAS ın bu kadar sınırlanmış bir versiyonu Bolliger kaynak [8] tarafından da
değerlendirilmiştir. TCP nin çeşitli versiyonları kullanıcı seviyesi protokolleri olarak
uygulanmış ve internette değerlendirilmiştir. TCP VEGAS ın TCP RENO ya oranla birden
fazla parça kaybından dolayı daha az molaya neden olduğu gösterilmiştir. Diğer taraftan, TCP
VEGAS TCP RENO ya oranla daha fazla tetiklenmemiş molaya neden olmaktadır.
Tetiklenmemiş molalar iyileşmeye girmek için kaçırılan fırsatları yansıtır. Bu çalışmada, TCP
VEGAS ın çıktısı TCP RENO ya oranla çok az daha kötüdür.
 Danzig, VEGAS ın yeni tıkanıklık kaçınma mekanizmasını içermeyen daha önce
yayınlanmış bir versiyonunu değerlendirdi. Kaynak [2] deki iddiaları yeniden
üretemeyecekleri için yazarlar TCP VEGAS ın yeni tıkanıklık kaçınma mekanizmasının
performans gelişiminde önemli rolü olduğuna kanaat getirmişlerdir.
 Son 3 çalışma biraz çelişkilidir, kaynak [7] ve [8] şu sonuca varmamıza neden olabilir:
Tıkanıklıktan kaçınma esnasında TCP VEGAS ın yeni davranışının çıktı üzerinde olumsuz bir
etkisi vardır. Fakat olumlu bir etkisi olacağını öngörmektedir. Maalesef, TCP VEGAS ın çıktı
gelişimini gösteren çalışmalar rapor edilen hız artımlarından TCP VEGASın hangi
algoritmalarının sorumlu olduğunu gösterememiştir. Bu çalışma bu soruya benzetimlere
dayanarak yanıt aramaktadır. Ayrıntılı bir değerlendirmeye geçmeden önce sonraki bölüm
benzetim ortamını tanıtmakta ve TCP VEGAS ve TCP RENO için bir başlangıç performans
değerlendirmesi sunmaktadır.

3.4. Benzetim Ortamı

 Bu bölüm TCP VEGAS ın yeni algoritmalarının etkisini incelemek maksadıyla
kullanılan benzetim ortamını tanımlamaktadır.

3.4.1. Benzetim

Benzetimimizi x-sim adındaki, x-çekirdek tabanlı bir şebeke benzetimi üzerinde
yaptık. Bu ortamda, gerçek x-çekirdek protokol uygulamaları benzetilmiş bir şebeke üzerinde
çalıştırılır. Bizim x-sim seçimimiz şu iki gözleme dayanmaktadır: Birincisi, TCP VEGAS ı
tanımlayan orijinal çalışmalardaki değerlendirmeler de x-sim ile yapılmıştır. Bu gerçek bizi
TCP VEGAS ın farklı bir uygulamasını kullanarak yanlış bir yargıya varmama konusunda

 26

güven sağlamaktadır. İkincisi, TCP VEGAS ın üretim koduna dayanan bir uygulamasını
değerlendirmek istedik. Bu gereksinim x-sim tarafından sağlanmaktadır; çünkü bunun TCP
VEGAS uygulaması doğrudan TCP RENO nun BSD uygulamasından alınmıştır.
 TCP RENO ve x-çekirdekteki TCP VEGAS ın ilk uygulamalarında 2 değişiklik
yaptık. Bu iki değişiklik TCP VEGAS ın yaratıcıları kaynak [9] tarafından bir çalışmada
önerilmiş ve mevcut TCP RENO nun FreeBSD ve NetBSD sine uygulanmıştır. Bu
değişikliklerden bir tanesi algoritmadaki bir modifikasyondur. Bu algoritma yeniden iletim
mola değerini ölçer. Diğeri ise bir kontrolün tamiridir. Bu kontrol tıkanıklık penceresini hızlı
iyileştirmeden sonra azaltmak içindir.

Şekil 3.1. Benzetim için ağ topolojisi.

3.4.2. Topoloji

Deneylerimiz için şekil 2.1 de sunulan topolojiyi kullandık. Daha önce yapılan
çalışmalarla kıyaslanabilir olması için ilk VEGAS çalışmasındaki topolojinin tamamen
aynısını seçtik. Aynı sebepten dolayı, kullanılan parça büyüklüğü 1.4 KB dır. Rotalayıcı
kuyruk büyüklüğü 10 parçadır, rotalayıcı kuyruk disiplini FIFO dur. Ancak, tıkanıklıkla ilgili
olmayan etkileri engellemek için daha büyük gönderici ve alıcı tampon büyüklükleri seçtik.
(örneğin 50 KB yerine 128 KB) TCP alıcıları geciktirilmiş onayları kullanmamaktadır; TCP
VEGAS ın tıkanıklık tespit mekanizması RTT deki değişimlere reaksiyon gösterdiği için
geciktirilmiş onaylar performansı çok kötü etkileyebilir kaynak [10] de görüldüğü gibi.
Kaynak [1] ve [2] deki bazı deneyleri tekrar ederek şebeke topolojisi ve benzetimi doğruladık.
Bizim TCP RENO versiyonumuz orijinal versiyondan çok az daha kötü performans sergiledi.
Bu farkın sebebi mola değerinin RTO daha muhafazakâr hesaplanmasıydı. Kaynak [11] de
önerildiği gibi daha önceki versiyonda 2 ile çarpılan değer burada 4 ile çarpıldı.

3.5. Performans Değerlendirmesi

 TCP VEGAS ın performansını kavramak için 1MB lık bir verinin sunucu HI dan
sunucu H3 e transferini benzeşimledir. Bu farklı dereceler ve ters trafik tipleri için yapıldı. H2
den H4 e akan ters trafik TRAFFIC adı verilen, internet trafiğini benzetim eden ve Toplib
kaynak [12] tabanlı bir x-çekirdek protokolüdür. Her tip deney 50 kez çalıştırıldı. Tablo 3.1
ve 3.2 bu deneylerin sonuçlarını göstermektedir. Düşük ters trafik durumunda ara varış
zamanı 0.1 sn yüksek ters trafik durumunda ise 0.03 sn olmuştur. Çıktı dikkate alındığında
TCP VEGAS TCP RENO dan her 4 senaryoda da daha iyi performans (% 40 dan % 120 ye
kadar) göstermiştir. Dahası, TCP VEGAS TCP RENO dan % 6 ile % 65 daha az yeniden
iletim yapmıştır.
 Bu sonuçlar, TCP VEGAS ın kısmi olarak etkileyici gelişmeler sağladığı ve daha az
yeniden iletim sonucunu verdiği yönünde rapor veren diğer çalışmaları doğrulamaktadır.
Tablo 3.1 ve 3.2 bizim için daha ayrıntılı bir değerlendirme yapmamızı sağlayacak ve TCP
VEGAS ın içindeki ayrı algoritmaların uygulamaları hakkında başlangıç noktası olacaktır.

 27

Tablo 3.1. Tablo 3.2.

3.6. TCP VEGAS’ ın Algoritmaları

 Algoritmaların değerlendirmesi için kaynak [13] daki kopyalar ile k2 faktöriyel
tasarımı yaklaşımını kullandık. Bu yöntem arayışı bize her birinin 2 seviyesi olan k
faktörlerinin etkisine karar verme imkânı sağladı. TCP VEGAS da bu faktörler değişik
algoritmalardır. Faktör seviyeleri açık ve kapalı durumlarıdır. Bunlar TCP VEGAS
algoritmasının Kapalı olma durumunda TCP RENO nun kullanılabilmesi için kullanılıp
kullanılmadığını gösterir.
 Bir k2 faktöriyel tasarımı her bir faktörün bağımsız olarak açılıp kapanabilmesini
gerektirir. Bu yüzden, ilk önce TCP VEGAS ın kaynak kodunu güncellemek zorundaydık.
Bunun amacı çeşitli algoritmaları birbirinden ayırmak ve her bir algoritmanın ayrı olarak
seçilebilmesini sağlamaktır. Bu değişiklikler kaynak kodunun yakın incelemesini gerektirdi.
Bu inceleme şunu ortaya çıkardı: TCP VEGAS kaynak [1] ve [2] de bahsedilen
değişikliklerden biraz daha fazla değişiklik ihtiva etmektedir. TCP VEGAS daki yeni
algoritmaların tam listesi aşağıda sunulmuştur.

A. Yavaş başlangıç sırasında tıkanıklık tespiti
B. Tıkanıklıktan kaçınma esnasında tıkanıklık tespiti
C. Daha saldırgan hızlı yeniden iletim mekanizması
D. Kopya olmayan ACK lar için ek yeniden iletimler
E. Çok fazla parça kaybı durumunda tıkanıklık penceresinin azalmasının önlenmesi
F. Bir iyileştirmeden sonra tıkanıklık penceresinin sadece 114 ile azalması.
G. Başlatma sırasında ve moladan sonra iki parça büyüklüğünde bir tıkanıklık penceresi

(TCP RENO bu durumlarda tıkanıklık penceresinin büyüklüğünü bir parça olarak
ayarlar).

H. Patlamadan kaçınma bir seferde 3 parçaya gönderilebilecek parça sayısını sınırlar.
I. Eğer gönderici uyum sağlayamazsa tıkanıklık penceresi artırılmaz, yani tıkanıklık

penceresinin büyüklüğü ile yarım kalan veri miktarı arasındaki fark 2 en fazla
büyüklükteki parçadan daha büyüktür.

J. Sivri sindirme çıktı oranını en fazla mevcut oranın 2 katı kadar sınırlar (bu algoritma
normal olarak kapalıdır).

Algoritmaları birbirinden ayırırken, gerekli kod değişikliklerini minimum seviyede

tuttuk. Bunun sebebi TCP VEGAS ın bizim uygulamamız ve ilki arasında davranışsal
farklılıklardan kaçınmak içindir. Uygulamamızda şunu doğruladık: bizim TCP VEGAS
versiyonumuz bütün algoritmaları kapatıldığında TCP RENO uygulamasıyla aynı sonuçları
üretti. Benzer şekilde, TCP VEGAS versiyonumuz bütün algoritmaları açık durumda orijinal
TCP VEGAS uygulamasıyla benzer sonuçları verdi.

 28

3.7. Tarifnameden Sapmalar

 Bölüm 3.6 TCP RENO ile ilgili daha önce tanımlanmamış değişiklikleri listeledi.
Buna ilave olarak, TCP VEGAS ın kaynak koduyla ilgili incelememiz ve değerlendirmemiz
bazı senaryoları ortaya çıkardı. Bu senaryolarda TCP VEGAS uygulaması, düşünülen şeyi
veya orijinal çalışmalarda tanımlanan şeyleri pek başaramamaktadır.

3.7.1. Mola Davranışı

Yavaş başlangıçta ve tıkanıklıktan kaçınmada, TCP VEGAS tıkanıklık penceresinin

güncellenmesi için gerekli stratejiyi değiştirip değiştirmeyeceğini belirlemek için her bir RTT
yi 1 kez kontrol eder. Yavaş başlangıçta, tıkanıklık penceresinin üslü açılımını bırakıp
bırakmadığını ve tıkanıklıktan kaçınmaya geçip geçmediğini kontrol eder. Tıkanıklıktan
kaçınmada, tıkanıklık penceresinin lineer olarak artırılıp artırılmamasını, bir sonraki RTT
esnasında sabit tutulup tutulmaması veya bir parça tarafından hemen azaltılıp azaltılmamasını
kontrol eder. Tıkanıklıktan kaçınma esnasındaki bir mola durumunda, TCP VEGAS ın daha
önce yayımlanan sürümü hemen üslü açılıma düşememekte, bunun yerine pencere sadece
lineer olarak açılmaktadır. En kötü durumda, bu muhafazakâr açılış molanın artık
onaylanmasından önce bütün veri gönderilene kadar muhtemelen tüm RTT ler için geçerli
olur. Bir mola durumunda tıkanıklık penceresini güncellemesi için gerekli olan stratejisini
hemen değiştirmesi için TCP VEGAS ı değiştirdik.

3.7.2. Taban RTT lerin Yeniden Ayarlanması

Yukarıda bahsedilen kontrol icra edilirken TCP VEGAS taban RTT yi son RTT
esnasında sadece bir parça iletilmişse yeniden ayarlar. Bu yeniden başlama yardımıyla, TCP
VEGAS rotalama değişiklikleriyle başa çıkabilir ki bu rotalama değişiklikleri minimum RTT
yi artırır. TCP VEGAS tıkanıklık penceresi için minimum büyüklükte iki parça
görevlendirdiği için, bu yeniden başlama göndericinin uyum sağlayamaması veya gönderecek
veri olmaması durumunda ancak tetiklenir.

Ender durumlarda, bu yeniden başlama taban RTT sinin çok küçük bir değere
ayarlanması neticesini verebilir. Bu numara mevcut şebeke durumlarıyla alakasız olabilir.
Simülasyonumuzda hiç rotalama değişikliği olmadığı için ve göndericimizin her zaman
gönderecek verisi olduğu için kodun parçasını etkisiz kıldık ve değerlendirmelerimiz için
taban RTT yi yeniden başlattık.

Tablo 3.3.

3.7.3. Sabit Bozulması

 Tıkanıklıktan kaçınmada, TCP VEGAS ın tıkanıklık tespit tasarısı her bir RTTT yi
kontrol eder. Kontrolün konusu şebeke şartlarının tıkanıklık penceresi ayarlama politikasında
bir değişikliği öngörecek kadar değişip değişmediğidir. Tıkanıklık penceresinin nasıl

 29

ayarlanması gerektiğine karar vermek için, TCP VEGAS beklenen çıktı ile ölçülen gerçek
çıktıyı karşılaştırır. Beklenen çıktı şu şekilde hesaplanır:

baseRTT
windowSize

ected =exp (3.1)

Pencere büyüklüğü halen iletim halindeki byte ların sayısıdır. Gerçek çıktı ise şu şekilde
hesaplanır:

rtt
rttLenactual = (3.2)

rttlen son RTT esnasında iletilen byte ların sayısını yansıtır. rtt ise son RTT esnasında kabul
edilen parçaların ortalama RTT sidir.
Daha önce yayımlanan TCP VEGAS uygulamasında. Pencere büyüklüğü şu şekilde
hesaplanmıştı:

6).0,min(max.. ackedsegunasndnxtsnd −+− (3.3)

Maxseg en fazla parça büyüklüğü, cevaplanmış son ACK tarafından kabul edilen byte
sayısıdır. Eşitlik (3.2) ile numaralandırılan rttlen, şu şekilde hesaplanır:

seqbegnxtsnd .. − (3.4)

begseq bir önceki gerçek ve beklenen hesaplama esnasındaki sndnxt nin değeridir. Begseq in
onaylanması gerçek ve beklenenin hesaplanmasını tetikler. Eşitlik (3.6) ve (3.8) e göre
aşağıdaki sabitler tutmalıdır:

actualected ≥exp (3.5)

Tablo 3.3 bu sabitin tek bir kayıptan dolayı oluşacak bir mola durumunda nasıl ihlal
edilebileceğini göstermektedir. Tablo 3.3 bu sabitin ihlaline sebebiyet veren olayların zaman
serisini göstermektedir. Her bir olay için her bir olay işlendikten sonra snd.nxt, snd.una ve
begseq in değerleri gösterilmektedir. Sütunların sıralaması (soldan sağa) değişkenlerin
güncellendiği ve denklemlerin hesaplandığı sıraya benzer şekildedir. Moladan sonra ulaşan
iki ACK gerçek ve beklenenin yeniden hesaplanmasını tetikler. Her iki durumda da sabit ihlal
edilir yani beklenen gerçekten küçüktür.
 İlk ihlal birden fazla parçayı onaylayan büyük bir ACK nın sonucudur. Bu problemi
gidermek için çalışmamızda kullandığımız TCP VEGAS uygulamasındaki eşitlik (3.3) teki
son terimi kaldırdık. İkinci problemin sebebi birden fazla RTT önce gönderilen veri üzerinden
gerçek band genişliği hesaplanmasıydı. Begseq i bir moladan önce gönderilen verinin ACK
tarafından onaylanması durumunda yeniden başlatarak çözdük. Bu şekilde, gerçek band
genişliğinin hesabı moladan önce gönderilen veriyi içermeyecektir.

3.7.4. Tartışma

 Bu tamirler TCP VEGAS ın performansını nasıl etkiler. Birincisi 7-A da belirtilen
çözüm daha iyi performansa neden olabilir. Çünkü tıkanıklık penceresinin yavaş başlangıçta

 30

uygun şekilde açılmasına izin verir. Çünkü eğer gönderici yanlışlıkla tıkanıklık penceresini
tıkanıklıktan kaçınma stratejisine göre ayarlamaya devam etme durumundan daha hızlıdır bu.
 İkincisi, tıkanıklıktan kaçınmada eğer tıkanıklık penceresi açılacaksa şu şart tutmalıdır
(a pozitif ve genellikle 1 e ayarlanır).

α<− baseRTTactualected *)(exp (3.6)

 Eğer TCP VEGAS ın değişmezi ihlal edilirse beklenen ve gerçek arasındaki fark
negatiftir. Eşitlik (3.6) tutar ve tıkanıklık penceresi yanlışlıkla artırılabilir. Bu hareket
düşünülenden daha girişken bir pencere açılımına sebep olabilir. Bu yüzden, ihlal problemini
çözerek TCP VEGAS ın daha az girişken olmasını bekliyoruz.
 Tablo 3.4 ve 3.5 tablo 3.1 ve 3.2 nin sonuçlarını tekrar ediyor ve ilave olarak
bahsedilen tamirler yapılmış olan TCP VEGAS versiyonunun sonuçlarını da göstermektedir.
Dikkat edilirse TCP VEGAS ve TCP RENO deneylerinde Tablo 3.4 ve 3.5 in 1. ve 3’üncü
sıraları TCP VEGAS ı ters trafik olarak kullanılmıştır. TCP RENO deney sonuçlarının Tablo
1 ve 2 de sunulanlardan farklı olmasının sebebi budur. TCP VEGAS deneyleri için tablo 3.4
ve 3.5 in 2. sırası geliştirilmemiş, TCP VEGAS ileri ve ters trafik için kullanılmıştır.
 Tamirler tüm 4 durum için az daha az çıktı, 4 durumdan 3 ünde de az daha fazla
yeniden iletim sonucunu vermiştir. Hepsinden öte, TCP VEGAS* orijinal versiyonuna kıyasla
benzer bir performansı başarmıştır. Çalışmanın geri kalanında TCP VEGAS ifadesi TCP
VEGAS* yerine kullanılacaktır.

3.8.Çeşitli Algoritmaların Etkileri

3.8.1. Karmaşıklığın Azaltılması

 Bölüm 3.6 da özetlendiği gibi, TCP VEGAS TCP RENO üzerinde 10 ilave algoritma
kullanır. Tam bir rk2 faktöriyel tasarımı şunları gerektirir: k=10 algoritmasının her bir
mümkün birleşimi seçilmelidir ve bölüm 3.5 tanımlanan deney belirli bir ayarlama için r defa
çalıştırılmalıdır kaynak [13]. Bu yöntem bize şunu sağlar: her bir algoritmanın etkisini ve
algoritmaların tüm muhtemel etkileşimlerinin etkilerinin ölçmeyi sağlar. k=10 algoritmaları
için deney 1210 − mümkün etkilerle sonuçlanır, çoğunluğu daha ziyade küçüktür.

Tablo 3.4. Tablo 3.5.

Karmaşıklığı azaltmak ve deneylerimizin açıklayıcılığını artırmak için algoritmaları

etkiledikleri aşamalara (yavaş başlangıç, tıkanıklıktan kaçınma, iyileştirme vs.) göre 3 gruba
kümelendirdik. rk2 faktöriyel tasarımı her biri bir faktörü temsil edecek şekilde k=3 ile
ayarladık. Faktör seviyelerindeki açık ve kapalı şu anlama gelir: ya belirli bir aşamayı
etkileyen tüm algoritmalar on durumundadır ya da tümü kapalı durumundadır. Bu tasarım
performansı 123 − ye etkileyen tüm muhtemel faktörleri ve faktörlerin etkileşimini azaltır.
Algoritmalar şu şekilde kümelenmiştir.

 31

Yavaş başlangıç: tıkanıklık tespiti (bölüm 3.6 da sunulan algoritma A) ve iki parça
büyüklüğünde tıkanıklık penceresi (G) Tıkanıklıktan kaçınma: tıkanıklık tespiti (B)Tıkanıklık
iyileştirme: daha girişken hızlı yeniden iletim stratejisi (C), yeni veri için ACK üzerinden
yeniden iletim (D), tıkanıklık penceresinin 1/4 azaltılması (F), tıkanıklık penceresinin çok
azaltışından kaçınma (E) patlamadan kaçınma algoritması (H), tıkanıklık penceresi artışı
olmaması algoritması(I), ve sivri sindirme algoritması (J) her zaman kapalıdır.
Her bir deney 50 kez tekrarlanır. TCP VEGAS ın çıktısı üzerinde 3 aşamada ve kaynak [13]
da tanımlanan yöntemi uygulayarak yeniden iletim sayıları üzerinde algoritmaların etkilerine
karar verdik.

3.8.2. Çıktı İçin Sonuçlar

Z3 faktöriyel tasarımı aşağıdaki şekilde algoritmaların belirli bir birleşimi için y
çıktısını ölçmemizi sağlar.

+⋅+⋅+⋅+= recreccacassssmean xqxqxqqy

aşama i deki tüm algoritmalar açık ise ix 1 ve eğer kapalı ise –1 (ss: yavaş başlangıç, ca:
tıkanıklıktan kaçınma, rec: iyileştirme, kurtarma), q1 aşama i deki algoritmaların etkileridir ve
i ve J aşamasındaki algoritmaların etkileşiminin etkisini gösterir. meanq tüm deneylerin
çıktısının ortalamasıdır.

Tablo 3.6.

 Tablo 3.6 düşük TCP RENO ve TCP VEGAS ters trafiğinin sonuçlarını sunmaktadır.
Tablo 3.6 tüm rk2 =400 deneyleri için ortalama çıktıları rapor etmekte ve tüm faktörlerin q
etkilerini ve ortalama çıktı üzerindeki etkileşimlerini rapor etmektedir. Y çıktısı için
ortalamayı hesaplayabiliriz: örneğin, tüm algoritmaların yavaş başlangıçta, tıkanıklıktan
kaçınmanın açık olduğu, kurtarma deki tüm algoritmaların kapalı olduğu ve ters trafik için
TCP RENO’ nun kullanıldığı bir yapılandırma için aşağıdaki şekilde hesaplanabilir:

+⋅⋅⋅+⋅ casscass xxq _

reccassreccass xxxq ⋅__

 Tablo 3.6 deki değişim yüzdesi kolonları y çıktısının değişiminin ne kadarının q
etkisiyle açıklanabileceğini gösterir, dolayısıyla bir faktörün önemi için bir ölçüdür. Ölçümler
50 kez tekrarlandığından dolayı, deneysel hatalara atfedebileceğimiz toplam değişim yüzdesi

 32

belirlenebilir. Hata satırı bu değişimi rapor eder. Dahası, % 90 satırında verilen değer
ortalama çıktı için % 90 güven aralığında hesaba ve her bir etkinin hesabına imkân verir. O
ihtiva eden güven aralıkları belirli bir faktörün veya faktör birleşiminin istatistiksel olarak
belirgin olmadığı anlamına gelir.
 Tablo 3.6 dan şu sonucu çıkardık: düşük TCP RENO ters trafiği için, sonuç üzerinde
en büyük etkiye TCP VEGAS ın yavaş başlangıçtaki yeni algoritmaları sahiptir, daha sonra
kurtarmadakiler gelir. Tıkanıklıktan kaçınma esnasında TCP VEGAS ın tıkanıklık tespit
mekanizması değişimin yalnızca % 2 sinden sorumludur. Aşamalar arasındaki etkileşimler
çıktı üzerinde yalnızca küçük bir etkiye sahiptir veya istatistiksel olarak önemli değildir.
Çıktıdaki farklılaşmanın % 45 i deneysel hatalardan dolayıdır.
 Düşük TCP VEGAS ters trafiği için, değişimin % 28 i kurtarma esnasındaki
geliştirilmiş algoritmalarla açıklanabilir. Bunu yavaş başlangıç esnasındaki değişimler takip
eder. Değişimin % 3 ü tıkanıklıktan kaçınma esnasındaki değişikliklerle açıklanabilir.
Aşamalar arasındaki etkileşim yine küçüktür veya istatistiksel olarak önemli değildir.
Değişimin hemen hemen yarısı deneysel hatalardan dolayıdır.

Tablo 3.7.

 Yüksek ters trafik senaryolarının verisi Tablo 3.7 de görülmektedir. TCP RENO ters
trafik durumunda, dominant etki iyileştirme esnasındaki değiştirilmiş davranıştır. Diğer tüm
etkiler ya çok küçüktür ya da istatistiksel olarak önemli değildir. Şunu not etmek gerekir ki,
TCP VEGAS ın yeni tıkanıklıktan kaçınma mekanizması, performans üzerinde küçük bir
negatif etkiye sahiptir. Deneysel hatalar toplam değişimin 1/3 ünü oluşturmaktadır.
 Yüksek TCP VEGAS ters trafik senaryosundaki sonuçlar TCP RENO senaryosundaki
sonuçlara benzerdir, şöyle ki, iyileştirme esnasındaki değişim deneyde görülen değişimin
çoğunu oluşturmaktadır. Yine tıkanıklıktan kaçınma esnasındaki değiştirilmiş davranışın
etkisi negatiftir.

3.8.3. Yeniden İletimlerin Sonuçları

Tablo 3.8 düşük ters trafik için yeniden iletilen veri miktarı üzerinde üç aşamanın
etkisini sunmaktadır. Hem TCP VEGAS hem de TCP RENO ters trafiği için, yavaş
başlangıçtaki değişimler dominanttır. Bunu tıkanıklıktan kaçınmadaki değişimler takip eder.
Şunu da not etmek gerekir ki, iyileştirmedeki modifikasyonlar ve yavaş başlangıç ve
tıkanıklıktan kaçınmadaki geliştirmeler arasındaki etkileşimler yeniden iletilen veri miktarını
artırmıştır.

 33

Tablo 3.8.

 Yüksek ters trafik durumunda, tablo 3.8 da da görüldüğü gibi deneysel hata hem TCP
VEGAS hem de TCP RENO ters trafiği için değişimin % 90 ını açıklamaktadır. Aşamaların
ayrı olarak yeniden iletim sayısı üzerindeki etkisi deneysel hataya kıyasla ihmal edilebilir
seviyededir. Bu sürpriz değildir çünkü TCP VEGAS TCP RENO ya kıyasla ilk sırada yüksek
ters trafik durumunda tablo 3.5 deki gibi yeniden iletim sayısını azaltma konusunda başarılı
gözükmemektedir.

3.8.4. Sonuçlar

3.8.4.1 Yavaş Başlangıç

 Düşük ters trafik senaryolarında yavaş başlangıçtaki değişimler önemlidir, özellikle
ters trafik TCP RENO ise. Paket izlerinin bir incelemesi şunu ortaya çıkarmıştır: TCP
VEGAS ın tıkanıklığa duyarlı pencere güncelleme stratejisi, başlangıç yavaş-başlangıcında
molalardan kaçınma konusunda başarılıdır. TCP RENO nun tıkanıklık penceresinin daha hızlı
ve tepkisiz açılımı bu aşamada mevcut band genişliğine fazla yüklenmeye ve parça
kayıplarına sebep olabilir. Böyle bir zarar ancak bir mola ile giderilebilir. Ters trafik düşük
olduğu için, transferler kısadır. Bu yüzden, bir mola çıktıyı kötü şekilde etkiler. TCP VEGAS
yavaş başlangıçtaki başlangıç tıkanıklığını hissederek, molalardan kaçınabilir ve dolayısıyla
TCP RENO dan daha iyi performans gösterir. Her bir algoritmanın bir faktörü temsil ettiği
(A-G) daha detaylı 27 deneyin değerlendirmesi şunu göstermektedir: yavaş başlangıçtaki
tıkanıklık tespiti gerçekte tüm algoritmalar içinde en yüksek pozitif etkiye sahiptir. (% 25)
yavaş başlangıçtaki ikinci değişim ise ihmal edilebilir bir etkiye sahiptir. Başlangıç yavaş-
başlangıcında mevcut bant genişliğine fazla yüklenilmesi problemi diğer araştırmacılar
tarafından da tanınmıştır, TCP VEGAS ın yayınlanmasından beri bu problemi işleyen bazı
çalışmalar yayımlanmıştır. Yavaş-başlangıçtaki mola ihtimalini azaltarak, tıkanıklık tespiti
aynı zamanda yeniden iletim sayısını da azaltmayı başarır. Deney değişimin % 50 sinin
bununla açıklanabileceğini göstermektedir. İlginç olan şudur ki, değişimin %3 ünden sorumlu
olan G algoritması yeniden iletim miktarını artırmaktadır. Dolayısıyla tıkanıklık penceresini
iki parça halinde başlatmak fazla saldırgan olabilir.

 34

Tablo 3.9.

Tablo 3.10.

Yüksek ters trafik senaryosunda, yavaş-başlangıçtaki değişimlerin neredeyse hiç etkisi

yoktur. Yüksek ve ters trafik senaryolarındaki değişimlerin etkileri konusundaki bu
uyumsuzluk ve çelişki daha yakından bir incelemeyi gerektirmektedir. Bu maksatla, bir WAN
senaryosu için benzetimlerimizi tekrar ettik. WAN senaryosunun topolojisi Bölüm 3.4.2 de
tanımlanana benzerdir. Darboğaz bağlantısının gecikmesi 400 ms, bant genişliği 1.SM bit/sn
ve kuyruk yönlendiricisinin büyüklüğü 50 parçadır. Yüksek ters trafiği benzettik. Tablo 3.10
WAN senaryosunda TCP VEGAS ve TCP RENO tarafından elde edilen çıktıları
göstermektedir. TCP VEGAS ın performans gelişiminin orijinal topolojiye oranla daha az (%
10-20) etkili olduğunu not ettik. Tablo 3.11 üç aşamanın etkilerini ve TCP VEGAS ın çıktısı
üzerindeki etkileşimleri listelemektedir. Yavaş başlangıçtaki değişimlerin çıktıyı olumsuz
etkilediğini görmek ilginçtir. Bu gözlem yüksek ters trafik durumlarında şu anlama gelir: TCP
VEGAS ın yavaş başlangıçta başlangıç tıkanıklığını hissetmesi ve tıkanıklıktan kaçınmaya
geçmesi fazla muhafazakârdır ve performans gelişimleri (TCP RENO ya kıyasla)
iyileştirmedeki değişimlere atfedilmelidir. WAN senaryosundaki yeniden iletilen veri
miktarını incelediğimizde, yavaş başlangıç değişimlerinin yeniden iletim sayısını azaltmaya
da yardım etmediğini bulduk.

3.8.4.2. Kurtarma

 İyileştirmedeki değişimler çıktı üzerindeki en büyük etkiye sahiptir. Yavaş başlangıç
değişimlerinin biraz daha etkili olduğu düşük TCP RENO ters trafik durumu hariçtir. TCP
VEGAS ın daha girişken hızlı yeniden iletim politikası (C) nın tek başına performans
kazanımından sorumlu olduğundan şüphe edilebilir. Ancak, 72 deneyinin değerlendirmesi
şunu ortaya çıkarmaktadır: yüksek ters trafik durumunda tıkanıklık penceresini sadece 114 (F)
kadar azaltmak en büyük etkiye sahiptir (%28 TCP RENO ters trafiği için ve yaklaşık % 7
TCP VEGAS ters trafiği için). Bunları yeni veri için ACK lar tarafından tetiklenen yeniden
iletimler takip eder (D: RENO: %9, VEGAS: %2). Daha hızlı girişken yeniden iletim

 35

politikasının etkisi (C) daha da küçüktür (RENO %3, VEGAS %2). İyileştirmedeki tıkanıklık
penceresinin çok azaltılmasından kaçınan (E) algoritmasının çıktı üzerinde hiçbir etkisi
yoktur.

Tablo 3.11.

F algoritmasının TCP VEGAS ın performansını geliştirmesinin iki sebebi vardır.

Birincisi, tıkanıklık penceresini yalnızca 114 daraltmak veya yarıya bölmek yerine
iyileştirmeden sonra daha geniş bir tıkanıklık penceresi sonucunu verir. İkincisi, F algoritması
iyileştirme davranışını değiştirir. Tıkanıklık penceresinin ikiye bölerek, TCP RENO yaklaşık
yarım RTT kadar beklemelidir. Ta ki: yeteri kadar kopya ACK ların ulaşıp tıkanıklık
penceresinin mevcut duran veriden daha fazla olmasını sağlayana kadar. Diğer taraftan, TCP
VEGAS bir RTT nin sadece ¼ ü kadar beklemelidir. F algoritması kayda değer çıktı gelişimi
ile sonuçlansa da bunu diğer bağlantıların pahasına yapabilir. Mesela, yüksek TCP RENO ters
trafikte F değişimin % 28 inden sorumludur, fakat TCP VEGAS da yalnızca % 7 sinden
sorumludur. Bu sonuçlar şuna işaret etmektedir: F algoritması VEGAS ın darboğaz band
genişliğinden daha geniş bir pay almasına izin vermektedir. Bu mantık şu gözlemle de
desteklenir: TCP RENO genellikle TCP VEGAS ters trafiği üzerinde çalıştırılırken daha
düşük çıktı verir. TCP RENO nun gerçekte TCP VEGAS ters trafiği ile yarışırken
kaybettiğini ve TCP VEGAS ın TCP RENO dan band genişliği çalabildiğini bulduk.
Tıkanıklık iyileştirmesindeki değişimler en büyük etkiye sahip olduğu için bu asimetri veya
adaletsizlik veya yanlışlık için ana olarak sorumludurlar.
 D algoritması fazla parça kaybından dolayı molalardan kaçınmaya yardım eder.
Kaynak [8] de gösterildiği gibi TCP RENO daki molaların çoğunluğu fazla parça kaybından
kaynaklanır. Dolayısıyla, bu molaların sayısını azaltmak için yapılan değişiklikler çok faydalı
olur. TCP VEGASın hızlı yeniden iletim politikasının sonuçları Jacobson un kaynak [14]
kanıtı destekler. Jacobson yeni politikanın muhtemelen sadece ihmal edilebilir bir performans
kazanımıyla sonuçlanacağını iddia etmiştir. E algoritmasının çıktı üzerinde neredeyse hiçbir
etkisinin bulunmaması gerçeği şunu gösterir: D algoritması tarafından düzeltilemeyen fazla
parça kaybı durumlarının bir mola vermeden devam ettirilmesi çok zordur. Bunun sebebi
büyük olasılıkla daha fazla hızlı yeniden iletimin tetiklenebilmesi için tıkanıklık penceresinin
çok küçük olmasıdır. Özetle, TCP VEGAS ın tıkanıklık iyileştirmesi için olan tekniklerinin
özellikle fazla parça kaybı ile ilgili olan D algoritmasının çok etkili olduğu görülmüş ve TCP
RENO ya kıyasla etkileyici bir performans sergilemesinden ana olarak sorumlu olduğu tespit
edilmiştir. Etkili olmasına rağmen, F algoritması doğruluk açısından problemli olabilir. Şunu
da not etmeliyiz ki, TCP RENO nun fazla parça kaybı ile mücadelede olan problemleri diğer
araştırmacılar tarafından da işaret edilmiştir. Kaynak [5], [10], [15], [16]. Yakın geçmişte, bu

 36

problemleri çözmek için TCP RENO nun verisini ve tıkanıklık iyileştirme mekanizmasını
iyileştirmek için birkaç çözüm önerisi getirilmiştir.

3.8.4.3. Tıkanıklıktan Kaçınma

 Deneylerimiz gösterdi ki, TCP VEGAS ın muhtemelen en yaratıcı özelliği, yani
tıkanıklıktan kaçınma esnasındaki tıkanıklık tespit mekanizması, gerçekte en az etkisi olandır.
Hatta TCP ters trafik senaryosunda etkisi negatiftir. Tablo 3.12 bu sonuçları özetlemektedir.
Bu tablo Tablo 3.9 daki sonuçları tekrar etmekte, ilave olarak TCP VEGAS ın bir
versiyonunun çıktılarını göstermektedir. Bu sürüm, tıkanıklıktan kaçınmada tıkanıklık tespit
mekanizmasını ayırmaktadır. Bu rakamlar TCP VEGAS ın tıkanıklıktan kaçınma
mekanizmasının yalnızca orta seviyede etkili olduğunu anlatmaktadır. Dahası, yalnızca TCP
VEGAS ın yeni tıkanıklıktan kaçınma mekanizmasını içeren bir TCP VEGAS versiyonu TCP
RENO ya kıyasla düşük ters trafik yüklemelerinde çok küçük bir gelişme kaydetmiştir ve
hatta yüksek ters yükleme durumlarında daha düşük çıktı sonucunu vermiştir.
 TCP VEGAS ın tıkanıklıktan kaçınma mekanizması yüzünden daha iyi performans
göstermesi beklenir, çünkü: TCP VEGAS paket kaybından kaçınmak için tıkanıklık
penceresini aktif olarak küçük miktarlarda bir kerede bir parça kadar azaltabilir. Bir paket
kaybı bir tıkanıklık penceresinde büyük miktarda azalmaya neden olur. Bu yüzden, paket
kaybından sonra, küçük orandaki azalmaların çıktıyı oranın yarıya bölünmesinden daha az
etkilemesi beklenir. Ancak, bu çalışma ve diğer çalışmaların sonuçları kaynak [7], [8] bu
umudu kırar. Sonuçta, deneye dayalı, deneysel kanıtlar tıkanıklıktan kaçınma mekanizmasının
çok muhafazakâr olduğunu göstermektedir.
 Yeniden iletilen verinin miktarı üzerindeki etki dikkate alındığında TCP VEGAS ın
tıkanıklık tespit mekanizmasını oldukça başarılı bulduk. Ancak, şunu da not etmek gerekir ki,
hem yüksek hem de alçak ters trafik için, diğer faktörler azalmaya bu mekanizmadan daha
fazla katkıda bulunmaktadır.

Tablo 3.12.

3.9. Tıkanıklıktan Kaçınmanın Problemleri

 Sekizinci bölümde gösterildiği gibi, TCP VEGAS ın yeni tıkanıklıktan kaçınma
mekanizmasının çıktı üzerindeki etkisi orta seviyededir. Bu bölüm bu mekanizmanın
doğruluk problemleri de sergileyebileceğini göstermektedir.

3.9.1. Eski Bağlantıların Yanlış Ele Alınması

 Tıkanıklıktan kaçınmada, TCP VEGAS aşağıdaki şart karşılandığında tıkanıklık
penceresini azaltmaya başlar. P pozitiftir ve genellikle 3 e ayarlanmıştır, terimlerin tanımları
için bölüm 8-c ye bakın:

 37

β>⎟
⎠
⎞⎜

⎝
⎛ − baseRTT

rtt
rttLen

baseRTT
windowSize *

pencere büyüklüğünün rttlen e eşit olduğunu farz edersek, iletim halindeki parçaların sayısı
son RTT esnasında gönderilen parçaların sayısına tekabül eder. Bu varsayım TCP Vega
dengeye ulaştığında geçerlidir. Yukarıdaki durum aşağıdaki için doğrudur:

rtt
baseRTT

windowSize
−

>
1

β

 Bir TCP VEGAS bağlantısının tıkanıklık olmayan bir şebekede başlatıldığı bir
senaryoyu düşünün. Bu bağlantının baseRTT1 i minimum mümkün R1T ye oldukça yakındır.
Eğer şebekede sonradan tıkanıklık olursa ölçülen RTT artar ve baseRTT/rtti azalır. Bizim
benzetim topolojimiz için, 0.5 den küçük faktörler gözlemledik. Şimdi, ikinci bir bağlantının
başlatıldığını farz edin. Şebekede tıkanıklık olduğu için, ikinci bağlantının tahmini baseRTT2
si baseRTT1 den daha büyük, bu yüzden baseRTTIrtt2 de baseRTT/rtti den daha büyüktür
(rtt1=rrr2 olduğu kabul edilerek). Bu şu anlama gelir: tıkanıklık penceresi büyüklüğünün
azalmasını tetikleyen pencere büyüklüğü kritik değeri ikinci bağlantıda birinci bağlantıdan
daha büyüktür. Bu yüzden, ikinci bağlantı birinci bağlantıdan daha yüksek band genişlikleri
başarır.

Şekil 3.2. Darboğaz paylaşımın ilişkisi.

 Şekil 3.2 TCP VEGAS ın tıkanıklıktan kaçınma mekanizmasının doğruluk problemini
göstermektedir. Grafik ayrı ayrı zamanlara göre düzenlenmiş 5 bağlantının tıkanıklık pencere
büyüklüklerini göstermektedir. Bağlantılar bir darboğazı paylaşır ve 1 saniyelik aralıklarla
başlatılır. İlk bağlantı en fazla diğer bağlantıların sebep olduğu tıkanıklığa reaksiyon gösterir
ve dengede, onun tıkanıklık penceresi en küçüktür. Diğer taraftan, en son başlatılan bağlantı
en büyük tıkanıklık penceresini başarır ve darboğaz band genişliğinin en geniş payını alır.
İkinci bağlantının tıkanıklık penceresinin büyüklüğü dengedeki ilk bağlantınınkine benzerdir.
Şunu da not etmek gerekir ki; t=3 sn deki ilk bağlantının tıkanıklık penceresi büyüklüğü,
dengedeki son bağlantının tıkanıklık penceresinin büyüklüğüne tekabül eder. Ancak, ilk
bağlantı t=3 sn de tıkanıklık penceresini azaltmaya zorlanırken, son bağlantı pencere
büyüklüğünü ayarlamak zorunda değildir.
 Tıkanıklık penceresini artırmayı tetikleyen algoritma benzer bir problem yaşar.
Aşağıdaki şart sağlandığında tıkanıklık penceresi artırılır ve a genellikle 1 e ayarlanır.

 38

rtt
baseRTT

windowSize
−

>
1

α

Bir A bağlantısı için sağ taraftaki terim daha büyük olduğundan, tıkanık bir şebekede
başlatıldığından, daha sonra bir B bağlantısı için, şebeke tıkanık değilken başlatıldığından,
şart B tipi bağlantılardan ziyade A tipi bağlantılar tarafından sağlanır. Yine, bu şu anlama
gelir: A tipi bağlantılar adil olmayan bir bağlantı band genişliği payı elde eder.
 Şunu da not etmek gerekir ki; TCP RENO nun tıkanıklıktan kaçınma stratejisi de
adaleti garanti etmez. Ancak, her bağlantı zaman zaman kayıplar verdiğinden ve kendinden
güdülenen paket kayıplarından ötürü, en azından diğer bağlantılar için yetişme şansı vardır.
TCP VEGAS da durum böyle olmayabilir, çünkü TCP VEGAS özellikle kendinden
güdülenen kayıpları engellemeye çalışır.

3.9.2. Israrlı Tıkanıklık

 Bölüm 3.9.2 de tartışılan probleme ilave olarak, ısrarlı tıkanıklık durumlarında ki TCP
VEGAS davranışı vardır. Böyle bir durumda, bir TCP VEGAS bağlantısı baseRTT yi
olduğundan fazla tahmin eder ve onun a ve 8 parçaları arasında iletimde olduğunu düşündüğü
halde, gerçekte, iletim halinde daha pek çok parçası vardır. Problemin detaylı bir tanımı
kaynak [21] de vardır.

3.9.3. Tartışma

Bölüm 3.9.2 de tanımlanan problemi yenmek için öneriler olmuştur. Bu önerilerden

biri, baseR1T yi ısrarlı tıkanıklık durumunda daha büyük bir değere ayarlamaktır örneğin
kaynak [21] de olduğu gibi. Bölüm 3.9.1 daki problem benzer bir şekilde yenilebilir. baseRTT
yi yeniden ayarlamak rotalama değişiklikleri durumunda yeterli bir ölçü olabilse de;
minimum RTT nin gerçekte daha büyük olabileceği yerde, iki problemin olacağı durumlarda
yeterli bir çözüm değildir. Çünkü temel RTT tanım olarak bağlantı tıkanık değilken bir
parçanın RTT sidir. Dolayısıyla, baseRTT yi minimum ölçülen RTT den daha büyük bir
değere ayarlamak bu tanımı ihlal eder ve tıkanıklıktan kaçınma mekanizmasının teorik
temeline gölge düşürür.

3.10. Sonuçlar

 Bizim TCP VEGAS değerlendirmemiz daha önce yapılan kaynak [2], [3] ve TCP
VEGAS ın TCP RENO dan önemli derecede daha yüksek çıktıyı başarabileceğini gösteren
çalışmaları doğrulamaktadır. Daha önce yapılan çalışmalara ilave olarak, TCP VEGAS
üzerinde yaptığımız derin analizler, TCP VEGAS ın yaratıcıları tarafından performans
konusunda önerilen TCP VEGAS ın çeşitli algoritmalarının ve mekanizmalarının etkisini
belirlememizi sağladı.
 Deneyimiz gösterdi ki; TCP VEGAS ın yavaş başlangıç ve sıkışıklıktan kurtarma
teknikleri çıktı üzerinde en fazla etkiye sahiptir. Çünkü fazla parça kaybından dolayı oluşan
molalardan kaçınabilirler. Bu yüzden, TCP VEGAS TCP RENO nun çok bilinen bir
problemini halletmekte oldukça başarılı görünmektedir. Ancak, TCP VEGAS ın en yaratıcı
özelliği olan tıkanıklıktan kaçınma esnasındaki tıkanıklık tespit mekanizması ya çok az etkiye
veya hatta negatif etkiye bile sahiptir. Dahası, tıkanıklıktan kaçınma mekanizmasının rakip
bağlantılar arasında doğrulukla ilgili problemler sergileyebildiğini bulduk. Sonuç olarak, TCP
VEGAS ve TCP RENO nun bir sonuca varacak karşılaştırmalı değerlendirmesi için TCP

 39

VEGAS ın yavaş başlangıç ve tıkanıklık iyileştirme tekniklerinin TCP RENO daki
benzerleriyle karşılaştırılması gerekir. Biz tartışmayı TCP VEGAS ı geliştirenler tarafından
incelenen bir senaryo ile sınırladık. Değişik senaryolar hala değişik incelemeleri
gerektirebilir.
 TCP gibi nakil protokolleri performans üzerindeki etkileri ve birbirleriyle etkileşimleri
genellikle anlaşılamayan birçok karmaşık algoritmaları içine alır, örneğin tıkanıklık kontrolü
için, veri kurtarma için. Bizim faktör analizi yaklaşımımız böyle bir protokolün çeşitli
algoritmalarının etkinliği ve bu algoritmaların etkileşimi konusuna bir ışık tutmamızı sağladı.
Gelecekteki protokol geliştiricileri bu tip performans analizi ve deneylerine imkân sağlamak
için tasarım ayrıştırma ve uygulamada erken davranma konusunda cesaretlendirmek istiyoruz.

KAYNAKLAR
 [1]. L.S. Brakmo and L.L. Peterson. TCP Vegas: End to End Congestion Avoidance on a

global Intemet. IEEE Journal on Selected Areas in Communications. 13(8):1465
480,Oct 1995.

[2]. L. S. Brakmo, S. W. O'Malley, and L. Peterson. TCP Vegas: New Techniques for
Congestion Detection and Avoidance. In Proc. of ACM SIGCOMM '94. pages 24-35,
London, October 1994.

[3]. J. S. Ahn, P. Dan& 2. Liu, and L. Yan. Evaluation of TCP Vegas: Emulation and
Experiment. In Proceedings of ACM SIGCOMM '95, pages 185-195, August 1995.

[4]. J. MO, R.J. La, V. Anantharam, and J. Walrand. Analysis and Comparison of TCP
Reno and Vegas. In Pmceeditigs of INFOCOM '99. pages 1556-1563, March 1999.

[5]. G. Hasegawa, M. Murata, and H. Miyahara. Fairness and Stability of Congestion
Control Mechanisms of TCP. In Proceedings of ZNFOCOM '99, pages 1329-1336,
March 1999.

[6]. Y. Zhang, E. Yan, and S.K. Dao. A Measurement of TCP over long-Delay Network.
In Proceedings of 6th Inti, Con$ on Telecommunication Systems, pages 498-504,
March 1998.

[7]. J.S. Ahn and P.B. Danzig. Packet Network Simulation: Speedup and Accuracy Versus
'Iiming Granularity. IEEE Transactions on Networking, 4(5):743-757, October 1996.

[8]. J. Bolliger, U. Hengartner, and T. Gross. The Effectiveness of End-to-End Congestion
Control Mechanisms, Technical Report 313, ETH Wrich, February 1999.

[9]. L.S. Brakmo and L.L. Peterson. Performance Problems in BSD4.4 TCP. Computer
Conununicatiori Review, 25(5):69-86, Oct 1995.

[10]. S. Floyd and T. Henderson. RFC 2582: The NewReno Modification to n=p's Fast
Recovery Algorithm, April 1999.

[11]. V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM
SIGCOMM 88, pages 314-329, August 1988.

[12]. PB. Danzig and S. Jamin. A Library of TCP Internetwork traffic Characteristics.
Technical Report 91495, Computer Science Department, USC, 1991.

[13|. R.Jain. TIie An ofComputer Systems Performalice Analysis. John Wiley & Sons, Inc.,
1991.

[14|. V. Jacobson. problems with Arizona's vegas, March 1994. end2end-tf mailinglist.
[15]. S. Floyd. TCP and Successive Fast Retransmits, February 1995.

ftp://ftp.ee.lbl.gov/papersifastretrans.ps,
[16]. J.C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for TCP.

 40

BÖLÜM 4

TCP VE SORGU YÖNETİM ALGORTİMASININ DUALİTY
MODELİ

Sıkışıklık kontrolü ağ kaynaklarını paylaşmak için dağıtılmış algoritmadır. İki elemana
sahiptir. İlki kendi yolundaki sıkışıklığa cevap veren dinamik olarak ayarlanan değerin
kaynak algoritması (pencere boyut), ikincisi tam ve kesin olarak sıkışıklık ölçümleri ve geri
gönderimleri tam veya kesin olarak kaynakların bu bağlantıyı güncelleyen bağlantı
algoritmasıdır. Kaynak algoritması hali hazırdaki internette kaynak algoritması TCP
tarafından taşınır. Ve bağlantı algoritmaları aktif sorgu yönetim AQM şemaları örneğin
DROP TAİL veya RED tarafından taşınır. Farklı protokoller farklı ölçümler sıkışıklığı
ölçmek için kullanılır. Örneğin TCP RENO kaynak [1], [2] ve bunların değişkenleri kayıp
olasılığını sıkışıklık ölçümü olarak kullanır ve TCP VEGAS kaynak [3], sorgu gecikmesi
sıkışıklık ölçümü olarak kullanır kaynak [4]. Her biri tam olarak bağlantıda güncellenir ve
tam olarak Uçtan uca kayıp veya gecikmeyle kaynağa geri besleme yapılır. Bu yazımızda
uçtan uca sıkışıklık kontrolünün genel bir modelini sunacağız ve çeşitli TCP-AQM
protokolleri tarafından belirlenen kapalı döngülü sistemlerin eşitlik özelliklerini anlamak için
uygulayacağız. Temel fikir sıkışıklık kontrol işlemini düşünmektir. Dağıtılmış hesaplama
kaynak ve hat tarafından ağ üzerinde gerçek zamanlı olarak küresel en uyguluk problemini
çözmek için kaynak [5] incelenmiştir. Buradaki elemanlar toplam kayan araç kaynak
konularını kapasite değişkenlerine maksimize etmek içindir. Kaynak değerlerini birincil
değişkenler olarak derleyeceğiz. Sıkışıklık ölçümlerini çift değişkenler olara ve TCP-AQM
protokollerini dağıtılmış birincil çift algoritma olarak bu en uygun şekle sokma problemi
çözmek için ve ilgili çift problemi çözmek için kullanacağız. Farklı protokoller örneğin
RENO VEGAS RED REM gibi 1 bunların hepsi aynı ilk örnek problemi farklı araç
fonksiyonları ile çözer ve bu fonksiyonları açıkça sunacağız. Daha fazla olarak bütün bu
protokoller Eşitlikteki çift problemi çözmek için sıkışıklık ölçümlerini üretir (langrange
çarpanı).

Bu model geniş ağın TCP-AQM kontrolü altındaki geniş ağın eşitlik özelliği için
kullanılır. Örneğin gecikme sorgu uzunluğu, kayıp ihtimalleri. Aşağıda en uygun şekle sokma
problemleri için kaynak [4] çalışarak anlaşılabilir. Eğer problem konkav program olursa bu
özellikler nümerik etkili olarak hesaplanabilir.

Araç en üst düzeye çıkarma ile TCP-AQM algoritmaları arasında her iki yönde
gidilebilir. Genel araç fonksiyonu ile başlayacağız örneğin: kendi uygulamamızda gibi ve
TCP-AQM algoritmasını toplam araçları maksimize etmek için kaynak [5], [6], [7], [8], [9]
olduğu gibi sunacağız. Zıt olarak TCP-AQM algoritmasını ve aşağıdaki araç fonksiyonlarını
belirlemek için ters algoritma tasarlayabiliriz. Bu uçtan uca kontrol durumudur: uçtan uca
sıkışıklık ölçümleri alınır alınmaz TCP algoritması birleşik bağlantı sıkışıklık ölçümlerinin
toplamına ulaşır.

 41

4.1. TCP-AQM’ nin DUALİTY Modeli:

Geri dönüş sıkışıklık kontrolünde kaynaklar kendi yollarında ki cevabın sıkışıklık
bilgisine göre kendi değerlerini ayarlar. Bu bir geri beslemedir ister kesin tampon artışı olsun
ister tur gecikmesi olsun. Farklı şemalar farklı sıkışıklık ölçümleri benimser. Örneğin TCP
RENO paket kayıpları tarafından sıkışıklığı ölçer, TCP VEGAS sorgulayarak sorgu gecikme
kullanarak, RED (Rasgele Erken Belirleme) sorgu uzunluğu ile ve REM (Rasgele Logaritmik
İşaretleme) performans ölçümü ile eşleri bozulan ölçümler ile ölçer (Örneğin kayıplar ve
gecikmeler). RED veya REN ile bu ölçümler ister paket düşümleri olsun ister ihtimal
işaretlemeleri olsun haritalanır. Bu sıkışıklık ölçümleri kontrol döngüsünü kapatarak kaynak
değerlerine cevabın geri dönüşünü verir. Anahtar fikir birincil değişken olarak kaynak
değerlerini düşünmektir Sıkışıklık ölçümü veya kayıp / ihtimal işaretleme eşitliği çift
değişken olarak ele alınır.

Şekil 4.1.TCP-AQM nin çiftli modeli.

Şekil 4.2. TCP’nin Duality modeli.

Bağlantıların seti olarak L ağa modellenmiştir. Belirli kapasiteler),(Llcc l ∈= olarak

belirlenmiştir. Kaynağın C seti tarafından s ile indekslenmiş paylaşılmıştır. Her s kaynağı
bağlantının LLs ∈ nı kullanır. sL , SL× matrisini belirler.

⎩
⎨
⎧ ∈

=
durumlardadiger
Lleger

R s
ls 0

1

 42

Her s kaynağı ile ilgili)(txs iletim değeri t zamanında paket/saniyedir. Her l bağlantısı ile
ilgili sayısal sıkışıklık ölçümü 0)(≥tpl t zamanındadır. Kaynak [10] ün yazılışı

∑= s slsl txRty)()(l bağlantısında toplam kaynak değeri olsun. ∑= l slss tpRtq)()(Uçtan
uca kaynak için sıkışıklık ölçümü olsun. Vektör yazılışı;

)()()()(tpRtqveyatRxty T==

burada S

+ℜ de)),(()(Sstxtx s ∈= ve)),(()(Sstqtq s ∈= dır. Ve S
+ℜ de)),(()(Lltptp l ∈=

ve)),(()(Lltyty l ∈= dır. S kaynağı)(txs kendi değerini belirler ve uçtan uca sıkışıklık
ölçümü)(tqs yolunun, fakat x(t) veya p(t) vektörü değil, q(t) nin diğer bileşenleri değil.
Benzer olarak l hattı yalnızca yerel sıkışıklık)(tpl ve akış değeri)(tyl olarak belirlenir.

)(txs kaynak değeri her devir için sF fonksiyonuna)(txs ve)(tqs ye bağlı olarak ayarlanır:
bütün s ler için

))(),(()1(tqtxFtx ssss =+ (4.1)
dir
Bağlantı sıkışıklık ölçümü)(tpl)(tpl ve)(tyl ye bağlı olarak her periyotta ayarlanır. Ve
bazı iç vektör değişkenleri)(tvl örneğin l bağlantısındaki sorgu uzunluğundaki gibi bu bazı
fonksiyonlar (lsHG) ile modellenir. Bütün l ler için

))(),(),(()1(tvtptyGtp lllll =+ (4.2)
))(),(),(()1(tvtptyHtv lllll =+ (4.3)

lG negatif olmayan böylelikle 0)(≥tpl dır. Burada sF TCP algoritmasını (RENO veya
VEGAS) modeller ve (lsHG) ve AQM modeli: bir sonraki bölümü görünüz. Biz genellikle
AQM yi lG

),(ssss qxFx =
olarak düşünürüz. İç değişken)(tvl kesin referans olmadan ve lH adaptasyonu olmadan
eşitlik (4.1) ve (4.3) (x,p) varsayarız. Eşitlik (4.1) in tamamlanmış noktası sx eşitlik değeri ile
uçtan uca sıkışıklık ölçümü sq arasında bir ilişkiyi tam olarak belirler.

0)(>= sss xfq (4.4)
 sF devamlı değişken ve 0/ ≠∂∂

sqsF inde açık A seti: { }0,0),(: >>= ssss qxqxA formül
olduğunu varsayalım. Sonra kesin fonksiyon teoreminden tek devamlı değiştirilebilir sf
fonksiyonu { }0>sx dan { }0>sq dan örneğin eşitlik (4.4) gibi var olsun sx ve sq arasındaki
tabloyu genişletmek için A nın kapanması (4.5) eşitliği ile belirlenir sonsuzdur.

{ }0),0(0inf)0(=≥= ssss qFqf (4.5)

)0,(sx noktası = sss xxF =)0,(ise eşitlik (4.6) belirlenir.
0)(=ss xf (4.6)

 43

Her s kaynağı için araç fonksiyonu belirlenir eşitlik (4.7) deki gibi

0)()(≥= ∫ ssssss xdxxfxU (4.7)

değişkene bağlı olarak tektir. İntegrallenebilir olması sU nin devamlı fonksiyon olduğunu
gösterir. Böylelikle 0)(≥= sss qxf bütün sx değerleri için. sU Azalmayandır. sf
Azalmayan fonksiyonu iddia etmek mantıklıdır. Daha sert daha fazla sıkışıklık daha düşük
değerlere eşittir. Bu sU yi konkav yapar ve eğer sf keskin inişli ise sU keskin, keskin
konkavdır 2. türev 0)(<′′ ss xU olana kadardır. Araç fonksiyonun artışı açgözlü kaynağa
uygulanır. Daha büyük değerler daha yüksek araçlara yöneltir ve konkavlık azalan geri
dönüşleri sağlar.

Şimdi toplam araç eşitliklerini kaynak [11] deki maksimize etmenin problemini
düşünün

necRxxU ssx
')(max

0
≤∑≥

 (4.8)

Sınırlama söyler ki her l bağlantısında akım değeri ly , lc kapasitesini aşamaz. En uygun
değer vektörü *x eşitlik (4.8) deki nesne fonksiyonu devamlı ve uygun çözümü olduğu zaman
elde edilebilir. Tektir eğer sU keskin konkav ise. Paylaşılan bağlantı boyunca kaynak çiftli
ise(kapasite sınırlaması) *x ın çözümü direk olarak bununla birlikte mümkün olan bütün
kaynakların koordinasyonunu gerektirir. Ve büyük ağlarda olanaklı değildir. Eşitlik (4.1) ve
(4.3) deki anlamanın anahtarı x(t) yi öncelikli değişken, p(t) yi çiftli değişkeni ve

),,(),(LlSsGFGF ls ∈∈= dağıtılmış öncelikli çiftli algoritma eşitlik (4.8) deki öncelikli
problemi çözmek ve Langrange çiftini çözmek için düşünülür.

∑∑ +−
≥≥

l
llssss

s xp
cpqxxU

s

))((maxmin
00

 (4.9)

Böylelikle çift değişken ağdaki sıkışıklığın kesin ölçümüdür. Çift problem öncelikli problem
uygun olduğu zaman en uygun çözüme sahiptir. Eşitlik (4.1)-(4.3) birincil ve çiftli problemin
çözümü olarak tanımlayacağız ve (F,G) her birincil ve çiftli değişkende beraber yaklaşacaktır
her problemi çözmek için.

(F,G,H) ın tanımını özetleyebiliriz.
C1: bütün Ss∈ ve Ll∈ , sF ve lG nin negatif olmayan fonksiyonlar için (4.1)-(4.3)

ün eşitlik noktalarını içerir.
C2: bütün Ss∈ sF devamlı değişken ve 0/ ≠∂∂

sqsF ve { }0,0),(>> ssss qxqx sf 4
numaralı fonksiyonda yükselmeyendir.

C3: eğer),,(lllll vpyGp = ve),,(lllll vpyHv = ll cy ≤ eğer 0>lp sa.
C4: her Ss∈ , sf keskin azalan için C1 durumu () 0))(,(≥tptx ı ve 0, ** ≥px

garanti eder. C2 sU araç fonksiyonunu ve varlığını garanti eder. C3 birincil uygun
tamamlayıcı (** , px) gevşekliğini garantiler. Son olarak C4 durumu *x en uygun tekliğine
garanti eder.

Teorem1: C1 ve C2 deki tahminleri düşünün. (** , px) eşitlik (4.1)-(4.3) ün olsun.
Daha sonra (** , px) eşitlik (4.8) deki birincil problemi çözer ve eşitlik (4.9) daki çiftli
problem ile eşitlik (4.7) tarafından verilmiş olan araç fonksiyonunu da çözer. Eğer sadece C3

 44

tutulursa. Daha fazla olarak C4 önermesini göz önünde bulundurursak Us keskin konkav olur
ve en uygun değer vektörü *x tek olur

İspat: Eşitlik (4.7) deki sU nin tanımlamasından sonra C4 ele alındığı zaman ikinci
iddia ispatlanır. Böylelikle ilk iddiayı ispatlamamız yeterlidir. DUALİTY teorisi ile Kaynak
[11] (x*,p*) öncelikli çift en uygundur. Eğer *x sadece öncelikli uygunsa, p* çiftli uygunsa,
tamamlayıcı sarkıklık devam ediyorsa ve

()*
0

* ,maxarg pxLx
x≥

= (4.10)

8 in Lagrangian’ nı L olduğu zaman
() ∑ ∑ ∑−+=

s l s
slsllss xRcpxUpxL)()(,

Böylelikle ilk iddia yı ispat etmek için (4.10) numaralı eşitliği oluşturmamız gereklidir. Şimdi

∑ ∑∑

∑ ∑ ∑

+⎟
⎠
⎞⎜

⎝
⎛ −=

⎟
⎠
⎞⎜

⎝
⎛ −+=

≥

≥

≥

s l
ll

l
llssssx

s l s
slsllssx

x

cppRxxU

xRcpxU

pxL

**

0

*

0

*

0

)(max

)(max

),(max

 sU nin yapılması ile eşitlik (4.7) ve (4.4) den şunu elde ederiz ki herhangi bir eşitlik için

0* >sx , (** , px) olduğu zaman

∑===′
l

llssssss pRqxfxU ****)()((4.11)

Eğer 0* =sq eşitlik (11) eşitlik (6) ile elde edilir. Eğer 0* =sx eşitlik (5) den elde edilirse
*)0()0(sss qfU ==′ (4.12)

fakat eşitlik (11)-(12)

0),(** ≤
∂
∂

px
x
L

s

‘e uygulanır ki
Eğer 0* >sx olduğu zaman. Böylelikle),(*pxL konkavdır x de. Karush-kuhntucer
durumunda gerekli ve uygundur *x),(*pxL 0≥x da maksimize edebilmek için. Böylelikle
ispat tamamlanmış olur.

Birçok TCP-AQM protokollerinde farklı dağıtılışmış öncelikli çift algoritmalarla
küresel en uygun şekle sokma eşitlik (4.8) ve eşitlik (4.9) çiftli problemlerini farklı araç
fonksiyonları Us ile modellenebilir. Bu hesaplamada kaynaklar ve bağlantılar tarafından
internet üzerinde gerçek zamanlı sıkışıklık kontrol formunda taşınır. Teorem 1 bu tip
yaklaşımları kabul eden (F,G,H) geniş protokol sınıflarını karakterize eder. Bu izah uçtan uca
kontrolün sonucudur. Uçtan uca sıkışıklık ölçümü alınır alınmaz TCP algoritması
bağlantıların sıkışıklı ölçümlerinin toplamı gibi davranır. Bazı TCP ve AQM algoritmasındaki
iddialarda (C1-C3 iddiasında gibi bölüm2 de) tipik olarak yeterlidir. Us araç fonksiyonun
tanımı TCP algoritması sadece Fs ye dayalıdır. AQM nin rolü (G,H) 1-3 deki problemin
tamamlayıcı gevşekliğinden emin olmak içindir ki memnun etmiştir (durum 3). Tamamlayıcı
gevşeklik için basit bir yaklaşım vardır: AQM giriş değerini kapasiteye bütün şişe boynu
bağlantıları için araçlanmayı maksimize etmeyi seçmek zorundadır. Herhangi bir AQM sorgu
işlemlerini kararlı hale getirir. Bu özellik çift problemi çözen langrang çarpanını p* ı üretir.

 45

Takip eden bölümde teorem 1 i REM ile RED ile TCP ren oyu yaklaştıracağız teorem 1
uygulayarak ve TCP VEGAS DROP TAİL ile. İlk olarak (F,G,H)’ı protokol
tanımlamalarından çıkaracağız ve daha sonra kesin olarak uygun hale getiren Us protokolü
araç fonksiyonunu çıkarmak için eşitlik (4.7) yi kullanacağız. Tablo 4.1 özetlenmiştir.

Tablo 4.1. TCP-AQM algoritmasının model yazılışları.

4.2. RENO/AQM

TCP için biz sadece sıkışıklı giderme fazını modelleriz ve diğer önemli yaklaşımları
ihmal ederiz. Örneğin yavaş başlama ve hızlı gönderim/hızlı düzeltme. AQM için sıkışıklığın
ölçüsü ile sıkışıklık ölçüsünün geri dönüşü arasında ayırt edicilik kullanışlıdır. TCP RENO
örneğin kayıp olasılığını sıkışıklığın ölçüsü olarak kullanır. Bu sıkışıklık ölçümünün değeri
Ya paketleri düşürerek ya da bu olasılık ile ECN bitini ayarlayarak kaynağa geri beslenir. Bu
yazıda sıkışıklık ölçümünün tasarımı ve onun eşitlik özelliği ile ilgileneceğiz. Ve bizim AQM
modelimiz geri besleme mekanizmasını yakalamaz. İster paketlerin düşümü ister ECN bitini
ayarlamak için İşaretleme metodunu kullanırız.

4.2.1. F,S,H Modeli

Bu alt bölümde TCP RED, RENO, REM modellerini sunacağız. Bu modellerin
uygulanması aşağıdaki alt bölümde verilmiştir. AIMD nin ortalama hareketini sadece
modelleyeceğiz ve TCP RENO [2] ile örneğin NEW RENO SACK ve benzeri arasında ki
farkları çıkarmayacağız. Bütün bu protokoller eğer tur zamanında işaret yoksa her bir tur
zamanında pencereyi artırır ve bunun dışında pencereyi yarılar. İki çeşit çoklu aktif azaltma
vardır. RENO nun eski versiyonlarında işaretleme belirlendiğinde her seferinde pencere
yarılanır. RENO nun yeni versiyonlarında tur zamanında bir ya da daha fazla işaret ve ise bir
kere yarılanır. RENO nun eski versiyonlarına RENO–1 yeni versiyonlarına RENO–2
diyeceğiz. Aşağıda görüldüğü gibi farklı araç fonksiyonlarına ve kayıpsızlık özelliklerine

 46

açıkça sahiptirler. Her sürüm için paket işaretleme olasılığını sıkışıklığın ölçümü olarak
çıkarırız.

DROP TAİL altında tam tamponlama ile varmış olan paket düşürülür. Markala
olasılığının dinamikleri için uygun olan ifadeyi bilmeyiz. Kullanılan kayıp değerin modeli
örneğin kaynak [12] ve [9] de tamponsuz sorgu içindir. []+∑−=+

s s txctp)(/1)1(. bu model
eşitlik (4.8) i çözme ceza fonksiyonu gelişimi için uygundur ama DUALİTY gelişimi için
uygunluk bağımlılığından dolayı değil. Böylece RED e REM için sadece model sunarız.

)(tws pencere boyutu olsun sD (Yayılma + eşitlik sorgu gecikmesi) sabit olduğunu
iddia ettiğimiz tur zamanı eşitliği olsun. Literatürde alışıldığı şekliyle örneğin 1 kaynak [11],
[13] sss Dtwtx /)()(= tarafından belirlenmiş olsun ve t zamanında kaynak değeri olsun.
Zaman birimi birçok tur zamanının sıralamasındadır ve kaynak değeri)(txs zaman
çizelgesinde ortalama değer olmalıdır. Dinamikler tur zamanı çizelgesinden daha küçüktür
akışkan model tarafından yakalanmamıştır.

4.2.1.1.RENO–1

L hattında t zamanında)(tpl işaretleme olasılığı olsun. Anahtar yaklaşımı yaparız ki
uçtan uca işaretleme olasılığı)(tqs kaynak algoritması bağlantı işaretleme olasılığının toplamı
olarak davranır

∑=
l

llss tpRtq)()((4.13)

)(tpl küçük olduğunda bu anlamlıdır. ∏ ∑∈ ∈
≅−−=

Ll Ll lls tptptq)())(1(1)(olduğunda T

periyodunda)(txs paketlerinin değerini her bir birim zamanı için iletir ve bilgilendirmeleri
yaklaşık aynı değerde alır(pozitif ve negatif). İddia edilir ki bütün paketler bilgilendirilmiştir.
Ortalamada s kaynağı)(txs))(1(tqs− pozitif bilgilendirme sayısını her bir birim zamanı için
alır ve her pozitif bilgilendirme)(tws pencereyi büyültür ()(/1 txs ile),)(txs)(tqs negatif
bilgilendirme birim zaman için ve pencerenin yararlanmasında ortalama alır. Böylece t
periyodunda penceredeki net değişim kabaca

3
)(4

.
2
1)()(

)(
1)).(1)((

tw
tqtx

tw
tqtx s

ss
s

ss −−

Daha sonra RENO–1 in Fs kaynak algoritması aşağıdaki formülle verilir.

+

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+=+)()(

3
2)(1

)()1(2
2 txtq

D
tq

txtx ss
s

s
ss (4.14)

İkinci derecen terim özellikle belirtir ki eğer değer çift kat olursa çoklu aktif düşüş frekansın
iki katı büyüklüğün iki katıyla meydana gelir.

4.2.1.2 RENO -2

Pencere RENO–2 artırımı her bir tur zamanı sD için 1 le eğer işaretleme yoksa eğer
bir ya da daha fazla işaretleme varsa her bir tur zamanında pencere bir kere yarılar. Bunu
aşağıdaki gibi modelleriz: her bir t periyodunda (bir kısım tur zamanın sıralamasında),
pencere sD/1 ile)(ˆ1 tqs− olasılığı ile artırılır ve ss Dtw 3/)(2 ile azaltılır)(tqs olasılığı ile,

 47

)(ˆ tqs uçtan uca olasılık olduğunda s yolunda en azından bir paket t periyodunda
işaretlenmiştir. Tekrar)(tpl olasılık olarak not edelim ki paket t periyodunda işaretlenmiştir
ve)(ˆ tqs uçtan uca paket işaretleme olasılığı 13 tarafından verilir.)(ˆ tqs yi aşağıdaki gibi
modelleriz

)()()(ˆ tqtwtq sss =
)(tws pencere boyutu olduğunda. Bu sağlanır eğer paketler aynı pencerede birbirinden

bağımsız olarak işaretlenmişse ve paket işaretleme olasılığı)(tqs küçükse
))(1(1)(ˆ tqtq ss −−= durumunda. Daha sonra t periyodunda pencere boyunda ki değişim

)()()(
3
2)()(1

)(ˆ
3

)(2
))(ˆ1(1

twtxtq
D

tqtw

tq
D
tw

tq
D

sss
s

ss

s
s

s
s

s

−
−

=

−−

böylelikle RENO-2 kaynak algoritması))()((tqtxF sss

+

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+=

+

)()(
3
2)()(1

)(

)1(

2
2 txtq

D
Dtqtx

tx

tx

ss
s

sss
s

s

 (4.15)

İle verilir.

4.2.1.3. RED

RED kaynak [14] iki iç değişken ihtiva eder. Ani sorgu boyu)(tbs ve ortalama sorgu boyu
)(trl

[]+−+=+ llll ctytbtb)()()1((4.16)

)()()1()1(1 tbtrtr llll αα +−=+ (4.17)
‘e göre güncellenmişlerdir.

)1,0(∈lα olduğu durumda. Daha sonra (bunun ılımlı versiyonu) RED)(tpl olasılığı ile paketi
işaretler. Böylece)(trl nin doğrusal büyüyen fonksiyonu:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥

≤≤+−

≤≤−

≤

=

ll

llllll

lllll

ll

l

btr
btrbmbtr
btrbbtr

btr

tp

2)(1

2)())((

)())((

2)(0

)(
2

1

ρ
ρ

 (4.18)

l

l

ll

l
l b

mve
bb

m −
=

−
=

1
2ρρ

olduğunda
Bu eşitlikler (4.16)-(4.18) bu G,H modelini RED için belirler.

 48

4.2.1.4 REM

REM kaynak [15] aynı zamanda iki iç değişken ihtiva eder. Ani sorgu uzunluğu
)(tbl ve)(trl ücret olarak adlandırılan bir değer. RED deki gibi)(tbl eşitlik (4.16) tarafından

modellenmiştir.)(trl ücreti

[]+−++=+ llllll ctyttrtr)()(()()1(βαγ (4.19)

1>γ ve 11 >α sabit olduğunda güncellenir. Paketleri işaretler olasılıkla ki)(trl ücretinde
logaritmiktir.

)(1)(tr
l

ltp −−= φ (4.20)

1>φ olduğunda. Pratikte eşitlik (19) la

[]+−+−+=+ lllllll ctybtbtrtr)()ˆ)((()()1(αγ

ile yer değiştirebilir. 0ˆ ≥lb hedef eşitlik geri bildirim olduğunda. Daha büyük lb̂ daha
genellikle daha yüksek araçlaşmaya yöneltir. Özellikle geniş bir şekilde sorgu
dalgalandığında kaynak [15]. Bu sürüm ile eşitlik sorgu uzunluğu teorem 3 de aşağıda

ll bb =* dir 19 0=lb ayarlanmasına dayanır. Logaritmik işaretleme olasılığı eşitlik (4.20)
yaklaşık uçtan uca fiyat)(trl s kaynağında ∑∈Ll

için yararlıdır. RENO tarafından
kullanılmadığı zaman diğer yükseltme fonksiyonları kullanılabilir kaynak [15] de açıklandığı
gibi. Örneğin işaretleme olasılığı)(trl fiyatında doğrusal olabilir.

{ }1),(min)(tprtp ll = (4.21)

bazı 0>ρ sabitleri için. 0 olamayan hedef sorgu büyüklüğü *

lb versiyonları ile ve doğrusal
işaretleme olasılığı kaynak [16] un kontrolüne denktir. Diğer verilen AQM’ nin uyarlanabilir
sanal sorgusu gibi kaynak [9] aynı zamanda eşitlik (4.2) – (4.3) ün formunda modellenebilir.
Eşitlik (4.16),(4.19), ve (4.20) –(4.21) eşitlileri (G,H) REM için model belirler.

RENO’nun Araç Fonksiyonları:

Bu alt bölümde RENO–1 ve RENO–2 nin araç fonksiyonlarını çıkaracağız.
Göstereceğiz ki RED veya REM ile hem birincil hem de çiftli problem çözülür. Not edin ki
bu at bölümlerin sonuçları RENO–1 ve RENO–2 kaynaklarına ve hem RED hem REN
bağlantılarını içeren ağa uygulanır.
Yardımcı önerme 2: (F,G,H) fonksiyonları RENO -1 ve RENO -2, RED ve REM (14–21
eşitlikleri) modeli c1 c2 c4 durumlarını karşılar.

İspat: açıkça c1 durumu belirlenmiştir. Hem RENO–1 hem RENO–2 durumu için 0>sx , Fs
devamlı diferansiyelleşebilir ve 0/ ≠∂∂ ss qF olduğunda RENO–1 için

 49

)(:
32

3
22 ss
ss

s xf
Dx

q =
+

= (4.22)

RENO–2 için

)(:
)32(

3
22 ss
ssss

s xf
DxDx

q =
+

= (4.23)

Böylece)(ss xf hem RENO–1 hem de RENO–2 için açıkça düşer. Onların araç

fonksiyonlarının keskin konkavlığı uygulanır. Böylece c2 ve c4 durumları sağlanır. Eşitlik
(4.22) ve (4.7) yi karşılaştırarak, RENO–1 in araç fonksiyonu eşitlik (4.14)

⎟⎟⎠

⎞
⎜⎜⎝

⎛
= −

ss
s

ss Dx
D

xU
3
2tan2/3)(1 (4.24)

benzer olarak RENO–2 nın araç fonksiyonu (4.15)

32
log

1
)(

+
=

ss

ss

s
ss Dx

Dx
D

xU (4.25)

dir.
Not edin ki RENO–1 ve RENO–2 nin araç fonksiyonları VEGAS tan farklı olarak kullanılır.
0 bant genişliği almak için birçok şişe boynu bağlantıları kat eden kaynaklar için bu
mümkündür (uçtan uca fiyat 1 birim olduğunda). Aşağıdaki sonuçlar RENO ya RED veya
REM ile teorem–1 uygulanır. Bu çıkarır ki RED ile eşitlik sorgu uzunluğu örnekteki probleme
dayanır (ağ topolojisi, yönlendirme kaynakların sayısı vb.) ve RED parametreleri ve böylece
yük arttığı sürece kaçınılmaz büyüme gerçekleşir. RED parametreleri statik ya da dinamik
olarak ayarlanabilir. Eşitlik sorgu uzunluğunu küçültmek için ama sadece potansiyel kararlı
olmayışının sarf edilmesi ile; aşağıdaki örnekleri görünüz. Karşılaştırmada REM ile eşitlik
sorgu uzunluğu yükten bağımsız 0 dır.

Teorem 2.1 RENO–1 ve RENO–2 kaynaklarının ve RED ve REM bağlantılarını içeren ağın
eşitliği),(** px olsun. Daha sonra),(** px birincil eşitlik (4.8) ve çiftli problem eşitlik (4.9)
eşitlik (4.24) de RENO–1 için ve eşitlik (25) de verilen RENO–2 kaynakları için verilen araç
fonksiyonları ile çözer. Daha fazla olarak eşitlik değer vektörü *x tektir. Eğer l bağlantısı
RED de uygulanırsa daha sonra eşitlik sorgu uzunluğu *

lb ll bb >* - yi sağlar 0* >lp ile. Eğer l
bağlantısı REM e uygulanırsa daha sonra 0* =lb dır.
İspat: yardımcı önerme 2 tarafından c1 c2 c4 14-21 in kombinasyonları tarafından sağlanır.
Verilen),(** px eşitliği birincil çiftli en uygun olduğunu göstermek içindir. C3 ün aynı
zamanda sağlandığını kontrol etmemiz gerekir. 16 dan ll cy ≤* hem RED hemde ren ile ve
böylece birinci uygunluk sağlanır. Düşün ki 0* >lp eğer l hattı RED de uygulanırsa eşitlik
(4.17) ve (4.18) den

0** ≥>= lll brb (4.26)

oluşur. Ama 0* >lb ll cy =* de uygulanır. Eğer l hattı REM de uygulanırsa 0* >lp ve

0* >lr da uygulanır.
Böylece eşitlik (4.19) dan

 50

0** =−+ llll cybα (4.27)

Oluşur. ll cy ≤* yi biliriz. Eğer ll cy ≤* ise eşitlik (4.16) 0* =lb a uygulanır. Ama bu eşitlik
(4.27) yede yalanlanır. Böylece ll cy =* (ve 0* =lb). Hem RED hem ren ile tamamlayıcı
gevşeklik gösterilir ve böylece c3 sağlanır ve),(** px birincil çiftli en uygundur.
 Daha fazla olarak eşitlik (4.26) gösterir ki ll bb >* - 0* >lp RED ile olduğunda. REM
ile takip eden elemanlar gösterir ki 0* =lb dır. Bu ispatı tamamlar.

NOTLAR

Eşitlik (4.22) ve (4.23) ilişkileri uygulanır ki RENO–1 ve RENO–2 büyük sD ile
kaynakları birbirinden ayırır. İyi bilindiği gibi birçok daha önceki çalışmalarda örneğin
kaynak [13], [14], [17], [18] daha fazla olarak eşitlik (4.22) RENO 1 için

sss

s

s
s

qDq
q

D
x

12/312/3 ≅
−

=

gibi yeniden yazılabilir. sq olasılığı küçük olduğunda daha önceden geniş bir şekilde ilişki
belirlenmiştir. Bazı yazarlar [16] [19]iddia eder ki RENO penceresini 1 ile büyütür her tur
zamanında belirleyici olarak. Bu 1 in yerine eşitlik(4.14) de))(1(tqs− yi yerine koymaya

dayanır. Bu model sss qDx /2/3= ü verir

2

2/3)(
ss

ss Dx
xU −= (4.28)

Uygun araç fonksiyonu ile [19] ve [12] de kullanıldığı gibi (sabit terimleri ihmal ederek).
RENO–2 için eşitlik (4.23)

222
3

)32(
3

ssssss
s DxDxDx
q ≅

+
=

yaklaştırılabilir. 32 ≥ssDx olduğunda veya sq küçük olduğunda. Daha sonra RENO–2 eşitlik
(4.28) de verilen RENO1 deki gibi aynı araç fonksiyonuna sahiptir. DUALİTY teorisi ile
verilen çift en uygun p, x değer vektörü

)(1 sss qUx −′= (4.29)
da verilir. ∑= l llss pRq olduğunda uygun değer vektörüdür. RENO nun değer ayarlaması
işlemiş eşitlik (4.14) veya (4.15) bu stratejinin yumuşatılmış versiyonu olarak düşünülebilir.
Aşağıdaki durumda)()(1

sss qUyx −′= eşitlik (4.29) tarafından belirlenen hedef değeri olsun.
Verilen RENO–1 in veya RENO–2 nin araç fonksiyonunu kullanarak daha sonra RENO1 için
eşitlik (4.24) kullanılarak aşağıdaki

)(
1
2
31)()(1

tq
q

D
qUyx

s

s

s
sss

−
=′= −

Elde ediliyor. Değer artırımını (14) hedef değerinin)(txs terimleri olarak yeniden yazılabilir.
+

⎥⎦
⎤

⎢⎣
⎡ −+=+)()(

3
)(2

)()1(22 txtx
tq

txtx ss
s

ss

 51

Böylece değeri atamadan)1(+txs direk olarak)(txs hedef değerine bir adımda RENO–1 hali
hazırdaki)(txs değerine gider hedef değer)(txs den onların karesinin farkının orantısal
değerini ekleyerek, RENO 2 için 23 den hedef değer 3/))()()(2 22 txtxtq sss − karşılamalıdır.
Böylece aşağıdaki gibi)(txs hedef değerinin terimleri olarak yazılabilir.

)3)(()(
3)(

+
=

ssss
s DtxDtx
tq

Böylece eşitlik (4.25) de Fs hedef değeri)(txs nin terimleri olarak yeniden aşağıdaki gibi
yazılabilir.

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+

−+=

+

)3)(2)((
)3)(2)((

11)(

)1(

2
sss

sss

s
s

s

Dtxtx
Dtxtx

D
tx

tx

Örneğin değeri yükseltin eğer)()(txtx ss < ve diğer durumlarda.
3.Bu gelişme burada alınmış kaynak [20] de ki gibi takip eder. ll HG tarafından tamamen
sorgu yönetim mekanizması modellenmiştir. Kaynak [21] deki model işaretleme olasılık
fonksiyonunu sF nin bir parçası olarak ihtiva eder, işaretleme araç fonksiyonuna AQM ye
aynı zamanda TCP algoritmasına bağlıdır.

4.3. VEGAS / DROP-TAİL

VEGAS ın çiftli modeli kaynak [4] de geliştirilmiş ve doğrulanmıştır. Bu bölümde asıl
sonuçları özetleyeceğiz. Eşitlik sorgu uzunluğunu ayarlamak için yeterince geniş tampon
boyutu olan durumu düşünürüz. Böylelikle VEGAS kaynakları tek eşitliğe gelir. Bu durumda
eşitlikte paket kaybı olamaz. [4] de gösterilmiştir ki VEGAS sorgu gecikmesini sıkışıklık
ölçümü olarak kullanır. lll ctbtp /)()(=)(tbl t periyodundaki sorgu uzunluğu olduğunda.
Güncelleme kuralları böylelikle))(),((tptyG lll

+

⎥
⎦

⎤
⎢
⎣

⎡
−+=+ 1
)(

)()1(
l

l
ll c

tytptp (4.30)

Tarafından verilmiştir (eşitlik (4.16) nın her iki tarafı cl ye bölünmesi ile elde edilir).
Böylece VEGAS için AQM her herhangi bir iç değişkene bağlı kalmaz. Verilen)(txs

)(
)(

tq
d

tx
s

ss
s

α
= (4.31)

tarafından verilmiş ve hedef değeri olsun, sα VEGAS ın parametresi olduğunda ve sd
s kaynağının tur zaman yayılma gecikmesi olduğunda. Kaynak değeri için güncelleme kuralı
daha sonra))(),((tqtxF sss olarak

))()((11)()1(2 txtx
D

txtx ss
s

ss −+=+ (4.32)

tarafından verilir.
1,01)(1 −>= zegerz Olduğunda eğer z>0,- sssss qdxx /α== 1 eğer z<0 ve 0 eğer

z=0 ise. Eşitlikte sssss xdxU /)(α=′ veya sssss xdxU log)(α= elde ederiz. Aşağıdaki
sonuçlar 18 de ispatlanır. Kısmen uygulanır ki her bir bağlantıda basit konkav programı
çözerek sorgu uzunluğunu hesaplayabiliriz.

 52

Teorem4. VEGAS/DROP TAİL ın),(** px eşitlik (4.30)-(4.32) de modellendiği gibi
birincil (4.8) ve çiftli problem (4.9) eşitliği ile çözülür, araç fonksiyonu Us

sssss xdxU log)(α=
Tarafından verilen. Daha fazla *x tektir ve iyi orantılanmıştır. L bağlantılarında ki eşitlik
sorgu uzunluğu *

ll pc dır. Teorem de verilen araç fonksiyonu ile VEGAS ın değer ayarlaması
eşitlik (4.32) eşitlik (4.29) un yumuşatılmış versiyonu olarak teoremde verilen araç
fonksiyonu ile çıkarılabilir.)1(+txs değerini ayarlamak yerine bir adımda)(txs hedef
değerine (4.29) tarafından belirlenir, VEGAS)(txs hali hazırdaki değerine gider. 2/1 sD ile her
adımda hedef değer)(txs yaklaşır.

KAYNAKLAR
 [1]. V. Jacobson. Congestion avoidance and control. Proceedings of SIGCOMM'88, ACM,

August 1988. An updated version is available via ftp://ftp.ee.lbl.gov/papers/
congavoid.ps.Z.

[2]. Stevens. TCP/IP illustrated: the protocols, volume 1. Addison-Wesley, 1999. 15th
printing.

[3]. Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end-to-end congestion
avoidance on a global Internet. IEEE Journal on Selected Areas in Communications,
13(8): 1465— 80, October 1995. http://cs.princeton.edu/nsg/papers/ jsac-vegas.ps.

[4]. Steven H. Low, Larry Peterson, and Limin Wang. Understanding Vegas: a duality
model. J. of ACM, 49(2):207-235, March 2002. http://netlab.caltech.edu.

[5]. Frank P. Kelly, Aman Maulloo, and David Tan. Rate control for communication
networks: Shadow prices, proportional fairness and stability. Journal of Operations
Research Society, 49(3):237-252, March 1998

[6]. Steven H. Low and David E. Lapsley. Optimization flow control, I: basic algorithm
and convergence. IEEE/ACM Transactions on Networking, 7(6):861—874, December
1999. http://netlab.caltech.edu.

[7]. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms. In
Infocom'99, March 1999.

[8]. Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Transactions on Networking, 8(5):556-567, October 2000.

[9]. Srisankar Kunniyur and R. Srikant. End—to-end congestion control schemes: utility
functions, random losses and ECN marks. In Proceedings of IEEE Infocom, March
2000. http: //www.ieee-infocom.org/2000/papers/401.ps.

[10]. ernando Paganini, John C. Doyle, and Steven H. Low. Scalable laws for stable
network congestion control. In Proceedings of Conference on Decision and Control,
December 2001. http://www.ee.ucla.edu/~paganini.

[11]. D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.
[12]. R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of congestion

control. Automatica, 35:1969—1985, 1999.
[13]. atthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Te-unis Ott. The macroscopic

behavior of the TCP congestion avoidance algorithm. ACM Computer
Communication Review, 27(3), July 1997. http://www.psc.edu/networking/
papers/model_ccr97.ps.

[14]. S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. on Networking, 1(4):397-413, August 1993.
ftp://ftp.ee.lbl. gov/papers/early.ps.gz.

 53

[15]. Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, andQinghe Yin. REM: active
queue management. IEEE Network, 15(3):48-53, May/June 2001. Extended
version inProceedings of ITC17, Salvador, Brazil, September 2001.
http://netlab.caltech.edu.

[16]. Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. On designing improved
controllers for AQM routers supporting TCP flows. In Proceedings of IEEE Infocom,
April 2001. http://www-net.cs.umass.edu/papers/ papers.html.

[17]. S. Floyd. Connections with multiple congested gateways in packet—switched
networks, Part I: one—way traffic. Computer Communications Review, 21(5),
October 1991.

[18]. T. V. Lakshman and Upamanyu Madhow. The performance of TCP/IP for networks
with high bandwidth—delay products and random loss. IEEE/ACM Transactions on
Networking, 5(3):336—350, June 1997. http://www.ece.ucsb.
edu/Faculty/Madhow/Publications/ton97.ps.

[19]. Deepak Bansal and Hari Balakrishnan. Binomial congestion control algorithms. In
Proceedings of IEEE Infocom, April 2001.

[20]. Steven H. Low, Fernando Paganini, and John C. Doyle. Internet congestion control.
IEEE Control Systems Magazine, 22(1):28-43, February 2002.

[21]. Steven H. Low. A duality model of TCP flow controls. In Proceedings of ITC
Specialist Seminar on IP Traffic Measurement, Modeling and Management,
September 18-20 2000.

 54

BÖLÜM 5

VEGAS - DUALİTY MODEL

Ağdaki küresel en uygun olma problemini çözmek için dağılmış öncelikli çift
algoritma kaynak tarafından taşınır. TCP IP VEGAS sıkışıklık kontrol mekanizmasını çoklu
bağlantılı ve çoklu kaynaklı modelini tanımlarız. Bu model gecikmelerin ve TCP VEGAS ın
kayıp özelliklerinin kökenini anlamamızı sağlar. Ağ uygun tamponlama olduğu zaman ağ
kapasitesinin uygun ağırlıkta olduğu varsayılarak VEGAS kararlığını belirtir. Bundan
korunmak için REM aktif sorgu yönetimini ne kadar kullanacağımız tavsiye eder ve bu
sıkışıklıktan kaynaklanan sonuçların mekanizmasını açıklar.

5.1. VEGAS Modeli

Bu VEGAS modelinin gösterildiği bölümdür ve VEGAS ın nesnelerini gösterir.
VEGAS ın algoritması çiftli bir metottur problemlerin çoğunu çözmek için. Bu çabanın hedefi
VEGAS ın kararlılığını daha iyi anlamakla anlamakla olur.

5.1.1. Ön Hazırlık

 Yönlendirmeli ağ çoklu yönlü L tarafından modellenmiştir. İletim kapasitesi lc ile
Ll∈ eleman ve sonsuz tamponlama boşluğu. s kaynaklar tarafından paylaşılmıştır. s kaynağı

l(s) alt setine dönüşür)(sL alt eleman hatlarını LsL ⊆)(dönüştürür. Zs değeri iletildiğinde
)(ss xU değerine ulaşır.(örneğin her saniyedeki paketler) Tur zamanı çiftleme gecikmesi s

kaynağı için ds olsun. Her L hattı için { })()(sLlSslSs ∈∈= L hattını kullanan kaynak
setleri olsun. Tanımlama)(sLl∈ ,)(lSs∈ olduğu zamandır.
 VEGAS ın bir tercümesine göre kaynak gerçek değeri ve tahmin edilen değerinin
farkını gösterir ve penceresindeki artırımlar veya azatlımlar bir sonraki tur zamanında alfa s
parametresinden daha büyük veya daha küçük olmasına bağlı olarak. Eğer fark sıfırsa pencere
boyutu değişmez. Senkron parçaları zaman modeline göre bunu modelleriz)(tWs zamanında
pencerenin kaynağı olsun ve)(tDs uygun tur zamanı olsun (sorgu gecikmesi + çiftleme) her
bir ayrı zaman için)(/1 tDs (bir paketin pencere boyunun değişimini modelleriz her dönüş
zamanı için her ayrık zaman da)(/1 tDs nin değişimi tarafından). Bu s kaynağı aşağıdakine
göre penceresini ayarlar VEGAS kaynak algoritması

 55

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>−+

<−+

=+

elsetw
D
tw

d
twif

tD
tw

D
tw

d
twif

tD
tw

tw

s

s
s

s

s

s

s
s

s
s

s

s

s

s
s

s

)(

)()(
)(

1)(

)()(
)(

1)(

)1(α

α

 (5.1)

kaynak yazıda [1] ss DtW /)(beklene değer olarak belirtilmiştir. ss dtw /)(asıl değerdir.
)(/)(/)(tDtwdtw ssss − Arasındaki fark DİFF dir. Asıl uygulama tur zamanı çiftleme

gecikmesi ds daha sonra belirlenecek tur zamanı en az değeri tarafından tahmin edilir. αs
birimi KB/sn yi söyler. αs in önemi bölüm 3 de açıkladık. [1] in açıklamasında DİFF i αs ve
sβ arasından tutmak için pencereyi ayarlar. ss βα < için ss βα = Olduğunu basitçe öne

süreriz. Bu VEGAS ın özünü oluşturur. ss βα < Kullanımın etkisi [2] tarafından
açıklanmıştır.

)(/)(:)(tDtwtw sss = bant genişliğini t zamanında s zamanı için ifade etsin.)(tWs pencere
boyutu - Bant genişliği gecikme ürünü)(twd ss s yolunda tamponlanan toplam geri bildirim a
eşittir. Buda kaynak[1] deki durumla sd nin çarpılmasıdır. Görüyoruz ki pencerenin kaynak
artırımı ya da azatlımı toplam geri bildirim)()(txdtw sss − ssdα den daha küçük ya da büyük
olması bağlıdır. Bu ikinci VEGAS algoritma yaklaşımıdır. Bölüm 5.1 de 3. yaklaşımı
açıklayacağız. Eşitlik (5.1) sadece kaynak dinamiklerini belirler ve ağ davranışını tamamen
açıklamaz.)(tDs dönüş zamanı gecikmelerini belirleyen bağlantı dinamiklerini ihtiva eder
aynı zamanda.)(tDs gecikmesi s kaynağının)(tws penceresine sadece değildir aynı
zamanda diğer kaynakların paylaşılan bağlantı üzerinde olmasına da bağlıdır.

5.1.2. Vegasın Nesneleri

VEGAS eşitliğini şu anda yorumlayabiliyoruz. Detaylı ağ dinamiklerini ihtiyacı
olmadığı için takip eden alt başlıkta bütün özelliklerini erteliyoruz.
Algoritma birleştiği zamanı ()Ssww s ∈= .**

 ve dönüş zamanı eşitliğini gösterir.

()SsDD s ∈= .**
 gerçekleşir.

içinSsbütün
D
w

d
w

s
s

s

s

s ∈=− α*

**

 (5.2)

İlk sonucumuz gösterir ki VEGAS kaynakları sahiptir eşitlik (5.3) ile

sssss xdxU log)(α= (5.3)
Eşitlik (5.1) fayda fonksiyonlarıdır. Bundan daha fazla VEGAS ın nesneleri kaynak
değerlerini seçmek içindir. ()Ssxx s ∈= ,

∑≥ s
ssx
xU)(max

0
 (5.4)

Llcx

lSs
ls ∈≤∑

∈

.
)(

 (5.5)

Us hizmet fonksiyonu tam olarak iç bükey artışlıdır. VEGAS kaynağının çok arttığı anlamına

 56

gelir (fayda değer artışı). Ama azaltan bir geri dönüş vardır (dış bükeylik). Bağımlılık belirtir
ki toplam kaynak değeri herhangi bir hatta kapasiteyi aşamaz. Eşitlik (5.4) ve (5.5) öncelikli
problemi belirttik. X değer vektörü bağımlılığı mümkün kılabileceğini belirtti ve mümkün
olan x öncelikli uygunluğa uygunluk olarak adlandırılır (veya basitçe uygun). Tek uygun
değer vektörü objektif fonksiyonun kesin iç bükey olduğunda mevcuttur ve devamlıdır,
mümkün çözüm seti yoğundur.

Teorem. 1: ()Ssww s ∈= ,**

 VEGAS ın eşitliği olsun ()SsDD s ∈= ,** dönüş zamanı eşitliği
olsun ki (2) eşitliğini gerçekleştirsin. Paketler birebir bütün hatlara sunulsun sonra kaynak
değerlerinin eşirliği ()Ssxx s ∈= ,** formül tarafından belirlensin. Bu değer eşitlik (5.3) ve
(5.5) için Tek uygun çözüm dür.
İspat: Karush-Kuhn-Tucker teoremi tarafından uygun kaynak değer vektörü 0* ≥x Sadece ve
sadece () 0,** ≥∈= Llpp s olduğu zaman uygundur. Bütün s ler içinde

∑
∈

==′
)(

*
*

*)(
sLl

l
s

ss
ss p

x
d

xU
α

 (5.6)

Bütün l ler için 0* =lp dır . Bağlantının toplam kaynak değeri llSs s cx <∑∈)(
*

 kapasitesinden

kesin küçüktür. (tamamlayan sarkıklık). p* vektörünü bağlantılar sağlar ki Geri bildirim un
eşitliğini ispat ediyoruz. Ve bu eşitlik uygun değerdedir.
*
lb geri bildirim eşitliğinin l bağlantısındaki değeri olsun. *

lb ın parçası s kaynağına ait olan

ilk giriş ilk çıkış servis disiplini altında hat kapasitesi olduğu zaman *
l

l

s b
c
x+ lc dır. Böylelikle

kaynak s ∑∈

+

)(
*

sLl l
l

s b
c
x eşitliğinde onun yolunda içerir. Pencere boyutu bant genişliği gecikme

ürünü + toplam yoldaki geri bildirime eşitliği zaman

∑
∈

=−
)(

*
*

**

sLl
l

l

s
sss p

c
x

dxw (5.7)

Olur. Böylelikle eşitlik (5.2) de *** / sss Dww =

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=−=−= ∑

∈)(

*
*

**
*

**
* 1)(1

sLl
l

l

s

s
sss

ss

s

s

s
ss p

c
x

d
dxw

dD
w

d
w

wα

Eşitliğini elde ederiz son eşitlik (5.7) den takip ederiz.

l

l
l c
bp
*

* =

‘nü belirlemekle ve terimleri yeniden düzenleyerek formül 6 ya ulaşırız.. Açıkça x* geri
bildirim sınırsız büyüdüğü zaman x* uygun olmalıdır. Eşitlik (5.7) nin tersini söylemlidir. Hat
l bağlantıdaki 0* =lp geri bildirim eşitliği. Eğer toplam kaynak değeri kapasiteden kesinlikle
küçükse tamamlayıcı sarkıklık durumu aynı zamanda gerçekleşir.

5.1.3. Çift Problem

Teorem 1 de VEGAS birbirine yaklaşırsa eşitlik (5.3 – 5.5) deki uygunluk problemini
eşitliğin çözdüğü savunulur. Burada soru VEGAS algoritmasının veya daha karışık olan

 57

eşitlik (5.16—5.19) belirlemelerinin mi kalacağıdır. Aslında birbirine yaklaşacağıdır.
Birbirine sert yaklaşma analizi zordur çünkü güncelleme fonksiyonu doğrusal ve devamlı
değildir. Kaynak [3] analizinde iki kaynağın tek bağlantıda paylaşımını görürüz. Bu alt
bölümde 4 ve 5 deki çift problem için ve sonrasında VEGAS algoritmasını eğim atma
algoritması ele alacağız. Bu eğim atış algoritması yeterince küçük adım ölçüleri ile birbirine
yaklaşma sağlandığı zaman ispat edilebilir. Bunu Yaklaşık algoritma yaklaşımı olarak ima
etmediğimizde eğim atış algoritmasının kaydı için VEGAS ı tavsiye eder. Bundan daha fazla
bu izah VEGAS ağ modelinin tamamına yöneltir bir sonraki bölümde açıklanacağı gibi
kaynak[4] duality gelişmelerini görmekle başlayacağız. Kaynak [4]; [5] eşitlik (5.4) ve (5.5) i
ve çift problemi çözmek için ve tartılmış eğim fırlatma algoritmasını tanıtır. Bundan sonraki
alt başlıkta VEGAS algoritmasını tanıtacağız. Bu algoritmanın yaklaşık versiyonu olarak. Her
bir l bağlantıya bağlı olarak Pl çift değişkendir. Eşitlik (5.4) ve (5.5) Lagrangian kaynak [6]
ve eşitlik (5.4) ve (5.5) in çift problem belirtildiği gibi:

l
s l

l
sLl

lsss

l lSs
lsl

s
ss

cppxxU

cxpxUpxL

∑ ∑∑

∑ ∑∑

+⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

−−=

∈

∈

)(

)(

)(

)()(),(

Eşitlik (5.4) ve (5.5) in çift probleminin fonksiyon),(max:)(0 pxLpD x≥= gibidir. İlk
terimin xs den artırılabilir olduğunu fark edin ve

∑ ∑∑ ∑
∈≥∈≥

−−=−
s sLl

lsssxs sLl
lsssx

pxxUpxxU
ss

))((max))((max
)(0)(0

Böylelikle çift problem çift vektörü seçmektir.),(Llpp l ∈= öyle ki
s

sssx

s
s pxxUpB

s

−=
≥

)(max)(
0

 (5.9)

∑
∈

=
)(sLl
l

s pp (5.10)

olduğunda

∑ ∑+=
≥ s l

llsp
cppBpD))(:)(min *

0
 (5.8)

çiftli değişken lp yi l bağlantısındaki her birim bant genişliği fiyatı olarak açıklayacağız.
Sonra sp eşitlik (5.10) da s yolunda her bant genişliğinin fiyatıdır. Böylelikle)(s

s px eşitlik
(5.9) da kaynak s ye bant genişliği maliyetini temsil eder. s

ssss pxxUx −)(. net sx
değerindeki iletimin karıdır. Ve)(s

s pB maksimum s kazancı p5 (ölçülebilir) verilen fiyatta
gerçekleştirilebilen maksimum s kazancı olarak belirtilir. Verilen fiyat vektörü 0≥p s
kaynağı tek)(s

s px değerini ikna edebilir ki formül9 u maksimum değere getirir sadece lokal
bilgilere dayanarak. Daha fazla olarak Duality teori tarafından kaynak [6] fiyat vektörü p*
eğer çiftli uygun eşitlik (5.8) e minimize ise)(*s

s px ilk uygun değeri aynı zamanda tek uygun
değeri olur.

Bu yazının kalanında bağlantı fiyatını lp olarak ifade edeciğiz. ∑∈
=

)(sLl l
s pp yol

fiyatı(s kaynağının) ve vektör p)(. Llpp l ∈= basitçe fiyattır. VEGAS için pl bağlantı fiyatı l
bağlantısındaki sorgu gecikmesi olarak döner: aşağıdaki bölümü görün. Uygun p* gölge
fiyattır (Lagrangian çarpımı). *

lp yorumlayıcısı ile uç artırım toplam ∑s ss xU)(l nin cl
kapasitesindeki uç artırımı için tekrarlayan eğim izdüşümü algoritması kaynak [5] deki çift

 58

problemi çözmek için tasarlanmıştır. Çift objektif fonksiyonu d nin))((tpD∇ eğimini not
edin. Fiyatlar eğim)((tpD yi küçültmek için ters yönde yararlanmıştır.

+∇Θ−=+))(()()1(tpDtptp γ

Burada 0>γ sabittir.).(Lldiag ∈=Θ θ Pozitif dik ölçülür matristir ve { }zz .0max=+

elemandır. Çift problemin yapısı dağıtılmış merkezleşme ve yukarıdaki algoritmaların
yapısına müsaade eder.

)(tx s nin yerine koyulan p,)(tp ile eşitlik (5.9–5.10) maksimize eden tek kaynak değerini

gösterir ve ∑∈
=

)(
)()(

lSs s
l txtx l deki toplam kaynak değerini gösteri. ∑∈

=
)(

)()(
lLl l

s tptp

s kaynağını yol fiyatını gösterir. Sonra sssxs xdxU log)(α= VEGAS ın araç fonksiyonu ile
eğim atış algoritması yaklaşım uygulaması takip etmesi [6] olarak görülebilir.

)(
)(

tp
d

tx s
ss

s
α

= (5.12)

olduğu zaman

[]+−+=+ l
l

l ctpxtptp))(()()1(1γθ (5.11)

Açıklamak için)(tx l l bağlantısında bant genişliği için talepleri göstereceğini not edin ve lc
mevcut olanı gösterir. Böylelikle fiyat arz ve talep kanunlarına göre ayarlanır. Eğer arz talebi
aşarsa fiyatı yükseltir değilse düşürür. [4] algoritmasında 1=lθ özel bir durum vardır. γ
büyütme faktörü kaynak [5] deki zaman bağımlı Hessian matrisi))((2 tpD∇ tersi olarak
seçilmiştir. Eşitlik (5.12) tarafında kaynak s eşitlik (5.9-5.10) un tek yükseltici değerine atar.
Ekonomideki arz fonksiyonu gibidir.)(tps yol fiyatı ne kadar büyükse (yol ne kadar
sıkışmışsa) kaynak değerleri o kadar küçüktür. Algoritmanın merkezleştirilmemiş doğası her
hat ve har kaynak sadece lokal bilgileri tek başlarına güncellendiğine dikkat edin. Takip eden
sonuçlar söyler ki ölçülmüş eğim atış algoritması eşitlik (5.11) ve (5.12) tarafından belirlenir.
Tekil uygun kaynak değerine gider. VEGAS ı Bu algoritmanın yaklaşık versiyonu olarak
düşünüldüğünde bu teorem kararlılığının altını çizer.
Teorem 2: lθ adım boyutu yetirince küçük olduğunda herhangi bir 0)0(≥x başlangıç
değerinde başlarken ve 0)0(≥p fiyatları her limit noktası (**.px) (x(t),p(t)) durumun eşitlik
(5.10) ve (5.12) tarafından oluşturulur Kaynak [5].
İspatı aynı zamanda (**.px). ın uygunluğu garantileyen adım büyüklüğünün sınırını açık
eder.)(max: sLL Ss∈= ve)(max: lSS Ll∈= belirle. L kaynak tarafından kullanılan en uzun

yolun uzunluğudur. Ve S en sıkışık bağlantıyı paylaşan kaynakların sayısıdır.)(tx s kaynak

değerini üstten sınırlı olduğunu düşünün şöyle ki 22 /)(/ xdtxd sss αα ≥ bütün s ler için.
Büyüklük faktörü ll c/1=θ olduğu zamana VEGAS algoritmasını özelleştirin. Düşünün ki hat
kapasitesi alttan sınırlı. Teorem 2.2 nin sonucu aşağıdadır.

2

2
xSL
dcαγ =

 59

5.1.4. Vegas Algortiması

VEGAS algoritmasını yaklaşık olarak ölçülmüş eğim fırlatma algoritması olarak
düşünürüz. Bu algoritma adapte olabilen sıkışıklık kontrolünden daha yakındır. Bağlantı
algoritması (5.11) sıkışıklık ölçümünü)(tpl)(tps hesaplanır ve kaynak algoritması eşitlik
(5.12) iletim değerini sıkışıklık geri dönüş)(tps ye adapte eder. Bu algoritmayı uygulamak
için VEGAS-kaynak bağımlı mekanizma iki kabulü göstermelidir. 1-Bağlantı ücretlerinin
nasıl hesaplandığı ve 2- yol ücretlerine her bir kaynak için onların değerlerini ayarlamak için
nasıl geri dönüldüğü. Bunları göreceğiz ilki ücret ayarlaması eşitlik (5.11) Her bir
bağlantıdaki tampon işlem tarafından gerçekleşir. 2. yol ücretleri kesin olarak dönüş zamanı
boyunca kaynağa geri beslenir. Verilen yol ücreti)(tps , s kaynağı yaklaşık Eşitlik (5.12) nin
versiyonudur.
Özellikle l bağlantısının giriş değerini s kaynağından)(txs de t zamanında düşünün. Daha

sonra l bağlantısındaki toplam giriş değeri ∑∈
=

)(
)()(

lSs s
l txtx olsun ve l bağlantısında

tampon aralığı)(tbl , []+−+=+ l
l

ll ctxtbtb)()()1(‘e dayandırılarak oluşur.
Her iki tarafı cl ye bölmekle

+

⎥
⎦

⎤
⎢
⎣

⎡
−+=

+
))((1

)()1(
l

l

ll

l

l

l ctx
cc

tb
c
tb (5.13)

eşitlik elde edilir.
lll ctbtp /)()(= belirlerken eşitlik (5.13) (5.11) in aynısıdır y=1 ile ve ölçüm faktörü

ll ct /1)(=θ olduğu zaman.)(txs ,)(txl kaynak değeri hariç tutulur. Eşitlik (5.12) den kesin
olarak farklıdır. Daha sonra açıklandığı gibi…
1 den tekrar çağrılır ki VEGAS algoritması)(tws

ssssssssss ddtxtwveyaddtxtw αα >−<−)()()()((5.14)
eşitliğe dayanarak güncellenir.
2.1 in ispatındaki gibi bu değer geri bildirime bağlanır böylelikle ücretler yolda

)()()()(
)(

)()()(
)()(

tptxtptx
c
tb

txdtxtw s
s

sLl
ls

sLl l

l
ssss ∑∑

∈∈

===− (5.15)

eşitlik gibidir.
Eşitlik (5.14) numaralı koşulda

)(
)(

)(
)(

tp
d

txveya
tp
d

tx s
ss

ss
ss

s

αα
><

oluşur.
VEGAS kaynağı haki hazırda ki kaynak değeri)(txs ye hedef değeri)(/ tpd s

ssα yi
karşılaştırır. Pencere artırılmış veya azaltılmış)(/1 tDs ile karşılaştırılır. Bir sonraki periyotta
hali hazırdaki kaynak değeri)(txs hedef değerinden)(/ tpd s

ssα daha küçük ya da daha
büyük olmasına dayandırılır. Ayarlamada eşitlik (5.12) algoritması hedef değerine bu değeri
ayarlar.
Özetle VEGAS algoritmasını aşağıdaki doğrusal olmayan değerlerle göstermiş olduk.
VEGAS Ağ Modeli

{ }))()((1))()((1
)(

1:)(ss
s

sss
s

ss
s

s dtptxdtptx
tpd

tv αα >−<
+

= (5.18)

 60

)(
)(

:)(
tpd

tw
tx s

s

s
s +

= (5.19)

olduğunda

içinlinklerilbütünctx
c

tptp l
l

l
ll

+

⎥
⎦

⎤
⎢
⎣

⎡
−+=+))((1)()1((5.16)

[] içinkaynaklarısbütüntvtwtw sss
++=+)()()1((5.17)

Böylelikle)(:)(tpdtD s
ss += s nin tur zamanıdır, [] { }zz ,0max=+ dir, ve

fonksiyon 1 (A) göstericisinden 1 e eşittir. Eğer A doğru ve 0 sa. Bu lineer olmayan sistem
eğim fırlatma algoritması eşitlik (5.11-5.12) nin yaklaşık versiyonu (5.8)-(5.10) daki çift
problemi için olarak düşünülebilir.. Eşitlik (5.16)-(5.19) un tamamlanmış noktası tarafından
verilmiştir ve ss

s
s dpx α=** 0* =sx kadar ve l

l cx ≤* İle eğer 0* >lp Eşitliği ile karşılar Tam
olarak Karush-Kuhn-Tucker durumu önceki eşitlik (5.3)-(5.5) problemi için mevcuttur.
Böylelikle eşitlik toplam araç fonksiyonuna maksimize olur teorem 2. 1 de açıklandığı gibi.

5.1.5. Notlar

Teorem 2.2 deki uygun durumda kararlılık için 0>γ a ihtiyaç duyar yeterince küçük
olmasına. Kaynak VEGAS algoritması bunun la birlikte 1=γ i idea eder (eşitlik (5.11)-
(5.16) yı karşılaştırın). Şimdi y yi yeniden tanıtmak için bir yol tanımlayın. Her iki tarafı

eşitlik (5.13) ile çarparsak 1>γ tarafından ve
l

l
l c

tbtp)(
)(γ= ile belirleyerek,

+

⎥
⎦

⎤
⎢
⎣

⎡
−+=+)))(((1)()1(l

l

l
ll ctpx

c
tptp γ

oluşturulur.
Burada fiyatlarda ağırlıklı sorgu gecikmesi kullanılarak, fiyat ihtiyaç duyulmayan y nın adımı
ile bulunur. Daha sonra (15)

)()(
)(

)())()((
)(

tptx
c
tb

txdtxtw s
s

sLl l

l
ssss ∑

∈

==− γγ (5.20)

ye geliştirir.
Araç fonksiyonunu modifikasyonlar güncellememelidir aynı zamanda eşitlik değeri)(tws
eşitlik (5.18) e dayanarak ayarlanmalıdır. Böylelikle eşitlikte ** /)(sss

s xdtp α= 1=γ için bu
ihtiyaç eşitlik (5.20) ile beraber duruma bağlı VEGAS algoritmasını (14) den

ddtxtwveyaddtxtw s
ssss

s
sss γ

α
γ
α

>−<−)()()()(

geliştirir.
Bu büyüklük sα yi γ/1 kez daha büyük kullanmak için örneğin 10 KB/sn in birimi

olarak kullanmak yerine KB/sn sα için kullanmak. γ (sα nin birimi) bütün kaynaklarda aynı
olduğunu not edin. Daha küçük gama kaynak değerlerinin dönüşümünü kesinleştirir, ama
dönüşüm daha yavaş olur. Kararlılık ve cevap verilebilirlilik arasındaki duyarlılık mevcuttur
herhangi bir geri dönüş kontrol sisteminde. Daha küçük γ aynı zamanda daha büyük eşitlik
geri bildirim eşitliğine sebep olur γ/)()(tpctb lll = olduğunda. Bu zorluk ücret
hesaplamadan tampon işlemi tekleştirmekle işaretleme tanıtılarak üstesinden gelinebilir.

 61

sα kullanmak için bu değerler γ/1 kere daha büyük 10 KB/sn birim kullanır alfa s için
KB/sn ın dışında γ (sα nin birimi) bütün kaynaklarla aynı olmalıdır. Daha küçük y değeri
kaynak değerlerinin dönüşümüdür ama dönüşüm daha küçük olur. Kararlılık ile cevap
verilebilirliği arasında gerilme vardır herhangi bir geri dönüş sisteminde. Daha küçük γ aynı
zamanda daha büyük ger bildirimine sebep olur. γ/)()(tpctb lll = olduğunda. Bu zorluk fiyat
hesaplamadan tampon işlemi çiftleştirmeme için işaretleme tanımlanarak aşılabilir.

5.2. Gecikme, Kayıpsız Tam ve Kayıp

5.2.1. Gecikme

Daha önceki bölümde VEGAS algoritmasının 2 eşitlik yaklaşımı tanımlanmıştır. İlki
kaynağı değerini ayarlar böylelikle asıl değerini bulmak için sα ile sβ KB/sn arasında
tahmin edildiği değerinden daha küçüktür. sα (1/ds tipik olarak) ve sβ (tipik olarak 3/ ds)
VEGAS algoritmasının parametresi iken. Bu umulan değer maksimum mümkün olan hali
hazırdaki pencere boyutudur. Yolda herhangi bir sorgulama yoksa gerçekleşir. Bu değerin
mantığı maksimum ağ alt araçlandırmasına çok yakındır. Ve sıkışıklıktan daha uzaktır. 2.
yaklaşım VEGAS kaynağı ssdα (tipik olarak 1) ile ssdβ (tipik olarak 3) arasında ki yolda
tamponlanan paketlerin sayısını korumak için değerini ayarlar. Böylece ekstra kapasite
avantajı sağlar mümkün olduğu zaman. Duality model 3. yaklaşımı tavsiye eder. Tamponlama
işlemin dinamikleri l hattında (eşitlik (5.11) ve (5.13) karşılaştırarak) bir bağ kurar

l

l
l c

tbtp)(
)(= (5.21)

Bu da bağlantı ücreti)(tpl hatlarında sorgu gecikmesinin t zamanındaki paket varışı ile
yüzleşmesidir. Yol ücreti ∑∈

=
)(

)()(
sLl l

s tptp uçtan uca sorgu gecikmesidir (dağınık

gecikme hariç). Bu sıkışıklık sinyalidir ve kaynak değerini ayarlar ve kaynak tur zamanı ile
(tahmin edilen) üretim gecikmesi arasındaki fark alınarak hesaplanır. Daha sonra eşitlik (5.12)
VEGAS kaynak setine uygulanır. Sorgu gecikmesinin yayılımının gecikmesinin değeri
orantısaldır. Orantısal sabit sα ile sβ arasındadır. Ne kadar büyük sorgu gecikmesi olursa o
kadar keskin sıkışıklık ve değer düşümü olur. Bu VEGAS ın yaklaşımı ren ile birlikte
kullanıldığında VEGAS ı değiştirmek için kullanılır. Aşağıdaki bölümü görünüz. Aynı
zamanda eşitlik (5.12) den takip eder ki bant genişliği sorgu gecikmesi genişliği kaynağın
ürünü yolda tamponlanmış ekstra paketler.

ss
s

s dpx α=** (5.22)
Sorgu teorisinde Little in kanunudur. Eşitlik (5.22) ye ilişkin sp* ye uygulanır. sp* Artmalıdır.
*
sx kaynakların sayısıyla böylelikle azalmalıdır. Yolda tamponlanan bazı ekstra paketleri

tutmak için her kaynağın kakıştığı yeniden oluşmasıdır bu.

5.2.2. Kayıpsız Tam

 62

Buna rağmen bunu zamanda tanımadık. VEGAS ın iki eşit uygun uygulaması vardır.
Her biri algoritmada belirsizliğin farklı yaklaşımlarındandır. İlki asıl koda dayanan alfa s ve
beta s parametrelerini belirler her tur zamanı için byte olarak. İkincisi kaynak [9] deki
yazısına dayanarak her inicin biten terimleri olarak belirler. Bu iki byte’ın (paketlerin) bu iki
uygulama iyilik üzerinde kesin etkisi vardır: ikinci kayırma kaynakları geniş yayılan
gecikmesiyle.

Bizim modellememizin terimlerinde “log” araç fonksiyonu (5.1) *x eşitlik değeri iyi yayılır
kaynak [7], [8] herhangi diğer uygun değer vektörü x için

0*

*

≤
−∑

s

ss
ss x

xx
dα

 e sahibiz. ilk uygulaması alfa ss d/αα = kaynak yayılım gecikmesine ters olarak orantılıdır.
daha sonra ssssss xxdxU loglog)(αα == araç fonksiyonları bütün kaynaklar için uygundur
ve eşitlik değeri iyi oranlıdır. ve yayılım gecikmesinin bağımsızlığıdır. Buna oransal iyilik
(Pf) uygulaması deriz. 2. uygulama αα =s eşitliğine sahiptir bütün kaynaklar için. Daha
sonra araç fonksiyonları ve eşitlik değerleri oransal iyi olur, kaynakların oransal ağırlığı ile
yayılım gecikmeleri eşitlik (5.22) uygulanır ki eğer iki kaynak r ve s yüzleri yol fiyatı ile
aynıysa örneğin tek sıkışık bağlantılı ağda eşitlik değeri yayılım gecikmesine orantılıdır.

s

s

r

r

d
x

d
x **

=

Çoklu sıkışıklıklı bağlantılı ağda yayılım gecikmesi tarafından araca ağırlık verir. Eğer
yayılma gecikmesi kaynak yolunda sıkışıklık bağlantıların sayısına orantılı ise ikinci
uygulama olan ağarlıklı orantısal iyiliği çağırırız (WPF). Bunun pencereyi eşitlemeye çalışan
TCP RENO ile uyumu

ssrr DxDx =

ve böylelikle bant genişliğinin yarısında kaynak 2 kere tur zamanı gecikmesi gönderir. Bu
bağlantılar aleyhinde davranma yüksek yayılma gecikmesi ile kaynaklarda iyi bilinir örneğin
kaynak [10,…,14] aslında aynı yöntem kayıp ihtimalini çiftli değişken olarak varsayarak
burada geliştirilmiştir. [5; Low et al. 2002] RENO ya uygulanmıştır. RENO

s

ss

s
ss

Dx
D

xU
2

tan2)(1−=

araç fonksiyonuna gösterildiği gibi sahiptir.

5.2.3. Kayıp

Eşitlik geri bildirimi lll cpb ** = ile uygun hale getirmek için sağlanan L bağlantılarının
tamponu yeterince büyüktür. VEGAS kaynağı eşitlik (5.5) deki uygunluk durumuna borçlu
olan eşitlikte herhangi bir kayıptan dolayı etkilenmeyecektir. Paketler kaybolana dek pencere
boyutunu doğrusal olarak artırmakla hangi pencerenin çarpılabilir azaltılmış olduğuna bağlı
olarak ağın ek kapasitesi için araştıran bu TCP-RENO ya bir ayarlamadır. Belirlenmiş tur
zamanı ve akıllıca ona reaksiyon göstermeyle bu da dikkatlice açılmış sıkışıklık bilgisi
tarafındandır. VEGAS devamlı boşaltma döngüsünden ve sıkışıklıktan düzeltmeden kaçınır.
Bu kaynak [1] de deneysel sonuçlardan teyit edilmiştir. Kaynak [1] ve [14] da belirtildiği gibi

 63

eğer tampon yeterince geniş değilse eşitlik ulaşılamaz kayıp kaçınılmaz olur ve VEGAS
RENO döner. Bunun sebebi eşitliğe ulaşma çabasındandır. VEGAS kaynaklarının hepsi kendi
yollarında tamponu ağ da artırarak αsds paketlerin sayısına ulaşmaya çalışır. Bu aklın kabul
edebileceği şekilde VEGAS ın RENO üzerindeki performans geliştirmeleri detaylı deney
çalışmaları göreli çeşitli mekanizmalar ile belirlemesini açıklar. Bu çalışma belirlemiştir ki
VEGAS ın kayıp düzeltme mekanizması sıkışıklı giderme mekanizması değildir. Çok büyük
bir yardım sağlamıştır. Bu açıkça eşitliğe ulaşmaktan VEGAS korumak için olabildiğince
küçük tampon olursa umulmalıdır. [Hengartner et al. 2000] de yönlendirici tampon büyüklü
10 parçadır: yönlendirici tampon büyüklüğü 19 parçadır, arka taraf trafiği ile kolayca
doldurulabilir. VEGAS geri bildirimi için küçük boşluk bırakılabilir. Tampon büyüklüğünün
etkisi ve VEGAS ın yeniden gönderimi aşağıda benzeterek gösterilmiştir.

5.3. Daimi Sıkışıklık:

Bu bölüm daimi sıkışıklık problemini açıklamaktadır. Hem VEGASın tampon
işleminin sömürücüsü fiyat belirlemek için hem de yayılma gecikmesini tahmin etmek için
ihtiyaçlarını açıklar. Gelecek bölümde rasgele logaritmik işaretleme (REM) tarafından nasıl
meydana geldiği açıklanacak kaynak [15]. ECN kaynak [16; 17]da daha önceki açıklandığı
formda gibi.

5.3.1. Fiyat ve Geri Bildirimin Eşitlenmesi

VEGAS tampon işleminde güvenir lll ctbtp /)()(= fiyatını hesaplamak için eşitlik
fiyatları sıkışıklık kontrol algoritmasına dayanmaz ama problem durumu yalnızca: ağ
topolojisi, bağlantı kapasitesi, kaynakların sayısı, onların yönlendirmeler iş ve araç
fonksiyonları gibi. Kaynakların sayısı artarsa eşitlik ücreti ve geri bildirim)(**

lll cpb = yap.
Eğer her kaynak αα =ssd paketlerini ağda tamponlanmış olarak tutarsa eşitlik back logu alfa
n paketleri olur, kaynağın n numarası lineerken

5.3.2. Yayılma Gecikmesi Tahmini

Modelimizde iddia ediyoruz ki kaynak ds tur zamanı yayılma gecikmesini bilir
pratikte minimum tur zamanı değerini belirler daha sonradan anlaşılacağı gibi. Hata
yönlendirme değişikliği olduğu zaman oluşabilir veya yeni bir bağlantı başladığında kaynak
[3]. İlk olarak yönlendirme daha uzun yayılma gecikmesinden hali hazırdaki yönlendirmeye
değiştiğinde, kaynak onu büyültmek zorunda olduğunda yeni yayılma gecikmesi büyümüş tur
zamanı olarak alınır. Daha sonra penceresini küçültür.

İkinci olarak kaynak başladığında tur zamanını belirler sorgu gecikmesi yolundaki
paketlere dayanarak sorgu gecikmesi dâhilinde. sd yayılma gecikmesini yüksek tahmin eder
ve ssdα paketlerinden daha fazla yolda koymaya çalışır. Daimi sıkışıklığa önderlik eder.
Kararlılık ve iyilikten yaklaşık hataların etkisini göreceğiz.

Her s kaynağı yaklaşık ())(1:)(ˆ tdtd sss ε+= kendisinin tur zamanı yayılma gecikmesi
ds 1 deki VEGAS algoritmasında olduğunu düşünün. sε farklı kaynaklar için farklı olabilen

yüzde hata. Doğal olarak 1)(/)(1 −≤<− tdtD sssε bütün t ler için iddea ederiz ki yaklaşım

)()(0 tDtd ss ≤< sağlar. Eşitlik pencereleri ()Ssww s ∈= ,**
 ve ilgili eşitlik tur zamanı

()SsDD s ∈= ,**

 64

içinlerSsbürün
D
w

d
w

s
s

s

s

s ∈=− α*

**

ˆ (5.23)

doğrular. Bir sonraki sonuç söyler ki yaklaşım hatası (3) den

sssssssss xdxdxU εαε ++= log)1()((5.24)
araç fonksiyonunu etkili bir şekilde değiştirir.
Teorem 5.1: Eş yayılma gecikme tahmininde hata yüzdesi olsun. ()Ssww s ∈= ,**

 VEGASaın
eşitlik penceresi olsun ve ()SsDD s ∈= ,**

 ilgili eşitlik tur zamanı olsun örneğin eşitlik (5.23)
ü sağlasın. İlk giren ilk çıkar prensibine göre bütün hatlarda paketlerin sunulmuş olduğunu
düşünün. Daha sonra eşitlik kaynağı değeri ()Ssxx s ∈= ,** *** / ss Dwx = tarafından
belirlenmiştir. bu eşitlik (5.24) de verilen araç fonksiyonu ile eşitlik (5.4) ve (5.5) in en uygun
çözümüdür
İspat: teorem 2.1 in ispatına dayanır

∑
∈

=+
+

=′
)(

*
*

*)1(
)(

sLl
lss

s

sss
ss pd

x
d

xU εαε
 (5.25)

Eşitlik (5.6) (5.25) eşitliğiyle değiştirildiğini düşünün. Bağlantılarda eşitlik geri bildirimi p*,
gibi bir vektörü sağladığını göstermek için ve böylelikle eşitlik değerleri uygundur. Yaklaşık
yayılma gecikmesini **)1(ˆ

sss dd ε+=
*
sd ın eşitlik (5.23) deki doğru değerlerinde

*

**

)1(s

s

ss

s
s D

w
d

w −
+

=
ε

α

elde etmek için düşünün. ∑∈

=−
)(
**** /

sLl llssss cbxdxw Kullanarak

*

)(

*
***)()1(sss

sLl l

l
sssssssss xd

c
p

xdxdwd ⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=−−=+ ∑

∈

εεαε

sahip oluruz.
bu eşitlik (5.25) i kabul eder

l

l
l c

bp
*

* = ü belirleyerek ve terimleri yeniden düzenleyerek.

Teorem 2.1 in ispatında x * uygun olmalıdır ve sınırsız geri bildirimin dışında
büyüyebilmelidir. Tamamlayıcı gevşeklik durumunu yalanladığı doğrulanmalıdır. Böylelikle
ispat tamamlanır.
Teorem 5.1 anlamı iki parçalıdır. İlki yanlış yayılma gecikmesi uygular ve VEGAS
algoritmasının kararlılığını düzenini bozmaz. Değerler basit olarak değişik eşitlik peşine
gider. İkincisi yayılma gecikmesi yaklaşımında nispi hatayı bildiğimiz zaman yeni eşitlik
değerleri hesaplamamıza izin verir ve böylelikle iyiliği tayin eder. Bu tip bilgiler elde
olmadığında kaliteli hata yaklaşımın etkisinin kıymetini belirler
Örneğin r ve s kaynağının aynı yol ücretinde olduğunu gördüğünüz düşünün. Eğer 0 yaklaşım
hatası varsa onların eşitlik değeri ağırlıkları ile orantılıdır.

 65

**
s

ss

r

rr

x
da

x
da =

hata ile onların değeri eşitlik (5.26) de anlatılmıştır.

ss
s

sss
rr

r

rrs d
x

d
d

x
d εαεεαε ++==+

**

)1()1(
 (5.26)

Böylelikle geniş pozitif hata genellikle daha yüksek eşitlik değerine yönlenir. Diğer
kaynakların zarar görmesi için. PF uygulama için ssrr dada = olduğu zaman eğer kaynaklar
aynı mutlak hataya sahipse ssrr dd εε = kayan değerleri sε+1 ye orantılıdır.
Bununla birlikte VEGAS yayılma gecikmesi tahmininde hatanın varlığında kararlı olabilir.
Hata 2 probleme sebep olabilir. İlki aşırı tahmin eşitlik kaynak değerini yükseltir. Bu fiyatları
yukarı çeker ve hatta tampon geri bildirimlerinde kalıcı sıkışıklıklara yöneltir. İkincisi hata
kaynaklarının araç fonksiyonlarını bozar. Yeni kaynakların tarafını tutarak iyi olmayan a
eşitliklerine götürür. Bunu basit bir örnekle gösteririz örnek aynı zamanda teorem 4.1 in
uygulamasını da kapsar.

Örnek: Kalıcı sıkışıklık

C pkts/ms kapasitesi ile bir bağlantı düşünün ve n kaynakları tarafından sonsuz tampon
paylaşılmış olsun. Hepsi d ms ortak tur yayılma gecikmesi ve α pkts/ms ni düşünün. Bu da
bütün kaynaklar yayılma gecikmesini açıkça bilirse her biri α d pkts yi eşitliğini kendi
yolunda tutar.

Şimdi başarılı olarak kaynağın aktif olduğunu düşünün. t kaynağı, Ntt ,...,1, = t
periyodunun başlangıcında kaynaklar 1,...,1 −t eşitliğe ulaştıktan sonra aktif hale gelir. Daha
sonra t kaynağının yaklaşık yayılma gecikmesi sorgu gecikmesi p(t) yi 1,...,1 −t
kaynaklarına bağlı olarak ihtiva eder. L periyodunda sadece 1 kaynağı aktiftir böylece 1
kaynağı yayılma gecikmesini doğrulukla tahmin eder. sdd =1 ve cdp /)1(α= in sorgu
gecikmesini üretir. Kaynak 2 tarafından yayılma gecikmesinin tahmininde bu bir hatadır.
örneğin)1(2 pdd += cxx =+ *

2
*
1 olduğunda periyot 2 de 1 ve 2 kaynaklar p(2) nin eşitlik

sorgu gecikmesini üretir ki teorem 4.1 in ispatı olarak eşitlik (5.25) i gerçekler.

c
pp
pd

p
d =

−
++

)1()2(
))1((

)2(
αα

e sahip oluruz. Sonuç olarak eşitlik sorgu gecikmeleri başarılı periyotlarda

Ntc
tptp
tpd

ptp
pd

ptp
pd

tp
d ,,2,

)1()(
))1((

)2()(
))2((

)(
))1((

)(1

⋅⋅⋅==
−−
−++⋅⋅⋅+

−
++

−
++ αααα

 (5.27)

c
dp α=)1((5.28)

Tarafından ters olarak hesaplanabilir. T periyodunda daha sonra eşitlik sorgu uzunluğu cp(t)
pkts. dir. Eşitlik değeri)(txn n kaynağı için t periyodunda tn ,...,1= (5.25) nolu eşitlikten
verilir.

 66

)1()(
))1(()(

−−
−+=
nptp
npd

txn
α (5.29)

5.3.3. Sonuç

Kalıcı sıkışıklığı VEGAS ın orijinal benzetiminde görmedik. 3 faktörden dolayı
olabilir. İlki ve en önemlisi ağda uygun olmayan tampon kapasitesi olduğunda VEGAS ın
orijinal uygulaması RENO ya dönmüştür. İkinci olarak bizim benzetiminde düşünüldüğü gibi
yönlendirme değişiminin olasılığını alamamıştır ama diğer taraftan ispat kaynak [18]
deneyindeki problemde olduğu gibi yönlendirme değişimini ileri sürer. Son olarak bağlantının
durumu seri olarak başlar. Pratikte bağlantıların devamı gelir ve gider böylece bütün
kaynaklar yayılma gecikmesi + ortalama sorgu gecikmesini gösteren temel RTT değerini
ölçebilir.

5.4. REM’le VEGAS

Kalıcı sıkışıklık, kaynaklara sıkışıklığı taşıyan vazgeçilemeyen geri bildirim sıkışıklık
ölçümü olarak sorgu gecikmesine güvenen VEGAS’ın sonucudur. Bu bölüm [5] de tanıtılan
REM (Rasgele logaritmik işaretleme) nin nasıl olduğunu REM in bu durumu düzeltmede
kullanılabileceğini gösterir. Bizim hedefimiz VEGAS ın eşitlik değeri tahsisi en son bölümde
tasvir edilen kalıcı sıkışıklık tehlikesi olmaksızın korumaktır. Bu log araç fonksiyonunu da
korur ve VEGAS ın orantısal iyiliğini de korur. Bölüm 2.1 de anlatılan VEGAS ın bu 3
açıklamasını çağıralım. Eşitlik değer tahsisini korumak için 3. yaklaşımı kullanıyoruz ki
VEGAS kaynağı eşitlik (5.12) de belirtildiği gibi Yol ücretinin Tur zamanı gecikmesi
olmadığı durumlarda yayılma gecikmesi oranının yol ücretine orantılı olmasını sağlar. Bunun
dışında REM algoritması kullanarak geri beslenmiştir ve hesaplanmıştır, aşağıda
açıklanmıştır. AQM nin amacı tampon aşımından dolayı olası düşmeler ve işaretlemeler
tarafından kayıp sinyalleri yerine koymak değildir. Ama amacı yol ücretini geri besleme
olabilir.

REM de amacımızı gerçekleyen iki fikir vardır. İlki REM temiz tampon ve değeri

seçmeye çabalar ve yüksek yararlanma ve düşük sorguya yöneltir. Küçük sorular ile
minimum tur zamanı yayılma gecikmesi için en uygun yaklaşım olabilir. Bununla birlikte tur
zamanı kaynağa fiyat bilgilerini daha fazla iletmez. REM in ikinci fikri belirlenen düşme veya
işaretleme değerlerinden onların yol ücretlerini kaynağın tahmin etmesine izin verir. REM i
şimdi özetleyebiliriz; kaynak [5] in tasarım mantığı, performans değeri ve parametre
ayarlamaları için görün.

Her l hattı)(tpt yi günceller t periyodunda. Toplam giriş değeri)(txl ve tampon işgali l
hattında)(tbl ye dayanarak

[]+−++=+))()(()()1(l
l

lltt ctxtbtptp µγ (5.30)

0>γ ve 2.10 << lµ olduğunda y parametresi değerin dönüşümünü değerin geri bildirimi nu
kontrol eder. Böylece)(tpl artırılmıştır ağarlıklı)(tbl geri bildirimi nun toplamı ve
değerdeki hatalı seçimler l

l ctx −)(, m tarafından ağırlaştırılmıştır,
Pozitiftir ve diğer durumlarda düşürülmüştür. Eşitlikte bu ağırlıklı toplam sıfırdır.(eşitlik
ücreti 0* >lp olan sıkışıklık bağlantısında). 0* =lb ve l

l cx =*
 uygulanılan nokta. Bundan

 67

dolayı eğer l
l cx ≠*

 se sorgu uzunluğu *
lb eşitlik içinde olmaz böylece l

l cx =* dir. Bu
0* =lb olmasını sağlar ağırlıklı toplam 0 olduğu zaman. Bu özellik her yüksek yararlanma ve

düşük kayıpta gecikmeye sebep olur.

KAYNAKLAR
 [1]. International Zurich Seminar on Broadband Communications. 163-170. BRAKMO, L. S.

AND PETERSON, L. L. 1995. TCP Vegas: end to end congestion avoidance on a global
Internet.

[2]. BOUTREMANS, C. AND BOUDEC, J. Y L. 2000. A note on the fairness of tcp vegas. In
Proceedings ofInternational Zurich Seminar on Broadband Communications. 163-170.

[3]. Mo, J., LA, R., ANANTHARAM, V., AND WALRAND, J. 1999. Analysis and comparison
of TCP Reno andVegas. In Proceedings of IEEE Infocom

[4]. LOW, S. H. AND LAPSLEY, D. E. 1999. Optimization flow control, I: basic algorithm and
convergence.IEEE/ACM Transactions on Networking 7, 6 (December), 861-874.

[5]. ATHURALIYA, S. AND Low, S. H. 2000a. Optimization flow control, II: Implementation.
Submitted for publication, http: //netlab.caltech.edu. ATHURALIYA, S. AND Low, S. H.
2000b. Optimization flow control with Newton-like algorithm. Journal of Telecommunication
Systems 15, 3/4, 345-358. BERTSEKAS, D. 1995. Nonlinear Programming.

[6]. BERTSEKAS, D. 1995. Nonlinear Programming thena. Athena
Scientific.

[7]. KELLY, F. P. 1997. Charging and rate control for elastic traffic. European Transactions on
Telecommunications 8,33-37.

[8]. KELLY, F. P., MAULLOO, A., AND Tan, D. 1998. Rate control for communication
networks: Shadow prices,

[9]. BRAKMO, L. S. AND PETERSON, L. L. 1995. TCP Vegas: end to end congestion avoidance
on a g9lobal Internet. IEEE Journal on Selected Areas in Communications 13, 8 (October),
1465-80 proportional fairness and stability. Journal of Operations Research Society 49, 3
(March), 237-252.

[10]. FLOYD, S. 1991. Connections with multiple congested gateways in packet-switched
networks, Parti: one-way traffic. Computer Communications Review 21, 5 (October)

[11]. FLOYD, S. AND JACOBSON, V 1993. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans, on Networking 1, 4 (August), 397^113

[12]. LAKSHMAN, T. V AND MADHOW, U. 1997. The performance of TCP/IP for networks
with high bandwidth-delay products and random loss. IEEE/ACM Transactions on
Networking 5, 3 (June), 336-350

[13]. MATHIS, M., SEMKE, J., MAHDAVI, J., AND Ott, T. 1997. The macroscopic behavior of
the TCP congestion avoidance algorithm. ACM Computer Communication Review 27, 3
(July)

[14]. BONALD, T. 1998. Comparison of TCP Reno and TCP Vegas via fluid approximation. In
Workshop on the Modeling of TCP.

[15]. ATHURALIYA, S., Li, V. H., LOW, S. H., AND YIN, Q. 2001. REM: active queue
management. IEEE Network. Extended version in Proceedings qflTCl 7, Salvador, Brazil,
September 2001

[16]. FLOYD, S. 1994. TCP and Explicit Congestion Notification. ACM Computer
Communication Review 24, 5(October)

[17]. RAMAKRISHNAN, K. K. AND FLOYD, S. 1999. A Proposal to add Explicit Congestion
Notification (ECN) to IP. RFC 2481

[18]. PAXSON, V 1996. End-to-end routing behavior in the Internet. In Proceedings of
SIGCOMM'96

 68

BÖLÜM 6

KARARLI VEGAS

Mevcut TCP VEGAS algoritmasının ağ gecikmesi varlığında kararsız hale
gelebileceğini gösteriyor ve bunu kararlı hale getirecek bir modifikasyon öneriyoruz. Kararlı
VEGAS algoritması tümüyle kaynak-tabanlı kalmaya devam etmekte ve herhangi bir ağ
desteğine gereksinim duymaksızın uygulanabilmektedir. Burada, ağ bazıları aktif dizi
yönetimli olan, bazıları olmayan bir hatlar karışımından meydana geldiğinde kararlı VEGAS
algoritması için adım adım bir derleme stratejisini ortaya koyuyoruz.

İlk olarak, VEGAS ve RENO arasındaki performans farkını karşılaştırmak için

yapılmış kaynak [1], [2], [3] gibi kapsamlı deneylerin sonuçları. VEGAS’ ın işleyişi ve uygun
özellikleriyle ilgili olarak kaynak [4], [5] ve [6]’te de çalışılmıştır; ancak bu yazılar yalnızca
bir boğum hattını ele almakta ve işleyişe ilişkin bu çalışmada ağ gecikmesi hesaba
katılmamaktadır. Optimizasyon tabanlı modeller kaynak [7] ve [8]’de genel bir VEGAS
ağının analizi için kullanılmaktadır. Özel olarak, kaynak [8] ve [9]’te herhangi bir TCP/AQM
(Active Queue Management- Aktif kuyruk yönetimi) protokolünün toplam faydayı maksimize
etmek için Internet üzerinde dağıtılmış bir birincil-ikili algoritmanın icrası olarak
yorumlanabileceği gösterilmektedir. Aynı zamanda kullanıcı faydasının ise TCP algoritması
ile tanımlandığı çoğunlukla ve açıkça gösterilmektedir. Kaynak [7], [10], [11], [12], [13]. Bu
modeller çoğu zaman denge yapısı üzerine odaklanır ve ağ gecikmesini uygun bir şekilde ele
almazlar. Bu iş dizisini tamamlamak için, burada bölüm 6.1 de tanımlanan, VEGAS’ın bir
denge çevresindeki doğrusal kararlılığını analiz etmek için açık bir şekilde ileri ve geri
tutarsız gecikmeler içeren çok-hatlarda çok-kaynaklı bir model kullanıyoruz. Önceki analitik
çalışmayla karşılaştıracak olursak, gecikmenin VEGAS üzerindeki etkisini ve bunu nasıl
kararlı hale getireceğimizi anlamak için küresel doğrusal olmayan işleyişi feda ediyoruz.

İkinci olarak, bu metin en son kaynak [14], [15], [16], [17] ve [18]’de geliştirilen

doğrusal dağılımlı ve gecikmeli sistemin kararlılığı kuramından güç almaktadır. Özel olarak,
bir TCP/AQM algoritması doğrusal kararlılık için keyfi ağ gecikmeleri ve kapasitelerini
oluşturan [14]’de tasarlanmaktadır. Bu algoritma statik kaynak algoritmalarını kullanan
kaynak [11] ve [19]’teki “ikilik” algoritmalar sınıfında yer alır ve kararlılığa taviz
vermeksizin yüksek fayda ve hızlı tepkiyi sağlamak için ağ gecikmeleri ve kapasitelerinin
karmaşık ölçeklemesini devreye sokar. Bununla birlikte, keyfi olarak ölçeklenebilen bu
kararlılık formu özel bir kaynak kullanım fonksiyonunu ve böylece de oran tahsisinde özel bir
uygunluğu dikte eder. Kaynak [14]’deki TCP/AQM, ağ gecikmeleri üzerinde bilinen bir
sınırlama olması koşuluyla, yavaş bir sure ölçeği üzerindeki herhangi bir fayda fonksiyonu ya
da uygunluğu takip etmek için kaynak algoritmasına daha yavaş bir sure ölçeği dâhil ederek
kaynak [17]’dekine genişletilmektedir.

Bu iş dizisinin ana anlayışı kontrol altındaki geri besleme döngüsü üzerindeki kazancı

sürdürmek için kaynak cevaplarını gidiş-dönüş süresiyle ve hat cevaplarını kapasiteleriyle
azaltmaktır. Bu da ortaya koyar ki, VEGAS hat algoritması kaynak [14] ve [17]’de kullanılan
kapasiteyle ilgili kesinlikle doğru bir ölçeklemeye sahiptir Kaynak [8]. Kapasiteyle ilgili bu

 69

yerleşik ölçekleme, RENO ve varyantlarının tam tersine, potansiyel olarak VEGAS’ın yüksek
bant genişliğine göre ölçeklenebilir olmasını sağlamaktadır. Bununla birlikte, VEGAS’ın
kaynak algoritması gecikme söz konusu olduğunda kaynak [14] ve [17]’dekilerden farklı bir
ölçeklemeye sahiptir. Bölüm 6.3 VEGAS’ın büyük gecikmelerde kararsız hale gelebileceğini
gösteren uygun kararlılık koşulunu ortaya koyuyor. Bölüm 6.4 de bunu kararlı hale getirmek
için küçük bir modifikasyon öneriyoruz. Bölüm 6.5 de ise, VEGAS kaynaklarının bir kuyruk-
temizleme AQM algoritması kullanan ya da kullanmayan bir yönlendiriciler karışımı ile
çalışmasına izin veren aşamalı bir derleme stratejisini tanımlıyoruz. En nihayet bölüm 6.6 da
VEGAS’ın dinamiği ile kararlı versiyonunu karşılaştıran benzetim sonuçlarını sunuyoruz.

RENO ve varyantlarının tersine, VEGAS’ın özellikle yüksek hızlı ağlarla uyum

sağladığı görülmektedir. RENO ve varyantlarının ağ kapasitesi arttıkça kararsız hale
geldikleri görülmektedir kaynak [20], [21]. RENO aynı zamanda dengede kontrol için
güvenilir kullanımı güç olan aşırı derecede küçük bir kayıp olasılığı oluşturmak zorundadır.
Diğer taraftan, VEGAS kapasiteyi doğru olarak ölçeklemektedir. Dahası, denge kuyruk
gecikmesi düşük kapasitede aşırı olabilirken kapasite arttıkça düşürülmektedir. Kuyruklar ve
yeniden-yönlendirme nedeniyle yayılma gecikme tahminindeki kaynak [5], [8] hata gibi diğer
sorunlar yüksek kapasitede arabellekler daha sık temizlendiğinden daha az sert
olabilmektedir.

6.1. Ağ Modeli
Bir ağ sonlu c = (cl, l G L) kapasiteye sahip L sayıda hat seti kısıtlı kaynak olarak

modellenir. Bunlar r ile indekslenen N sayıda kaynaktan oluşan bir set tarafından paylaşılır.
Her r kaynağı L x N yönlendirme matrisi ile tanımlanan bir hat setini kullanır.

!!
Rlr =

1 eger l linkinderkaynaklarıkullanılırsa
0 dıger durumlarda
⎧
⎨
⎩

Her bir hatta karşılık gelen 1 değeri daha sonra “fiyat-price” olarak adlandıracağımız bir
)(tpl yoğunluk ölçüsüdür. Aşağıda göreceğimiz gibi,)(tpl hat 1’deki ölçeklenmiş kuyruk

gecikmesidir. Her bir r kaynağı paket/sn olarak bir)(txr oranı oluşturur. Biz bu metinde esas
olarak bir denge çevresinde doğrusal model ile ilgileniyoruz; bu yüzden r kaynağından hat 1’e
doğru ileri yönlü gecikme dengesini rl

τ ile ve hat 1’den r kaynağına geri yönlü gecikme

)(:)(rll
l

lrr tpRtq τ−=∑ (6.1)

ve hat 1’in toplam kaynak oranını gözlediğini varsayıyoruz.

)(:)(rlr
r

lrl txRty τ−=∑ (6.2)

dengesini ise rl
τ ile simgeliyoruz. t süresinde r kaynağının kendi yolunda toplam fiyatı

gözlemlediğini Tr denge gidiş-dönüş süresini temsil etsin.
LlTrrlrl ∈∀=+ , ττ

Olduğunu var sayıyoruz. O halde kaynak [8] TCP VEGAS’ı ilgili kuyruk yönetimi ile
birlikte, aşağıdaki dinamik sistem olarak modeller:

 70

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

>−
=

+ 0)())((1

0)())((1

)(
tpegercty

c

tpegercty
c

tp
lll

l

lll
l

l (6.3)

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

rr

rr

r
r d

tqtx
gn
stT

tx
α

)()(1
)(
1)(2

 (6.4)

burada, eğer z > 0 ise { }zz ,0max)(=+ }, 1)sgn(=z , , z < 0 ise -1 ve z = 0 ise 0’dır. rα bir
VEGAS protokol parametresi, rd ise r kaynağının gidiş-dönüş yayılım gecikmesidir.)(tpl
fiyatı hat 1’deki kuyruk gecikmesini ve)(tqr r kaynağının uçtan-uca kuyruk gecikmesini
gösterir Kaynak [8]. Bölüm 6.3 de tanımlanan r kaynağının gidiş-dönüş süresi rT denge
değeri ile,)(:)(tqdtT rrr += olarak tanımlanır.

VEGAS algoritmasının bir yorumlanma biçimi, her r kaynağının kendi yolundaki

kuyruklarda arabelleğe alınan paketlerin rrdα sayısını oluşturmak için kendi oranını ya da
pencereyi ayarladığı şeklindedir. Hat algoritması eşitlik (6.3) arabellek süreci tarafından
otomatik olarak yürütülür. Kaynak algoritması eşitlik (6.4) hatlarda ara belleğe alınan
paketlerin)()(tqtx rr sayısının rrdα ‘den küçük ya da büyük olmasına göre pencereyi her
gidiş-dönüş süresinde 1 adet artırır ya da azaltır. Denge durumunda rrrr dqx α=** ve özel
denge oranlarında),....,1,(: ** Nrxx r == hat kapasitesi sınırlamalarına konu olan ∑r rr xU)(
toplam faydayı

rrrrr xdxU log)(α=

fayda fonksiyonları ile maksimize eder kaynak [8] de olduğu gibi. Bu nedenle VEGAS tartılı
oransallık uygunluğu hedefine ulaşır kaynak [10],[14] ve [17]’nin hat algoritması VEGAS hat
algoritması eşitlik (6.3) ile benzerdir. Tek fark, burada c’nin dengedeki kuyruğu temizlemek
için gereken gerçek hat kapasitesinden tam anlamıyla küçük olan sanal kapasiteyi
göstermesidir. Burada)(tpl aynı girdi tarafından beslenen, ancak sanal bir kapasiteye
yönlenen bir hattaki “sanal” kuyruk gecikmesi olarak yorumlanabilir. Kaynak [14] ve [17]’de
gösterildiği gibi, lp ’yı lc/1 ölçeğinde küçültmek, sanal ya da gerçek, gecikmeye ağ
kapasitesine bağlı olarak gerçek ölçeklemeyi sağlayacak olan şeydir. Kararlı VEGAS’ın hem
sanal ve hem de gerçek kuyruk gecikmelerine genelleştirilebilecek şekilde hatlar karışımından
oluşan bir ağ içinde kademeli olarak nasıl derlenebileceğini açıklayacağız.

6.2. VEGAS’ın Kararlılığı

VEGAS kaynak algoritması eşitlik (6.4) süreksizdir. Bu durum denge çevresinde
yalpalanmaya neden olabilir. Orijinal VEGAS algoritması denge noktasını bir sete
genişleterek yalpalanmanın önüne geçer. Hatlarda arabelleğe alınan paketlerin sayısı

)()(tqtx rr []rrrr dd βα , ile rr βα <)(txr aralığında olduğu sürece kaynak oranı ya da pencere
değişmeden kalır. Bununla birlikte, rr βα < kaynak [6] koşulu ile uygunluğun kontrolü
zordur. Burada, kaynak [8]’de olduğu gibi rr βα = olarak düşünüyoruz.

 71

Bu kesimde, VEGAS algoritmasının eşitlik (6.4) bir sürekli yaklaşımını sunuyor ve bu
yaklaşıma dayanan yeterli bir doğrusal kararlılık koşulunu türetiyoruz. Bu koşul, gecikme
arttığında bir VEGAS ağının kararsız hale gelebileceğini ortaya koymaktadır. Sonraki
kesimde ise süreksizliğe bağlı yalpalanmanın önüne geçmek için gerçekte bu sürekli
fonksiyonun (kararlı bir versiyonunun) eşitlik (6.4) yerine kullanılmasını önereceğiz.
Yaklaşıklık Modeli:

)(tan2)sgn(1 zz η
π

−≅

olduğuna dikkat edelim. Limit ∞→η ‘a giderken yaklaşıklık kesin haline gelir. Bu nedenle,
yine)()(tqdtT rrr += iken eşitlik (6.4)’ün aşağıdaki yaklaşıklığını ele alalım:

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

=

−

rr

rr

r

rrrr

d
tqtx

tT

tqtxftx

α
η

π
)()(1tan

)(
12

))(),((:)(

1
2



 (6.5)

),(** px denge noktasını düşünelim. Logaritmik fayda fonksiyonu tam anlamıyla konkav

olduğundan *x oranları benzersizdir. Yönlendirme matrisi R’nin full-rank olduğunu
varsayalım, o halde denge fiyatları da),...,1,(** Llpp l == benzersiz olacaktır. Dahası,
modelde yalnızca boğum hatlarının içirildiğini ve öyle ki, tüm l değerleri için

0* >rp olduğunu düşünelim. Denge durumunda, kaynak oranı *
rx ve toplam fiyat *

rq

rrrr dqx α=**
koşulunu sağlarlar. Denge noktası çevresindeki doğrusallaştırma

⎪⎩

⎪
⎨
⎧

+=

+=

)()(

)()(
*

*

tqqtq

txxtx

rrr

rrr

δ
δ

O halde birinci derece için burada,

)()(
**

tq
x
f

tx
x
f

xx r
r

r
r

r

r
rr δδδ

∂
∂

+
∂
∂

== 

ve *
rrr qdT += . Bu nedenle, Laplace domain’inde

)()(
*

sq
asT

a
q
x

sx r
rr

r
s
r

r
r δδ

+
−= (6.6)

rr
r Tx
a *

12
π
η= (6.7)

Hatlarda,),(**

ll py denge noktaları lr cy =* koşulunu sağlarlar. Hat algoritmasını eşitlik (6.3)

⎪⎩

⎪
⎨
⎧

+=

+=

)()(

)()(
*

*

tpptp
tyyty

lll

lll

δ
δ

dengesi çevresinde doğrusallaştırarak birinci derece için

 72

)(1

)()(
**

ty
c

ty
y
g

tp
p
g

p

l
l

l
l

l
l

l

l
l

δ

δδδ

=

∂
∂

+
∂
∂

=

ve bunun Laplace dönüşümü olan

)(1)(sy
sc

sp l
l

l δδ = (6.8)

eşitliğini elde ederiz.
Özet olarak, VEGAS’ın doğrusallaştırılmış modeli eşitlik (6.6), (6.7) ve (6.8)’de
tanımlanmaktadır. İşaretlemeyi basitleştirmek için metnin devamındaki genelleştirmede
herhangi bir kayba neden olmaksızın tüm kaynakların aynı hedef kuyruk uzunluğuna sahip
olduklarını, yani tüm 9r değerleri için αα =rrd olduğunu var sayıyoruz aksi halde, a’yı takip
eden kararlılık sonuçlarındaki rrdα ’yı minimum olacak şekilde alın.

6.2.1. Kararlılık

Kaynak [14]’i takip ederek, eşitlik (6.1)-(6.2) hata eşitliklerini matris formu içinde
Laplace şeklinde

)()()(sxsRsy δδ = (6.9)
{ })()()(spsRediegsq TsTr δδ −= − (6.10)

olarak ifade edebiliriz. Burada,

⎩
⎨
⎧ =

=
−

durumlardadiger
Regere

sR lr
sT

lr

r

0
1

)(

Yönlendirme matrisi R(0)=R denge değerleri arasındaki statik ilişkiyi belirler, örneğin;

****)0(,)0(pRqxRy T== (6.11)

Herhangi bir sonlu a değeri veri iken)(aθ a’nın (artan) bir fonksiyonu olarak

a=θθ tan (6.12)
 ‘nın (0, π/2)’sindeki benzersiz çözüm olsun.
VEGAS’ın kararlılığını ilk olarak maksimum pencere boyutu ile ve daha sonra da minimum
kuyruk gecikmesi terimleriyle karakterize edeceğiz. Aşağıdaki sonuçlar eğer denge pencere
boyutu yeterince küçük ise teorem 1, ya da aynı anlama gelmek üzere, denge kuyruk
gecikmesi yeterince büyükse önerme 2 VEGAS’ın doğrusal kararlılığa sahip olduğunu
söylemektedir.
Teorem 1: Tüm r değerleri için ve bazı 0k değerleri için rrr TxTk max0 ≥ olduğunu var
sayalım. M, herhangi bir kaynak yolundaki hat sayısının üst sınırı olsun, ∑≥

l lrRM max
eşitlik (6.3) ve eşitlik (6.5) ile tanımlanan VEGAS modeli, eğer πηη /2:ˆ = ve

θθθ /sinsin =c iken

2
0

sinmax
MkTx

cTx
rr

rrr

αηθ >⎟⎟⎠

⎞
⎜⎜⎝

⎛

 73

ise,),,,(****
rllr qpyx denge noktası çevresinde yerel olarak asimptotik kararlılığa sahiptir.

Bölüm 6.2.2 de kanıtlanmıştır.)(⋅θ sert bir şekilde arttığı ve sinc(-) sert bir şekilde azaldığı
için Teorem 1’deki kararlılık koşulunun sol tarafının rrTx

* pencere boyutunda hızlı bir şekilde
arttığına dikkat edin. Bu sebeple kararlılık koşulu maksimum pencere boyutunda bir limite
sahiptir. α=**

rr qx olduğunda bu koşul doğrudan kuyruk gecikmesi üzerinde bir limite
dönüşür. Aşağıdaki önermenin sol tarafı rrTq

* durumunda kuyruk gecikmesinde daha düşük
bir sınır ima ederek hızlı bir artış göstermektedir.

Önerme 2: Bazı 0k değerleri için tüm rrr TxTk max0 ≥ olduğunu var sayalım. M, herhangi
bir kaynağın yolu üzerindeki hat sayısının üst sınırını temsil etsin, ∑≥

l lrRM max

πηη /2:ˆ = ve θθθ /sinsin =c iken, eğer

2
0*

*

.
ˆ

sin

/
min Mk

T
qc

Tq

r

r

rr

r
>

⎟⎟⎠

⎞
⎜⎜⎝

⎛
α
ηθ

ise, eşitlik (6.3) ve (6.5)’te tanımlanan VEGAS modeli),,,(****
rllr qpyx denge noktası

etrafında yerel olarak asimtotik kararlılığa sahiptir.

Sonraki sonuç kaynak yolunda birden fazla hat olduğunda kararlılık koşulunun

sağlanamadığını göstermektedir.
Önerme 3: Eğer bir kaynak birden fazla hatt sahipse, yani birden fazla l için 1=lrR ’i
karşılayan bir r değeri var ise, kararlılık koşulu sağlanamaz. Kanıt: Teorem 1 ve Önerme
2’deki koşullar aynıdır, bu nedenle Önerme 2 ile çalışacağız. 2/)(πθ <⋅ olduğu için 10 ≥k
tanımı gereğince πθ /2(.)sin >c . Bu nedenle, Önerme 2’deki kararlılık koşulu

π
M

T
q

r

r

r

2min
*

> sonucunu ima eder. Eğer 2≥M ise eşitliğin sağ tarafı 1’den büyüktür. Ama

*
rrr qdT += olduğundan eşitliğin sol tarafı 1’I geçemez.

Kararlılık koşulunun yalnızca çoklu hat durumunda yeterli olduğu üzerine odaklanıyoruz.
Bununla birlikte, bu tek-hat tutarlı-kaynak durumunda hem zorunlu ve hem de yeterlidir.
Şimdi, bu durum için kararlılık bölgesini ve protokol parametresi rrdαα = ‘nin etkisini
açıklayacağız. Örnek 1: Tutarlı kaynaklı tek hat (c,d, N)N sayıda tutarlı kaynak tarafından
paylaşılan c kapasiteye sahip ve gidiş-dönüş yayılım gecikmesi d olan bir tek hat düşünelim.
Bu olay için, Teorem 1’in kanıtındaki tüm r kaynakları için ,, 00 TTrr ==αα ve 0wwr =
olacaktır. Bu bize kararlılık koşulunun (M=1 ve k0=1)

icinlerrbutun

T
qc

Tq

r

r

rr 1
ˆ

sin

/
*

*

>

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅

α
η

 (6.13)

hem gerekli ve hem de yeterli olduğunu ima eder. Denge miktarları *
rq ve rT ’nin hedef

kuyruk uzunluğu α’ya bağlı olduğuna dikkat edin. Protokol parametresi α’nın kararlılık
üzerindeki etkisine dair bir bakış edinebilmek için daha basit bir koşula bakıyoruz.

Yukarıda da dikkat çekildiği gibi,
2

)(πθ <⋅ , olduğundan gerekli koşul

 74

icinlerrbutun
T
q

r

r

π
2*

>

olacaktır. Simetri gereğince *
rr qdT += ve cNxq rr // ** αα == olduğundan bu koşul

Ncd απ
⎟
⎠
⎞⎜

⎝
⎛ −< 1
2

 (6.14)

‘a eşdeğerdir. Bu nedenle, VEGAS kararlılığı için gerekli bir koşul bant-genişliği gecikmesi
sonucunun küçük olmasıdır. Buna ilaveten, daha büyük hedef kuyruk uzunluğu α ya da daha
fazla N kaynak sayısı ile kararlılık bölgesinin daha geniş olmasıdır.

6.2.2. Teorem 1’in Kanıtı

Kanıt üç adımda gerçekleştirilir. İlk olarak, döngü kazanç matrisinin Nyquist
yörüngelerinin N sayıda karmaşık jω fonksiyonunun konveks gövdesinde dâhil olduğunu
göstermek için kaynak [15] ve [17] argümanını takip ediyoruz. İkinci adımda yeteri kadar
büyük bir ω düzeyinde, bu fonksiyonlardan en azından bir tanesi -7T faz gecikmesine sahip
olduğunda uygun koşullar altında bu fonksiyonların tümünün birim döngüye dâhil olduklarını
ve bu nedenle karmaşık düzlemde -1’i kuşatamayacaklarını göstereceğiz. Üçüncü adımda ise
bu koşulun teoremde yer alan koşul olduğunu göstereceğiz.

Adım 1: Kaynakta görülen dönüş oranı doğrusallaştırılmış eşitlik (6.6), (6.8), (6.9) ve (6.10)
eşitlikleri kullanılarak

)(1)(*

*

sR
sc

diagsR
asT

e
diag

q
x

adiag
l

T

rr

sT

r

r
r

r

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟⎟⎠

⎞
⎜⎜⎝

⎛ −

olarak tanımlanır. Kararlılık için, bu fonksiyonun özgün değerlerinin karmaşık düzlemde s =
jω, ve 0≥w için -1 değerini çevrelemeyeceğini göstermek yeterlidir.

πα
ηM

q
TMak
r

rr 2
* == (6.16)

ve

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

M
x

diagjwR
c

diagjwR r

l

*

)(1ˆ

iken kendine özgü değerler seti

())(ˆ)(ˆ
)(

jwRjwR
ajwTjwT

kediagjwL T

rrr

jwTr
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

=
−

 (6.15)

eşitliğinin değerlerindekiyle aynı biçimdedir. Neigen yörüngesini ve başlangıç noktasının
konveks gövdesini temsil ederken kaynak [15]’ten, L(jω)’nin dalga bandı

 75

()

⎟⎟⎠

⎞
⎜⎜⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

=
+ℜℜ

⋅−⊆

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+ℜℜ

=

−

−

 Nr
aww

ke
co

jwRjwR

jwRjwR
aww

ke
diag

jwL

rrr

jwT

T

T

rrr

jwT

r

r

,...,1,
(

0

)(ˆ)(ˆ

)(ˆ)(ˆ
(

))((

ρ

σ

σ

koşulunu sağlar. Eşitlik (6.11) gereğince tüm mutlak satır toplamları 1’e eşit olduğundan

)(ˆ jwR ‘nun dalga yayılımı
()

()

()
1

)(ˆ1

)(ˆ1

)(1)(ˆ1

)(ˆ)(ˆ

*
*

*

=

−⎟⎟⎠

⎞
⎜⎜⎝

⎛

−⎟
⎠
⎞⎜

⎝
⎛≤

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟

⎠
⎞⎜

⎝
⎛≤

−

∞

∞

∞

r
l

r
l

T

xdiagjwR
y

diag

jwR
M

diag

xdiagjw
c

diagjwR
M

diag

jwRjwRρ

koşulunu sağlar. Bu nedenle,

⎟⎟⎠

⎞
⎜⎜⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

=
+ℜℜ

⊆
−

 Nr
aww

ke
cojwL

rrr

jwTr

,...,1,
)(

0))((σ

Şimdi

)(
:)(

rrr

jwT

r aww
kejw

r

+ℜℜ
=Λ

−

olsun. Şimdi, teorem koşulu altında hiçbir)(jwrΛ düzeyinde konveks kombinasyonunun
kritik -1 noktasını çevrelemeyeceğini gösteriyoruz.

Adım 2:

rr aa min0 = ve rr TT max0 = olsun; rw Nr ,...,1,0= , (0, π/2) aralığında
0tan ≥= raTawTw rrrrr (6.17)

koşulunu sağlayan değer olsun. Tüm r değerleri için açıkça rww ≤0 olacaktır. Burada
)(jwrΛ özgün değer —tv faz gecikmesine sahipken rw 1≥r , kritik frekanstır. Bu nedenle,

rwww ≤< 0 , için)(jwrΛ ‘nun konveks kombinasyonu -1’I çevreleyemez; çünkü tüm r
değerleri için faz))((π−>Λ jwr . Şimdi 0ww ≥ , için tüm)(jwrΛ i değerlerinin birim döngü
içinde yer aldığını ve bu nedenle bunların konveks kombinasyonunun -1 değerini
çevreleyemeyeceğini göreceğiz. or TTk ≥0 , olduğundan, 0ww ≥ değeri için

 76

)(sin

1

)(

0
0

2
0

2
0

2
0

2
0

0

000

2
0

2
0

2
0

2
000

2
0

222

ac
a
kk

aTwTwa
kk

aTwTw

kk

aTwwT
kjw

rrr

r

θ

α

⋅=

+
⋅⋅≤

+
≤

+
=Λ

Burada son eşitlik (6.17)’yi ve (6.12)’deki θ(.) tanımını takip etmektedir.

2
00

0 1)(sin
kka

ac
<

θ

rrr
rr Tx
aave

M
k *0 max

ˆ
min

ˆ η
α
η ===

2
0

*
*

max
ˆ

sinmax
MkTx

cTx
rrr

rrr
αηθ <⎟⎟⎠

⎞
⎜⎜⎝

⎛

()1*)(ˆsin −
rrTxc ηθ rrTx

* hızlı bir artış gösterdiğinden

()

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

⎟⎟⎠

⎞
⎜⎜⎝

⎛

rr
rrr

rrr
rrr

Tx
cTx

Tx
cTxaxm

*
*

*
*

ˆ
sinmax

max
ˆ

sin

ηθ

ηθ

böylece teoremdeki kararlılık koşulunu sağlamış oluruz.

 77

6.3. Kararlı VEGAS

Bu kısımda, bir VEGAS kaynaklar ağını kararlı hale getirmek için her bir kaynak için bir PD
(proportianal differential- oranlı diferansiyal) kontrolcüsü öneriyoruz. VEGAS algoritmasını
eşitlik (6.5)

))()((tan
)(

1
2 ttn
tT
w

x rT
r

r Δ⋅= − (6.18)

ya da

()

()⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
−−

>Δ⎥
⎦

⎤
⎢
⎣

⎡
−

=
Δ−

Δ

durumlardadigertx
tT

e
tT
w

tegertx
tT

e
tT
w

x

r

tt

r

r
r

tt

r
r

rr

rr

,)(
)(
2ln

,1
)(

max

0)(,)(
)(
2ln

,1
)(

min

)()(
2

)()(
2

η

η

 (6.19)

şeklinde geliştiriyoruz.

Burada)()(tqdtT rrr += ,)()(
)()(

1))(tqt
d
tqtx

t rr
rr

rr
r κ

α
−−Δ ve

)(
)(

.1)(
tq
tT

a
t

r

r
r =κ (6.20)

)()(.)(tTtx
w
a

t rrr
µη = (6.21)

Burada w parametresi her gidiş-dönüş süresi için pencere boyutundaki maksimum
değişimi belirler. İlk VEGAS için, maksimum değişim her döngü dolaşımı için 1 pakettir. a>0
ve)1,0(∈µ parametreleri kararlılığı garanti altına alacak şekilde seçilecektir (aşağıya
bakınız). Genel kazanç parametresi)(trη mevcut pencere boyutu ile oranlıdır: pencere boyutu
arttıkça yanıt daha hızlı olacaktır. Diferansiyel terimindeki)(trκ kazancı döngü zamanının r
kaynağının uçtan-uca kuyruk gecikmesine bölümü ile orantılıdır ve)(tqr ‘nin bir
normalleştirmesi olarak hizmet eder. Ek diferansiyel terimi)()(tqt rr κ ise)(tqr ‘nin gelecek
değerini tahmin eder. Bu terim olmadan, eğer hatlarda arabelleğe alınan paketlerin sayısı

)()(tqtx rr) rrdα ile karşılaştırmalı olarak küçük ise kaynak oranı)(trκ artacaktır. Bu terim
olduğunda,)()(tqtx rr küçük bile olsa fiyatlar hızla büyüyor olsa bile, yani)(tqr büyük olsa
bile kaynak, oranını düşürebilecektir. Kaynak [22]’deki bağlantı algoritmasında aynı
zamanda, AQM tasarımının uygun değer kontrol formülasyonundan destek alan bir
diferansiyel teriminin de kullanıldığına dikkat ediyoruz.

Hem eşitlik (6.18) ve hem de eşitlik (6.19)’un orijinal VEGAS’la aynı denge noktasına
sahip olduklarını ve her ikisinin de aynı birinci-derece eşitlikleri doğru sallaştırdığını
görüyoruz:

)()()(

tq
q
f

tq
q
f

tx
x
f

x r
r

r
r

r

r
r

r

r
r 


δδδδ

∂
∂

+
∂
∂

+
∂
∂

=

 78

burada

*

*

*

*

*

*

*

r

r

r

r

rr

r

r

r

rr

r

q
x

q
f

qT
ax

q
f

T
a

x
f

µ

µ

µ

−=
∂
∂

−=
∂
∂

−=
∂
∂



ve Laplace dönüşümü ise

)()(*

*

sq
asT
asT

q
x

sx r
r

r

r

r
r δ

µ
µδ ⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+

−= (6.22)

şeklindedir. rη ve rκ ’ı öyle seçmiştik ki, eşitlik (6.22)’deki öncü-gecikme düzenleyicisi tüm
kaynaklar için genel bir sıfır a ve aµ kutbuna sahiptir. Tersine, kaynak [17]’deki algoritma
fayda fonksiyonlarının kısıtsız seçimine bağlı olarak, rµ ‘nin r’ye bağlı olmasına izin
vermektedir. Bu nedenle kaynak [17]’den biraz farklı bir kararlılık kanıtına ihtiyacımız var.

Teorem 4: Tüm r değerleri için ve bazı k0. değerleri için rrr TTk max0 ≥ olduğunu var
sayalım. M, her bir kaynak yolu üzerindeki hat sayısının üst sınırı olsun, ∑≥

l lrr RM max .
Verili her bir a >0 ve)1,0(∈µ değeri için eğer

2
0

2

2
0

22

0)(
)(

max
ak
ak

Mk
Tx rrr +

+
<

φ
µφ

µ
αφ (6.23)

ise ya da aynı anlama gelmek üzere

µ
µ

φ
−

= −

1
2

tan 1 ve

rrdαα = ortak hedef kuyruk uzunluğuna eşit iken eğer

2
0

2

2
0

22
0

*

)(
)(

min
ak
akMk

T
q

r

r

r +
+

>
φ

µφ
φ

µ (6.24)

ise eşitlik (6.3)’te ve eşitlik (6.18)—(6.21) arasında tanımlanan geliştirilmiş VEGAS modeli
),,,(**** qpyx denge noktası etrafında yerel olarak kararlılığa sahiptir.

Kanıt: Kanıt iki adımdan oluşmaktadır. İlk olarak, döngü kazanç matrisinin Nyquist
yörüngelerinin N sayıda karmaşık jω fonksiyonunun konveks gövdesinde dâhil olduğunu
göstermek için kaynak [15] ve [17] kanıtlarını takip ediyoruz. İkinci adımda yeteri kadar
büyük bir ω düzeyinde, bu fonksiyonlardan en azından bir tanesi -7T faz gecikmesine sahip
olduğunda uygun koşullar altında bu fonksiyonların tümünün birim döngüye dâhil olduklarını
ve bu nedenle karmaşık düzlemde -1’i kuşatamayacaklarını göstereceğiz.

Adım 1: Doğrusallaştırılmış eşitlik (6.22), (6.8), (6.9) ve (6.10) kullanılarak kaynaklarda
görülen dönüş oranı

 79

)(1)(*

*

sR
sc

diagsRe
asT
asT

diag
q
x

diag
l

TsT

r

r

r

r r

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −

µ
µ

)(ˆ)(ˆ

)(*

jwRjwR
ajwT
ajwT

jwT
ediag

q
MTdiagjwL

T

r

r

r

jwT

r

r

r

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
+

⋅

⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

−

µ

µ

şeklinde yazılabilir. Burada

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

M
x

diagjwR
c

diagjwR r

l

*

)(1)(ˆ (6.25)

eşitlik (6.25) ve (6.21)’i kullanan kanıt
() 1)()(≤− jwRjwR TT ρ

sonucunu verir. Kaynak [15]’teki durum o halde)(jwL ‘nın tüm kendine özgü değerlerinin
konveks gövdeye sahip olacağını ima eder.

⎭
⎬
⎫

⎩
⎨
⎧

=Λ⋅ ,,...,1,(0 * NrjwT
q
MT

co r
r

r (6.26)

burada

ae
ae

jwT
ejwT

r

rr

jwT

jwT

r

jwT

r µ
µ

+
+⋅⋅=Λ :)(

A(-) ‘nin r’den bağımsız olduğuna dikkat edin. Genelleştirilmiş Nyquist kararlılık ölçütü
nedeniyle kaynak [23] eğer eşitlik (6.26)’daki set -1 değerini çevrelemiyorsa sistem
kararlıdır.

Adım 2: rw , r kaynakları için faz)(rrTjwΛ∠ ‘nin —π’ye eşit olduğu kritik frekans olsun:

2
π

µ
=

+
+

∠−
ajwT
ajwTTw

r

r
rr

Genelleşmede kayıp olmadan, tüm r değerleri için rTT ≥1 olduğunu var sayabiliriz. O halde
tüm r değerleri için rr TwTw 11 = olduğundan yine tüm r’ler için rww ≤1 ‘dir. Böylece, 1ww ≤
iken eşitlik (6.26)’nın konveks gövdesi -1’I çevreleyemez. 1ww ≥ iken eşitlik (6.26)’daki set
-1 değerini çevrelemez.. Şimdi bunun teoremdeki koşullarla ima edildiğini göstereceğiz.

1ww ≥ , için 011 / kTwTwwT rrr ≥≥ Büyüklüğün

1)(* <Λ⋅ r
r

r jwT
q
mT (6.27)

ωT ‘nin hızlı bir şekilde azalan bir fonksiyonu olduğuna dikkat edin.

() ()
() 222

22

awT
awT

wT
jwT

r

r

r
r µ

µ
+
+

=Λ

Bu sebeple, tüm r değerleri için

 80

()

()
()

2
0

22

2
0

2
0

2
0

22
11

2
0

2
11

1

0

0

1
1

)(
)(

)(
)(

ak
akk

akTw
akTw

Tw
k

k
TjwjwT

r

r

µφ
φ

φ
µ

µ
µ

+
+

=

+
+

=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
Λ≤Λ

φ teoremde tanımlı şeklinde iken son eşitsizlik tüm r değerleri için

φ
µ
µπ =−−≥ −

2
1tan

2
1

rrTw

sonucunu ima eder.

Bu durumda teoremdeki eşitlik (6.24) koşul eşitlik (6.27)’nin sağlanmasını garanti eder.

α=**
rr qx olduğundan eşitlik (6.23) ve (6.24) koşulları eşdeğerdedir. Bu nedenle ispat

aşağıdaki denklemle tamamlanmaktadır.

()
ajwT
ajwT

jwT
ejwT

r

r

r

jwT

r

r

µ
µ

+
−

⋅=Λ

burada 0 < µ < 1 ve a > 0. O halde, tüm r değerleri için ω > 0,

()
µ
µπ

2
1tan

2
1 −−−−≥Λ∠ −

rr wTjwT

O halde

22222

2

))(()((
))))((1(

)(
awTawT
aawTwh

rr

r
r µ

µµ
−

−−
=′

den

9

⎟⎟⎠

⎞
⎜⎜⎝

⎛−⎟
⎠
⎞⎜

⎝
⎛=

+
−

∠=

−−

a
wT

a
wT

ajwT
ajwTwh

rr

r

r
r

µ

µ

11 tantan

:)(

)1,0(∈µ olduğundan, 0)(=′ whr ’ın çözümü
r

r T
uaw =* ,’nın faz)(whr ’ı minimize eden

çözümü kontrol edilebilir. Bu nedenlerden bağımsız olarak,

ψ
µ

µ =−≥∠ −− :1tantan)(11whr

Buna ek olarak,

µ
µψ

2
1

2

1

tan −−=
−

= u
u

 81

µ
µπ

π

2
1tan

2

)(
2

)(

1 −−−−≥

∠+−=Λ∠

−
rr

rrr

Tw

whwTjwT

ve böylece denklem takip eder.

Teorem 4’ün çıkarımları üzerinde duralım. Tutarlı döngü tamamlanma süresinde, yani k = 1
iken eşitlik (6.24) kararlılığı

22

222

*max
a
a

q
TM
r

r

r +
+<

φ
µφ

µ
θ (6.28)

haline gelir. M bir kaynak yolundaki boğum hatlarının sayısının bir sınırını gösterir. Tipik
olarak 10’dan az olmaktadır. |f- döngü gidiş-dönüşündeki kuyruk gecikmesinin toplam döngü
süresine oranıdır; her iki nicelik bir VEGAS kaynağında kullanılabilir durumdadır. Mevcut ağ
için, bu oran uzun gecikme rotaları için 5’ten az küçük olarak görünmektedir. Bu yüzden,
tasarım parametreleri a ve µ ‘nın kararlılık koşulunun sağ tarafının 100’den fazla olmasını
garanti edecek şekilde seçimi güvenli görünmektedir. Şekil 6.1’e göre, bu durum küçük a ve µ
değerleri seçilmesini gerektirmektedir (söz gelimi, a = 0.01 ve µ = 0.001).

Şekil 6.1.
*
r

r

q
MT ’nin üst limiti

Eşitlik (6.20) ve eşitlik (6.21)’deki tanımı hatırlarsak; atqtTtkappa rrr /))(/)(()(= de

)/)()(()(wtTtxat rrr µη = Küçük a büyük bir kappar(t), değerini ima etmektedir. Bunun
anlamı kararlı VEGAS’ın fiyat değişimine)(tqr daha hızlı tepki gösterdiğidir. Küçük µa ise
küçük bir η, değerini ima etmekte, bu da denge çevresindeki eşitlik (6.18)’in eğiminin küçük
olduğunu göstermekte ve kazanç genelinde daha yumuşak bir eğim olduğunu ortaya
koymaktadır. Tutarsız döngü-zamanı olayı için, yani 10 >k durumu için, kararlılığı garanti
altına almak için tutarlılık durumundan daha küçük bir a değeri gerekmektedir.

Örnek 2: Tutarlı kaynaklı tek hat (c, d, N)

 82

Orijinal VEGAS kararlılığı ile doğrudan bir karşılaştırma yapabilmek için Örnek
1’deki kurgunun aynısını düşünüyoruz: N sayıda tutarlı kaynak tarafından paylaşılan c
kapasiteye sahip ve gidiş-dönüş yayılım gecikmesi d olan bir tek hat. Bu olay için yeterli
koşul,

icinlerrbutun
a
aTq rr 222

22

/
µφ

φ
φ
µ

+
+>

rr qdT += ve cNxq rr // * αα == simetrisi gereğince bu koşul (M = 1 ve k0 = 1) ile
Teorem 4’ün

N
a
acd α

µφ
φ

µ
φ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
+< 1222

22

 (6.29)

şeklinde sadeleştirilmesiyle eş değerdir. Bu nedenle, orijinal VEGAS’ ta olduğu gibi, bu aynı
zamanda daha büyük kuyruk uzunluğu α ya da daha fazla N kaynak sayısı ile daha büyük bir
kararlılık bölgesine de sahiptir. Buna ek olarak, orijinal VEGAS’ ın kararlılığı için (29)’un
sağ tarafının (14)’ün sağ tarafından büyük olabilmesi gibi α ve N veri iken kararlı VEGAS
küçük bir (a > 0, µ € (0,1)) değeri seçebilir. Bu durum Şekil 6.2’ de gösterilmektedir. Şekilde,
eşitlik (6.14) ve (6.29)’daki kararlılık bölgeleri VEGAS ve kararlı VEGAS için sırasıyla (a,µ)
= (0.5,0.015)ve α = 20 paket, N = 100 kaynak için diyagrama dökülmüştür.

Şekil 6.2. Örnek 1 ve 2’nin kararlılık bölgeleri: tutarlı kaynaklar tarafından paylaşılan tek hat.

Kararlılık koşulu yalnız başına yeterlidir. Gerçekten, a ve µ için daha az tutucu

değerler kullanılabilir. Örneğin, 100* =rrqMT için f)()(*
rrr jwTqMT Λ⋅ ’nin Nyuquist dağılımı

Şekil 6.3’te, Örnek 2’deki a = 0.1 ve µ G [0.001,0.015] senaryosu için diyagrama
dökülmüştür. Bu a ve µ değerleri Teorem 4’teki kararlılık koşulunu sağlamasalar bile,
Nyquist dağılımda da görüldüğü gibi, ağ gerçekten de kararlıdır.

 83

Şekil 6.3. Nyquist Kararlılık a = 0.1, µ = [0.001 : 0.015]

icin
q
MTjwT

r

r
r 100)(* =Λ .

6.4. Uygulama ve Derleme

TCP VEGAS’ın en çekici özelliği yüksek hızlı büyük gecikmeli ağlar için
uygunluğudur. Bu rejimde pencere boyutu büyüktür ve TCP RENO ya da varyantları denge
düzeyinde aşırı derecede küçük bir kayıp olasılığı oluşturmak zorundadırlar. Bu kadar küçük
bir olasılığa güvenmek büyük sorunları da beraberinde getirmektedir.

Diğer taraftan, VEGAS’ın her ikisi de gecikmenin bir yoğunluk ölçüsü olarak
kullanımından ileri gelen iki avantajı daha vardır. İlk olarak, VEGAS’ın kesinlikli hat
algoritması ağ kapasitesiyle ilgili yerleşik bir ölçeklemeye sahiptir. Bu kararlı kaynak
algoritmasıyla bir aradadır ve böylece potansiyel olarak daha büyük bant genişliği gecikme
sonucunu ölçekleyebilir. İkincisi, bir kaynağın her gecikme ölçüsü ikili-değerli kayıp ya da
işaretlemenin ortaya koyduğundan daha ince bir yoğunluk tahmini ortaya koyar. Kapasite
büyüdükçe, α parametresini ölçekleyerek yoğunluk işaretinin (gecikmenin) gücünü sağlamak
için kaynakta ölçekleme yapmak daha kolaylaşmaktadır.

Gecikmenin düşük bant genişliğinde dengeye ulaşmak için VEGAS’ta aşırı ölçüde
olabilmesi sorunu geniş bant rejiminde çok daha az şiddetlidir. Buna ek olarak, yayılım
gecikmesi tahminindeki hatayla ve süreğen yoğunlukla ilgili sorun kaynak [5], [8] da yüksek
kapasiteyle birlikte arabelleklerin daha sık boşaltılmasıyla kolaylaşmaktadır. Gecikmenin
yoğunluk kontrolünde kullanımına ilişkin başka konular bulunmakla birlikte, ECN çok geniş
kapsamlı derlenmedikçe bu sorunların kontrol için aşırı derece küçük kayıp olasılığının
kullanılmasına güvenilmek zorunda kalınması şeklindeki temel güçlükten daha önemli
olmadıkları görülmektedir.

Şimdi kararlı VEGAS için yeni AQM ve ECN’nin kademeli derlenmesiyle çalışmak
için uygulanabilir ve tutarlı bir strateji tanımlıyoruz. VEGAS daki hat algoritması kuyruk
gecikmesini şu şekilde hesaplamaktadır:

))((1)(ll
l

l cty
c

tp −= (6.30)

VEGAS’ın ağ kapasitesiyle yerleşik ölçeklenebilirliğini veren, q’ya bölünmedir. Kaynak
[8]’de de incelendiği gibi, VEGAS yoğunluk fiyatlarını otomatik olarak hesaplamak için

 84

sıfırdan-faklı bir kuyruk gecikmesi oluşturmak pahasına, arabellek sürecini kullanır. Bunlar
VEGAS’ın kesin bir şekil 6.3 de çözdüğü fayda en yüsek düzeye çıkarma problemi için
kullanılan Lagrange çarpanlarıdır. Kaynak [14] ve [17]’nin ölçeklenebilir şemadaki hat
algoritması,)(tpl fiyatını hesaplamak için gerçek hat kapasitesi q yerine biraz daha küçük
olan (mesela, q’nun %95’i) sanal bir hat kapasitesini kullanıyor olması haricinde eşitlik
(6.30)’daki ile aynı ifadeyi kullanır. Sanal bir kuyruk kullanmanın avantajı fiyatlar sıfırdan-
farklı değerlere yakınlaşırken gerçek kuyruğun dengede temizlenecek olmasıdır. Kuyruklar
şimdi boş olduklarından kuyruk gecikmesi artık yoğunluk işaretçisi olarak hizmet
etmeyecektir. ECN işaretlemesi fiyatları açıkça geri beslemek için kullanılmalıdır.

Şimdi her iki tipten hatta sahip olan bir ağ hayal edelim; bu hatlardan biri kuyrukları

temizlemek için ne ECN’yi kullanır ne de AQM’i işletirken diğeri bnu kullanıyor olsun. İlk
tip bir kuyruk oluşturmakta ama işaretlememekte, ancak ikincisi kuyruk gecikmesine sahip
değilken kaynakları işaretler akımı göndermektedir. Bir kaynak iki tip geri besleme sinyalini
gözlemektedir. Birinci tip l hatlarından gelen toplam kuyruk gecikmesi ve ikinci tip hatlardan
REM tahmini sonrasında gelen toplam fiyatlar. Bu iki işaret yalnızca birbiriyle
etkileşmemekte, bunların toplamları kaynak yolundaki toplam fiyatı da açıkça ortaya
çıkarmaktadır. Bu nedenle, her iki işareti gözleyerek ve bunları toplayarak kaynak kontrol için
gerekli bilgiyi otomatik olarak temin etmekte ve bunu yaparken yol üzerindeki hatların tipi ve
sayısı konusunda bir bilgiye sahip olmamaktadır. ECN yoluyla AQM’ye daha ve daha fazla
hat dönüştürüldükçe, kaynak algoritmasının yükseltilme ihtiyacı da artmaktadır. Tek etki
kuyruk gecikmesinin düzenli olarak azalmasıdır.

6.5. Benzetim Sonuçları

VEGAS ve kararlı VEGAS algoritmalarının farklı sayılarda kaynaklar, tutarlı ve
tutarsız kaynaklar, tekli ve çoklu boğum hatları ile ve dinamik senaryolar içindeki
davranışlarını incelemek için geniş kapsamlı ns-2 simülasyonları oluşturduk kaynak. Yer
sınırlaması nedeniyle, burada yalnızca tek boğumlu hatla ilgili önceki kesimlerde ele
aldığımız teoriyi doğrulayan ve kararlı VEGAS’ ın yüksek hızlı büyük gecikmeli pencere
boyutunun paket olarak büyük olduğu ağlarda uygunluğunu gösteren en basit sonuçları
açıklayacağız. Diğer benzetim sonuçları bu metnin dergi versiyonunda ele alınmaktadır.

Örnek 1 ve 2’deki N sayıda tutarlı kaynak tarafından paylaşılan tek boğum hattı

üzerinde duran senaryoları benzettik. Simülasyonlar iki yönlendirici üzerinden alışıldık N
sayıda kaynağın N sayıda hedefe bağlandığı uçbirim kullanmaktadır. Kaynaklar ve bunların
yönlendiricisi arasındaki erişim hatları sıfır gecikmeli boğumsuz ve iki yönlendirici arasındaki
hat ise yalnızca tek boğumlu ve 1 KB sabit paket boyutlu c Gbps kapasiteye sahiptir.
Yönlendiriciler arası gecikme d/2 ms.’dir. Droptail ve kuyruk kapasitesiyle ilgili FIFO
prensibine göre (ilk giren-ilk çıkar) çalışan yönlendiriciler 40K pakete ayarlıdır ve paket
kaybı olasılığı ihmal edilebilir düzeydedir. Paket gönderimine tüm kaynaklar eş zamanlı
olarak başlarlar.α = 20 paket ve N = 100 olarak sabitleyip c ve d’yi farklılaştırıyoruz. Şekil
6.4’te de görüleceği gibi, Şekil 6.2 bölgesinde üç farklı (c, d)’den oluşan üç farklı benzetim
seti sunuyoruz.

 85

Şekil. 6.4. Tutarlı kaynak ve tek boğumlu ağ topolojisi : (α, N) = (20 pkts, 100 flows).

Kararlı VEGAS için, (a, µ) = (0.5, 0.015).

Simülasyon (a) her iki kararlılık bölgesinin kesişimin deki küçük kapasite ve gecikme
içindir. Simülasyon (b) kapasiteyi 10 kat artırır, benzetim (c) ise (a)’da kullanılan gecikmeyi
10 kat artırır. Hem (b) ve hem de (c) orijinal VEGAS kararlılık bölgesinin dışındadır, ancak
halen daha kararlı VEGAS ’ın kararlılık bölgesi içindedir. Hem orijinal VEGAS ve hem de
kararlı VEGAS için her kaynağın hedef kuyruk uzunluğunu α = 20 paket ve N = 100 “flows”
olarak oluşturuyoruz.

Şekil 6.4’ün son iki kolonu kaynak [8]’den hesaplanan denge kuyruk uzunluğu ve
denge pencere boyutunu göstermektedir.

Simülasyon sonuçları Şekil 6.5’te gösterilmektedir. Her olay için ilk dağılım boğum
hattında ara belleğe alınan toplam kuyruk uzunluğunu göstermektedir. İkinci dağılımlar N
kaynak üzerinden alınan ortalama pencere boyutudur. Beklendiği gibi, orijinal VEGAS (b) ve
(c) olaylarında kararsızlık gösterirken kararlı VEGAS kararlı kalmaktadır.

 86

(a) c = 800 Mbps (100 pkts/ms) ve d = 10 ms

(b) c = 8 Gbps (1000 pkts/ms) ve d = 10 ms

(c) c = 800 Mbps (100 pkts/ms) ve d = 100 ms

Şekil 6.5. Denge yakınında kuyruk uzunluğu ve ortalama pencere boyutu (α = 20 pkts,
N = 100).

Kararlı VEGAS’ın pencere boyutunun büyük olabildiği yüksek hızlı büyük gecikmeli
ağlardaki performansını görmek için çok küçük akım sayıları kullanıyoruz; N=3, (c,d)=(3.2
Gbps, 100ms.). Aynı zamanda, α = 400 paket olarak ayarlıyoruz ki, böylece yayılım
g9ecikmesinin yaklaşık %3’üne kuyruk gecikmesi olarak izin verilmektedir. Burada [8]’den
hesaplanan denge pencere boyutu yaklaşık olarak kaynak başına W* = 13,700 pakettir. Şekil
6,6’da görüldüğü gibi, kararlı VEGAS 10 ms’den daha kısa sürede neredeyse denge pencere
boyutuna ulaşmaktadır, buna karşın orijinal VEGAS’ın doğrusal artış hızı bunun çok

 87

gerisinde kalmaktadır. Kararlı VEGAS bunun yanında aynı zamanda iyi bir düzenlilik
durumuna sahiptir.

Şekil 6.6.yüksek hızlı ağ için hızlı yaklaşma c = 3.2 Gbps, d =100 ms ve (α, N)=(400 pkts, 3).

6.6. Sonuç

Bu bölümde, tutarsız ileri ve geri yönlü gecikmelere sahip genel birçok-hatlı çok-
kaynaklı kurgu içinde VEGAS kararlılığının detaylı bir analizini sunduk. VEGAS’ın gecikme
varlığında kararsız olabileceğini ortaya koyan bir kararlılık koşulu türettik. VEGAS’ı büyük
ağ gecikmeleri halinde kararlı hale getirecek küçük bir modifikasyon önerdik.

VEGAS ağ kapasitesiyle yerleşik ölçeklenebilme özelliği nedeniyle özellikle yüksek
hızlı ağlarda caziptir. Yüksek bant genişliği rejiminde VEGAS’ ın sürekli yoğunlukla ilişkili
potansiyel sorunu azaltılabilmektedir. Bunun yanı sıra, RENO’ nun yapmak zorunda olduğu
gibi aşırı derece küçük kayıp olasılığına dayanan kontrol zorunluluğundan kaynaklanan temel
nitelikteki güçlükten kaçınmaktadır. Bu avantajlarına rağmen, gecikme tabanlı yoğunluk
kontrolüyle ilgili çözümlenmesi gereken, özellikle kademeli derleme ile ilgili sorunlar da
mevcuttur. Biz burada bunun bir yönünü, yani ağ ECN-tabanlı bir AQM’e taşındığında
VEGAS kaynağı nasıl sorunsuz çalışacağını tanımladık.

 88

KAYNAKLAR

[1]. Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas: end-to-end congestion

avoidance on a global Internet. IEEE Journal on Selected Areas in Communications,
13(8):1465-80, October 1995. http://cs.princeton.edu/nsg/papers/j sac-vegas.ps.

[2]. J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas: emulation and
experiment. In Proceedings of SIGCOMM'95, 1995.

[3]. U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas revisited. In Proceedings of
IEEE Infocom, March 2000.

[4]. Thomas Bonald. Comparison of TCP Reno and TCP Vegas via fluid approximation. In
Workshop on the Modeling of TCP, December 1998.
http://www.dmi.ens.fr/\%7Emistral/ tcpworkshop. html.

[5]. J. Mo, R. La, V. Anantharam, and J. Walrand. Analysis and comparison of TCP Reno
and Vegas. In Proceedings of IEEE Infocom, March 1999.

[6]. C. Boutremans and J. Y. Le Boudec. A note on the fairness of TCPVegas. In
Proceedings of International Zurich Seminar on Broadband Communications, pages
163-170, February 2000.

[7]. Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based congestion
control. IEEE/ACM Transactions on Networking, 8(5):556-567, October 2000.

[8]. Steven H. Low, Larry Peterson, and Limin Wang. Understanding Vegas: a duality
model. J. of ACM, 49(2):207-235, March 2002.

[9]. Steven H. Low. A duality model of TCP and queue management algorithms. In
Proceedings of ITC Specialist Seminar on IP Traffic Measurement, Modeling and
Management (updated version), September 18-20 2000. http://netlab.caltech.edu.

[10]. Frank P. Kelly, Aman Maulloo, and David Tan. Rate control for communication
networks: Shadow prices, proportional fairness and stability. Journal of Operations
Research Society, 49(3):237-252, March1998.

[11]. Steven H. Low and David E. Lapsley. Optimization flow control, I: basic algorithm
and convergence. IEEE/ACM Transactions on Networking, 7(6):861-874, December
1999. http://netlab.caltech.edu.

[12]. L. Massoulie and J. Roberts. Bandwidth sharing: objectives and algorithms.
In Infocom'99, March 1999. http://www.dmi.ens.

[13]. Srisankar Kunniyur and R. Srikant. End-to-end congestion control schemes: utility
functions, random losses and ECN marks. In Proceedings of IEEE Infocom, March
2000. http: //www. ieee- infocom. org/2 0 00/papers/4 01 .ps.

[14]. Fernando Paganini, John C. Doyle, and Steven H. Low. Scalable laws for stable
network congestion control. In Proceedings of Conference on Decision and Control,
December 2001. http : //www. ee. ucla.edu/"paganini.

[15]. Glenn Vinnicombe. On the stability of end-to-end congestion control for the Internet
Technical report, Cambridge University, CUED/F-INFENG/TR.398, December 2000.

[16]. Glenn Vinnicombe. Robust congestion control for the Internet. Submitted for
publication, 2002.

[17]. Fernando Paganini, Zhikui Wang, Steven H. Low, and John C. Doyle. A new
TCP/AQM for stability and performance in fast networks.

[18]. S. Kunniyur and R. Srikant. A time-scale decomposition approach to adaptive ECN
marking. IEEE Transactions on Automatic Control, June 2002.

[19]. Sanjeewa Athuraliya and Steven H. Low. Optimization flow control with Newton-like
algorithm. Journal of Telecommunication Systems, 15(3/4):345-358, 2000.

 89

[20]. Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. A control t
 heoretic analysis of RED. In Proceedings of IEEE Infocom, April 2001. http://www-
net.cs.umass.edu/papers/papers.html

[21]. S. H. Low, F. Paganini, J. Wang, S. A. Adlakha, and J. C. Doyle. Dynamics of
TCP/RED and a scalable control. In Proc. of IEEE Infocom, June 2002.
http://netlab.caltech.edu.

[22]. Ki Baek Kim and Steven H. Low. Analysis and design of AQM based on receding
horizon control in stabilizing TCP. Caltech Technical Report, caltechCSTR:2002.009,
March, 2002. Submitted for publication, 2002.

[23]. C. A. Desoer and Y. T. Yang. On the generalized Nyquist stabilitycriterion. IEEE
Trans. on Automatic Control, 25:187-196, 1980.

 90

BÖLÜM 7

TCP VEGAS ARACILIĞI İLE MODELLEME

TCP VEGAS ın önceki analitik modelleri kayıpsız ağlar için geliştirilmiştir. Bu bölüm
TCP VEGAS ın basit ve uygun analitik modelini geliştirmiştir. Paket kayıplarıyla huzur
içinde büyür. Benzer modeller TCP RENO için daha önce geliştirilmiştir. Bunla birlikte
RENO nun tamamlayıcılarından daha farklı olarak VEGAS için çeşitli yaklaşımların farklı
olarak davranmaya ihtiyacı vardır. Amaçlanan model değişik bir mekanizma sunar ki yavaş
başlama, sıkışıklık giderme ve sıkışıklık düzeltme sırasında VEGAS ı çalıştırır. Bu sonuçlar
basit TCP VEGAS ın geçerli modelini ihtiva eder bununla eşitlik temelli UDP akımları,
belirlemek için basit formüller, ölçülmüş paket kayıp değerlerinden, ister ağ tamponları aşırı
iletilmiş olsun isterse TCP VEGAS akışı hedeflenen değere ulaşmış olsun gibi başka
akımların değer kontrolleri için kullanılabilir.

Geçmişte araştırmalar tek TCP akımının çeşitli sayıdaki analitik modelini Tur zamanın

fonksiyonu ve paket kayıp değeri olarak arz etmiştir. Bu modeller bu ağ parametrelerinde
Örneğin UDP akışları kaynak [1], [2] deki gibi TCP performansının duyarlılığını anlamamızı
sağlamıştır ve diğer tip internet akışlarını kontrol etmek için çeşitli ilerlemelerin
sağlanmasında kullanılmıştır. Bu bütün modeller TCP nin değişik geniş yerleştirmelerini
adresler, TCP RENO olarak adlandırılan örneğin kaynak [3], [4], [5], [6], [7] deki gibi.
TCP nin başka bir değişkeni TCP VEGAS olarak arz edilir. VEGAS birçok yeni tekniği
görevlendirir ki birlikte belirli gelişmeler sonuçlanabilir. Bunun la aynı zamanda paket
kayıpları azalır. Bu gelişmelerden bir kısmı geçmişte uygulanmıştır. Bazı durumlarda
alternatif mekanizmalar kullanmak TCP nin farklı formlarında örneğin TCP VEGAS, TCP
yeni RENO gibi sadece pencere boyutunu bir kez küçültür çoklu paketle aynı pencereden
düştüğü zaman. TCP RENO pencere boyutunu gönderilen her 3 lü çiftleme ACK si için
küçültür. Bazı diğer yenilikler hala iyi anlaşılamamıştır ve geniş olarak yayılmamıştır.
Örneğin VEGAS sıkışıklığı giderme algoritması bazı anahtar avantajlara sahiptir. Paket
kayıplarından sakınmada olduğu gibi aynı zamanda bağlantılara karşı eğimi düşürerek
gecikmeleri daha uzun üretmeyle yapar. Bu modellerin bütünü TCP nin bir değişkeni
tarafından geliştirilmiş geniş çapta kullanılanıdır ve TCP RENO olarak adlandırılır.

TCP nin diğer bir elemanı TCP VEGAS olarak ifade edilebilir. VEGAS yeni birkaç

tekniği çalıştırır ki birlikte uygun ilerleme sağlanır daha az paketleri oluşur. Bu ilerlemelerden
bazıları alternatif mekanizmalar kullanılarak önceden bazı durumlarda uygulanmıştır. Örneğin
VEGAS gibi TCP yeni RENO aynı pencereden çiftli paketler düşürüldüğünde sadece pencere
boyutunu bir kere düşürür. TCP RENO her üçlü çift ACK (bilgilendirme) alındığında pencere
boyutunu düşürür. Bazı diğer yaklaşımlar hala tam olarak anlaşılamamıştır ve geniş bir
şekilde kullanılmamaktadır. Örneğin VEGAS sıkışıklık giderme algoritması Paket kayıplarını
önleme yönünde bazı anahtar avantajlara sahiptir. TCP VEGAS ın performansı başka akış
tipleri ile etkileşimi olan karışık ağ ortamlarında tam olarak anlaşılamamıştır. Önceleri
benzetimle kullanılmıştır veya VEGAS ın analitik modellerinin davranışları kayıpların
olmadığı ortamda TCP VEGAS ın analitik modeli paket kayıplarının durumuna göre takip

 91

eder, başka akımlar ile ağ paylaşımı tarafından bizim bilgimizde dâhil olmayan daha önceden
amaçlanmış protokol performansını ve mekanizmayı anlamamızda önemli bir araç olabilecek.

TCP VEGAS ın çeşitli gösterimleri RENO daki karşılıklarından biraz farklı olarak

davranmaya ihtiyacı vardır. Bu sıkışıklık belirlemeyi ve giderme algoritmalarını içerir ve yeni
bağlantılar düzeltme mekanizmaları içerir. Protokollerin bu özelliklerini yakalamak için statik
eşit zaman girdilerine akışları böleriz ve rasgele çeşitli girişler aracılığı ile kapalı form çözüm
üretiriz. Hem çiftli ACK ler hem de zaman aşımlarının formlarında kayıp işaretlemeleri
maksimum pencere boyutunun etkisi ile modellenmiştir kaynak [8]

Bu model zamanda VEGAS ın mekanizmasını yeni bir set olarak birleştirerek dereceli

geliştirilmiştir. Bu VEGAS tarafından görevlendirilen farklı mekanizmaların arkasındaki
sezgiyi analitik olarak karakterize ederek test etme imkânı bize sağlar. Aynı zamanda
ölçülmüş paket kayıpları olasılığından TCP VEGAS akımı hedeflenen düşük eşik değerini
sağlayıp sağlamadığını belirlemek için kapalı form ifadeyi elde ederiz.

7.1. Temel

Bu bölüm açıkça TCP VEGAS ın yeniliklerini göstermektedir. İlk önemli yaklaşım

TCP RENO dan açıkça ayrılan VEGAS sıkışıklık giderme mekanizmasıdır. TCP RENO ağ da
sıkışıklık olduğunu gösteren sinyali paketlerin kaybı olarak kullanır. Gerçekte RENO
bağlantının mümkün olan bant genişliğini bulabilmek için kayıplar yaratmaya ihtiyacı vardır.
VEGAS ın amacı sıkışıklığı önceden belirlemektir. Ve daha sonra paket kayıplarının olabilme
olasılığını önlemeye çalışarak azaltmaktır.

Ağ sıkışıklığı belirlemek için her tur zamanı RTT, TCP VEGAS hali hazırdaki
pencere boyutu (W) kullanır. En yakın RTT ve minimum RTT kısa sürede belirlenir
hesaplamak için

RTT
baseRTTRTTWbaseRTT

RTT
W

baseRTT
Wdiff −=⎟

⎠
⎞⎜

⎝
⎛ −= (7.1)

(RTT – temel RTT) toplam yol sorgu gecikmesi olduğunda ve W/RTT hali hazırdakinin
yaklaşığı olduğunda bu iki değerin ürünü ağda geri bilgilendirilen bu akışın paketlerin
sayısının yaklaşığıdır. VEGAS sıkışıklık giderme algoritmasının amacı bu sayıyı 2 eşik değeri
tarafından belirlenen alfa ve beta sabit bir aralıkta tutmaktır. Böylece bir kere bütün RTT
yavaş başlama madunda değilken TCP VEGAS pencere boyutunu aşağıdaki gibi ayarlar

⎪⎩

⎪
⎨
⎧

>−
≤≤

<+
=

β
βα

α

diffw
diffw

diffw
W

,1
,
,1

 (7.2)

Alternatif olarak fark temel RTT kaynak [9] ile α ve β eşik değerlerinin paketlerin standart
birimlerinde belirlendiği durumda böylece bu sonuçlar bağlantının eşit olmayan
davranışlarında farklı temel RTT ile bölünebilir kaynak [10]. Paketlerin birimlerinde ki fark
ve eşik değerlerine sahip olduğunun farkında olduğumuz bütün VEGAS uygulamaları ve
benzetimleri bu yazının hatırlatıcısı olduğu iddia edilir. Eşik değerlerinin her versiyonu
sıkışıklık istemeksizin elde edilebilir bant genişliğini yararlı hale getirebilmek için değer
göndererek ayarlama yapar.

 92

 VEGAS ın diğer bir özelliği RENO dan daha tutucu olarak yavaş başlama hareketi ile
geliştirilebilir olmasıdır. Özellikle VEGAS eğer fark eşik değerini aşmışsa (veya kayıp
oluşmuşsa)bütün diğer RTT ler için farkı kontrol eder ve yavaş başlama ihtiva eder. Bunun
dışında pencere büyüklüğü çiftlemiştir. Basitlik için bu yazının kalanında 2/)(βαγ += ü
ileri süreceğiz. Bu algoritma VEGAS ın Aktif olan sıkışıklık belirlemeleri ve kayıp giderme
mekanizmaları diğer bir durumudur. Pencereyi çiftlemek bütün diğer RTT lerde aynı zamanda
iyi bir temel RTT nin ölçümünü belirlemeyi sağlar.

TCP VEGAS da son 4 yeni mekanizma sıkışıklık düzetme mekanizmasıdır. İlki 2 paketin
pencere boyutu başlangıç sırasında ve zaman aşımından sonra kullanılmıştır. İkincisi VEGAS
her bir paket gönderildiğinde ve çift bilgilendirme geldiğinde zamanı kaydeder eğer çok
önceden gönderilmişse uygun tane zamanlayıcı değeri belirlenir. Gönderici eski bilgilendirme
paketini yeniden iletir. RENO daki gibi 3 lü çiftli ACK her zaman paket yeniden
gönderimlerinde sonuç verir ama uygun tane zamanlayıcı daha önceden kayıpları belirler. 1
veya 2 çiftli ACK den hemen sonra yeniden gönderimleri paketlemeye yöneltir. Eğer yeniden
gönderim oluşuyorsa bir sonraki 2 normal ACK nin her birinde aynı zamanda
bilgilendirilmemiş en eski paketin yeniden gönderimini tetikler eğer uygun tane zamanlayıcı
süresi dolmuşsa. Not edin ki uygun tane zamanlayıcının süresinin dolmasından dolayı paket
yeniden gönderimi belirli ACK ler almaya devam eder. 3.su paket yeniden gönderimi çiftli
ACK tarafından tetiklendiğinde sıkışıklık pencere boyutu sadece hali hazırdaki RTT den son
pencere boyutu azalması daha az olduğunda azalır. Yeniden gönderimden sonra çiftli olmayan
ACK tarafından tetiklenir, pencere boyutu küçülmez. Not edin ki çoklu kayıplar tek
pencerede meydana geldiğinde VEGAS sıkışıklık pencere boyutunu bu ilk kayıplar için
düşürür. 4. sü kayıplardan dolayı pencere küçültülür, çiftli ACK tarafından belirlenir VEGAS
pencere boyutunu RENO da ki gibi %50 yerine % 25 küçültür.

Eğer kayıp bölümü yeterince fazla ise uygun tane zamanlayıcı tetiklenmesi için kontrol eder,
hiçbir ACK gönderilmez. Kayıplar RENO tipi baya tane zaman aşımı tarafından belirlenir. Bu
yazının hatırlatıcısında belirtilmediği sürece zaman aşımı terimi bayağı tane zaman aşımı
olarak gösterilir.

7.1.2. İlgili Çalışmalar

 Birçok analitik modelde tek TCP RENO nun durumu için ölçülmüş kayıp değeri ve
ortalama RTT nin fonksiyonu olarak transfer edilir. Mathis et al. [6] da zaman aşımlarını
ihmal ederek TCP RENO nun sıkışıklık gidermesini analiz etmiştir. Pad-hye et al. Kaynak [5]
de zaman aşımlarını ihtiva eden daha tamamlayıcı bir çalışma sağlamıştır onların sonuçlarını
kullanarak ve başlangıç- yavaş başlamayı ihtiva ederek analizde Cardwell et al. [3] TCP
RENO transferinin keyfi boyutunun yaklaşık model ortaya çıkarmıştır. Kaynak [5] deki model
Goyal et al. in kaynak [7] tarafından yeniden ziyaret edilmiştir. Ve yeniden incelenen
versiyonu sunulmuştur. Farklı bir gelişme Misra et al. [4] tarafından yapılmıştır. TCP RENO
nun kararlı davranışı akıcı analiz kullanılarak modellenmiştir. Bizim modelleme gelişmemiz
kaynak [5] dekine benzerdir. Burada her tur temelinde akışı analiz ederiz. Başka taraftan
bizim gelişmemiz VEGAS ın çok farklı davranışlarının analizinden farklıdır kaynak [9], [11],
[12]. Bu model aşamalı olarak VEGAS mekanizmasının yeni bir seti ile ilişkilendirilerek
geliştirilmiştir.

 93

Değişken Açıklama

βα , Paketlerde ölçülmüş VEGAS ın eşik değerleri

γ Yavaş başlamadan çıkmak için eşik değeri (α + β)/2

P Kayıt bölümler arasında iletilmiş ortalama paketlerin
sayısının tersi

baseRTT Akış sırasında belirlenmiş Minimum tur zamanı

RTT Keyfi tur zamanı

R Transfer için ortalama tur zamanı

W Zamanda keyfi bir noktada pencere boyutu

maxW Alıcı tarafından bildirilen maksimum pencere boyutu

0W Kararlı geri bildirim durumunda ortalama pencere boyutu

0t İlk TO nun TO serisinde Ortalama süresi

Tablo 7.1: Model notasyonu.

7.2. MODEL

Model notasyonu tablo 7.1 de özetlenmiştir. Model giriş parametreleri R ve p. Temel

RTT, maxW 0t βα , kaynak [3], [5], [7].

Daha önceki başarılı TCP RENO modeli boyunca TCP VEGAS davranışlarını daireler

şeklinde modelledik. Data pencerelerinin her dönüşte iletildiği gibi ve dönüş süresi RTT ye
eşit olduğu ve pencere boyutundan bağımsız varsayılır. İddia ediyoruz ki farklı turlarda
oluşan paket boyutları bağımsızdır ama paket kaybolduğunda geriye kalan bütün paketlerde
kaybolur.

Bir ileriki iddia temel RTT kısmen akış boyunca kararlı ise ihtiyaç duyulur ki rasgele

seçilmiş girişler boyunca akış boyuna eşittir. Bölüm 4 deki deney gösterir ki bu iddia pratik
olan ağ durumunda gerçekleşir. Eğer bu devam etmezse modeller akışın her kısmına
uygulanabilir ve farklı temel RTT değerleri elde edilir

Aşağıda devam eden akışlar için ilk olarak TCP VEGAS ı düşünürüz ki paket kayıpsız

olmasına sebep olur, zaman aşımı olmayan akışlar tarafından takip edilir, tek zaman aşımı
olayı ardışık paket iletimleri için ile takip eder ve sonunda bu deneyimi taşır. Her durunda
VEGAS ın genişletilmiş bir setini modelleriz ve bunlar için kapalı form ifade hesaplarız

 94

7.2.1 Paket Kayıpsız Model-1

 Tahmin edilen TCP VEGAS ın pencere boyutunun dönüşümü şekil 7.1 deki gibi paket
kayıpsız olduğunda akış yavaş başlama ile pencere ikiye eşit olmakla beraber başlar. Ve
pencere boyutu fark her diğer RTT ler farkı γ yi aştığında veya maxW a pencere boyutu
ulaştığında çiftlenir (genel durumda) . Bundan sonra akış sıkışıklık gidermeye kalır.

Bir nokta düşünün ki yavaş başlama periyodunda sonraki keyfi nokta olsun. lossnW −0

0

noktadaki tahmin edilen pencere boyutunu temsin etsin. W gerçek pencere boyutunu temsil
etsin ve RTT en son ölçülen tur zamanı olsun daha sonra zamanda bu noktadaki farkın değeri
1. eşitlikle verilsin.

İddia ediyoruz ki 2 neden den dolayı ortalama fark değeri yaklaşık beta olsun. İlki A-B
VEGAS ın iyiliğini büyütür ve γ = β uygulanır, başlangıç yavaş başlama periyodunda
pencere boyutunun çiftlenmesi β DİFF i aştığında ortadan kaybolur. Daha fazla olarak ağdaki
uygun sıkışıklık olmamsından kaynaklanan RTT fazla kararsız olmaz ve bu bir kere farkı β ya
küçültür. Bu göreli sabit olarak kalmasını sağlar. Ağın çapraz trafiğinin geniş çeşitliliği ile
TCP VEGAS ın genişletilmiş benzetimi sırasında belirlendiği gibi. İkinci olarak kayıpsız
durumda RTT temel RTT civarında kararsız davranacaktır ve böylece sıkışıklık giderme
algoritması mümkün olduğunca yüksek sorgulanmış paketlerin sayısını tutacaktır. Eşitlik 1 in
her iki tarafında ki ihtimali alarak, RTT düşük değerli olduğu iddia edilir ve pencere
boyutundan bağımsızdır, WEW lossno /0 =−

 için çözümdür ve maksimum pencere boyutu maxW
ı hesaplar, (3) eşitliğini elde ederiz büyük transfer hesaplaması sırasında

⎟
⎠
⎞⎜

⎝
⎛

−
×=−

max0 ,min W
baseRTTR
R

W lossno β (7.3)

Zaman
Şekil 7.1:Umulan pencere boyutu hesaplaması: kayıpsız.

 95

Şekil 7.2: Umulan pencere boyutunun serbest kayıp olduğu zaman hesaplanması

Böylelikle yavaş başlama durumu sırasında ihmal edilebilir. Buda ortalamada TCP

VEGAS lossnoW −
0 paketini her turda iletir. max0 WW lossno <− olduğunda eşitlik (7.4) ortaya çıkar

baseRTTRlossno −
=Λ −

β
 (7.4)

Kayıp ihmal edilebilir olduğu zaman (bütün VEGAS ortamlarında) TCP VEGAS

böylelikle yukarıdaki eşitlik tarafında yaklaştırılır. Bu eşitlik gösterir ki VEGAS bunları
düşürmek için kullanılan ölçüm, a sıkışıklığını belirleyen veya elde edilebilir bant genişliğini
belirleyen baseRTTR − dir. Tahmin edilen sorgu gecikmesi aynı şişe boynu paylaşımı akımı
için yaklaşık olarak aynı olması umulur, uygun temel RTT her akış için iddia edilir. Böylece
denklem 4 de gösterildiği gibi kayıp ihmal edilebildiğinde TCP VEGAS büyük yayılma
gecikmeleri ile akışa karşı maili yoktur RENO da olduğu gibi. Bu 21 ve 4 deki sonuçlar ile
örtüşür ve ilerde belirtilecek olan 4.4.1 deki gibi

7.2.2 Zaman Aşımsız Model- 2

TCP kaynakları gibi RENO ile TCP VEGAS akımı şişe boynu bağlantısını
paylaştığında veya kontrol edilemeyen çapraz trafikle kayıplar tecrübe edilebilir. Bu bölümde
göstereceğiz ki bu tip kayıplar olur ama bütün kayıp parçaları çiftlenmiş ACK lar tarafından
belirlenir (1 ile 3 arasında herhangi bir sayı). Kayıp bölümleri paketlerin serisi olduğu yerde
tek turda kaybolur. Bu iddianın verilmesi, kayıp bölümler oluştuğunda VEGAS pencere
boyutunu ¼ küçültmekle turda ilk kaybı belirlemiş gibi hareket edecektir. Daha iler ki
paketler aynı turda kaybolacaktır. Çünkü daha sonraki pencere boyutunda hiçbir azalma
olmayacaktır. Pencere boyutu düştüğünde VEGAS sıkışıklık gidermeye devam eder.
Denklem 2 ye dayanarak pencere boyunu ayarlar.

Kayıp bölümleri ile kayıpsız periyotlara aralık diyeceğiz (LFPs). Ilk yavaş başlama

periyodunu dikkate almadan büyük transfer sırasında ihmal edilebilir bir etkiye sahiptir. Akış
uygun kesin LFPs serisini içerir. 2 durum düşünürüz: ilki p nin yeterince küçük değerleri için
akış uygun geri bildirim durumuna ulaşır ki kayıpsız akışı karakterize eder, şekil 7.2a da
gösterildiği gibi gerekli bütün LFP de. İkincisi büyük p için akış bu duruma asla ulaşmaz.
Şekil 7.2b de gösterildiği gibi. Not edin ki p b deki durumdan a daki durama düştüğünde
umulan maksimum pencere boyutu LFPs ler için W0 boyunca uygun geri bildirime ulaşamaz.
Buda analizdeki basitlik için rasgele şekil 7.2a umulan pencere değişimini gösterir. Bunun
dışında rasgele LFP nin umulan pencere boyunun değişimini gösterdiğini iddia ederiz. Bölüm
3.2.1 ve 3.2.3 bu durmun her biri için göreli olarak rasgele LFP nin değerini hesaplar. Daha
fazla olarak akışın kesin analizi LFPs nin her tipinin katışımıdır. Daha ileri çalımlarda göz

 96

atılabilir. Böylece model doğrulanması bu yazının daha sonraki bölümünde gösterir ki bu
yaklaşık model gerçekçidir. Bölüm 3.2.2 model girişlerinden Ortalamada ister LFPs uygun
geri bildirim durumuna erişsin bunu belirlemek için basit bir formül ortaya koyar. Bu formül
modelde kullanılır ve eşitlik temelli değer kontrolünde de kullanılabilir, bölüm 3.2.1 den veya
bölüm 3.2.3 deki formülden belirlenebilir.

7.2.2.1 Kararlı Geri Bildirimler Erişilebilir

 Tahmin edilen pencere boyutu geri bildirilebilir durum sırasında (0W) kayıpsız
durumdakine benzer olarak çıkarılabilir. Bununla birlikte ağda ki sıkışıklığın derecesi kararsız
olduğunda VEGAS ağda ki geri bildirimi ayarlar α ve β arasında ve böylece umulan fark
değeri 2/)(βα + ye atanır. Beta yerine eşitlik (7.5) gider.

⎟
⎠
⎞⎜

⎝
⎛

−
×+= max0 ,

2
min W

baseRTTR
RW βα

 (7.5)

LFP nin devamını çıkarmak için ortalama paket sayısını LFP sırasında iletilen ortalama paket
sayısını hesaplamak için DLFP ve LFP nin tahmin edilen süresinde ihtiyacımız vardır. 22 deki
gibi benzer yapıda delilleri kullanarak LFP nin devamı bu iki önermenin oranıdır. LFPP iki
kayıp aralığındaki iletilen tahmin edilen paketlerin sayısı olarak ifade edilebilir (Örneğin 1/p).
Artı ilk gönderilen paketlerin ilk kayıp zamanı arasında iletilen paketlerin sayısı ve 22 de
kayıpların gönderici tarafında belirlendiği zaman kaynak [5]:

11
0 −+= W

p
PLFP (7.6)

LFPD yi hesaplamak için şekil 7.2a daki notasyonu kullanabiliriz. EFDELFP DDD += olsun. D
den E ye durumu sırasında VEGAS ideal olarak her bir tur tarafından pencere boyutunu
artırır. Ortalamada 4/0W turu için

RWDDE ×=
4
0 (7.7)

E den F ye durumu sırasında VEGAS her tur da 0W paketlerin ortalamasını iletir. Böylece
düşük değişiklik ideası bu durum sırasında pencere boyutu umulan tur sayısı bu durum içinde
umulan iletilmiş paketlerin sayısına eşittir.

 R
W
PPD DELFP

EF ×
−

=
0

 (7.8)

olduğunda

832
7 0

2
0

1

4
3

0

0

WWİP
W

W
İ

DE −== ∑
−

=

 (7.9)

eşitlik (7.6) ve (7.9) u kullanarak ve basitleştirerek eşitlik (7.10) elde edilir.

RW
pW
pDLFP ⎟⎟⎠

⎞
⎜⎜⎝

⎛
++−=
8
9

32
1 0

0

 (7.10)

Sonuç olarak eşitlik (7.6) ve (7.10) birbirine bölünerek eşitlik (7.11) bulunur.

 97

Rw
pw
p

w
p
p

stable
TOno

⎟⎟⎠

⎞
⎜⎜⎝

⎛
++−

+−

=Λ

8
9

32
1

1

0

0

0

. (7.11)

0W eşitlik (7.5) de verildiğinde not ederiz ki bu analiz TCP VEGAS için basit bir formüle

gider. Bu durumda eşitlik (7.5) in devamında yerine koyarsak gösterir ki paket kayıpları
oluştuğunda (örneğin ağda akılın diğer tiplerinden dolayı) daha uzun ortalana RTT ile
bağlantılara karşı bazı eğilimler vardır. Bu eğilim basit bir karakteristiğe sahip değildir ama
bölüm 4.4.1 de genel bir bakış atılacaktır.

7.2.2.2. Elde edilebilir kararlı geri bildiğim için durumlar

Eşitlik (7.11) sadece kayıp bölümler olduğunda medya gelir W 0W a ulaştıktan sonra.

Bu da)1/1(0 −+≤ WpPDE eşitlik (7.9) kullanılarak:

32367
32

0
2
0 +−

=
WW

p (7.12)

eğer (7.12) eşitliği (7.5) ile beraber kullanılırsa ilerde sunulacak analizi kullanmış oluruz.

7.2.2.3. Ulaşılamaz uygun geri bildirim

Kayıp bölüm oluştuğunda ortalamadan uygun geri bildirimden önce ulaşılırsa VEGAS

ın davranışı şekil 7.2b de resmedildiği gibi RENO ya benzerdir. Sıkışıklık giderme
mekanizması RENO ya döner böylelikle uygun farklılıklar vardır sıkışıklık düzeltme
mekanizmasında W ′ hesaplamak için not edin LFP sırasında VEGAS ideal olarak pencere
boyutunu her bir turda bir kere büyültür. (LFPP′) is 1/p + 1−′W

∑
′

′
=

−+
=′⇒′=−′+=

W

Wi

LFP
p

WPW
p

i

4
3 7

555622
11 (7.13)

iletilen paketlerin umulan sayısı 1/1 −′+Wp dir. Böyle eşitlik (7.13) oluşur LFP de umulan
turların sayısı 4/W ′ dür.

R
p

pp

RW

W
p
p

D
P

LFP

LFPstable
TOno

)55561(

101455564

4

1

.

−+

−+−
=′

′+−

=
′
′

=Λ (7.14)

 98

Şekil 7.3. SS2SS devir örneği.

Yukarıdaki eşitlik gösterir ki eğer kararlı geri bildirime asla ulaşamamışsa Ortalama yayılma
gecikmesi ile ters orantılıdır TCP ren odaki gibi. Genel olarak TCP VEGAS ın bağımlılığı
böylece (R) de RENO daki gibi açık değildir. İki uç noktası vardır. Birincisi P=0 daki gibi ve
VEGAS böylece R ye bağlı değildir. İkincisi p yeterince geniş olduğu durumda uygun geri
bildirime asla ulaşılamaz ve VEGAS burada R ye ters orantılıdır. Bu iki uç nokta için p
arttığında bunun bağımlılığı R de daha güçlü olur ter orantılı bağımlılığa ulaşana kadar.

7.2.3 Bir Tek Zaman Aşımlı Model-3

TCP VEGAS ın yeni yaklaşımı zaman aşımlarının modeli olarak uygulanacaktır. Bu
durumda kayıp bölümler çiftli ACK ler ve zaman aşımları tarafından belirlenecektir. Zaman
aşımları kayım bölümlerinden sonra oluşmuşsa yeterli çiftli ACK kayıp paketlerin yeniden
gönderimini tetiklemek için göndericiye yeterli değildir.

İşlenmemiş tane zamanlayıcı paket için süresi geçtiğinde VEGAS t periyodu için
bekleme konumunu alır ve daha sonra yavaş başlamaya gider ve pencereyi iki olarak ayarlar.
Her RTT de iki kez yumuşatılmış RTT ortalaması artı 4 kez RTT değişkeni olarak To
hesaplanır.

Burada iddia ediyoruz ki bütün zaman aşımı serileri tek bir zaman aşımını içerir. Biz
ilk olarak VEGAS kararlı geri bildirim durumunda olduğunda bütün kayıp bölümlerin
oluştuğu durumu analiz ettik. Bu senaryo altında akışın davranışı birbirine yakın istatistiksel
olan uygun aralıklara Şekil 7.3 de pencere boyutu değişiminin umulduğu duruma bölünebilir.
Bu aralıkların her birine yavaş başlamadan yavaş başlamaya periyodu deriz (SS2SSS).
Rasgele SS2SS periyodunu burada çıkarmak için tahmin edilen iletilmiş paketlerin sayısını ve
periyodun umulan süresini hesaplarız. Bunu yapmak için SS2SS i aşağıdaki periyotlara
böleriz (şekil 7.3): (1) yavaş başlama periyodu (SSP) ikide pencere boyutunun başladığı gibi
ve bütün diğer turları çiftlediği gibi daha sonra yavaş başlama eşik değerine ulaşır. Eşitlik
(7.2) iletim periyodu (TP) kararlı geri bildirim durumuna ulaşana kadar bir tur tarafından
pencere boyutu artırıldığı sırada ve akım kararlı geri bildirim durumunda kayıp bölümler
oluşana kadar. Eşitlik (7.3) eğer TP TO (time out) ile bitmezse birbirini takip eden kayıpsız
periyotlar (LFPS) serisi ilk olarak n–1 LFPS ile takip eder çiftli ACK ler tarafından belirlenen
kayıp bölümler ile bitirilir ve n. LFP “kaypsız devir” TO tarafından belirlenen kayıp
bölümlerle biter. Eşitlik (7.4) tek zaman aşımı. Buda

 99

TOLFPTPSSP

TOLFPTPSSP
SSSS DnDDD

PnPPP
+++
+++

=Λ 2 (7.15)

XP X ve XD ortalama periyodun süresi periyodunda ortalama iletilen paketlerin sayısı olarak
ele alınır. Bu terimler SS2SS periyodunun bütün bileşenleri için bundan sonraki 3 bölümde
tek tek çıkarılacaktır.

7.2.3.1 Yavaş Başlama ve İletim fazı (TP)

SSP(yavaş başlama periyodu) ve TP(iletim periyodu) şekil 7.3 de a noktaları ile b
noktaları ve b ile d arasında ayrı ayrı olarak gösterilmiştir. A dan D ye periyodu birbirini takip
eden kayıp bölümleri ile başlar ve biter
Böylece

11
0 −+=+= W

P
PPP TPSSPAD (7.16)

Pencere boyutu iki olduğunda yavaş başlama başladığında ve yavaş başlamanın eşik değerine
ulaşılana kadar her diğer RTT de çiftlenir

RWRWDveya

WP

SSP

W

W

İ

i
SSP

)2(log2)
4

(log2

4222)
4

42(2

0
0

log
4

log

0

0 0

0

−==

−==+⋅⋅⋅++= ∑
= (7.17)

başlangıç pencere boyutu Wo/2 nin dışındayken rasgele TP nin analizi LFP nin analizine
benzerdir. Umulan. Böylece b ve c için şekil 7.3 de

RWDveyaWWiP BC

W

W
İ

BC 248
3 00

2
0

1

2

0

0

=−== ∑
−

=

 (7.18)

durumun (c den d ye) umulan süresi 0/WPCD dür. BCSSPADCD PPPP −== olduğunda eşitlik
(7.16-7.18) i kullanarak

R
W

W
pW
p

R
W

PPP
R

W
DDD

W

BCSSPAD
CDBCTP

⎟⎟⎠

⎞
⎜⎜⎝

⎛ −+++−=

=
−−

+=+=

0

log
0

0

0

0

024
4
5

8
1

2 (7.19)

7.2.3.2 Kayıpsız Periyot Serileri (LFPS)

Eşitlik (7.6) ve (7.10) LFP de gönderilen paketlerin umulan sayısını, umulan süresini

ayrı ayrı olarak verir. n için bir formül çıkarmak için umulan LFPS lerin ardışık sayısı SS2SS
periyodunda, şekil 7.3 den not ederiz ki kayıp bölümlerin kırılması TO (Time out), TOP
tarafından belirlenir.)1(1 +−= npTO olarak verilmiştir. n için bunu çözerek

TO

TO

p
p

n
−

=
1 (7.20)

TOP olasılığı TCP RENO için çıkarılmıştır. Kayıp bölümlerden sonra 3 çiftli ACK
lerden az olma olasılığı analiz edilerek çıkarılmıştır. VEGAS kilit farkı vardır ki paketler 3
çiftli ACK den daha az yetinebilir. Zaman aşımı meydana gelme olasılığını düşürebilir. 14 de

 100

RENO ya oranla TCP VEGAS ın performansı yüksek kazancı katkıda bulunmadığı iddia
ediliyor. Bununla birlikte benzetimlerimizin sonuçları gösteriyor ki kayıplarımızın dışında
çiftli ACK ler tarafından belirlenmiş büyük çoğunluk bir ve ya iki ACK den sonra belirlenir
kaynak [12] ve kayıp değerleri bir çiftli ACK nin %5 den daha büyüktür sadece tek bit çiftli
ACK birçok durum için kaybı belirlemeye yeterlidir. TOP nun basit analizi aşağıdaki sonuca
sevk etmiştir. İddia eder ki çiftli ACK tarafından bütün kayıplar gelen ilk çiftli ACK
tarafından belirlenir. A(w,k) w dışında k paketlerinin bilgilendirildiğin olasılığı olarak ele
alınsın. C(w,k) pencere boyutu ile turda kayıp bölümler olduğu verilsin. W nun turundan
alınmış k paketlerinin olasılığı olsun böylece

⎪⎩

⎪
⎨
⎧

=−
<−

=
−−

−=
wkp
wkpp

kwC
p
ppkwA

w

k

w

k

,)1(
,)1(

),(
)1(1

)1(),(

kayıp bölümlere sahip olan W paketlerinin turu verilsin. Çiftli ACK siz olmaya yönelten
senaryo ve böylece turda zaman aşımı 1: bütün pencere kayıp tur veya 2: w siz i paketleri
alıcıya ulaşır, alıcı i ACK leri gönderir. Gönderici i yeni paketleri gönderir ve bütün i
paketleri kaybolur. 0W ın tekrar çağrılması kayıp bölümler oluştuğunda umulan pencere
boyutundadır.

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−−

−−−+=

=⎟⎟⎠

⎞
⎜⎜⎝

⎛
+=

−

−

=
∑

0

0

0

)1(1(
))1(1)(1(,1min

)0,(),()0,(,1min)(

1

1

1
000

W

W

W

i
TO

p
pppp

iCiWAWAWp
 (7.21)

7.2.3.3. Zaman Aşımı

TO (time-out) sırasında hiçbir paket iletilmez böylece
0,0 TDp TOTO == (7.22)

Eşitlik (7.6), (7.10), (7.16), (7.17), (7.19) ve (7.22) eşitlik (7.15) in yerine koyduğumuzda
aşağıdaki yaklaşık TCP VEGASın akışının durumunu sadece bir TO oluştuğu durumda elde
ederiz.

02

0

2

1)1(

TRN

W
p
pn

SSSS
SSSS +

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+−+

=Λ (7.23)

+++−++=
8

)
4

1(
1
)1(log2 0

0
02

Wn
pW
pnWN TOSS (7.24)

0

log 024
4
11

8
9

W
n W−+−+ (7.25)

olduğunda

Bu ifade VEGAS ın daha önceki formülünden daha karışıktır. Zaman aşımsızlığı iddia
eder. Ama r nin bağımlılığı bölüm 3.2.3 de açıklanmıştır. N nin değeri eşitlik (7.20), (7.21) ve
(7.5) nolu eşitliklerle hesaplanabilir.

7.2.3.4 Kararlı Geri Bildirim

 101

 Yukarıdaki analizlerden eşitlik (7.12) ile birlikte tamamen düzeltmek için TO dan akış
mümkündür. Ortalamada, kararlı geribildirim durumuna daha sonraki kayıp bölge oluşmadan
önce ulaşılır. Buda)1/1(0 −+≤ WppAC Veya

8log16103
8

00
2
0 ++−

≤
WWW

pAC (7.26)

dır.
Eşitlik (7.12) veya (7.26) bağımlılıklarının olmadığı zamanki durumlarda VEGAS

ortalamada kesin kayıp bölgesi arasında kararlı geri bildirim durumuna ulaşamaz. Pencere
değişimi bu durumda şekil 7.3 dekine benzer. TP ve LFPS keskin tepe noktalarına sahip olur.
İfadeyi daha basitleştirmekle aşağıdaki eşitlik bu durumlarda VEGASın tahmin edildiği gibi
kullanılır.

TOLFPTPSSP

TOLFPTPSSPstabilnot
SSSS DDnDD

PPnPP
+′+′+′
+′+′+′

=Λ −
2 (7.27)

LFPP′ ve LFPD′ çıkarılan SSP ve TP için analizler bölüm 3.3.1 deki gibi uygundur.
2/0W yerine pencere boyutu 2/W ′ iletimin iki faz arasında olduğunda yer alır. Asıl

yaklaşım bu analizi tutmak için umulan pencere boyutu TP nin sonunda kayıp oluşuğunda
bölüm 3.2.3 ile aynıdır LFP için örnek 0W .

7.2.4 Tam Model

TO (zaman aşımı, time-out) oluştuğunda sonraki TO lar ilkiyle arka araka oluşabilir.
Burada iletilmiş tahmin edilen paket sayısını TO serileri sırasında ve umulan bu tip serilerin
süresi TOP ve TOD terimi için daha doğru yaklaşımlar sağlamak adına formül 15 de
çıkarabiliriz. TO tarafından takip edilen İki paketin çevrimi ile 3 durum belirleyebiliriz. A)
ister paket kayıp olsun ister olasılık 2

0)1(p−=ρ olsun B) sadece ikinci paket kayıp olma
olasılı)1(1 p−=ρ c) her bir paket kayıp olma olasılığı ile p=2ρ (Verilen ilk kayıpla ikinci
kayıp 1 olasılığı ile meydana gelir). Not edin ki olasılıklar toplamı 1 dir. 1 durumunda TO
serilerinin sonunda sinyaller c yeni bir TO ya sebep olur. B durumunda yeni TO ya sebep olur
eğer sadece bir fazladan paket tek ACK nin alıcı tarafından geri gönderilen cevabı olarak
iletildiğinde, aynı zamanda kayıptır. Burada bizim analizimizi basitleştirmek için iddia ederiz
ki bu her zaman olur. Örneğin b durumunda her zaman daha sonraki TO lara sebep olur.
Böylece TO turları acilen takip eder. Olasılık daha sonraki TO lar oluştuğunda 21 ρρ + dir.
Rasgele TO serisinde M ardışık TO ların sayısı olsun. Daha sonra ilk TO verildiğinde

[] 212
0

2
21)1()2()(pppPPPkMP k −−=×+== − (7.28)

Ve umulan ardışık TO ların sayısı EM

[] ∑
∞

= −
===

1
2)1(

1][
k p

kMkPME (7.29)

dir
Pencere boyutu iki olduğunda her TO dan sonra)/(2 MEP seriesTO =− dir. Son TO dan

sonra turdaki iletilen iki paketi hariç tutarız. Bir sonraki SSP (eşitlik (7.17) yi görünüz) ye tur
dahil edildiğinde. Son olarak umulan iletilmiş paketlerin sayısı rasgele TO serileri sırasında

 102

2)1(
)2(2

p
ppP seriesTO −

−=− (7.30)

İlk TO ların süresi OT dır ve her yeni TO için süre ikiye katlanır. Süre 64 to a ulaşılana kadar.
Daha sonraki TO larda süre sabit kalır. TO serilerin süresi aşağıdaki gibidir.

⎩
⎨
⎧

≥−+
>−

=
6,))6(6463(
6,)12(

kk
kT

D O
k

k

Umulan rasgele TO serilerinin süresi

0

6

1

122
2

1

))2)(320642()1(321
)1(

64

][

Tppkp
p

kMPDD

k

kk

k
kseriesTO

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+−−+−

−
=

===

∑

∑

=

−

∞

=
−

 (7.31)

Tarafından verilmiştir. Yukarıdaki eşitlikten parantez içindeki değeri veririz d(p) gibi örneğin

)(pdD seriesTO =− Eşitlik (7.15) TOP ve TOD yı daha uygun bir yaklaşım olan seriesTOP − ve

seriesTOD − yerine tek TO da koyarız. SS2SS periyodunun geriye kalan analiz açıkça daha
önceki bölümde tasvir edildiği gibidir. Böyle 15 denkleminde

OTOSS
loss TpdRN

p
ppW

p
pn

)(
)1(
)2(21)1(

2

20

+
−
−+⎟⎟⎠

⎞
⎜⎜⎝

⎛
+−+

=Λ (7.32)

yi elde ederiz.
n değişkeni eşitlik (7.20) ve (7.21) denkleminden hesaplanabilir. SS2TO eşitlik (7.25) de
verilmiştir, 0W eşitlik (7.5) de verilmiştir. Eşitlik (7.4) ve (7.32) denklemlerinin seti TCP
VEGAS ın toplam Hem kayıpları hem de kayıpsız senaryoyu içeren modelini meydana
çıkarır. Eşitlik (7.12) ve (7.26) durumlarında verilen bağımlılıklar sağlanır.

 103

KAYNAKLAR

[1]. S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based congestion

control for unicast applications. In SIGCOMM 00, Stockholm, Sweden, August
2000.

[2]. M. Vojnovic and J.-Y L. Boudec. On the long-run behavior of equation-based rate
control. In SIGCOMM 02, Pittsburgh, PA, August 2002.

[3]. N. Cardwell, S. Savage, and T. Anderson. Modeling TCP latency. In INFOCOM 00,
Tel Aviv, March 2000.

[4]. V. Misra, W. Gong, and D. Towsley. Stochastic differential equation modeling and
analysis of TCP-windowsize behavior. In Performance, Istanbul, Turkey, October
1999.

[5]. J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling TCP throughput: A simple
model and its empirical validation. In SIGCOMM 98, Vancouver, CA,
September1998.

[6]. M. Mathis, J. Semke, and J. Mahdavi. The macroscopic behavior of the TCP
congestion avoidance algorithm. Computer Communications Review, 27(3), 1997.

[7]. M. Goyal, R. Guerin, and R. Rajan. Predicting TCP throughput from non-
invasive network sampling. In INFOCOM 02, New York, NY, June 2002.

[8]. Ns-2 simulator, http://www.isi.edu/nsnam/ns
[9]. L. S. Brakmo, S. W. O'Malley, and L. L. Peterson. TCP Vegas: New techniques for

congestion detection and avoidance. In SIGCOMM 94, London, UK, Sept. 1994
[10]. S. Low. A duality model of TCP and queue management algorithms. In ITC

Specialist Seminar on IP Traffic Measurement, Modeling and Management 00,
Monterey, CA, September 2000.

[11]. L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion avoidance on a
global internet. IEEE Journal on Selected Areas in Communications, 13(8), 1995.

[12]. U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas revisited. In INFOCOM
00, Tel Aviv, March 2000.

 104

SONUÇ

Bu çalışmada TCP RENO üzerine geliştirilen VEGAS ın sıkışıklık sorununa getirdiği

yaklaşım ele alınmıştır. Farklı protokoller sıkışıklık ölçüleri için farklı ölçüler kullanır.
Örneğin RENO kayıp olasılığını kullanır ve VEGAS gecikmeyi sorgular.

VEGAS ağ kapasitesiyle yerleşik ölçeklenebilme özelliği nedeniyle özellikle yüksek

hızlı ağlarda caziptir. TCP RENO nun sıkışıklık tespiti ve kontrol mekanizmaları parçaların
kaybını bir işaret olarak kullanmaktadır. Bu parça kayıpları şebekede tıkanıklık olduğunu
göstermektedir. Bu yüzden TCP RENO nun kayıplar olmadan önce tıkanıklığın başlangıç
aşamalarını tespit edecek bir mekanizması yoktur. VEGAS yüksek bant genişliği rejiminde
potansiyel sıkışıklık sorunu azaltılabilmektedir. Bunun yanı sıra, RENO’ nun yapmak zorunda
olduğu gibi aşırı derece küçük kayıp olasılığına dayanan kontrol zorunluluğundan
kaynaklanan temel nitelikteki güçlükten kaçınmaktadır. Bu avantajlarına rağmen, gecikme
tabanlı yoğunluk kontrolüyle ilgili çözümlenmesi gereken, özellikle kademeli derleme ile
ilgili sorunlar da mevcuttur. REM temiz tampon ve değeri seçmeye çalışır ve yüksek
yararlanma ve düşük sorguya yöneltir. Küçük sorular ile en az tur zamanı yayılma gecikmesi
için en uygun yaklaşım olabilir.

VEGAS ın RENO algoritmasından farkı ağ kapasitesinin ne kadar olduğunu öğrenmek

için sıkışıklığa teşvik etmesidir. VEGAS kaynağı sıkışıklık saldırısını, gerçekleşen ve
beklediği arasındaki farkı göstererek bekler. VEGAS yol boyunca yönlendiricide daha az
sayıda paket tamponlanmasını sağlamak için kaynağın gönderim boyutunu artırma
stratejisidir.

TCP VEGAS ın sıkışıklık tespit mekanizması aktiftir, yani çıktı oranındaki

değişiklikleri gözlemleyerek tıkanıklıktaki başlangıcı tespit etmeye çalışır. TCP VEGAS bu
çıktı ölçümlerinden tıkanıklık penceresi ayarlama politikasını çıkarır, bu da bağlantı kayıplar
vermeden önce gönderme oranını azaltabilmeyi sağlar.

Duality modelin temel fikri genel sıkışıklık problemlerini çözmek için ağ üzerinde

kaynak ve hatlar tarafından taşınan dağıtılmış algoritmayı sıkışıklık kontrolü olarak
yorumlamasıdır. Duality model VEGAS algoritmasına yeni bir yorum katmıştır. Kaynak
yolundaki gecikmenin değerini sorgulamak için kendi gecikmesini belli bir oranda tutar.
VEGAS bu gecikme oluşumunu minimum tam tur zamanı olarak kabul eder.

TCP VEGAS çeşitli değişik tekniklerin bir birleşimidir. Her bir teknik kendi başına bir
tartışma konusudur. Daha önce yapılan tartışma ve çalışmalar ya yalnız belli bir mekanizma
üzerinde yoğunlaşmış ya da TCP VEGAS ın bütün olarak davranışını değerlendirmeye
çalışmıştır. Ancak asıl soru TCP VEGAS içerisindeki hangi tekniğin performans
kazanımlarından sorumlu olduğudur.

