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HARMONİK VE GAUSSİAN GİRİŞLİ BELLEKLİ NONLİNEAR 
VOLTERRA SİSTEMLERİN ÇIKIŞ ÖZELLİKLERİ 

 
THE OUTPUT PROPERTIES OF VOLTERRA SYSTEMS 

 (NONLINEAR SYSTEMS WİTH MEMORY) DRIVEN HARMONICS 
AND GAUSSIAN INPUTS  
 

R.RICE AND E. BEDROSSIAN 
Özet 
 
İletişim sistemlerinde sıklıkla distorsiyon kaynaklanan bozulmalar meydana gelir. Sistemlerin 
geniş bir kesimi için bu tip bozulmalar Volterra serisi yardımıyla hesaplanabilmektedir. 
 
Okuyucuya, sinüs dalgaları veya Gauss gürültüleri ile iletilen(nakledilen) sistemler için 
Volterra-serisi-tür-analizlerinin uygulanmasında, yardımcı olacak hem eski hem de yeni 
sonuçlar verilmiştir. 
 
Analizlerde n.inci Volterra kernelinin, Gn n-katlı Fourier dönüşümü önemli bir rol oynar. 
Sistem eşitliklerinden Gn hesaplama metotları tanımlanmış ve birçok özel sistem göz önünde 
bulundurulmuştur. Gn bilindiğinde, çıkış hakkındaki ilginin parçaları, Gn in genel formüllerde 
yerine yazılarak Volterra serisinden türetilmesiyle elde edilebilir. Giriş iki veya üç sinüs 
dalgasının toplamı olduğunda ve güç spektrumu ve farklı momentler, giriş Gauss türünde 
olduğunda, bu parçalar çıkış harmonikleri için ifadeler içerir.Volterra serisinin sadece lineer 
ve kuadratik terimlerden oluşan durumlarına özel ilgi verildi. 
 
 
  
 
1. GİRİŞ  
 
Volterra Serileri ilk kez 1942 de Wiener tarafından doğrusal olmayan devre analizi içerisinde 
ortaya çıkartılmıştır. Wiener [1] daha sonra teoriyi genişletti ve FM spectrada kapsanan 
birtakım problemlere uyguladı.Wiener’in çalışmasından buyana konuyla ilgili bir çok rapor ve 
makaleler yazıldı. 
 
Volterra serileri özellikle iletişim sistemlerindeki küçük (fakat zahametli) tahrifatların 
hesaplanmasında ve sonlarda amplifikatörlerin farklı türlerinde meydana gelen tahrifatın 
düzenlenmesinde kullanılmaktadır [2]-[6] . Bir FM sistemindeki filtreler yoluyla oluşan 
tahrifat da yine bir Volterra serisi olarak ifade edilebilmektedir. 
 
Yazının konusu Okuyucuya, sinüs dalgaları veya Gauss gürültüleri ile iletilen(nakledilen) 
sistemler için Volterra-serileri-tür-analizlerinin uygulanmasında, yardımcı olacak hem eski 
hem de yeni sonuçlar vermektir. Bir FM sisteminde filtrelerden meydana gelen tahrifatların 
güç spektrumları için Mircea nın[7] mükemmel serilerini ve bunun, Mircea ve Sinnreich[5] 
tarafından Volterra serileri ile tanımlanan sistemlere genişletilmesini öğrendiğimizde bu 
makaleyi yazmamıza yön veren olaylar başladı.Mircea nın çalışmasından haberimiz yokken 
yayımladığımız [8]-[10] yazılarda, Mircea nın FM serilerinde ikinci ve üçüncü-cins 
modülasyon terimlerini verdik.(Proceedings of the IEEE nin editörü olarak) Mircea ile olan 
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mektuplaşmalarımız sonucunda bazı yeni fikirler ortaya çıktı. Makale bu fikileri 
genişletmektedir. 
 
Yazımızda,bazı konular farklı şekilde konu edilmekle beraber, 1955 de Deutsch[12] tarafında 
yazılan makaleye  ve (biraz da) 1959 da George[13] tarafından yazılan rapora benzemektedir. 
 
Volterra serisi, X(t) girişinin gücünde doğrusal olmayan bir sistemin çıkışını ifade 
eden(taşıyan) “hafızalı güç serileri” olarak tanımlanmaktadır.İletişim problemlerinde çakışan 
sistemlerin bazıları Volterra serileri olarak ifade edilebilmektedir.Tipik bir sistem için seriyi 
aşağıdaki gibi yazabiliriz. 
 

n

1 n n 1 n r
n 1 r 1

1
y(t) du ... du g (u ,...,u ) x(t u )

n!

+∞ +∞∞

= =−∞ −∞

= −∑ ∏∫ ∫                                           ...........(1) 

 
Burada, y(t) çıkış, x(t) giriş ve n 1 ng (u ,...,u ) kernelleri sistemi tanımlar.1 Birinci seviye kernel 

1 1g (u ) , doğrusal bir ağın tepkisine benzer etkidedir. Böylece yüksek seviye kerneller,  lineer 
olmamanın farklı seviyelerinin karakterize edilmesini sağlayan, daha yüksek seviyeden etki 
tepkileri olarak görülebilmektedir. 
 

(1) formülündeki 1
n!

 katsayısı çoğu yazarlar tarafından yazılmamaktadır.Bir çok eşitliğimizi 

basitleştirdiğinden dolayı biz yazdık.Bazı yazarlar kernellerin u.. ların simetrik olmayan 
fonksiyonları olmasına izin vermelerine rağmen, burada ele alınan sonuçlar için simetri 
gereklidir. Eğer bir sistemin tepkisi, (1) formülünün, simetrik olmayan bir nγ  kerneli içeren  
bir serisi olarak elde edilebilirse gn in hanesinde simetrizasyon ile elde edilebilir.Bu işlem , iu  
ler üzerinde indislerin yerlerinin değitirilmesinden ve ng in 1 n!kere nγ  sonucunun toplamı 
olarak alınmasından ibarettir. 
 
n-katlı Fourier dönüşümü 
 

( )
+∞ +∞

−∞ −∞

= − ω + +ω∫ ∫n 1 n 1 n n 1 n 1 n nG f ,...,f du ... du g (u ,...,u ).exp[ j( u ... u )]               ...........(2)  

 
burada i iw 2 f= π  analizde önemli bir rol oynar. G0 sıfırdır çünkü bizim Volterra serileri n 1=  
den başlamaktadır.( n 0=  yerine bir aktif sistemi belirtenn 1=  den başlıyor. Ör. Girişsiz bir 
çıkış). Yine 1 1G (f ),doğrusal bir ağın bilinen bir transfer fonksiyonu olarak kabul edilecektir. 
Böylece n. inci seviye Volterra kerneli, n.inci seviye transfer fonksiyonuna benzer görünür. 

( )n 1 nG f ,...,f  n.inci seviye Volterra transfer fonksiyonu. n 1 ng (u ,...,u ), 1 nu ,...,u  lerin simetrik 

bir fonksiyonu olduğundan ( )n 1 nG f ,...,f  fonksiyonu da  1 nf ,...,f lerin simetrik bir 
fonksiyonudur. III. Bölümde değinildiği üzere birçok durumda nG , ng in ilk hesaplaması 
olmadan elde edilebilir. 
 

                                                
1 n 1 ng (u ,...,u ) in argümanları ve bunun (2)deki Fourier dönüşümü ( )n 1 nG f ,...,f  bazen anlam açık 

olduğunda kısalık açısından atlanacaktır. 
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Kabul edelim ki  nG ,n 1,2,...=  , belli bir sistem için bilinsin.Yine (1) deki sitem için x(t) 
girişi; 1) bir veya iki sinüs dalgası. 2) Gauss gürültüleri. 3) bir sinüs dalgası artı Gauss 
gürültüleri veya 4) rasgele bir nabız silsilesi. den oluşsun. Sonra y(t) için Volterra 
serilerinden türetilen formüllerde nG yerine yazarak, y(t) çıkışı hakkında bazı ifadeler elde 
edebiliriz. II.Bölümde bu formüllerin bazı öncü terimleri listelenmiştir. Bu liste sonraki 
bölümde türetilen formüllerle bir rehber olarak genişletilmiştir. 
 
Tüm formüller sonsuz serilerdir.Çok şükür ki iletişim sistemlerindeki çalışmalarda ikinci veya 
üçüncü mertebenin üzerindeki modülasyon terimlerini ihmal etmek genelde mümkündür. 
 
 

 
 

 
 
 
Pratikte Volterra serisi, diğer tarafta yapılmamış hiçbir şeyi yapmamıza imkan 
tanımaz.Bununla beraber modülasyon problemleri cebirin bir bataklığına götürür.Volterra 
serileri yaklaşımıyla, birçok problem, ilkin nG  hesaplanması sonra da bunların genel 
formülde yerine yazılması yoluyla işlemden geçirilebilmektedir. 
 
Kolaylık açısından yazı iki ana kısma ayrılmıştır: 1) Sonuç ve örneklerin ifadesi 
2)Formüllerin türetilmesi.Bu girişi, başlıca sonuçların öncü  terimlerinden oluşan bir özet 
form takip etmektedir.Bundan sonra birçok sistem türü için ( )n 1 nG f ,...,f  Volterra transfer 
fonksiyonlarının hesaplanması için metotlar verilmiş ve son olarak da formüllerin kullanımını 
tarif etmek için bazı örnekler çözülmüştür.Bunların arasında Şekil1 de verilen genel sistem, 
FM tahrifatları için Mircea serilerindeki öncü terimleri elde etmek için kullanıldı ve Şekil2 
deki doğrusal olmayan sistem son zamanda Narayanan[6] tarafından işlenmiştir. 
 
İkinci bölüm çoğunlukla değişik sonuçların türevlerinden oluşmaktadır.Çıkış ve bunun bazı 
girişler için olan spektrumu hakkında ifadeler içermektedir. Ek olarak daha yüksek seviye 
momentleri,yayılma çıkışının birikimleri için ifadeler elde etmek için, bir Gauss tipi giriş 
durumu için göz önüne alındı.Formüler , birikimler bilindiğinde y(t) nin yoğunluk ihtimali 
hakkında verdikleri bilgiye göre listelenmiştir.Kuadratik formların yayılmasında bilinen 
sonuçların ilgisi,  y(t)nin yoğunluk ihtimali için bir ifade elde etmek için uygulanmıştır. y(t) 
için Volterra serisinde x(t) Gauss tipinde ve terimler ikiden öte olduğunda atlanmıştır. 
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2. FORMÜLLERDEKİ ÖNCÜ TERİMLER 
 
Bu bölümde nG Volterra transfer fonksiyonları bilindiğinde, bazı x(t) girişleri için y(t) çıkışı 
hakkında bilgi veren formüllerin öncü terimleri listelenmektedir.Listelenen öncü terimlerin 
çoğunluğu 3 1 2 3G (f ,f ,f )den öteye gitmez.Bu arada nG simetriktir. 
 
Sonraki bölümlerde verilen formüllerle liste rehbere genişletilmiştir.Öncü terimler genelde 
yeterlidir. Gerçekten de okuyucu, tüm formüllerden pratikte fazla bir yardım 
beklememelidir.Genelde bu bölümde listelenenlerden öte sadece iki veya üç terim, hız artırma 
güçlüğünden dolayı günümüz bilgisayarlarıyla  kullanılabilmiştir. 
 
 

A. Sinüsodal Girişler. 
 
x(t) Pcospt=  olduğunda ,  (137) aşağıdaki tüm seri ifadeyi verir verdiğinde, 

       

   
nn

k.n k p
n 1 k 0

p exp[ j(2k n)pt]
y(t) G (f )

2 k!(n k)!

∞

−
= =

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
∑∑                                            ...........(3)  

 
Burada pp 2 f= π  ve k.n k pG (f )−  de ( )n 1 nG f ,...,f  yi ifade etmektedir. if  nin ilk k siyle pf ye 
eşittir ve kalan  n k−  da pf− ye eşittir.Gelecek bölümde hafızasız doğrusal olmamanın örneği 

için (23) gösterir ki ( )n 1 nG f ,...,f  bir na sabiti haline çevrilir ve (3) serisi p  ve na göre yakınsak 
veya ıraksak olabilir. (3) deki öncü terimler, 
 

y(t) =
2

2 p p
p[ G (f , f ) ...]
4

− +
3

jpt
1 p 3 p p p

p pe [ G (f ) G (f ,f , f ) ...]
2 16

+ + − +
2

j2pt
2 p p

pe [ G (f ,f ) ...]
8

+ +  

3
j3pt

3 p p p
pe [ G (f ,f ,f ) ...]
48

+ +
3

jpt
1 p 3 p p p

p pe [ G ( f ) G ( f , f ,f ) ...]
2 16

−+ − + − − +
2

j2pt
2 p p

pe [ G ( f , f ) ...]
8

−+ − − +
3

j3pt
3 p p p

pe [ G ( f , f , f ) ...] ...
48

−+ − − − + +                              ..........(4)  

 
x(t) Pcos(pt )= + ϕ  olduğunda (3) ve (4) ifadelerinde, üslerdept yerine (pt )+ ϕ  yazılması 
y(t) yi verir. 
 
p  ve q  orantılı değilken,  x Pcospt Qcosqt= +  olduğunda y(t)nin, exp[j(Np Mq)t]+  
bileşeni için tüm seriler (139) da verilmiştir.dc deki öncü terimler ve y(t) nin bazı düşük 
seviyeli bileşenleri (5) dedir. 
 

2 2

2 p p 2 q q
p QG (f , f ) G (f , f )
4 4

⎡ ⎤
− + −⎢ ⎥

⎣ ⎦
 

 
3 2

jpt
1 p 3 p p p 3 p q q

p p pQe [ G (f ) G (f ,f , f ) G (f ,f , f )]
2 16 8

⎡ ⎤
+ − + −⎢ ⎥

⎣ ⎦
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2

jpt
2 p p

pe G (f ,f )
8

 

 
j(p q)t

2 p q
PQe G (f ,f )
4

+  

 
2

j(2p q)t
3 p p q

P Qe G (f ,f ,f )
16

+                                                  (5) 

 
exp[j(p q)t]+  bileşeninde q  ve qf nun işaretlerinin değiştirilmesiyle exp[j(p q)t]−  ifadesi 
elde edilir vesaire. p  ve q  orantılı iken bileşenlerin bazıları çakışır(birleşir). Örneğin, eğer 
q 2p=  ise ve x Pcospt Qcos2pt= + ,  2p q−  ve 2p q− +  terimleri , yeni dc bileşenlerinde 
öncü terimler vermek için (5)deki dc terimleriyle bir araya getirilirse, 
 

2 2 2 2

2 p p 2 p p 3 p p p 3 p p p
p Q P Q P QG (f , f ) G (2f , 2f ) G (f ,f , 2f ) G ( f , f ,2f )
4 4 16 16

⎡ ⎤
− + − + − + − −⎢ ⎥

⎣ ⎦
      ..........(6)  

 
Benzer şekilde (5) de exp(jpt)bileşeninin toplamı olarak verilen yeniexp(jpt)deki öncü 
terimler q pf 2f= ile, q 2p=  olduğunda ( p q)− + teriminin katkısı olan. 

                                                       jpt
2 p p

PQe G ( f ,2f )
4

−                                               ..........(7) 

 
Bu ( p q)− +  terimi, (p q)+  teriminden p  ve pf  nin işaretlerinin değiştirilmesiyle elde 
edilmekte ve sonra q 2p=  ile q pf 2f=  yerleştirilir. 
 
x(t) Pcospt Qcosqt Rcosrt= + +  olduğunda y(t)nin [ ]exp j(Np Mq Lr)t+ +  bileşeni için 

tüm seriler (140) ile verilmiştir.Örneğin y(t)nin [ ]exp j(p q r)t+ + bileşeni için  öncü terimi, 
                                         

 j(p q r )t
3 p q r

PQRe G (f ,f ,f )
8

+ +  dir.                                         .................(8) 

 
r ve rf nin işaret değişimi, [ ]exp j(p q r)t+ −  bileşenindeki öncü terimi verir vesaire. 
 
x(t) bazı sinüsodal bileşenlerin sonlu toplamına eşit olduğunda X(f )  Fourier dönüşümüne 
sahiptir.i.e. 

                                         
+∞

ω

−∞

= ∫ j tx(t) e X(f )df           w 2 f= π                           ...................(9)  

 
sonra (1)de yerine yazılması, y(t) ve bunun Fourier dönüşümü Y(f )  aşağıdaki gibi 
verildiğini gösterir. 
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1 n

n
j(w ,...,w )t

1 n n 1 n r
i 1 r 1

1y(t) df ... df G (f ,...,f ).e X(f )
n!

+∞ +∞∞

= =−∞ −∞

=∑ ∏∫ ∫  

1 1 2 1 1 1 1
1 1Y(f ) G (f )X(f ) df G (f ,f f )X(f )X(f f )
1! 2!

+∞

−∞

= + − −∫     

                               1 2 3 1 2 1 2 1 2 1 2
1 df df G (f ,f ,f f f )X(f )X(f )X(f f f ) ...
3!

+∞ +∞

−∞ −∞

+ − − − − +∫ ∫  .............(10) 

 
 
B. Gauss Tipi Gürültü Giriş.  
 
y(t)< > için (147)deki tüm serilerdeki öncü terimler aşağıdadır. 

1 x 1 2 1 1 1 2 x 1 x 2 4 1 1 2 22

1 1
y(t) df W (f )G (f , f ) df df W (f )W (f )G (f , f ,f , f ) ...

1!2 2!2

+∞ +∞ +∞

−∞ −∞ −∞

< >= − + − − +∫ ∫ ∫  ..(11)  

 
2y (t)< >  için (177)deki tüm serilerdeki öncü terimler aşağıdadır. 

 
2 2

1 x 1 1 1 1 1y (t) y(t) df W (f )G (f )G ( f )
+∞

−∞

< >=< > + −∫                                      

1 2 x 1 x 2 1 1 3 1 2 2 2 1 2 2 1 2
1

df df W (f )W (f )[G (f )G ( f ,f , f ) G (f ,f )G ( f , f ) ...
2

+∞ +∞

−∞ −∞

+ − − + − − +∫ ∫ ......(12)  

 
Üçlü integralde kapsanan (12) de gösterilmeyen üçüncü seviye terim  ikinci cumulant 

2 2
2K y (t) y(t)=< > − < >  için (180)de verilmiştir. 2y (t)< >  nın tam serileri (152),(156)-

(158) de verilen y(t )z(t)< + τ >nin tam serisinin özel bir halidir.Burada z(t) , y(t)için (1) 
serisinden elde edilen bir Volterra serisi ile n 1 ng (u ,...,u )yerine yazılmasıyla farklı bir kernel 

n 1 ng (u ,...,u )′ olarak tanımlanmıştır. y(t) ve z(t)  her ikisi de aynı Gauss tipi x(t)girişine 
sahiptir. (157)de çıkan n 1 nG (u ,...,u )′ , n 1 ng (u ,...,u )′ nin Fourier dönüşümüdür. y(t) nin yoğunluk 
olasılığı için birinci cumulant  
1K y(t)=< >, ikincisi 2 2

2K y (t) y(t)=< > − < >  ve (180)den 3K ve 4K  deki öncü terimler 
aşağıdadır. 
 

3 1 2 x 1 x 2 1 1 1 2 2 1 23 df df W (f )W (f )G (f )G (f )G ( f , f ) ...
+∞ +∞

−∞ −∞

Κ = − − +∫ ∫                                  

4 1 2 3 x 1 x 2 x 3 1 1 1 24 df df df W (f )W (f )W (f )G (f )G (f )
+∞ +∞ +∞

−∞ −∞ −∞

Κ = ∫ ∫ ∫  

                             [ ]1 3 3 1 2 3 2 1 3 2 2 3. G (f )G ( f , f , f ) 3G ( f ,f )G ( f , f ) ...− − − + − − − +            ..............(13)  
 
(13) de  gösterilen ifadelerden sonra gelecek terimler (180) de verilmiştir, fakat 3Κ ve 4Κ için 
serilerin genel formları bilinmemektedir. y(t) nin yoğunluk olasılığı hakkında bilgi elde 
etmek için  ilk dört Κ (cumulants) nın kullanımı II.Bölümde tartışılmış ve (84) bir örnek 
verilmiştir. 
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 y(t)nin çift taraflı güç spektrumu yW (f )için Mircea-Sinnreich [5] deki öncü terimleri 
aşağıdadır. 
 

2

2
y x 1 1 x 1 3 1 1

1
W (f ) y(t) (f ) W (f ) G (f ) df W (f )G (f,f , f ) ...

2

+∞

−∞

=< > δ + + − +∫  

             2
1 x 1 x 1 2 1 1

1
df W (f )W (f f ) G (f ,f f ) ...

2!

+∞

−∞

+ − − +∫  

             2
1 2 x 1 x 2 x 1 2 3 1 2 1 2

1
df df W (f )W (f )W (f f f ) G (f ,f ,f f f ) ... ...

3!

+∞ +∞

−∞ −∞

+ − − − − + +∫ ∫         ......(14)  

 
Burada y(t)< >,(11) de verilen y(t)nin dc bileşeni ve (f )δ  birim etki(tesir) 
fonksiyonudur.(14) ün sağ tarafı tüm ikinci seviye terimleri gösterir fakat bazıları üçüncü-
seviye terimlerdir. Eğer (14)ün iki katlı integrali 5G i ve tek katlı integrali 4G ü içerir de kesin 
değer uygun şekilde ikinci ve üçüncü satırlara eklenirse, tüm üçüncü seviye terimler ve bazı 
dördüncü ve beşinci seviler gösterilebilir. 
 
 
 
C. Sinüs Dalgası artı Gürültü Giriş. 
 
Aşağıda, giriş Nx(t) Pcospt I (t)= +  dir 
 

         
2

2 p p 1 1 1 2 1 1
P 1y(t) G (f , f ) df W (f )G (f , f ) ...
4 2

+∞

−∞

⎡ ⎤
= − + − +⎢ ⎥
⎣ ⎦

∫  

 

   
3

jpt
1 p 3 p p p 1 1 1 3 1 1 p

p p pe G (f ) G (f ,f , f ) df W (f )G (f , f ,f ) ...
2 16 4

+∞

−∞

⎡ ⎤
+ + − + − +⎢ ⎥

⎣ ⎦
∫  

 

 
2 2

j2pt
2 p p 1 1 1 4 1 1 p p

p pe G (f , f ) df W (f )G (f , f ,f ,f ) ...
8 16

+∞

−∞

⎡ ⎤
+ − + − +⎢ ⎥

⎣ ⎦
∫  

 

 { }
3

j3pt jkpt
3 p p p

pe G (f ,f ,f ) ... ... e [...] .
48
⎡ ⎤

+ + + +⎢ ⎥
⎣ ⎦

       k 1,2,...=  ……….........(15)  

 

burada p
pf
2

=
π

dir. NI (t) sıfıra özdeş olduğunda IW (f )sıfırdır ve x Pcospt= olduğunda (15) 

y(t)için (4) e sadeleşir.P sıfır, x(t) Gauss tipi olduğunda , (15) , y(t)< >için (11) e sadeleşir. 
 
y(t)nin güç spektrumu için tüm ifade (175) de verilmiştir.Burada gösterilen öncü terimler, 
 

yW (f ) ={ y(t)< >deki sinüs dalgası ve dc den pikler ,} 
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2

2
I 1 3 p p 1 1 1 3 1 1

P 1W(f ) G (f ) G (f , f ,f ) df W (f )G (f , f ,f ) ...
4 2

+∞

−∞

+ + − + − +∫  

 
22 2

I p 2 p p I p 3 p p p
p pW(f f ) G (f ,f f ) ... W(f 2f ) G (f ,f ,f 2f ) ... ...
2 8

+ − − + + − − + +  

  
+ { 2

I pW(f kf ) ...− de pf için pf− li terimler ,k=1,2,...} 
 

 2
1 I 1 I 1 2 1 1

1 df W (f )W (f f ) G (f ,f f ) ...
2!

+∞

−∞

+ − − +∫  

 
2

1 I 1 I 1 p 3 1 p 1 p
1 pdf W(f )W(f f f ) G (f ,f ,f f f ) ...
2! 2

+∞

−∞

+ − − − − +∫  

 
2

1 I 1 I 1 p 3 1 p 1 p
1 pdf W(f )W(f f f ) G (f , f ,f f f ) ...
2! 2

+∞

−∞

+ − + − − − +∫  

 
2

1 2 I 1 I 2 I 1 2 3 1 2 1 2
1 df df W (f )W (f )W (f f f ) G (f ,f ,f f f ) ... ...
3!

+∞ +∞

−∞ −∞

+ − − − − + +∫ ∫  . (16) 

   
 

 
y(t)< > için  dc ve y(t)< >deki sinüs dalgalarından,  yW (f )deki pikler, (15)den 

hesaplanabilmektedir. k pA (f ,P)exp( jkpt),k 1,2,...= bileşeni yoluyla oluşan pik, 
2

p k p(f kf ) A (f ,P)δ −  dir. x(t) Gauss tipi olduğunda, P sıfır olduğunda yW (f ) için (16), (14) e 

sadeleşir. NI (t) sıfıra özdeş olduğunda yW (f ) , y(t)nin sadece sinüsodal bileşenlerinden oluşan 
piklerden meydana gelir. 
 
 
D. Rasgele Nabız Silsile Girişi. 
 
Son olarak henüz tam manasıyla çalışılmamış olan bazı  ilgilerin(konu) sonuçlarını veriyoruz. 
Giriş, nabız silsilesidir. 
 

n
n

x(t) a (t nT)
+∞

=−∞

= δ −∑                                                                              ................(17)  

na ler yoğunluk olasılığı na 0=  olan bağımsız rasgele  değişkenler düzenlendiğinde 
(distrubute) ve y(t)için Volterra serileri kuadratik terimle kalır, y(t)nin (ensemble) averajı (T 
periyodunun)     periyodik kısmından oluşur.ve 
 

 
2

j2 mtT
1 2 1 1

m

a my(t) e df G f , f
2T T

∞∞
π

=−∞ −∞

⎛ ⎞= −⎜ ⎟⎝ ⎠
∑ ∫                                   .......................(18)  
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y(t)nin güç spektrumu aşağıdadır. 

yW (f ) ={ y(t)< >deki den pikler } 
2

2
1

a
G (f)

2T
+ ( )

24 2 2

1 2 1 1

a 3 a
df G f ,f f

4T

∞

−∞

⎡ ⎤−⎢ ⎥⎣ ⎦+ −∫  

 

( )
22

1 2 1 1 1 12 2
m

a m mdf G f ,f f .G f ,f f
2T T T∗

∞∞

=−∞ −∞

⎛ ⎞+ − − − +⎜ ⎟⎝ ⎠
∑ ∫                              .........................(19) 

 
Burada ma , na nin m.inci momentidir. 2 1 2G (f ,f )bunun gibi integralleri olduğu farz 
edilmiştir ve toplam yakınsaktır. (∗ ) yıldız kompleks karşılığını göstermektedir.(18) ve (19) 
eşitlikleri y(t) için (10)daki ilk iki terim kullanılarak sağlatılabilir ve sonuçlar aşağıdadır.  
 

  
∞ ∞

− ω − −

=−∞ =−∞

= δ −∑ ∑j nT 1 1

n n
e T (f nT ),           ω = π2 f  

   
∞

− ∗ − ω

−∞

= τ + τ∫ ∫
T

1 j t
y

0

W (f) d dtT y(t )y (t) e . 

 
Eğer nabız biçimi (t)δ  yerine F(t)olursa giriş,(17) yerine aşağıdaki gibi olur. 

  n
n

x(t) a F(t nT)
∞

=−∞

= −∑                                                       ..........................(20) 

 
y(t)< > ve yW (f )  tekabülü 1 1 1S(f )G (f ) , 1 2 2 1 2S(f )S(f )G (f ,f )  ile (18) ve (19) da 1 1G (f ) , 

2 1 2G (f ,f )yerine yazılmak suretiyle elde edilebilir.Burada S(f) , 

  
∞

− ω

−∞

= ∫ j tS(f ) e F(t)dt                                                    ................................(21)  

 
III. VOLTERRA TRANSFER FONKSİYONLARININ HESAPLANMASI 

 
[13],[15],[16] sistemlerinde ölçümler yapılarak n 1 ng (u ,...,u ) kernelleri ve bunun Fourier 
dönüşümleri, Volterra transfer fonksiyonları n 1 nG (f ,...,f ) üzerinde ciddi bir çalışma yapıldı. 
Burada biz prensipte sistem eşitlikleri bilindiğinde ve sistem bir Volterra serisi olarak 
tanımlanabildiği(açılabildiği) (her zaman bu durum olmaz) zaman Volterra transfer 
fonksiyonlarının hesaplanmasıyla ilgilenmekteyiz. 
 
Bu hesaplamaların en basitlerinden biri hafızasız durumla verilmektedir.   

   [ ]nn
n 1

1
y(t) a x(t)

n!

∞

=

=∑                                             .........................(22)  

 
n 1 ng (u ,...,u ),  n 1 na (u )... (u )δ δ  ifadesine eşit olduğunda  Volterra serisi sadeleşir.Burada (u)δ   

birim etki fonksiyonudur. na bir sabittir ve Volterra transfer fonksiyonunun tanımından(2), 
 
   n 1 n nG (f ,...,f ) a .=                                    .......................................(23)  
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Bu durum daha komplike sonuçların kontrolü için kullanışlıdır. 
 
Bu bölüm üç kısma ayrılmıştır.Birinci bölümde n in genel değerleri için tutan  ifadelerle 
uğraşmakta kullanışlı olan toplam notasyonlar tanımlanmaktadır.İkinci ve üçüncü bölümlerde 
ise “harmonik giriş” ve “direkt açılım” olarak adlandırılan nG in hesaplanmasının iki 
metoduyla ilgilenilmiştir. 
 
Harmonik giriş metodu, n in ilk birkaç değeri için n 1 nG (f ,...,f )in hesaplanmasında 
kullanışlıdır ve bu bölümde örnekler için listelenen 1 1G (f ), 2 1 2G (f ,f )  ve 3 1 2 3G (f ,f ,f )  için 
ifadeler elde etmek için kullanılabilmektedir.n keyfi olmak üzere  n 1 nG (f ,...,f )için listelenen 
ifadelerin türevleri V-A ve V-B bölümlerinde kabaca verilmiş ve direkt açılım metodunun 
kullanımı yapılmıştır. 
 
A. Toplam Sembolü 
 
n in  genel değerleri için nG  ile ilgili kullanılan toplam notasyonları tanımlamak için fomül 
örneği diye V-A bölümünde türetileni aldık. 

 
/

1 1 2 1 1 2 l

(1)
n 1 n N v 1 v v v 1 v v v n

(v;l,n)
G (f ,...,f ) l! G (f ,...,f )G (f ,...,f )...G (f ,...,f )+ + µ= ∑∑     ..............(24)  

[ ]ly(t)  için Volterra serisinde n.inci kernelin n mertebeli Fourier dönüşümü için, l bir pozitif 

tam sayı ve 1 l n≤ ≤ . l n≥  için (1)
n 1 nG (f ,...,f )sıfırdır ve (n)

n 1 nG (f ,...,f )  ifadesi eşittir 

1 1 1 2 1 nn!G (f ).G (f )...G (f ). 
 
(24) de 1 2 l 1 lv v ... v 1 n v 1−µ = + + + + = − +  ve ∑ in sol alt tarafındaki (v;l,n),aşağıdaki 
gibi iv  tamsayılar kümeleri üzerindeki kısaltmaları gösterir. 
 
 1 2 lv v ... v n+ + + =   ,  1 2 l1 v v ... v≤ ≤ ≤ ≤   .                             ..........................(25) 
 
Başka bir ifadeyle, kısaltma l kısmı olan n in bu kısımlarından alınmıştır.(24) deki /

N∑ ikinci 
toplam,f lerin sıralaması değiştirmek suretiyle elde edilebilen , N üzerinde özdeş olmayan 
yapılara genişletilir. n 1 nG (f ,...,f )simetriktir ve “özdeşlik” kavramı 2 1 2G (f ,f )  ile 2 2 1G (f ,f )  ve 

1 2 1 1G (f )G (f )  ile 1 1 1 2G (f )G (f )   özdeştir anlamında kullanılmıştır. /
N∑ deki  terimler, 

 
  1 2 l 1 2 kN n!/ v !v !...v !r !.r !...r !=                                       ..............................(26)  
 
Burada 1r , 1 2 lv v ... v≤ ≤ ≤  düzeninde birinci uzantıdaki eşit v lerin sayısıdır. 2r , ikinci 
uzantıdaki sayıdır. vs. v ler eşit olmadığında r ler gözükmez. 
 
Bazen ileride verilen Tablo I deki  gibi toplamdaki terimleri açık yazımında yardımcı olacak 
kısımların bir tablosu. 
 
n 2=  ve l 2=  olduğunda 1 2v v 1= = , 1r 2=  , N 2!/(1!1!2!)=  ve (24), aşağıdaki gibi olur. 
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  (2)
2 1 2 1 1 1 2

1 G (f ,f ) G (f )G (f )
2!

=                                                  .......................(27) 

 
n 3=  ve l 2=  olduğunda 1v 1= , 2v 2= , N 3=  ve 
 

  /(2)
3 1 2 3 3 1 1 2 2 3

1 G (f ,f ,f ) G (f )G (f ,f ) (1)(23) (2)(13) (3)(12)
2!

= = + +∑       ......(28)  

 
n 4=  ve l 2=  olduğunda n nin iki tane 2-parça (l-parça) kısmı vardır.Bunlar ayrı ayrı 
1 3 4+ =  ve 2 2 4+ = , lv 1= ,  2v 3=  , N 4=  ve 1v 2= , 2v 2= , N 3= dir.Buradan 
 

  (2)
4 1 2 3 4

1G (f ,f ,f ,f ) (1)(234) (2)(134) (3)(124) (4)(123)
2

= + + +   

                               (12)(34) (13)(24) (14)(23)+ + + .     .....................(29)
  
İfadelerdeki (2)

2G / 2!, (2)
3G / 2!, (2)

4G / 2! içinG lerin çarpanlarının numaraları  ((27)-(29) da 
sayılarak) sırasıyla 1, 3, 7 dir.Bunlarn 2,3,4=  için ikinci tür S(n,2) in Stirling numaralarıdır. 
Genelde, (l)

n 1 2 nG (f ,f ,...,f ) / l!  için  (24) toplamındaki çarpanların numarası S(n,l)dir. Bu, 
hafızasız durumda (22) teklik olması için  tüm na  ler alınarak gösterilebilir ve x l(e 1)−  nin 
açılımsinde nx /n!  nin katsayısı l!S(n,l)  kullanılarak gösterilebilir. 
 

B. Harmonik Giriş Metodu 
 
Bu metot, (1) devam ettirildiğinde, bir harmonik giriş yine bir harmonik çıkışla sonuçlanmalı 
gerçeğine dayanır.Böylece x(t)aşağıdaki toplam olduğunda nG  (31) ile verilmektedir. 
  = ω + ω + + ω1 2 nx(t) exp(j t) exp(j t) ... exp(j t)                  ........................(30) 
Burada ω = πi i2 f  ,  i 1,2,...,n=  ve iw ler orantısızdır. 

n 1 2 nG (f ,f ,...,f ) ={ [ ]ω + +ω1 nexp j( ... )t nin katsayısı . y(t)nin açılımsindeki terim}    .... (31) 
 
Bu sonuç (1) den takip eder. 1 1G (f ), 2 1 2G (f ,f ) ,...ifadelerini başarıyla hesaplamamıza imkan 
tanır.Böylece sistem eşitliklerinde  1exp(jw t) ile x(t) yi yerine yazdığımızda 

   
∞

=

= ω∑ k 1
k 1

y(t) c exp( j t)           ..........................(32) 

1 1 1c G (f )= .Benzer şekilde 11 2 1 2c G (f ,f )= . Burada, 
   = ω + ω1 2x(t) exp(j t) exp(j t)  

   [ ]
∞ ∞

= =

= ω + ω∑∑ kl 1 2
k 1 l 0

y(t) c exp j(k l )t                           ......................(33)  

   00c 0=  ,  10 1 1c G (f )=  , 01 1 2c G (f )=  
ve 3 1 2 3G (f ,f ,f ) , 111 3 1 2 3c G (f ,f ,f )=  dir, üçlü toplam, 
   000c 0=                     110 2 1 2c G (f ,f )=  
   100 1 1c G (f )=              010 1 2c G (f )= ,......                         .................(34)  
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Bu metodun kullanımını izah etmek için aşağıdaki eşitlikle tanımlanan bir sistemi ele alalım. 
 
    [ ]2y(t) x(t) x (t) x (t)′ ′′= + ε                                   ................(35)  
 
Bu  eşitlik, filtreli FM için yarı-statik yaklaşımın bazı formlarında ortaya çıkar. Burada ε  bir 
 sabit ve t ye bağlı değişimi gösterir. x(t) , 1exp(jw t) eşitliği alınırsa 1 1G (f ) 1= . 
x(t), 1 2exp(jw t) exp(jw t)+  eşitliği alınırsa 2 1 2G (f ,f ) 0= . (35)de x(t) ile üç üsselin 
katsayıları dışarı alınmış 1 2 3exp[j(w w w )t]+ +  toplamının eşitliği alınırsa 3G ü verir. 
Bundan dolayı, 
   1 1G (f ) 1=   2 1 2G (f ,f ) 0=  
   ( )= εωω ω ω +ω +ω3 1 2 3 1 2 3 1 2 3G (f ,f ,f ) 2                       .................(36)  
 
ve n 3>  için nG 0= . (35) ile ilişkili volterra serisinde 1 1 1g (u ) (u )= δ  ve 3g ,etki 
fonksiyonlarının türevlerinin yapılarının toplamıdır. 
 
Metodun daha geniş bir uygulaması,aşağıdaki diferansiyel eşitlikle belirtilen sistem göz önüne 
alınarak izah edilebilmektedir. 

   l
l

l 2

F(d / dt)y a y x(t)
∞

=

+ =∑                            .....................(37) 

 
Burada x(t) yapıldığında y(t) sıfıra özdeştir.Buradan sadece bir tek çözüm çıkar ve  bu 
sistem kararlıdır. F(d/ dt) , d/ dt  de polinom tipindedir ve F(d/ dt)  deki  katsayılar ve la  
katsayıları, t,x ve y nin bağımsız katsayılarıdır.İlk üç nG  (34) yoluyla (30)dan türetilmiş ve 
Bölüm V-B de türetilen  tekrarlı ilişki aşağıdadır. 
   

∞

=

= ω
= − ω + ω

+
= −

ω + ω + ω

= −
ω + + ω

∑

∑

/

1 1 1

2 1 2 2 1 1 1 2 1 2

2 3 1 1 2 2 3 3 1 1 1 2 1 3
3 1 2 3

1 2 3

(l)
l n 1 n

l 2
n 1 n

1 n

G (f ) 1 F( j )
G (f ,f ) 2a G (f )G (f ) F( j j )

2a G (f )G (f ,f ) 6a G (f )G (f )G (f )
G (f ,f ,f )

F( j j j )

aG (f ,...,f )
G (f ,...,f )

F( j ... j )

         ........(38) 

 
Son eşitlik bir tekrardır çünkü (l)

nG , (24) ile verilmiştir ve (2 l n≤ ≤  için ) (24)ün sağ tarafı (l 
ye bağlı olarak) 1 1G (f ), 2 1 2G (f ,f ) ,..., n 1 1 n 1G (f ,...,f )− −  lerin bir kısmının veya hepsinin bir 
kombinasyonudur. 
 
Bu sonuçların kullanımının bir örneği olarak,doğrusal olmayan zayıf bir dirençle, seride bağlı 
bir birim indüktans için uygulanan voltaj giriş x(t) olsun. y(t)  çıkışı devre üzerindeki akımı 
ve aşağıdaki Riccati eşitliğinin çözümüdür. 

   2dy
xy y x(t)

dt
′
+ + ε =                    .............................(39)  
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x(t) girdiğinde  eşitlik sıfıra yönelir.Böyle bir çözümün varlığı ve kararlılığı, fiziksel temeller 
üzerinde beklemek, devrenin operasyonu süresince hemen hiç negatif olmayan yα + ε  direnci 
gibi α  ve ε  sağlamaktadır. ε  yi çok küçük kabul ediyoruz böylece ε  ile karşılaştırdığımızda 
yε  her zaman daha küçüktür. 

 
(37) nin (39) da uygulanmasında, 2(d/ dt)  ,a+α = ε  olarak F(d/ dt)  alıyoruz ve i iw 2 f= π  
ile (38) den elde ediyoruz. 
    −= α + ω 1

1 1 1G (f ) ( j )  

   [ ]−− ε α + ω +ω
=

α + ω α + ω

1
1 2

2 1 2
1 2

( 2 ) j( )
G (f ,f )

( j )( j )
 

  [ ]−− ε α + ω +ω +ω
=

α + ω α + ω α + ω α + ω + ω∑ /

12
1 2 3

3 1 2 3 3
1 2 3 2 3

( 2 ) j( ) 1G (f ,f ,f ) .
( j )( j )( j ) j j

 

  [ ]−= −ε α+ ω + +ω 1 (2)
n 1 2 n 1 n n 1 nG (f ,f ,...,f ) j( ... ) G (f ,...,f )    .........................(40)  

 
Burada (2)

nG  (24) de verilmiştir. 3G  de  
 

 = + +
α + ω + ω α + ω + ω α + ω + ω α + ω + ω∑ /

3
2 3 2 3 1 3 1 2

1 1 1 1
j j j j j j j j

 .    ............(41)  

 
(37) deki doğrusal olmayan diferansiyel eşitlik sistemine biraz benzeyen, şekil-3 te gösterilen 
doğrusal olmayan aygıt üzerinden geçen y(t)voltajı için nG ile ilgili, harmonik giriş 
metodunun başka bir uygulamasıdır. x(t) voltajı, aşağıda (42) ile tanımlanan doğrusal 
olmayan aygıtın kombinasyon serisine ve H(f)  doğrusal girişine uygulanmıştır. 

    l
l

t 1
I(t) a [y(t)]

∞

=

=∑                  ....................(42) 

Deutsch un[12],[17] çalışmalarında izah ettiği gibi y(t)  için serinin bir bilgisi, bazı doğrusal 
olmayan problemlerin çözümü için anahtardır. y(t)  için Volterra transfer fonksiyonları 
aşağıdadır. 
   [ ]1 1 1 1 1G (f ) H(f ) / a H(f )= +  

          [ ]2 1 2 2 1 1 1 2 1 1 2G (f ,f ) 2a G (f )G (f ) / a H(f f )= − + +  
              M        

      

n
(l)

l n 1 n
l 2

n 1 n
1 1 n

aG (f ,...,f )
G (f ,...,f )

a H(f ... f )
== −
+ + +

∑
                                     ....................(43) 

 
Burada son eşitlik Bölüm V-B den türetilmiştir. n 1>  için bu eşitliğin (38)den tek farkı 

1 nF(jw ... jw )+ +  yerine paydasında 1 1 na H(f ... f )+ + + bulunmasıdır.onlar aslında Deutsch 
[12],[17]e uygun olan n 1 2 nG (f ,f ,...,f ) için tekrarlı ilişkilerin kümesini veriyorlar. Bizim 

n 1 2 nG (f ,f ,...,f ) , Dutsch un n 1 nQ (w ,...,w ) fonksiyonlarının, n!  kere simetrize edilmiş 
versiyonudur.( i iw 2 f= π ). Şekil-3 teki devre için 1K(w )çok evreli cereyanı(katsayısı) Deutsch 
nin 1 1Q (w ) inde teklikle görünür.  
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Bu uygulamanın bir örneği olarak,seride 2

2I(t)=a [y(t)]  ikinci derece cihazla doğrusal bir L 
indüktansı göz ününe alıyoruz. Devre eşitliği aşağıdadır(44). 

    2
2

d
y y x(t),       La .

dy
β + = β =               ...........................(44)  

Bu, seride seride doğrusal olmayan  dirençle  bir indüktans için (39) daki Riccati eşitliğinden 
biraz farklıdır.İndüktans için giriş(kabul) fonksiyonu H(f) 1jwL=  dir ve  sadece sıfır olmayan 

1a  katsayısı 2a dir.(43) te yerine koymalar,aşağıdaki argümanların atlanması üzerinedir. 
    1G 1=  
    2 2 1 2 1 2G 2a j(w w )L 2j (w w )= − + = − β +  
    2 2

3 1 2 3G 2( 2j ) (w +w +w )= − β                             ..................(45) 
 
Burada ifade, 3G için tekrarlı ilişkiden ve (2)

3G  için de (28) den elde edilmektedir. 
 
    (2)

n 1 n n 1 nG j (w +...+w )G (f ,...,f )= − β  
 

4G  ün 1 4w ,...,w  de üçüncü derece simetrik bir çok terimli (polinom) olmasına rağmen (2)
4G  

için (29) un kullanımı gösteriyor ki 4G  sanıldığı kadar kolay olmayabilir. 
 
 
 
C. Direkt Açılım Metodu. 
 
Sistemi deneme”probing” için başka bir alternatif, harmonik giriş metodunda olduğu gibi, bir 
Volterra serisi açılımının (1)deki haline  getirene kadar sistem eşitliklerini tanımlamadır. (2) k 
Volterra kernellerinin  n.inci Fourier dönüşümleri alınarak, Volterra transfer fonksiyonları 
bulunabilmektedir.Bu, hafızasız durumda(22) kullanılan alışılmış teknikti.Direkt açılım 
metodunun başlıca değeri, Bölüm V-B deki gibi, n in genel değerleri için alınan ifadelerin 
türetilmesindedir.n küçük olduğunda harmonik giriş metodunun kullanımı daha basit 
görünmektedir. 
 
Direkt genişleme metodu ile analiz edilebilen doğrusal olmayan bir sistem örneği Şekil-1 de 
gösterilen modülatör-filtre-demodülatör sistemidir. 
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Sistem çıkışı (46) ile verilen, 

    [ ]y(t) F g(u)h x(t u) du .
+∞

−∞

⎧ ⎫⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭
∫                          .................(46)    

 
Modülatör ve demodülatör fonksiyonları güç serilerine açılabilirler. 
 

     v l
v l 0

v 0 l 1

h(x) h x / v!                 F(z) F(z z ) / l!
∞ ∞

= =

= = −∑ ∑  

 

     0 0 0z h g(u)du                   F(z ) 0
+∞

−∞

= =∫                           ......................(47)  

 
ve filtrenin g(t)  etki(tesir) tepki si  filtre transfer fonksiyonuG(f ) ile ilişkilidir. 
 

    jwtG(f ) e g(t)dt. 
+∞

−∞

= ∫                                                                ..................(48) 

 
 
 
 
 
 
 
 
 
 

Tablo-1 
 
(46)dan elde edilen Volterra transfer fonksiyonları ve y(t)  için Volterra serilerindeki 
kernellerin Fourier dönüşümleri aşağıdadır. 
   1 1 1 1 1G (f ) Fh G(f )=  
 
                    2

2 1 2 1 2 1 2 2 1 1 2G (f ,f ) Fh G(f f ) F h G(f )G(f )= + +  
 

/ 3
3 1 2 3 1 3 1 2 3 2 1 2 1 2 3 1 2 3 3 1 1 2 3G (f ,f ,f ) Fh G(f f f ) F h h G(f )G(f ) G(f )G(f f ) F h G(f )G(f )G(f )= + + + + +∑  

 

/

1 l l

n
3

n 1 n 1 v v N 1 2 v 3 1 1 2 3
l 1 (v;l,n)

G (f ,...,f ) F h ...h G(f f ... f ) F h G(f )G(f )G(f )
=

= + + + +∑ ∑ ∑ .     ..............(49)  

 
Son eşitlik Bölüm V-B de türetilmiştir.Burada /

3∑ , (28) de gösterilen tipin bir toplamıdır. ve 

(v;l,n)∑  ve /
N∑   toplamlar, (24)-(29) arasındaki bağlantıda tanımlanmıştır. 

 

     
n

l 1 (v;l,n) (n)= π

=∑∑ ∑          .................(50)  

   Kısım               l                 N                     4 1 2 3 4G (f ,f ,f ,f )deki terimler 
      4                   1                 1                            1 4 1 2 3 4Fh G(f f f f )+ + +  
    1+3                 2                 4                        /

2 1 3 4 1 2 3 4F h h G(f )G(f f f )+ +∑  

    2+2                 2                 3                        /2
2 2 3 1 2 3 4F h G(f f )G(f f )+ +∑  

  1+1+2               3                 6                       /2
3 1 2 6 1 2 3 4F h h G(f )G(f )G(f f )+∑  

1+1+1+1             4                 1                        4
4 1 2 1 2 3 4F h h G(f )G(f )G(f )G(f ) 
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Burada ∑ toplamının altındaki (n)π , n nin tüm kısımlarının toplamını göstermektedir. 
Kısımdaki bölümler l ve v ler de bölümlerdir.Bölümler (25) ile ilgilidir. nG için (49) genel 
formu iki türlü yazılabilmektedir. 1) [18, pp. 831-832] de verilen kısımların tablosundan. 
Burada N nin değerleri M3 ile etiketli kolonda listelenmiştir. 2) [19, p.125] de verilen Bell 
polinomlarının tablosu.Tablo-1 , n 4=  için prosedür izah ediyor. 4G  ün değeri son kolondaki 
terimlerin toplamı ile verilmiştir. 
 
1 1G (f ) için 1B 1= [bak(49)], 2 1 2G (f ,f )  için 2B , 3 1 2 3G (f ,f ,f )  için 3B 1 3 1 5= + + =  ve 

(BakTablo-1) 4G  için 4B 1 4 3 6 1 15= + + + + =  şeklinde hesaplandığında nB , n 1 nG (f ,...,f ) 
deki farklı yapıların numarası olsun. G(f) 1≡  olduğunda, g(u) , (u)δ dir, y(t) , { }F h[x(t)] dir, 

sistem hafızasızdır ve  y(t)nin açılımında [ ]nx(t) /n! nin katsayısı nG dir. (47)den vh 1=  ve 

1F 1=  ayarlaması  xy exp e 1 1⎡ ⎤= − −⎣ ⎦  i verir ve (49)dan n nG B= dir.Buradan, xexp e 1⎡ ⎤−⎣ ⎦  in 

açılımında nx /n!  in katsayısı nB dir ve bundan nB için tekrarlı bir ilişki elde edilebilmektedir. 

nB , n ile birlikte artar.Örneğin, 5B 52=  ve 6B 203= . nB ler Bell numaralarıdır [19, p.192]. 
 
modülatör-filtre-demodülatör sisteminin özel bir hali, şekil-4 te gösterilen modülasyon-
evre(faz)(phase) sistemiyle verilmiş ve sonraki bölümde göz önüne alınmıştır.Kısaca, x(t) 
girişi, K(f)transfer fonksiyonuna sahip bir filtre üzerinden geçen taşıyıcı bir dalgayı modüle 
faz  kullanılmaktadır. (t)θ  çıkışı, filtre çıkışının faz açısının parça değişkeni olarak 
alınmaktadır.Şekil-1 sistemi içinh(x) exp(jx)=  ile  bu, F(z) lnz=  ve 0z 1=  ye tekabül eder. 
Sonra, 
   v

vh j=                  l 1
lF ( l) (l 1)!−= − −                                   .................(51)  

 
ve Bölüm IV-C de gösterildiği gibi (49) da yerine yazma (t)θ için Volterra transfer 
fonksiyonlarına götürür. n 1=  ve n 2=  için bunlar, 

   1 1 1 1
1G (f ) (f ) ( f )
2

∗
θ ⎡ ⎤= Γ + Γ −⎣ ⎦  

       
       [ ]0cos w f x(t)+                   [ ]0R(t)cos w f b (t)ο + + θ  

 
 

      2 1 2 1 2 1 2 1 2 1 2
jG (f ,f ) (f f ) (f ) (f ) ( f f ) ( f ) ( f )
2

∗ ∗ ∗
θ ⎡ ⎤= Γ + −Γ Γ −Γ − − + Γ − Γ −⎣ ⎦           ................(52)  

 
burada yıldız, kompleks karşılığı göstermekte ve 0 0(f ) K(f f ) K(f )Γ = + , 0f , taşıcıyı frekans 

0w /(2 )π . ( )2(f) exp jbfΓ = −  ile 2 1 2G (f ,f )θ  için (52) ifadesi, bir FM dalgasının iyonküresine 
doğru ilerlemesiyle ortaya çıkan tahrifat çalışmasında kullanılmıştır. Burada verilen 

n 1 nG (f ,...,f )θ  genel terimin yapısı, FM tahrifatları çalışmasında Mircea[7] tarafından tanıtılan 
intermodülasyon yapısına çok benzemektedir. 
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Volterra transfer fonksiyonunu düzenlemek için direkt açılım metodunun kullanımının diğer 
bir genel örneği de Şekil-2 de gösterilen feedback sistemidir. 
 
Sistem girişi x(t) ve çıkışı y(t) dir. x(t) ve y(t) ile ilgili sistem eşitlikleri: 
 

 
l

1 l l 1 l q
l 1 q 1

1y(t) du ... dum (u ,...,u ) w(t u )
l!

+∞ +∞∞

= =−∞ −∞

′ ′ ′ ′ ′= −∑ ∏∫ ∫                           ........................(53) 

 w(t) x(t) z(t)= −                                                                           .........................(54)  

 z(t) b(v)y(t v)dv
+∞

−∞

= −∫          ...................(55) 

Burada B(f)  filtre dönüşüm fonksiyonu [b(v)nin Fourier dönüşümü] ve n 1 nm (u ,...,u ) 
Volterra kernellerinin n 1 nM (f ,...,f ) n-katlı simetrik Fourier dönüşümlerinin bilindiği kabul 
edilmektedir. 
 
Problem, n 1 nG (f ,...,f ) Volterra transfer fonksiyonunu düzenlemedir.i.e. y(t) için (1) serisinde 
n.inci kernelin n-katlı Fourier dönüşümü. n 1,2,3=  için  cevap, harmonik giriş metoduyla 
elde edilebilir ve aşağıdaki gibidir. 
 

[ ]
[ ]

[ ]

[

1
1 1 1 1 1 1 1

1
2 1 2 1 1 2 1 2 1 1 1 2 2 1 2

1 1 2 2 3 2 1 2 3

1 1 2 2 3 1 2 2 3 1
3 1 2 3 1 1 2 3 1 2 3

1 3 2 1 2 2 3 1

G (f ) 1 M (f )B(f ) M (f )

G (f ,f ) 1 M (f f )B(f f ) K (f )K (f )M (f ,f )

K (f )K (f ,f )M (f ,f f )
K (f )K (f ,f )M (f ,f f )

G (f ,f ,f ) 1 M (f f f )B(f f f ) .
K (f )K (f ,f )M (f ,f

−

−

−

= +

= + + +

+

+ +
= + + + + +

+ ]2

1 1 1 2 1 3 3 1 2 3

f )
K (f )K (f )K (f )M (f ,f ,f )

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬

+⎪ ⎪
⎪ ⎪+⎩ ⎭

   ........(56) 

 
burada, 
 

 1 1 1 1 1

n 1 n 1 n n 1 n

K (f ) 1 B(f )G (f )
K (f ,...,f ) B(f ... f )G (f ,...,f ),       n>1

= −
= − + +

                         ........................(57) 

 
2 1 2G (f ,f )  için ifade, 1 1K (f ) yoluyla 1 1G (f )e göre değişir ve 3 1 2 3G (f ,f ,f )  için ifade, 1 1K (f ) ve 

2 1 2K (f ,f )  yoluyla 1 1G (f ) ve 2 2 1G (f ,f )e göre değişir.Bunda dolayı (56)nın ikinci ve üçüncüsü 
tekrarlı ilişkilerdir. 
 
(56)daki üç ifade, Narayanan[6] tarafından verilen üçlüye eşittir. Narayanan’ın kullandığı 
n 1 n(f ,...,f )µ , n 1 nG (f ,...,f ) ve (f )β  ifadeleri bizim gösterimimizde n 1 nM (f ,...,f ) n! , 

n 1 nG (f ,...,f ) n! , B(f)dir. 
 
Direkt açılım metoduyla Bölüm V-B de elde edilen n>1 için n.inci tekrarlı ilişki, 
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[ ]

1 1 2 1 1 2

l 1 1 1 2

1
n 1 n 1 1 n 1 n

n
'

v 1 v v v 1 v vN
l 2 (v;l,n)

v n l 1 v v 1 v v n

G (f ,...,f ) 1 M (f ... f )B(f ... f )

                   . K (f ,...,f )K (f ,...,f )

                   ...K (f ,...,f )M (f ... f , f ... f ,...,f ... f )

−

+ +
=

µ + + µ

= + + + + +

+ + + + + +

∑ ∑∑       ........(58) 

 
burada N tamsayı ve iv  tamsayılarının (v;l,n) kümeleri üzerindeki toplam (24)deki gibidir. 
 

 
i

1 i i 1 i r
i 1 r 1

1w(t) du ... duk (u ,...,u ) w(t u )
i!

+∞ +∞∞

= =−∞ −∞

= −∑ ∏∫ ∫                                .....................(59) 

 
nK , (59)daki kernellerin n-katlı Fourier dönüşümüdür. z(t)  için bir seri elde etmek için bu, 

(55)de  y(t) için (1) serisinde yerine konmasıyla elde edilebilmektedir ve sonra (54)de z(t)  
için bu seri yerine konur w(t) x(t) z(t)= − . 
 

 
 

IV. AÇIKLAYICI ÖRNEKLER 
 
Girişlerin bir değişimi için doğrusal olmayan cihazların  çıkış özellikleri Bölüm II de 
verilmekte, formüllerin listelerinin çeşitliliği ,bunları  pratik örneklere uygulayarak 
kullanımlarını izah etmeyi gerektirmiştir.Bu bölümde, Volterra transfer fonksiyonlarının 
hesaplanmasını açıklamak, buna ilaveten spesifik giriş sinyalleri için çıkış özeliklerini elde 
etmek için BölümIII de kullanılan örneklerin bazıları konu edilecek. 
 
 
A. Yarı-Statik Filtreli FM 
 
BölümIII-B den, bu durum için sistem eşitliği ve Volterra transfer fonksiyonları; 
 
          [ ]2y(t) x(t) x (t) x (t)′ ′′= + ε  
  1 1G (f ) 1=          3 1 2 3 1 2 3 1 2 3G (f ,f ,f ) 2 w w w (w w w )= ε + +            ...............(60) 
 
burada, w 2 f= π  ve değişmeyen  tüm nG ler sıfırdır. x(t) Gauss tipinde olduğu zaman (11) 
gösterir ki y(t)  sıfırdır.(14) ten, y(t) için güç spektrumundaki  öncü terimler; 
 

2

2
y x 1 x 1 1 1 2 x 1 x 2 x 1 2

1
W (f ) W (f ) 1 (2 f ) df W (f )(2 f ) df df W (f )W (f )W (f f f )

3!

+∞ +∞ +∞

−∞ −∞ −∞

= − ε π π + − −∫ ∫ ∫   

                                                                         
24

1 2 1 2. 2 f f (f f f )f(2 )ε − − π           .................(61) 
 
Bu aynı zamanda yW (f )  için kesin ifadedir çünkü yW (f ) için tüm ifadenin(160) bir 
denemesi(inceleme) gösterir ki bu durum için tüm değişmeyen terimler sıfırdır. x(t)nin güç 
spektrumu ile bunun x (t)′  zaman türevi arasında 2 2

x x xW (f ) (2 f ) W (f ) w W (f)′ = π =  ilişkisini 
kullandığımızda (61) ifadesi aşağıdaki hale gelir. 
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2 2 2
2

y x 1 x 1 1 2 x 1 x 2 x 1 2
4 w

W (f) W (f ) 1 w df W (f ) df df W (f )W (f )W (f f f )
3!

+∞ +∞ +∞

′ ′ ′ ′
−∞ −∞ −∞

ε= − ε + − −∫ ∫ ∫ ......(62)  

 
(60)da  nI (t)  Gauss tipi olmak üzere x(t)= nPcospt I (t)+  olduğunda (15) ve (16) gösterir ki 
y(t)nin periyodik kısmı ensemble averajdır. 
 

2 4 2 3 4
1 l 1

1 1
y(t) P 1 P p p df W (f ) cospt P p cos3pt

4 4

+∞

′
−∞

⎧ ⎫⎪ ⎪= − ε − ε + ε⎨ ⎬
⎪ ⎪⎩ ⎭

∫      .................(63)  

 
ve y(t)nin güç spektrumu vardır. 
 
 { }yW (f)  y(t) nin exp( jpt) ve exp( j3pt) bileşenleri ile dört pik= ± ±  

 
2

2 2 2 2
l 1 l 1

1W (f ) 1 P p w w df W (f )
2

+∞

′
−∞

+ − ε − ε ∫ 4 2 4 2
l p l p

1 P p w W (f 2f ) W (f 2f )
16 ′ ′⎡ ⎤+ ε − + +⎣ ⎦  

 2 2 2 2
1 l 1 l 1 p l 1 p

1P p w df W (f ) W (f f f ) W (f f f )
2

+∞

′ ′ ′
−∞

⎡ ⎤+ ε − − + − +⎣ ⎦∫  

 
2 2

1 2 l 1 l 2 l 1 2
4 w df df W (f )W (f )W (f f f )
3!

+∞ +∞

′ ′ ′
−∞ −∞

ε+ − −∫ ∫        ..................(64) 

 
Burada p2 f pπ = dir. P sıfır olduğunda x(t)yalnız Gauss gürültüsünden oluşuyorsa (64) 
ifadesi (62) ye sadeleşir. 
 
 
B. Seri endüktans ve Doğrusal Olmayan Direnç  
 
Kabul edelim ki Bölüm III-B de [(39)] tanımlanan birim indüktans ve doğrusal olmayan 
( y)α + ε  direncin serilerine, x(t) Pcospt Qcosqt= +  voltajı uygulansın. ε  küçük olduğunda  
y(t) akımının (p q)−  bileşenindeki öncü terim nedir? (p q)± − terimlerini elde etmek için 
(p q)+   terimi için  (5) de p  ve q  ların işaret değişimi ve (40) dan 2 1 2G (f ,f )yerine (vekil) 
koyma gösteriyor ki  (α  ve ε  reel farz ediliyor) istenen öncü terim aşağıdakidir(65). 
 

  [ ] 1j(p q)t ( 2 ) j(p q)PQ2Re e
4 ( jp)( jq)

−
−

⎡ ⎤− ε α + −
⎢ ⎥

α + α −⎢ ⎥⎣ ⎦
          .........................(65)  

 
x(t) voltajı seri kombinasyonuna uygulandığında Gauss tipidir,(14) ten, y(t) akımının güç 
spektrumundaki öncü terimler aşağıdadır. 
 

 2
yW (f) y(t) (f)= δ

2

x 1 1 x 1 3 1 1
1

W (f ) G (f ) df W (f )G (f,f , f )
2

+∞

−∞

+ + −∫  
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  2 4
1 x 1 x 1 2 1 1

1
df W (f )W (f f ) G (f ,f f ) ( )

2

+∞

−∞

+ − − + θ ε∫    .....................(66) 

 
 
Burada (40) ve (11) den, 
     1

1G (f ) ( jw)      w 2 f−= α + = π  
 

   
2 2 2 1

2
2 1 1 2 2 2 2

1 1

4 ( w )G (f ,f f )
( w ) (w w )

−ε α +− =
⎡ ⎤α + α + −⎣ ⎦

 

 

               1 2 2
1 x 1 1y(t) df W (f )( w )

+∞
−

−∞

= −εα α +∫                   .................(67)  

 
ve (40) dan 3 1 1G (f,f , f )− = 2( )θ ε dir. ε  küçük ve x(t) Gauss tipinde olduğunda y(t)nin p(y)  
yoğunluk olasılığı tam olmasa da normale yakındır.Bölüm VIII-B de üzerinde durulduğu gibi 
p(y)nin normalden sapması, 1 2 3 4, , ,κ κ κ κ  kumulantlarının  değerlerinden tahmin edilebilir. 
Bununla beraber (40) dan, nG  ler  kullanıldığında (13) integraller, 3 4,κ κ  için oldukça 
karmaşıktır ve burada değerlendirmeyi bitiremeyiz. Bir filtrenin takip ettiği karesel bir aygıt 
üzerinde gürültü ile bağlantılı, daha az karmaşık bir örnek, Bölüm IV-D de verilmektedir. 
 
 
C. Filtre Edilmiş Faz Modülasyonu 
 
Bu örnekte, Şekil-1 deki modülatör-filtre-demodülatör sisteminin özel bir durumu olan Şekil-
4 gösterilen faz-modülasyon sistemini göz önüne alarak, n 1 nG (f ,...,f ) için (49) un kullanımını 
izah ediyoruz.Bu sistemde filtre istek dışı tahrifatlar(bükülme) meydana getirir. x(t) giriş, 
(t)θ  çıkış ve K(f)  de filtre transfer fonksiyonudur. x(t) sıfır olduğunda filtre çıkışı bir 

0cos(w t b)+ dir.Burada [ 0 0w 2 f= π olmak üzere], 0 0 0K(f ) K ( f ) aexp( jb)∗= − = , filtre 
çıkışındaki R(t)örten faktör  tektir(birim) ve (t)θ sıfırdır. Faz-modülasyon teoreminden [8]-
[10] 
    (t) Imy(t)θ =  

    j ( t u)y(t) ln du (u)e
+∞

∞ −

−∞

⎡ ⎤
= γ⎢ ⎥

⎣ ⎦
∫  

    jwu(u) dfe (f ) ,   w 2 f
+∞

−∞

γ = Γ = π∫  

    0 0(f ) K(f f ) /K(f )Γ = +                                     .....................(68) 
 
Bu örnekte sistem çıkışı y(t) yerine (t)θ  dir.Burada y(t)= lnR(t) j (t)+ θ  dir. Filtre 
bulunmadığı zaman, K(f) , f frekansının bağımsızıdır, (f ) 1Γ =  , (u) (u)γ = δ , y(t) jx(t)=  ve 
(t)θ , x(t)ye eşittir.Biz, filtre bulunduğu zaman, (t)θ ve x(t) arasındaki genelde küçük olan 

farklılıkla ilgilenmekteyiz. 
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(t)θ ye Bölüm II de listelenen formülleri uygulamak için, (t)θ için Volterra serisindeki 
kernellerin n 1 nG (f ,...,f )θ  Fourier dönüşümlerine ihiyacımız var. y(t)için Volterra serisini reel 
ve sanal kısımlarına ayırarak ve (t) Imy(t)θ =  ifadesini kullanarak, aşağıdaki(69) ifaade 
gösterilebilir.  
   n 1 n n 1 n n 1 nG (f ,...,f ) G (f ,...,f ) G ( f ,..., f ) /(2j)∗

θ ⎡ ⎤= − − −⎣ ⎦       ..................(69) 
 
Burada n 1 nG (f ,...,f ), y(t)için n.inci kernelin Fourier dönüşümüdür.Hakikaten şu genel sonuca 
sahibiz ki x(t) reel olduğunda, y(t)nin reel ve sanal kısımları Ry (t)ve Iy (t)  için serideki 
kernellerin Fourier dönüşümleri aşağıda (70)dır. 
 
   Ry (t) için n 1 n n 1 nG (f ,...,f ) G ( f ,..., f ) /(2)∗⎡ ⎤+ − −⎣ ⎦  

   Iy (t)   için n 1 n n 1 nG (f ,...,f ) G ( f ,..., f ) /(2j)∗⎡ ⎤− − −⎣ ⎦          .....................(70) 
 
(68) ve (49) un y(t)için karşılaştırması gösterir ki g(u) (u)= γ ,h(x) exp(jx)=  ve F(z) lnz= . 
Buradan, G(f ), (f )Γ ye gider, h(x)in açılımındaki katsayılar v

vh j=  ve 0z  ı belirten eşitlik de 

0 0z h (0) 1= Γ =  olur. 0z z 1= =  de F(z)  açılımı, l 1
lF( 1) (l 1)!

−− − ifadesini verir.Genel eşitlikler 
(49) gösteriyor ki faz-modülasyon (68) eşitlikleriyle tanımlanmış y(t)için Volterra serisindeki 
kernellerin Fourier dönüşümleri aşağıdaki (71) dir. 
 
    1 1 1G (f ) j (f )= Γ  
 
                  [ ]2

2 1 2 1 2 1 2G (f ,f ) j (f f ) (f ) (f )= Γ + −Γ Γ  
 

[ ]3
2 1 2 3 1 2 3 1 2 3 2 1 3 3 1 2 1 2 3G (f ,f ,f ) j (f f f ) (f ) (f f ) (f ) (f f ) (f ) (f f ) (f ) (f ) (f )= Γ + + −Γ Γ + −Γ Γ + −Γ Γ + +Γ Γ Γ  

 
/

1 1 1 2

n
n l 1

n 1 n N 1 v v 1 v v n
l 1 (v;l,n)

G (f ,...,f ) j ( 1) (l 1)! (f ... f ) (f ... f )... (f ... f )−
+ + µ

=

= − − Γ + + Γ + + Γ + +∑ ∑∑    (71)  

 
nGθ  için (69)daki genel ilişkide (71)in yerine konulmasıyla elde edilen 1Gθ ve 2Gθ ifadeleri 

(52)de gösterildiği gibi aşağıdadır (72). 
 

     1 1 1 1
jG (f ) (f ) ( f )
2j

∗
θ ⎡ ⎤= Γ +Γ −⎣ ⎦  

2

2 1 2 1 2 1 2 1 2 1 2
jG (f ,f ) (f f ) (f ) (f ) ( f f ) ( f ) ( f )
2j

∗ ∗ ∗
θ ⎡ ⎤= Γ + −Γ Γ −Γ − − +Γ − Γ −⎣ ⎦    ................(72)  

 
( f )∗Γ − , (f )Γ  ye eşit olduğunda 0f taşıyıcı frekansın her yerindeK(f)filtre transfer fonksiyonu 

“simetrik” olduğunda ,eğer n çift ise nGθ  sıfır ve eğer n tek ise nGθ , njG−  ye eşittir. 
 
Artık nGθ bilinmekte, farklı x(t) girişleri için Bölüm II de listelenen formüllerde y(t) yerine 
(t)θ  ve n 1 nG (f ,...,f ) yerine n 1 nG (f ,...,f )θ  yerleştirilerek (t)θ  hakkında bilgi  elde 
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edilebilmektedir. Örneğin x(t) Pcospt Qcosqt= + olduğunda (t)θ  deki [ ]exp j(p q)t−  

bileşeni [(5)deki [ ]exp j(p q)t−  teriminde q  ve qf  nun işaretlerini değiştirmek suretiyle] 
aşağıdaki öncü terime sahiptir. 
 

2j(p q)t j(p q)
2 p q p q p q p q p q

PQ PQe G (f , f ) e j (f f ) (f ) ( f ) ( f f ) ( f ) (f )  (73)
4 8

− − ∗ ∗ ∗
θ ⎡ ⎤− = Γ − −Γ Γ − −Γ − + + Γ − Γ⎣ ⎦  

 
Mircea[20] x(t) Pcospt= olduğundaki durumu göz önüne aldı ve x(t) Gauss tipinde 
olduğunda (bak [8]-[11]) W (f)θ  güç spektrumu için  [7] de verilen serideki genel teerimin 
yapısını elde etti. Mircea-Sinnreich (14) serisinde yerine koyma koşuluyla, W (f)θ  deki 
doğrusal ve ikinci seviye modülasyon terimlerinin toplamındaki öncü terimler, 
 

2 2
x 1 1 x 1 x 1 2 1 1

1
W (f ) G (f ) df W (f )W (f f ) G (f ,f f )

2

+∞

θ θ
−∞

+ − −∫       ......................(74)  

 
Burada 1Gθ  ve 2Gθ  (72) de verilmiştir. 
 
Volterra serileri yaklaşımının kullanışlı olduğu bölüm, x(t) Pcospt= durumu göz önüne 
alınarak elde edilebilmektedir.Bizim notasyonumuzda bu durum için (t)θ nin alışılmış ifadesi, 
 

    ImS(t) arctan
ReS
⎡ ⎤θ = ⎢ ⎥⎣ ⎦

 

 

       n jnpt
n p

n
S j J (P) (nf )e

+∞

=−∞

= Γ∑       ...................(75) 

 
Burada nJ (P) ,n seviyesinin Bessel fonksiyonudur. (f ) 1Γ ≡  olduğunda , S exp(jPcospt)=  
ve (t)θ , x(t) girişine eşittir. Filtre bandı geniş olduğunda S, exp( jPcospt) olarak kalır. 
(t)θ nin her değeri için  P , S 1 1− <  olacak şekilde küçük olduğunda, aşağıdaki ifade 

kullanılarak (t)θ , P de yakınsak bir güç serisine açılabilir. 
 
  [ ](t) Im ln 1 (S 1)θ = + −                  .....................(76) 
 
Diğer taraftan (3) tüm seri gösterir ki 
 

  [ ]n n

(k,n k) p
n 1 k 0

exp j(2k n)ptp
(t) G (f )

2 k!(n k)!

+∞

θ −
= =

−⎛ ⎞θ = ⎜ ⎟ −⎝ ⎠
∑ ∑                     ......................(77)  

 
burada,G nin (k,n k)θ −  indisi gösterir ki if  nin ilk k sı ile n 1 nG (f ,...,f )θ , pf  ye eşittir ve kalan 

n k−  da pf−  ye eşittir.Bundan dolayı (77) , P nin gücünde [ ]arctan ImS ReS  nin  güç serisi 
açılımını verir.Bir FM sisteminde P “sapma oranı” dır. Bu gösterir ki FM sistemine Volterra 
serisi analizi uygulandığında sistemler için küçük sapma oranları kullamak çok daha 
kullanışlıdır .bir çok mikrodalga radyo düzenleyici sistemlerde. 
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D.Filtreli Kare-law Dedektör 
 
Bir filtrenin takip ettiği kare-law bir aygıt için sistem eşitliği aşağıdadır. 
 

   2y(t) b(u)x (t u)du
+∞

−∞

= −∫                                           ......................(78)  

 
burada x(t) kare-law aygıt için giriş ve  y(t) çıkış filtresidir. 2

xW (f ) (2 )exp( f / 2)= π −  güç 
spektrumlu x(t) Gauss gürültüsü girişi olduğunda, y(t) ninp(y)  yoğunluk olasılığıyla 
ilgileniyoruz ve filtre etki tepkisi b(u)  ve bunun Fourier dönüşümü B(f)  aşağıdadır. 
 

1/ 2 2 2 2b(u) (2 ) exp( 2 u )= β π − π β  
 

2 2B(f) exp f /(2 )⎡ ⎤= − β⎣ ⎦         ............................(79)  
 
Filtrenin etkili geçiş bandı, −βdan +β  ya ve gürültünün etkili bandı –1 den +1 e kadar 
kapsama alanına alır.Bu durum, Slepian [21] tarafından incelenen, u T /2<  için b(u) 1=  ve 

u T /2>  için b(u) 0=  , x(t) RLC Gauss gürültüsü, durumundan daha basit bir durumdur. 
 
Öncelikle bazı genel fikirler.(78) in her iki tarafının ortalamasını çıkarıp 2x (t) 1=  i 

kullanmak gösteriyor ki band genişliği ne olursa olsun y(t) B(0) 1= = . b(u) 0≥  

olduğundan beri y 0<  iken p(y)sıfırdır. β = ∞olduğunda filtre etkisizdir, 2y(t) x (t)=  ve 
y 0>  için 
               1/ 2p(y) (2 y) exp( y / 2)−= π −  dir.                 ..................(80)  
 

0β→ iken bant genişliği sıfıra yaklaşır ve y 1=  ortalama değerinde merkezileştirilmiş 
genişlik sıfıra yaklaşmanın normal kuralı p(y)yi aşağıdaki gibi bekleriz. 
 
      1/ 2 2p(y) (2 ) exp (y 1) /(2 )− ⎡ ⎤→ πβ − − β⎣ ⎦       ...................(81)  
 
β , 0 dan ∞  a artarken p(y) , (81) den (80) e değişir. 
 
Şimdi Bölüm II de bahsedilen bazı sonuçları Volterra serisi için uyguluyoruz.(78) sistem 
eşitliği sıfır hariç tüm kernelleriyle bir Volterra serisine karşılık gelirn 2=  için, 
 
     2 1 2 1 2 1g (u ,u ) 2b(u ) (u u )= δ −  
      2 1 2 1 2G (f ,f ) 2B(f f )= +        ...................(82) 
 
 (11) ve (13) e karşı gelen daha tamam (180)seriden görüyoruz ki p(y) için 1 2 3 4, , ,κ κ κ κ  
kumulantları , (W)(1, 1) / 2−  , (WW)(1,2)( 1, 2) / 2− −  , (WWW)(1,2)( 1,3)( 2, 3)− − −  
.3(WWWW)(1,2)( 1,3)( 2,4)( 3, 4)− − − −   ifadelerinin integralleridir. Burada (180) de olduğu 
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gibi (w),(ww),(1,2),... ifadeleri sırasıyla x 1 x 1 x 2 2 1 2W (f ),W (f )W (f ),G (f ,f ),... ifadelerini 
göstermektedir.İntegrantların Gauss formu integral alınmasına olanak sağlar. 
    

2 1/2
1 2

2 2
3 4

1                      2 / c,           c (4 1)

32 /(3c 1)     96 / c(c 1)    

−κ = κ = = β +

⎡ ⎤κ = + κ = +⎣ ⎦
 ...........................(83) 

 
1κ  ve 2κ  değerleri(ortalama ve varyans), p(y)nin (80) ve (81) formlarından limitinin 

alınmasıyla elde edilmektedir. β  küçük olduğu zaman c 2/→ β  ve 2 3 4, ,κ κ κ  ün değerleri 
sırasıyla β , 28 / 3β , 312β değerlerine yaklaşır.Böylece varyans β  ya yaklaşır ve (181) 
gösteriyor ki 1γ  eğriliği, 1/ 2(8 /3)β  ye 2γ fazlalığı, 12β  ya yaklaşır.Edgeworth 
serisi(182),normal kural(81) ın nasıl yaklaştırıldığını gösteriyor: 
 

{ }1/ 2 1/ 2 (3) (4) (6)9 81
4 2 81p(y) Z(u) Z (u) Z (u) Z (u) ...− ⎡ ⎤= β − β +β + −⎣ ⎦        ....................(84) 

 
Burada 1/ 2u (y 1) /= − β  ve 1/ 2 2Z(u) (2 ) exp( u / 2)−= π − . (184) ten p(y)nin en yoğun elektrik 
yükü 0y 1 (4 /3)≈ − β  da meydana çıkar, burada 0p(y ) ,β  varyansıyla bir normal kuralın 

1/ 2(2 )−πβ olan zirve değerinden yaklaşık [ ]1 (49 /54)+ β defa daha yüksektir. 
 
Bu aşamada, iki terim Volterra serisi için  Bölüm III-C de verilen özel sonuçlara gidiyoruz. 

xW (f )nin Gauss formu ve 2 1 2G (f ,f )  için örneğimizde,Tablo II nin 4.üncü satırı ile çalışmak 
uygundur.Örneğimiz için integral eşitlikleri , 
 

1/ 2 2 2 2
1 1 1(f ) (2 ) exp( f / 2) df 2 (f )exp (f f ) /(2 )

+∞
−

−∞

⎡ ⎤λΨ = π − Ψ − − β⎣ ⎦∫          ..................(85) 

k.inci eigen değeri ve fonksiyonu aşağıdaki gibi bulunmuştur. 
  

k

k
4 c 1
c 1 c 1

−⎛ ⎞λ = ⎜ ⎟+ +⎝ ⎠
 

 
1/ 2

21
k k k4

c(f ) A exp (c 1)f H f
2

⎡ ⎤⎛ ⎞⎡ ⎤Ψ = − + ⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦
           .........................(86)  

Burada kA , sadece k ya  ve aşağıda verilen Hermite polinomuna bağlıdır. 
 

2 2
k

x x
k

dH (x) e e
dx

−⎛ ⎞= −⎜ ⎟⎝ ⎠
 0H (x) 1=  1H (x) 2x= . 

 
(86)nın  (85) in bir çözümü olduğu aşağıdaki (87)nin yardımıyla gösterilebilir. 
 

 
2

k / 2 1/ 21/ 2 2 2 2
px qx

k k
r q qr re H (rx)dx 1 exp H 1

p p 4p 2p p

−+∞
− +

−∞

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎛ ⎞⎛ ⎞π ⎢ ⎥= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎝ ⎠⎣ ⎦

∫        ...........(87) 

 



 25 

Örneğimizde kξ parametresi sıfırdır çünkü iki terim Volterra serisinin ilk terimi eksiktir ve 
p(y)  ve mκ leri hesaplamak için  sadece kλ  ihtiyacımız var. p(y) için (186) integrali, 
aşağıdaki gibi olur. 
  

1/ 2jyz k 1

k 0

1p(y) dze / 1 4jzp (c 1)
2

+∞ ∞
− −

=−∞

⎡ ⎤= − +⎣ ⎦π ∏∫                                 ...............(88)  

 
Burada p (c 1)(c 1)= − + .(188)deki seri m.inci kümülant için (89) u verir. 
  

2m 1
m

m k m m
k 0

(m 1)! (m 1)!2
2 (c 1) (c 1)

−∞

=

− −κ = λ =
+ − −∑            ................(89)  

 
m 1,2,3,4=  için (83) ile mutabıktır.(188)deki integrallerden mκ yi hesaplama, aslında (83)ü 
elde etmek için kullanılan katlı integralleri değerlendirmeyle aynıdır. 
 
Prosedürü izah için iki terim Volterra serinin ilk terimi verildiğinde, 
 

 2
1y(t) dug (u)x(t u) dub(u)x (t u)

+∞ +∞

−∞ −∞

= − + −∫ ∫           ...................(90) 

 
ifadesini göz önüne alıyoruz.Burada, 
 

1/ 2 2 2 2 2 2
1 1 1 1 1g (u) (2 ) exp( 2 u )      G (f) exp f /(2 )⎡ ⎤= αβ π − π β = α − β⎣ ⎦ dir.          ...................(91)  

 
Şimdi p(y)  ve mκ leri hesaplamak için [(86)da verilen] kλ  ya ek olarak bir de  

kξ parametresine ihtiyacımız var.Tablo II nin 4.üncü satırında verilen k (f )Ψ için 
ortonormalizasyon  ilişkisi Hermit polinomları için meydana gelir(ters yüz) ve (86)daki 

kA normalizasyon sabiti için k 1/ 4 k 1/ 2j c (2 k!2 )−π ifadesini verir.Tablo II nin son sütununda 
verilen kξ için integralde normalize edilmiş k ( f )Ψ −  yerine yazıldığında ve (87) nin 
yardımıyla değerlendilen sonuç, bulundu ki k tek iken kξ ,sıfır ve k çift iken aşağıdaki gibidir. 
 

 
1/ 2 n1/ 4

2
2n 1n

c (2n)!2 a 1        a (2 1) / c
n!2 a 1 a 1

−
−′ −⎡ ⎤ ⎡ ⎤ ′Ψ = α = β +⎢ ⎥ ⎢ ⎥′ ′+ +⎣ ⎦ ⎣ ⎦

                ...................(92) 

 
Halen 1 1κ =  fakat (188)den m 2≥  için mκ  (89) un toplamı artı, 
 

 
( ) nm 2 2 2m 4

2 m 2 2 1/ 2 n
2n 2n

n 0 n 0

1/ 2m! m! 4 a 1 c 1c
2 a 1 c 1 n! a 1 c 1

− −∞ ∞
− −

= =

⎡ ⎤′ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ξ λ =α ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟′ ′+ + + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑  

 

   ( ) ( ) ( ) ( )
1/ 22 2m 4 2 2m 42 1/ 2 m 2c m!4 a 1 c 1 a 1 c 1

−− −− − ⎡ ⎤′ ′= α + + − − −⎣ ⎦  ....(93)  
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buradan 0>  olduğunda  ( )0 1α =  ve ( ) ( )( ) ( )n
1 2 ... n 1α = α α + α + α + − . m 2≥  olduğunda 

seri daima yakınsar ve m 2,3,4=  için (180)genel katlı integrallerden elde edilenlerle uygun 
değerler verir. 
 
m 1=  olduğunda (93) ün sol tarafı 2

k k/(2 )ξ λ  formudur.Bölüm VIII-C de belirtildiği üzere 
eğer bu seri bir S değerine yakınsarsa ve tüm kλ  lar pozitif ise y(t)asla –S değerinden küçük 
değildir.(93)de m 1=  koyup c  ve a′  yerine β  ve 1β  bant genişliklerinin terimlerdeki 
ifadeleri yeniden yerleştirilmesi gösterir ki 2 2

12β < β  olduğunda  seri yakınsaktır ve aşağıdaki 
değeri verir. 

    ( )
2 2 1/ 22 21

1S 2
4

−α β= β −β
β

      ...................(94) 

 
Pollak a borçulu olduğumuz y(t) S≥ −  eşitsizliği daha genel bir sonucun özel bir halidir. 
Böylece b(u)  (90) da asla negatif olamaz. 
 
 2 2

1 1g (u)x(t u) b(u)x (t u) g (u) /(4b(u))− + − ≥ −  

     2
1y(t) g (u)du /(4b(u))

+∞

−∞

≥ − ∫ .     ...................(95) 

 
2 2

12β < β  olduğunda örneğimizin 1g (u) ve b(u)  için integral yakınsaktır ve y(t) S≥ −  verir. 
 
Sonuç olarak, β→ ∞  olduğunda y(t) için (90)da ikinci integral 2x (t) olur ve k 0> için 
c 1→ , 0 2λ → , k 0λ → . Bununla beraber k (f )Ψ ve bunlardan hesaplanan kξ değişmez. p(y)  
için (186) integralindeki Q(z)  faktöründeki üs, (188)den 2

2 0 / 2κ − λ  ye eşit olan 2
kξ∑  

toplamını içerir. 
 
Genelde iki terim Volterra serisinde ikinci terim 2

2a x (t) / 2  olduğunda yukarıdaki örnekle 
karşılaştırmadan ve Tablo II nin 4.üncü satırından anlaşılır ki k 0>  için 2

0 2aλ = σ , 

0 x(f ) W (f) /Ψ = σ , k 0λ =  ve 

  
2

1/ 2 2 1
0 2 0 0 0

z
Q(z) (1 j z) exp j z (1 j z)

2
− −⎧ ⎫⎡ ⎤= − λ − κ + λ ξ − λ⎨ ⎬⎣ ⎦⎩ ⎭

 

      0 1 xdfG (f )W (f ) /
+∞

−∞

ξ = σ∫  

     2 x 1 1dfW (f )G (f )G ( f )
+∞

−∞

κ = −∫                   ...................(96) 

burada 2 2x (t)σ = . 

 
 
 
. 
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BÖLÜM II. FORMÜLLERİN TÜRETİLMESİ 
 
 

V. DİREKT AÇILIM METODUYLA İLGİLİ FORMÜLLER 
 
Direkt açılım metodu keyfi derecenin Volterra transfer fonksiyonuyla uğraşırken  
kullanışlıdır.  Brunonun bir fonsiyonun fonksiyonunun n.inci  türev formülü ve Maclaurin 
serisinin yardımıyla açılım genelde başarılıdır(üstesinden gelir).Sıklıkla açılım 
sonucu,simetrize edilmek zorunda olan simetrik olmayan kernellerle bir Volterra serisidir. 
 
Burada Bölüm III de listelenen Volterra transfer fonksiyonları için genel ifadelerin çatısına 
kısaca değinilmektedir. 
 
A. [ ]ly(t)  İçin Volterra Serisi 
 
Bu bölüm, l bir pozitif tamsayı olmak üzere [ ]ly(t)  için Volterra serisindeki  n.inci 

n 1 ng (u ,...,u ) kerneli için bir ifadenin türevine ayrılmıştır. 
 
y(t) için (1) Volterra serisinde ix(t u )−  ile ix(t u )ξ − yeniden yazılmasıyla elde edilen 
H( )ξ fonksiyonunu tanıtıyoruz. t  zamanı H( )ξ ye parametre olarak girer ve H(1) , y(t) ye 
eşittir. F(z) , lz  olsun. 

  [ ] [ ] [ ]
n n

l
n

n 1 0

dH( ) F H( ) F H( )
n! d

∞

= ξ=

⎡ ⎤ξξ = ξ = ξ⎢ ⎥ξ⎣ ⎦
∑ dir.                 ..................(97)  

 
n.inci türev belki Brunonun bir fonksiyonun fonksiyonunun türevi formülüyle 
değerlendirilmiştir: 
 

   [ ] [ ] 1 2 k

n n
(v ) (v ) (v )(k)

1 2 kn
k 1 (v;k,n)

d F H( ) F H( ) N(v ,v ,...,v )H ( )H ( )...H ( )
d =

ξ = ξ ξ ξ ξ
ξ ∑ ∑  ..(98)  

 
burada,k l yerine geçmiştir,toplam sembolü (24)dekiyle aynıdır ve N, (26) ile verilen 

1 2 kN(v ,v ,...,v ) dir. 
 
k.inci türev (k )F (z), l kl(l 1)...(l k 1)z −− − +  dir. 0ξ =  için H( )ξ  sıfır olduğundan beri k l≠  için 

[ ](k)F H(0)  sıfırdır ve k l=  için l!  dir. y(t) için (1) Volterra serisinde ξ  koyarak elde edilen 
H( )ξ  için seriyi diferansiyelini almak gösterir ki 
 

 [ ]
v v

(v)
1 v v 1 v rv

r 10

dH (0) F H( ) du ... du g (u ,...,u ) x(t u )
d

+∞ +∞

=−∞ −∞ξ=

⎡ ⎤
= ξ = −⎢ ⎥ξ⎣ ⎦

∏∫ ∫       ................(99)  

 
Bu değerler (98) de yerine geçirildiğinde, l n≤  için sonuç aşağıdadır. 
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[ ]
1 1 l

n n

1 l 1 n v 1 v v n rn
(v;k,n) r 10

d F H( ) l! N(v ,...,v ) du ... du g (u ,...,u )...g (u ,...,u ) x(t u )
d

+∞ +∞

µ
=−∞ −∞ξ=

⎡ ⎤
ξ = −⎢ ⎥ξ⎣ ⎦

∑ ∏∫ ∫  

                        .................(100)  
l n>  için (100) ün sağ tarafı sıfırdır. 
 
(97) de (100) yerine yazılıp , 1ξ =  yerleştirildiği ve integraller içerisinde (v;l,n) toplamı 

alındığında [ ]ly(t)  için bir seri verir.Bu seri (101) deki yapılar simetrize edilerek Volterra 
serisine çevrilebilmektedir. 
    
 

1 1 lv 1 v v n 1 ng (u ,...,u )...g (u ,...,u ) P(u ,...,u )µ ≡                    .................(101)  
 
Burada  vg  ler simetriktir. 
 

1 nP(u ,...,u ) de n indislerinin permüte edilmesiyle meydana gelen simetrik fonksiyon  ve 
eklemek aşağıdaki ifadenin sağ tarafına sadeleştirilebilir [bak(120)]. 
  

 /
1 n N 1 n

n!

1 1P(u ,...,u ) P(u ,...,u )
n! N

=∑ ∑               .....................(102)  

 
Burada N, (26) ile verilmiş ve (100)deki 1 lN(v ,...,v ) gibi aynıdır. (24) deki gibi /

N∑  toplamı, 
özdeş olmayan N yapıları üzerinde toplamı göstermektedir. 1u atanmış olan keyfi bir sayısal 
değer, 2u  bundan farklı fakat diğer taraftan keyfi bir değer vb olsun.Bu durumda 1 nP(u ,...,u ) 
kesin bir sayısal değer alacaktır.Bölüm V-C de  (102) , 1 nP(u ,...,u )nin bu değerini 
değiştirmeyen permütasyonlar hesaplanarak elde edilecektir. 
 
Böylece,(101)deki yapıları simetrize etmenin etkisi, /

N∑  toplamıyla (100)de  1 lN(v ,...,v ) i 
yeniden yerleştirmek içindir.Bu bizi (103)e götürür. 
 
 /

1 1 1

(l)
n 1 n N v 1 v v n

(v;l,n)
g (u ,...,u ) l! g (u ,...,u )...g (u ,...,u )µ= ∑∑              ....................(103)  

 
(103) ifadesinin her iki tarafının n-katlı Fourier dönüşümünü alınırsa (l)

n 1 nG (f ,..., f ) için (24)ü 
verir: 
 
 /

1 1 1

(l)
n 1 n N v 1 v v n

(v;l,n)
G (f ,...,f ) l! G (f ,...,f )...G (f ,...,f )µ= ∑∑                        ....................(104)  

 
 
B. Keyfi Seviyeden Volterra Transfer Fonksiyonları 
 
 n keyfi olduğunda n 1 nG (f ,...,f )için Bölüm III de bulunan ifadeleri türetmek için, [ ]ly(t)  ile 
ilgili sonuçlar ve  simetrizasyon bu bölümde kullanılmıştır. 
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Öncelikle (37) diferansiyel eşitliği göz önüne al. x(t),exp(jwt) olarak alındığında ve y(t),  
(32) üslerinin serisi olarak alındığında,(37) de yerine koyma ve 1exp(jw t)nin katsayılarını 
eşitleme, n 1>  ifadesini verir. n 1>  için, x(t) yi n üslerinin toplamı olarak  alalım  ve kabul 
edelim ki y(t) n-katlı bir seriye açılabilsin, n 2=  durumu için (33)e benzer 

[ ]1 nexp j(w ... w )t+ +  nin kasayısı   n 1 nG (f ,...,f ) dir. Bundan sonra [ ]ly(t) , 

[ ]1 nexp j(w ... w )t+ +  nin katsayısı (l)
n 1 nG (f ,..., f )  olan benzer bir seriye açılabilir. l n>  

olduğunda bu serileri (37) diferansiyel eşitliğinde yerine yazma , [ ]1 nexp j(w ... w )t+ + nin 

katsayılarını eşitleme ve (l)
nG  nin sıfır olması aşağıdaki ifadeyi verir. 

 

 
n

(l)
1 n n 1 n 1 n 1 n

l 2
F( jw ... jw )G (f ,...,f ) a G (f ,...,f ) 0

=

+ + + =∑             .....................(105)  

 
Şekil3 te gösterilen sistem için sistem eşitliği,(42) serisini eşitleyerek elde edilmektedir. H(f)  
kabulü üzerindeki akım için:... 
 

 [ ] [ ]l
l

l 1

a y(t) h( ) x(t ) y(t ) d
+∞∞

= −∞

= τ − τ − − τ τ∑ ∫                          .....................(106)  

 
burada h(t) ,H(f)nin Fourier dönüşümüdür. x(t)yi 1exp(jw t)olarak almak, y(t)için 
(32)serisini alma ve (106)da 1exp(jw t)nin katsayılarını eşitlemek aşağıdaki ifadeyi verir. 
  
 1 1 1 1 1 1 1a G (f ) H(f ) G (f )H(f )= −                ......................(107)  
 
n 1>  için, x(t)yi n üslerinin toplamı olarak alma ve [ ]1 nexp j(w ... w )t+ + nin katsayılarını 
eşitleme (108)i verir. 
 

 
n

(l)
1 n 1 n 1 n 1 n n 1 n 1 n

l 2
a G (f ,...,f ) a G (f ,...,f ) G (f ,...,f )H(f ... f )

=

+ = − + +∑        ....................(108)  

 
Şekil3 ün devresi için (43) tekrarlı ilişkisi,(107) ve (108) i takip eder. 
 
Şimdi Şekil1 e dönüyoruz. modülatör-filtre-demodülatör sistemi için sistem eşitliği (46) ve 
(47) ile verilmektedir. n 1 nG (f ,...,f ) için (49) ifadesinin türetilmesine başlamak için H( )ξ yi 
aşağıdaki gibi tanımlarız. 
 

 [ ]H( ) g(u)h x(t u) du
+∞

−∞

ξ = ξ −∫                                     ......................(109)  

 
burada t , H( )ξ de bir parametre olarak ilişkilendirilmiştir. 1ξ =  olduğunda [ ]F H( )ξ  
fonksiyonu y(t) ye eşittir.Yine direkt açılımla, 
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 [ ] [ ]
n n

n
n 0 0

dF H( ) F H( )
n! d

∞

= ξ=

⎡ ⎤ξξ = ξ⎢ ⎥ξ⎣ ⎦
∑               ......................(110)  

 
burada Bronun (98) formülüyle n.inci türevi değerlendirebiliriz.Bunun için, (47) ve (109) u 
takip eden  aşağıdakilere ihtiyacımız var. 
 

   

[ ]

[ ]

[ ]

v(v )
v

0

0

l
(l)

ll
z H(0)

H (0) h g(u) x(t u) du

       H(0) z
  F H(0) F(z ) 0

dF H(0) F(z) F
dz

+∞

−∞

=

= −

=

= =

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

∫

             ......................(111)  

( 
110) da Brunonun formülünün kullanımı ve 1ξ =  yerleştirmesi aşağıdaki ifadeyi verir. 
 

  1 l(v ) (v )
l 1 l

n 1 l 1 (v;l,n)

1y(t) F N(v ,...,v )H (0)...H (0)
n!

∞ ∞

= =

=∑ ∑ ∑            ......................(112)  

 
(v)H (0) için integrali yeniden aşağıdaki gibi yazarız. 

 

         

(v )
v 1 v v 1 v 1 v

1 1 1

v 1 v 1 2 1 v 1

H (0) h du ... du (u ,...,u )x(t u )...x(t u )

         (u ) g(u )
(u ,...,u ) g(u ) (u u )... (u u )         v 1

+∞ +∞

−∞ −∞

= ϕ − −

ϕ =
ϕ = δ − δ − >

∫ ∫
           .................(113)  

 
burada G(f ),g(t)nin Fourier dönüşümü (48) olmak üzere , v 1 v(u ,...,u )ϕ , 1 vG(f ... f )+ +  V-
katlı Fourier dönüşümüne sahip bir simetrik fonksiyon olarak ilişkilendirilebilmektedir. 
Bundan sonra (112) aşağıdaki gibi olmaktadır. 
 

           
n

1 n n 1 n r
n 1 r 1

1
y(t) du ... du (u ,...,u ) x(t u )

n!

+∞ +∞∞

= =−∞ −∞

= γ −∑ ∏∫ ∫  

        
1 l

n

n 1 n l v v 1 l v1 1 v1 vl n
l 1 (v;l,n)

(u ,...,u ) F h ,...,h N(v ,...,v ) (u ,...,u )... (u ,...,u )µ
=

γ = ϕ ϕ∑ ∑        .........(114)  

 
burada n 1 n(u ,...,u )γ ,n 2>  olduğunda genelde simetrik değildir.(114) ü Volterra serisine 
çevirmek için (112)nin yardımıyla n 1 n(u ,...,u )γ i simetrize edebiliriz.simetrizasyonun 
başarılması  özdeş olmayan N yapıları üzerinde alınan /

N∑  toplamıyla 1 lN(v ,...,v ) yi 
yeniden yerleştirmektir.Böylece (114), simetrik kernelle Volterra serisine(1) gider.  

        /

1 l

n

n 1 n l v v N v1 1 v1 vl n
l 1 (v;l,n)

g (u ,...,u ) F h ,...,h (u ,...,u )... (u ,...,u )µ
=

= ϕ ϕ∑ ∑ ∑          ................(115) 
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Bu kernel,göstermek istediğimiz gibi (49)da bulunan n-katlı n 1 nG (f ,...,f ) Fourier dönüşümüne 
sahiptir. 
 
Son olarak,Şekil2 sisteminin feedback için n 1 nG (f ,...,f )i veren genel tekrarlı ilişki(58) nin 
türevikısaca tanımlıyoruz. x(t) nin gücünde w(t) için Volterra serisinde(59) t yerine qt u′−  
yerleştirilirse qw(t u )′− için bir seri elde edilir. y(t) için (53) sistem eşitliğinde 

l
qq 1

w(t u )
=

′−∏  yapısı bir 1 qi ... i+ + =n-katlı integralin n katlı toplamı olarak 

yazılabilmektedir.Toplamın seviyesini değiştirip kullanılırsa y(t) için bir seriye(116) götürür. 

           
1 l 1 2 l

n

l 1 i 1 i 1 n 1 l 1 i i ... i n
...

∞ ∞ ∞ ∞ ∞

= = = = = + + + =

=∑∑ ∑ ∑∑ ∑  

 
n

1 n n 1 n r
n 1 r 1

1
y(t) du ... du (u ,...,u ) x(t u )

n!

+∞ +∞∞

= =−∞ −∞

= ϕ −∑ ∏∫ ∫                       ......................(116)  

burada, 
  

1 1 l
1 2 l

n

n 1 n 1 1 l 1 l i 1 1 i 1 i n l
l 1 i i ... i n 1 l

1 n!(u ,...,u ) du ... dum (u ,...,u )k (u u ,...,u u )...k (...,u u )
l! i !...i !

+∞ +∞∞

= + + + = −∞ −∞

′ ′ ′ ′ ′ ′ ′ϕ = − − −∑ ∑ ∫ ∫  

                   ......................(117)  
(116)nın (1) y(t) için  Volterra seri ile karşılaştırılması gösterir ki n 1 n(u ,...,u )ϕ nin simetrize 
edilmiş veriyonu n 1 ng (u ,...,u )dir:i.e. nϕ nin n-katlı n 1 n(f ,...,f )Φ  Fourier dönüşümünün 
simetrize edilmiş versiyonu n 1 nG (f ,...,f )dir. n 1 nG (f ,...,f ) için (58) genel ifadesinde görünen 

1 2 lv v v lK ,K ,...,K M yapısıyla aynı forma sahip(v lerle i ler yeniden yerleştirilmiş) bir 

1 2 li i i lK ,K ,...,K M  yapısıyla l-katlı integral yeniden yerleştirilerek nΦ için bir ifade (117) nin sağ 

tafından elde edilebilmektedir. Bu yapı (ve aynı zamanda 
11 if ... f+ +  argümanlarıyla lM  

fonksiyonu) Bölüm III-C de üzerinde durulan 1 n 1 lP(f ,...,f : i ,...,i )yapısıyla aynı tip simetriye 
sahiptir. nΦ i (123) yardımıyla simetrize etme, nG ye eşit sonuçları yerleştirme, nΦ  de l=1 
için nG i içeren tek terim dir ve nG için çözüm, (58)in türetilmesini tamamlar. 
 
 
C. Simetrik Fonksiyonların Yapılarının Simetrizasyonu 
 
“ SV ” “simetrize edilmiş versiyonu” temsil etmek üzere, keyfi 1 nF (f ,...,f )  fonksiyonunun 
simetrize edilmesiyle elde edilen fonsiyon { }1 nSV F (f ,...,f )  seklinde ifade edilmektedir: 

 { }1 n 1 nn!

1SV F(f ,...,f ) F(f ,...,f )
n!

= ∑                                ................(118) 

Burada∑ üzerindeki n!  indisi, f lerin üzerindeki indislerin tüm n!  permütasyonları 
üzerinde toplamın açıldığını gösterir. P(...) yapısı aşağıdaki gibi tanımlanır. 
 
 

1 1 2 1 1 2 l 11 n 1 l i 1 i i i 1 i i i n i 1 nP(f ,...,f : i ,...,i ) s (f ... f )s (f ... f )...s (f ... f )+ + − +≡ + + + + + +  

               1 2 l qi i ... i n ,      1 i n ,       q 1,2,...,l+ + + = ≤ ≤ =                   ................(119) 
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Burada is (...)  fonksiyonları, argümanlarının simetrik fonksiyonlarıdır.  
 
Öncelikle aşağıdakini ele alıyoruz,  
 

 { } /
1 n N 1 n 1 l

1SV F(f ,...,f ) P(f ,...,f : v ,...,v )
N

= ∑                                       ................(120) 

 
burada n,l ve iv  tamsayılarının kümesi verilmektedir. v ler (25)de olduğu gibi tam sayılardır. 
 
 1 2 l 1 2 lv v ... v n ,      1 v v ... v+ + + = ≤ ≤ ≤                                     ................(121)  
 
(120)nin sağ tarafındaki toplam,(26) ile bağlantılı olarak tüm özdeş olmayan yapılar 
üzerinedir.Toplamdaki bu tip yapı aşağıdadır. 
 
 1 l 1 pN n!/(v !...v !r !...r !)=                                                                         ................(122) 
 
Burada 1r , 1 2 lv v ... v≤ ≤ ≤  düzeninde eşit v lerin ilk adımında eşit v lerin sayısı, 2r  ise ikinci  
adımın numarası vb. dir. 
 
(120) nin sağlamasını yapmak için, vs (...)nin argümanları içindeki kf  lar permüte edildiğinde 
P(...)nin değerinin 1 lv ,...,v  değerlerinin verilen bir kümesi değiştirilmedi. 1 lv !...v  gibi 
permütasyonlar vardır. Dahası P(...)nin değeri, eşit indislerle vs permüte etmeyle 
değiştirilmemiştir.Bu türün permütasyonu 1 2 lv v ... v≤ ≤ ≤  durumunu bozmaz. 1 2 pr !r !...r ! 
şeklinde permütasyonlar vardır. 1 nf ,...,f  nin n!  permütasyonu ile verilen P(...)n!nicelikleri, 
P(...)nin değerine göre kümeler içerisine bölümlenebilmektedir.Her kümedeki eleman 
sayıları aynıdır 1 l 1 2 p(v !...v !r !r !...r ! M=  ve kümelerin sayısı, N n!/M=  dir.N kümeleri 
üzerinde bir toplam için n!  permütasyonları [gör(118)] üzerinde toplamı değiştirme, istenen 
ilişkiyi (120) verir. 
 
Aşağıdakini sağlatacağız. Verilen  n ve l , 
 

 /

1 2 l

1 n 1 l N 1 n 1 l
i i ... i n (v;l,n)1 l

1 n!SV P(f ,...,f : i ,...,i ) P(f ,...,f : v ,...,v )
l! i !...i !

∞

+ + + =

⎧ ⎫⎪ ⎪ =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑∑    ...........(123) 

 
burada soldaki toplam 1 li ... i n+ + =  gibi 1 li ,...,i  tamsayıları üzerinde alınmakta ve 

q1 i n≤ ≤ [gör(119)]. Sağdaki ∑ altındaki (v;l,n), (121)i sağlayan v tamsayılarının tüm 
kümeleri üzerindeki toplamı göstermektedir.(123) ü sağlatmak için (v;l,n)de her bir 

1 2 lv ,v ,...,v kümesi için karşı gelme ,v lerin değeri değiştirilmiş olan sinyali i lerin 1 li ,...,i nin 
kümeleri 1 2 pl!/(r !r !...r !) tane vardır.Bu i lerin kümelerinden herhangi biri için 
1) 1 l 1 li !...i ! v !...v !=  ve 2)  
 
  { } { }1 n 1 l 1 n 1 lSV P(f ,...,f : i ,...,i ) SV P(f ,...,f : v ,...,v )=           ....................(124)  
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Bundan dolayı (123)ün sol tarafı,istenen ilişki(123) olan  aşağıdaki gibi yazılabilmektedir. 
 

 { }
1 2 l

1 n 1 l
i i ... i n 1 l

1 n! SV P(f ,...,f : i ,...,i )
l! i !...i !

∞

+ + + =
∑ = 

  { }
1 2 l

1 n 1 l
i i ... i n 1 l 1 p

1 n! l! SV P(f ,...,f : v ,...,v )
l! v !...v ! r !...r !

∞

+ + + =

= ∑  

  { }1 n 1 l
(v;l,n)

N SV P(f ,...,f : v ,...,v )= ∑ &  

  /
N 1 n 1 l

(v;l,n)
P(f ,...,f : v ,...,v )= ∑∑                                     .....................(125)  

 
 

VI. ÇIKIŞIN BASİT ÖZELLİKLERİ 
 
Burada, Volterra transfer fonksiyonları için (1) Volterra serisi ve (2) ifadesi, harmonik ve 
Gauss girişleriyle uğraşmaya uygun formlarda yeniden hesaplanmaktadır.Yeni formlar 1) ve 
2) yi elde etmek için uygulanarak izah edilmekde, 1)  x(t) bir sinüs dalgası veya iki veya üç 
sinüs dalgasının toplamı olduğunda y(t) için Bölüm II-A da listelenen ifadelerin genel formu. 
ve 2)  x(t) Gauss tipinde olduğunda y(t)nin dc değeri için ifade. x(t) Gauss tipinde 
olduğunda y(t)nin dc değeri, beklenen değerine veya y(t)  benzer miktarına eşittir. 
 
 
A. Genel İlişkiler 
 
 [ ]1 1 n nexp x(t u ) ... x(t u )α − + +α − nin açılımında 1 2 n...α α α nin katsayısı olarak 

1 nx(t u ),...,x(t u )− −  yapılarını (1) de yazarak, öncü terimleri Bölüm II-A da verilen 
formüllerin türetilmesi basitleştirildi; i.e. aşağıdakiyle üssel fonksiyon üzerindeki işlemin 
sonucu olarak 

  
1 2 n

n
n

1 n ... 0

D
...α

α =α = =α =

δ≡
δα δα

                          .....................(126)  

Böylece, 
n

n
1 n s s

s 1

x(t u )...x(t u ) D exp x(t u )α
=

⎡ ⎤− − = α −⎢ ⎥⎣ ⎦
∑             .....................(127)  

            
nn

n
s s

s 1

D x(t u ) n!α
=

⎡ ⎤= α −⎢ ⎥⎣ ⎦
∑                     ....................(128)  

ve y(t) için (1) Volterra serisi aşağıdaki iki şekilde tekrar yazılabilmektedir. 

 
n

n
1 n n 1 n s s

n 1 s 1

1
y(t) du ... du g (u ,...,u )D exp x(t u )

n!

+∞ +∞∞

α
= =−∞ −∞

⎡ ⎤= α −⎢ ⎥⎣ ⎦
∑ ∑∫ ∫         ....................(129)  

 
nn

n
1 n n 1 n s s

n 1 s 1

1
y(t) du ... du g (u ,...,u )D x(t u ) n!

n!

+∞ +∞∞

α
= =−∞ −∞

⎡ ⎤= α −⎢ ⎥⎣ ⎦
∑ ∑∫ ∫       ....................(130)     

 
y(t) için (130) serisi ve n üssel terimlerin toplamı olarak x(t)yi alarak n 1 nG (f ,...,f )in 
hesaplanma metodu, kullanışlı ifadelere götürür. 



 34 

 n
n 1 n 1 n n 1 n n r n r

r 1

1G (f ,...,f ) du ... du g (u ,...,u )D A (f )A ( f )
n!

+∞ +∞ µ

α
=−∞ −∞

= −∏∫ ∫  ....................(131)  

burada,   s

n
jwu

n
s 1

A (f ) e  ,        w 2 f−

=

= = π∑   ....................(132)  

Aşağıdaki sonuç, x(t), iki taraflı xW (f )  güç spektrumuyla Gauss tipinde olduğunda, y(t) için 
(129) tekrar yazılan Volterra serisiyle birlikte kullanılacaktır.L, aşağıdaki gibi bir lineer 
operatör( t nin fonksiyonları üzerinde işlem)  olsun. 
 
 jwt jwtL e H(f)e   ,    w 2 f     ⎡ ⎤ = = π⎣ ⎦                            ....................(133)  
Sonra 

 [ ]{ } x
1exp L x(t) exp dfW (f)H(f)H( f)
2

+∞

−∞

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫    ....................(134)  

 
 
B. Harmonik Giriş 
 
x(t) Pcospt= , p p 2 f  = π olduğunda (130)daki sağ kısım toplamı aşağıdadır. 

  s s

n n
jpt jpu jpt jpu

s s s
s 1 s 1

1
x(t u ) P (e e )

2
− − +

= =

α − = α +∑ ∑  

 

              jpt jpt
n p n p

1P e A (f ) e A ( f )
2

−⎡ ⎤= + −⎣ ⎦   ....................(135)  

 
burada nA ,(132) ile verilmektedir. Binomial teoreminden, 
 

  [ ]n nn n
n k n k

s s n p n p
s 1 k 0

exp j(2k n)ptP
D x(t u ) n! A (f )A ( f )

2 k!(n k)!
−

α
= =

−⎡ ⎤ ⎛ ⎞α − = −⎜ ⎟⎢ ⎥ −⎝ ⎠⎣ ⎦
∑ ∑  .....(136)  

 
Bunu  y(t) için (130)da yerine yazıp nG için (131)i kullanmak aşağıdaki ifadeyi verir. 
 

  [ ]n n

k.n k p
n 1 k 0

exp j(2k n)ptP
y(t) G (f )

2 k!(n k)!

∞

−
= =

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
∑ ∑     ..................(137)  

 
Burada k.n k pG (f )− , n 1 nG (f ,...,f )yi gösterir. if  nin ilk k sı, pf+  ye eşittir ve kalan n k− , pf−  ye 
eşittir. 
 
2k n N 0− = ≥  için (137)de terimleri seçme gösterir ki y(t)ninexp(jNt) bileşeni aşağıdadır. 
 

  ( )
( )

2l N
jNpt

N l.l p
l 0

p 2
e G (f )

N l !l!

+∞

+
= +∑                                      ....................(138)  
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N 0 = olduğunda görünen 0.0 pG (f )nin değeri sıfırdır çünkü 0G 0≡  dır. (138)de p  ve pf nin 
işaretlerini değiştirme, y(t)nin exp( jNt)−  bileşenini verir. x(t) Pcos(pt )= + ϕ  için y(t) 
(137) ve (138)de pt yerine pt + ϕ  yazılarak verilmektedir.Çıkış bileşenleri için bu ifadeler 
Mircea [7] tarafında verilen formüllere benzemektedir. 
 
Aynı tip argümanlar gösterir ki  x(t) Pcospt Qcosqt= +  olduğunda  M 0≥  ve N 0≥  için 
y(t)deki [ ]exp j(Np Mq)t+  bileşeni aşağıdadır. 
 

 ( ) ( )
( ) ( )

2l N 2k M
j(Np Mq )t

N l.l;M k.k p q
l 0 k 0

P 2 Q 2
e G (f ,f )

N l !l! M k !k!

+ +∞ ∞
+ +

+ +
= =

=
+ +∑∑                     ....................(139)  

 
burada, pp 2 f= π , qq 2 f  = π ve G deki dört indisin manası şu ki n N 2l M 2k= + + +  ile 

n 1 nG (f ,...,f )ye eşittir ve if  nin ilk N l+ si pf ye eşit, sonraki l , pf− ye eşit, sonraki M k+ , qf  ye 
eşit ve son olarak k da qf− ya eşittir.(139)da  p  ve pf nin işaretlerini değiştirme, y(t)nin 

[ ]exp j( Np Mq)t− +  bileşenini verir. vb.  
 
Benzer şekilde x(t) Pcospt Qcosqt Rcosrt= + +  olduğunda M 0≥ ,N 0≥  ve L 0≥  için 
y(t)deki [ ]exp j(Np Mq Lr)t+ +  bileşeni aşağıdadır. 
 

 ( ) ( ) ( )
( ) ( ) ( )

2l N 2k M 2i L
j(Np Mq Lr)t

N l.l;M k.k;L i.i p q r
l 0 k 0 i 0

P 2 Q 2 L 2
e G (f ,f ,f )

N l !l! M k !k! L i !i!

+ + +∞ ∞ ∞
+ +

+ + +
= = =

=
+ + +∑∑∑      ........(140) 

 
burada n 1 nG (f ,...,f ) in seviyesi, n N 2l M 2k L 2i= + + + + +  dir. 
x(t)deki kosinüs terimlerinde faz açıları göründüğünde (139) ve (140) daki üssel terimlerde 
Npt  yerine pNpt N+ ϕ  , Mqtyerine qMqt M+ ϕ vb. yazarız. 
 
 
C. Gauss Girişi İçin y(t)  nin Beklenen Değeri 
 
x(t) bir sıfır-mana durağan Gauss işlemi olduğunda, y(t)nin beklenen değeri,(129)un iki 
taraflı averajından elde edilen y(t)  benzer averajıdır ve (134)ün kullanımı aşağıdakini 
gösterir. 

  
n

s s nAA
s 1

exp x(t u ) expJ
=

α − =∑                                       ...................(141)  

  nAA x n n
1

J dfW (f )A (f )A ( f )
2

+∞

−∞

= −∫      ...................(142) 

Burada nAA  indisi (142) ve (150) ile öne sürülmektedir. xW (f ) , x(t)nin iki taraflı güç 
spektrumu ve nA (f ), (132) ile tanımlanmıştır. nAAJ  için (142) integrali, (134) ü (141) ile bir 
tutarak elde edilmekte ve  H(f)  in nA (f ) ye gittiğini göstemek için kullanılır. 
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  s

n
jwujwt jwt jwt

s n
s 1

L e e e e A (f )−

=

⎡ ⎤ = α =⎣ ⎦ ∑                ...................(143) 

 
Böylece y(t) için (129) ifadesi aşağıdakini verir. 
 

  n
1 n n 1 n nAA

n 1

1
y(t) du ... du g (u ,...,u )D expJ

n!

+∞ +∞∞

α
= −∞ −∞

=∑ ∫ ∫             ...................(144) 

 
Bundan sonraki adım nAAexpJ  nın açılımıdır. ±∞  limitleriyle(sınır) 1 2 kx ,x ,...,x  ya göre n-
katlı integal belirten [ ]kQ h(x)  operatörünü tanımlamak için uygundur. 1 2 kx ,x ,...,x nın 

fonksiyonu 1 kh(x )...h(x ) kere, integrant, [ ]kQ h(x) in sağ tarafına yerleşen terimlerle 

tanıtılmaktadır. [ ]0Q h(x)  özdeş operatörü göstermektedir. 

  nAA nAA
0

1
exp j J

!

∞
µ

µ=

=
µ∑  

     [ ]x n r n r
1 r 1

1
1 Q W (f) A (f )A ( f )

!2

µ∞

µµ
µ= =

= + −
µ∑ ∏                ...................(145) 

 
y(t)  için (145)i (144) de yerine yazdığımızda, 0µ =  a karşı gelen (145)deki 1 in katkısı 

yoktur çünkü n 1≥  için 1 üzerinde nDα işleminin değeri 0 dır. n ve µ  toplamlarının yer 
değiştirmesi aşağıdakini verir. 
 

  [ ] n
x 1 n n 1 n n r n r

1 n 1 r 1

1 1
y(t) Q W (f) du ... du g (u ,...,u )D A (f )A ( f )

!2 n!

+∞ +∞ µ∞ ∞

µ αµ
µ= = =−∞ −∞

= −
µ∑ ∑ ∏∫ ∫      ......(146)  

 
n rA (f ) , α  ların aynı cinsten lineer fonksiyonu olduğundan beri, (146)daki yapı α  larda 2µ  

derecedesinde; ven 2= µ için olan hariç   n-toplamındaki tüm terimler 0 dır. n 2= µ  
yerleştirme ve nG  için (131)i kullanılınca aşağıdaki ifadeye götürür. 
 

                          [ ]x 2 1 1 2 2
1

1
y(t) Q W (f) G (f , f ,f , f ,...,f , f )

!2

∞

µ µ µ µµ
µ=

= − − −
µ∑          ................(147) 

 
bu ifade (11)de verilenin ilk iki terimidir. 
y(t)  için biraz benzer bir ifade Deutsch[12]  tarafından verilmektedir. 

 
 
 

VII. GÜÇ SPEKTRASI 
 
Bu bölümde y(t)nin iki taraflı yW (f )  güç spektrumu iki durum için hesaplanmaktadır.İlkinde, 
x(t) girişi, xW (f )güç spektrumu ile sıfır-mana durağan Gauss gürültüsüdür(Mircea-Sinnreich 
durumu).İkincisinde x(t) girişi, bir sinüs dalgası artı sıfır-mana durağan Gauss gürültüsü, 
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NPcospt I (t)+  dir.İki durumda da y(t )y (t)∗+ τ  benzer averajı hesaplandı ve sonra yW (f )yi 
elde etmek  için Fourier dönüşümü alındı. 
 
 
A. Gauss Girişi İçin y(t )z(t)+ τ  
 
y(t) (1) ile verilen Volterra serisi ve z(t)  de n 1 ng (u ,...,u ) in yerinde n 1 ng (u ,...,u )′  olan benzer 
bir seri olsun.İkisi de aynı Gauss gürültüsü x(t) girişine sahip. y(t )z(t)+ τ  benzer 

averajının hesaplan adımları benzer fakat y(t) nin hesaplanmasında kullanılandan daha 
karmaşıktır. 
 
Tekrar yazılan (129) serisinden, 
 

       n m
1 n 1 m n 1 n m 1 m

n 1 m 1

1y(t )z(t) du ... du dv ... dv g (u ,...,u )g (v ,...,v )D D
n!m!

+∞ +∞ +∞ +∞∞ ∞

α β
= = −∞ −∞ −∞ −∞

′+ τ =∑∑ ∫ ∫ ∫ ∫  

           
n m

s s s s
s 1 s 1

. exp x(t u ) x(t v )
= =

⎡ ⎤α + τ − + β − +⎢ ⎥⎣ ⎦
∑ ∑          ................(148)  

Üssel fonksiyonun benzer averajı yine (134)le verilendir fakat şimdi H(f)  aşağıdaki gibi 
düzenlenmiştir. 
 
  jwt jwt jwt jwt

n mL e e e A (f) B (f) e H(f)⎡ ⎤ ⎡ ⎤= + =⎣ ⎦ ⎣ ⎦                          ...................(149) 
 
Burada nA (f ) halen (132) ile verilendir ve n, α , u yerine m, β , v yerleştirilmesiyle mB (f)  
yine (132) ile verilmektedir.Bundan dolayı (148)de üssel fonksiyonun benzer averajı expK  
olarak yazılabilmektedir.Burada K, 
 

 jwt
x n n m m n m

1
K dfW (f ) A (f )A ( f ) B (f )B ( f ) 2e A (f )B ( f )

2

+∞

−∞

⎡ ⎤= − + − + −⎣ ⎦∫  

     nAA mBB nmABJ J J= + +                                                                       ..................(150)  
 

xW (f )in çift olması, exp(jw )τ  içeren terimleri elde etmek için kullanılmıştır; nAAJ , 

n nA (f )A ( f)−  içeren integraldir;vb. 
 

nmABexpJ  yi (145)de nAAexpJ  yapıldığı gibi aynı yolla açılması aşağıdaki ifadeyi verir. 
 

[ ] [ ]
r

k
k x jwK

nAA mBB n r m r
k 1 r 1

Q W (f)
e exp J J . 1 e A (f )B ( f )

k!

∞
τ

= =

⎡ ⎤
= + + −⎢ ⎥

⎣ ⎦
∑ ∏      ..................(151) 

 
(148) de benzer averaj için yerine konduğu zaman [ ]nAA mBBexp J J+ kere 1 in katkısı,(151)de 

k 0=  için karşı gelen 1 olma, y(t) z(t) dir. Bu, y(t)  için (144) serisini takip 
eder.Değişmeyen kısmın katkısı,i.e. (151)deki k 1≥  terimlerinden ortaya çıkan kısım, 
integrallerin ve toplamın seviyesini değiştirerek elde edilebilmektedir.ikili m yi değiştirdikten 
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sonra, n-toplamı, m-toplam ve n-toplamın yapısı olarak yazılabilmektedir.Bundan dolayı 
(151) in (148)de yerine konması aşağıdaki ifadeyi ortaya çıkarır. 
 

 [ ]
1 kk x j(w ... w )t

0 0 k 1 k k 1 k
k 1

Q W (f)
y(t )z(t) a b e a (f ,...,f )b (f ,...,f )

k!

∞
+ +

=

+ τ = ∑  ...................(152) 

 
burada, 0a y(t)= , 0b z(t)=  ve k 0>  için, 
 

 nAA

k
Jn

k 1 k 1 n n 1 n n r
n 1 r 1

1a (f ,...,f ) du ... du g (u ,...,u )D e A (f )
n!

+∞ +∞∞

α
= =−∞ −∞

=∑ ∏∫ ∫           ..................(153)  

 
k 1 kb (f ,...,f )  fonksiyonu, (153)de n, u, ng ,α , nAA n rJ A (f ) yerine m, v, mg′ ,β , mBB m rJ B ( f )−  

yazılarak elde edilen bir ifadeyle verilmektedir. Örneğin, z(t) y(t)≡   ise 

k 1 k k 1 kb (f ,...,f ) a ( f ,..., f )= − −  dir. 
 
(153)de (145) serisini yerine koyma aşağıdaki niceliği kazandırır. 
 

 
k

n
n q n q n r

q 1 r 1
D A (f )A ( f ) A (f )

µ

α
= =

⎡ ⎤ ⎡ ⎤′ ′−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
∏ ∏                 ....................(154)  

 
burada,(145)de r, f , rf  yerine q, f ′ , qf ′  yazıldı. nA (f ), α  larda lineer ve aynı cinsten 
olduğundan beri n 2 k= µ +  olmadığı sürece sıfırdır. ka için µ  ve n  üzerinde alınan ikili 
toplam, n 2 k= µ +  ileµ .üncü terim olan µ  üzerinde tekli toplama sadeleşir. 
 

 [ ] { }x 1 n n 1 n
1 1
Q W (f ) du ... du g (u ,...,u ) (154)ifadesi

!2 n!

+∞ +∞

µµ
−∞ −∞

′
µ ∫ ∫          ...................(155) 

 
n 1 nG (f ,...,f ) için (131) ifadesi gösterir ki katlı integral bir nG  fonksiyonuna gider.netice 

olarak k 0> , ka  için (153) serisi aşağıdaki gibi olur. 
 

 [ ]x
k 1 k 2 k 1 k 1 1

0

Q W (f )
a (f ,...,f ) G (f ,...,f ,f , f ,...,f , f )

!2

∞
µ

µ+ µ µµ
µ=

′
′ ′ ′ ′= − −

µ∑  

      k 1 k 1 x 1 2 k 1 k 1 1
1

G (f ,...,f ) df W (f )G (f ,...,f ,f , f )
1!2

+∞

+
−∞

′ ′ ′ ′= + −∫  

          1 2 x 1 x 2 4 k 1 k 1 1 2 22

1
df df W (f )W (f )G (f ,...,f ,f , f ,f , f ) ...

2!2

+∞ +∞

+
−∞ −∞

′ ′ ′ ′ ′ ′ ′ ′+ − − +∫ ∫     ....(156)  

 
k 1 kb (f ,...,f )   için yerini tutan ifade, (156)da 2 kG µ+  fonksiyonları yerine 

2 k 1 k 1 1G ( f ,..., f ,f , f ,...,f , f )µ+ µ µ′ ′ ′ ′ ′ ′− − − −  konularak elde edilmektedir. Burada z(t)için Volterra 
serisinde mG′ , mg′  kernelinin Fourier dönüşümüdür. 1 kf ,...,f ların işaretleri korunda çünkü 
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analizlerde n rA (f )yerine m rB ( f )−  geçer.Madem ki mG ler simetriktir o halde k 1 ka (f ,...,f )  ve 

k 1 kb (f ,...,f )  da simetriktir. k 1 kb (f ,...,f )  için seri aşağıdadır. 
 

 k 1 k k 1 k 1 x 1 2 k 1 k 1 1
1

b (f ,...,f ) G ( f ,..., f ) df W (f )G ( f ,..., f ,f , f ) ...
1!2

+∞

+
−∞

′ ′ ′ ′ ′= − − + − − − +∫       .......(157)  

 
(152)de [ ]xQ W (f)µ  ile elde edilen  integralleri yazmak, aşağıdaki gerekli ifadeyi verir. 
 

           1jw t
1 x 1 1 1 1 1

1
y(t )z(t) y(t) z(t) df e W (f )a (f )b (f )

1!

+∞

−∞

+ τ = + ∫                        

                          1 2j(w w )t
1 2 x 1 x 2 2 1 2 2 1 2

1
df df e W (f )W (f )a (f ,f )b (f ,f ) ...

2!

+∞ +∞
+

−∞ −∞

+ +∫ ∫    ........(158) 

 
burada ka  ve kb , (156) ve (157) serileriyle verilmektedir. 
 
z(t) y(t)≡  özel halinin üzerinde, y(t )z(t)+ τ yi hesaplayan bir prosedür tasarlayan  Deutsch 
[12] tarafından  duruldu. 
 
 
B. Gauss Girişi İçin Güç Spektrumu  
 
Karmaşık y(t) ve Gauss tipi x(t) için iki taraflı yW (f )  güç spektrumu, (152)de z(t) y (t)∗=  

yerleştirilerek elde edilen τ  nun  y(t )y (t)∗+ τ  fonksiyonunun Fourier dönüşümüdür. Sonra  

1) m mg g∗′ =  , 2) 2 k 1 k 1 1 2 k 1 k 1 1G ( f ,..., f ,f , f ,...,f , f ) G (f ,...,f ,f , f ,..., f , f )∗
µ+ µ µ µ+ µ µ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − = − −   .........(159)  

Ve 3) (156) ve (157) gösterir ki k 1 kb (f ,...,f )= k 1 ka (f ,...,f )∗ . Netice olarak, y(t )y (t)∗+ τ  

ifadesi, k 1 k k 1 ka (f ,...,f )b (f ,...,f ) yerine 2
k 1 ka (f ,...,f )  yazılarak (152) serisiyle elde edilmektedir. 

exp( jwt)−  ile çarpılır ve −∞  dan +∞  a τ  nun integrali alınırsa y(t)nin güç spektrumu için 
,bizim notasyonumuzda, Mircea-Sinnreich [5] serisini verir: 
 

 [ ]2 2k x
y 0 1 k k 1 k

k 1

Q W (f)
W (f) a (f ) (f f ... f ) a (f ,...,f )

k!

∞

=

= δ + δ − − −∑  

            2 2 2
0 x 1 1 x 1 x 1 2 1 1

1
a (f ) W (f ) a (f ) df W (f )W (f f ) a (f ,f f )

2!

+∞

−∞

= δ + + − −∫  

            2
1 2 x 1 x 2 x 1 2 3 1 2 1 2

1
df df W (f )W (f )W (f f f ) a (f ,f ,f f f ) ...

3!

+∞ +∞

−∞ −∞

+ − − − − +∫ ∫     ......(160)  

 
Burada 0a y(t)=  ve k 0> için k 1 ka (f ,...,f ) (156) serisiyle verilmektedir. [ ]k xQ W (f)  
operatöründeki f , 1 kf ,...,f  değerlerini alır. 1 k(f f ... f )δ − − − daki f ile ilgisi yoktur. 0a  için seri, 
y(t)  için (147) serisiyle verilmektedir. k 1,2,3=  için (156)daki ilk birkaç terim aşağıdadır. 
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         1 1 1 x 1 3 1 1
1

a (f ) G (f ) df W (f )G (f,f , f ) ...
1!2

+∞

−∞

′ ′ ′ ′= + − +∫  

     2 2 1 x 1 4 1 1
1

a ( , ) G ( , ) df W (f )G ( , ,f , f ) ...
1!2

+∞

−∞

′ ′ ′ ′ρ σ = ρ σ + ρ σ − +∫  

 3 2a ( , , ) G ( , , ) ...ρ σ λ = ρ σ λ +                          .......................(161)  
 

yW (f )  için (160)daki öncü terimler (14)de verilmiştir. 
y(t) karmaşık olduğunda,(70)i takiben,analizde y(t) nin reel kısmının güç spektrumu, 

n 1 nG (f ,...,f ) ile n 1 n n 1 nG (f ,...,f ) G ( f ,..., f ) 2∗⎡ ⎤+ − −⎣ ⎦  yer değiştirilerek elde edilebilmektedir. 

y(t) nin reel kısmının güç spektrumunu elde etmek için yW (f )  için (160) serisinde 
2

k 1 ka (f ,...,f )  yerine 
2

k 1 k k 1 ka (f ,...,f ) a ( f ,..., f ) 4∗− − −  yazmak için eşitliktir.Bunun gibi, y(t) 
nin sanal kısmının güç spektrumu, yW (f )  için analizde, n 1 nG (f ,...,f ) yerine 

n 1 n n 1 nG (f ,...,f ) G ( f ,..., f ) 2 j∗⎡ ⎤− − −⎣ ⎦  yazılarak elde edilmektedir ve (160)da 2
k 1 ka (f ,...,f )  ile 

2

k 1 k k 1 ka (f ,...,f ) a ( f ,..., f ) 4∗− − −  yer değiştirir. 
 
 
 
C. Sinüs Dalgası Artı Gürültü Girişi İçin Güç Spektrumu 
 

Nx(t) Pcospt I (t)= + olduğunda , p1 f 2 p= π  periyodu ile y(t)  averajı periyodiktir.  Burada 

NI (t), iki taraflı IW (f ) güç spektrumuna sahip bir Gauss gürültüsüdür. y(t)  yi elde etmek 
için Bölüm VI-C deki gibi bir yöntem takip ediyoruz.(135) ve (141) i bir araya getirirsek 
aşağıdaki ifadeyi verir. 
  

jpt jpt
n s n p n p nAA

s 1

p
exp x(t u ) exp e A (f ) e A ( f ) expJ

2

∞
−

=

⎧ ⎫⎡ ⎤α − = + −⎨ ⎬⎣ ⎦⎩ ⎭
∑          ..........(162) 

 
burada nAAJ , xW (f )  yerine IW (f ) konarak (142) ile verilmektedir. (162)nin sağ tarafı (145)in 
yardımıyla açılırsa aşağıdaki gibi olur. 
 

[ ]
N j(2l N)ptN l N l

n p n p l n r n r
N 0 l 0 1 r 1

1 P N!e 1A (f ) A ( f ) 1 Q W(f) A (f )A ( f )
N! 2 l!(N l)! !2

− µ∞ ∞−

µµ
= = µ= =

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤− + −⎢ ⎥⎜ ⎟ ⎣ ⎦ ⎣ ⎦− µ⎝ ⎠ ⎣ ⎦
∑ ∑ ∑ ∏  

                                                                                                             ............................(163)  
(129)un averajını alarak elde edilen integrallerin serisinde yerine yazılıp ve toplamın seviyesi 
değiştirildiği zaman nDα  operatörü, l (N l) 2 N 2 n+ − + µ = + µ =  hariç tüm terimleri sıfır yapar. 
Sonuç aşağıdadır. 
 

[ ] ( ) ( )( )
N j(2l N)ptN

l 2N 1 1 p pl N l
N 0 l 0 0

P e 1y(t) Q W(f) G f , f ,...,f , f , f , f
2 l!(N l)! !2

−∞ ∞

µ +µ µ µµ −
= = µ=

⎛ ⎞= − − −⎜ ⎟ − µ⎝ ⎠
∑ ∑ ∑   ....(164)  
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burada, 0G 0≡  ve p l(f ) , p p pf , f ,..., f  l argümanlarını göstermektedir.Eğer µ  veya l   veya N l−  
sıfır olursa  2NG +µde karşı gelen argümanlar görünmez.(164)te 0µ = , 2NG +µ terimine karşı 

gelen ( ) ( )( )2N p pl N l
G f , f

−
− ,(137)nin notasyonunda ( )l.N l pG f− olarak aynıdır. [ ]lQ W(f)µ deki f , 

pf yi değil sadece 1f ,..., fµ  yi işaret eder.(164) ilk birkaç terimi  (15)de verilmiştir. 
 
y(t) deki exp(jnpt)bileşeni aşağıdadır. 

 

[ ]
2 n

jnpt
l

0 0

P 1 1e Q W(f)
2 !( n )! !2

σ+∞ ∞

µµ
σ= µ=

⎛ ⎞
⎜ ⎟ σ σ + µ⎝ ⎠

∑ ∑ ( ) ( )( )1 1 p n p n2 n 2 n
.G f , f ,...,f , f , f s , f sµ µσ+ + µ σ+ σ

− − −  

                                                                  ..................(165)  
burada, n 0≥ için ns 1=  ve n 0<  için ns 1= −  dir. P sıfır olduğunda (165), (147) haline gelir 
ve lW (f ) sıfır olduğunda, N n=  ile (165), (138) haline gelir. 
 
Bölüm VII-A da z(t)de olduğu gibi şimdi y(t )z(t)+ τ yi elde ediyoruz. 

Nx(t) Pcospt I (t)= +  için  
 

 
n m

s s s s
s 1 s 1

exp x(t u ) x(t v )
= =

⎡ ⎤α + τ − + β −⎢ ⎥⎣ ⎦
∑ ∑                     .........................(166)  

( ){ }jpt jpt jpt jpt
n p m p n p m p nAA mBB nmAB

P
exp e e A (f ) B (f ) e e A ( f ) B ( f ) exp J J J

2
− −⎡ ⎤⎡ ⎤ ⎡ ⎤= + + − + − + +⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦burada J ler,(150) integralinde xW (f )  yerine lW (f )konarak tanımlanmakta ve nA (f ) ile mB (f)  

(149)dakiyle aynıdır.İlk terimin katkısı i.e. teklik, nmABJ  nin açılımında [gör(151)], 
y(t )z(t)+ τ için duble serinin değeri için [ y(t )+ τ  ve z(t)  için (129) serisinin yapısını 

averaj ile ve (166) kulaalnılarak elde edilen]n-toplam ve m-toplamın yapılarına  
ayrılabilmektedir.BölümVII-A da olduğu gibi bu katkı,averajı (164)ten elde edilebilen 
y(t )+ τ z(t)  dir. 

 
nmABexp(J )nin açılımında değişmeyen terimlerin katkısını elde etmek için aşağıdaki gibi 

(166)da sağdaki ilk üssü açarız.. 
 

N j(2l N)ptN l N l
j( )p l N l

n p m p n p m p
N 0 l 0 0 0

1 P N!e l!(N l)! e A (f )B (f )A ( f )B ( f )
N! 2 l!(N l)! !(l )! !(N l )!

−∞ −
λ−σ τ λ −λ σ − −σ

= = λ= σ=

−⎛ ⎞ − −⎜ ⎟ − λ − λ σ − − σ⎝ ⎠
∑ ∑ ∑∑  

                            .......................(167) 
bu da aşağıdaki ifadeye götürür.  
 

N j( )pN l N l
j(2l N)pt

N 0 l 0 0 0

P ey(t )z(t) y(t ) z(t) e
2 !(l )! !(N l )!

λ−σ τ∞ −
−

= = λ= σ=

⎛ ⎞+ τ = + τ + ⎜ ⎟ λ − λ σ − − σ⎝ ⎠
∑ ∑ ∑∑  

 

                       [ ] ( )

( ) ( )
1 kj w ... w

k l
, ,k 1 2 k p l ,N l ,k 1 2 k p

k 1

Q W(f) e
. a f ,f ,...,f ;f b f ,f ,...,f ;f

k!

+ + τ∞

λ σ −λ − −σ
=
∑     .....(168) 
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( ) [ ] ( ) ( )( ), ,k 1 2 k p v l k 2v 1 1 v v 1 k p pv
v 0

1a f ,f ,...,f ;f Q W(f ) G f , f ,...,f , f ,f ,...,f , f , f
v!2

∞

λ σ λ+σ+ + λ σ
=

′ ′ ′ ′ ′= − − −∑ .(169)  

 
ve ( ), ,k 1 k pb f ,...,f ;fλ σ , (169)un sağ tarafındaG  yerine G′  ve 1 kf ,...,f  yerine 1 kf ,..., f− −  yazılarak 
elde edilmektedir. 
 
y(t)nin güç spektrumu aşağıda verilmiştir. 
 

  
2

jwt
y

0

1W (f) d(pt) d e y(t )y (t)
2

π +∞
− ∗

−∞

= τ + τ
π ∫ ∫                      .......................(170)  

 
burada averaj, z(t) y (t)∗=  ile (168)de verilmiştir.a lar (169) ile tanımlanmıştır ve mademki 

n 1 n n 1 nG (f ,...,f ) G ( f ,..., f )∗′ = − − , 

  
( ) ( )

( )
, ,k 1 k p , ,k 1 k p

, ,k 1 k p

b f ,...,f ;f a f ,...,f ; f

                       a f ,...,f ;f

∗
λ σ λ σ

∗
λ σ

= −

=
                                 ......................(171)  

 
Modifiye edilmiş (168) averajı (170) de yerine konduğunda (pt)ye göre integral, 2l N=  hariç 
N ve l ye göre toplamda tüm terimleri çıkarır ve τ  ya göre integral, 

1 2 k p p( f f ... f f f )δ − − − − λ + σ   alır.(ithal eder) 

Ayrıca, y(t)  için (164) ifadesi aşağıdaki gibi yazılırsa, 
 

   n
n

y(t) c exp( jnpt)
+∞

=−∞

= ∑                                   ...........................(172) 

 
(170)in sağ tarafı için y(t ) y (t)∗+ τ  yapısının katkısı sonsuz piklerin serisidir. 
 

    2
n p

n
c (f nf )

+∞

=−∞

δ −∑                       .......................(173) 

 
Bu sonuçları bir araya getirirsek aşağıdakini elde ederiz. 
 

 [ ]
2l l l

2
y n p k l

n l 0 0 0 k 1

P 1 1W (f) c (f nf ) Q W(f)
2 !(l )! !(l )! k!

+∞ ∞ ∞

=−∞ = λ= σ= =

⎛ ⎞= δ − + ⎜ ⎟ λ − λ σ − σ⎝ ⎠
∑ ∑ ∑∑ ∑  

 
 ( ) ( )1 k p p , ,k 1 2 k p l ,l ,k 1 2 k p(f f ... f f f )a f ,f ,...,f ;f a f ,f ,...,f ;f∗

λ σ −σ −λδ − − −λ +σ             ...........(174) 
 
 
Dört katlı toplamda toplamın seviyesini değiştirmek ta ki k-toplam sol tarafdır ve  sabit bir n 
sayısına eşit olan λ − σ  için l, ,λ σ -toplamdaki terimler göz önüne alınırsa aşağıdaki istenen 
ifadeye götürür. 
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 [ ]2
y n p k l 1 2 k p

n k 1 n

1W (f) c (f nf ) Q W(f) (f f f ... f nf )
k!

+∞ ∞ +∞

=−∞ = =−∞

= δ − + δ − − − − −∑ ∑ ∑  

 

    ( )
22 n

1 k p nn, ,k
0

P 1. a f ,...,f ;f s
2 !( n )!

σ+∞

σ+ σ
σ=

⎛ ⎞
⎜ ⎟ σ σ +⎝ ⎠

∑                      .................(175)  

 
burada, nc ,(172) ve (165) ile ( ), ,ka ...λ σ  da (169) ile verilmiştir. n 0≥  olduğunda p n pf s f=  ve 
n 0<  olduğunda p n pf s f= − dir. P sıfır olduğunda x(t) Gauss tipi için (175), (160)a sadeleşir. 

(160)da olduğu gibi [ ]k lQ W(f)  daki f sadece 1 2 kf ,f ,...,f  değerlerini alır ve 

1 2 k p(f f f ... f nf )δ − − − − −  ifadesinde görünen f veya pf  ile ilişkili değildir. Yine (160) olduğu 

gibi delta fonksiyonunun etkisi, k 0>  olduğunda [ ]k lQ W(f)  operatörüyle gösterilen k 

integrallerini “tüketmek”dir. [ ]0 lQ W(f) 1≡  ve (165)in nc exp(jnpt)ye eşit olduğunu göz 

önüne alırsak görürüz ki 2
n pc (f nf )δ −  nin toplamı k 0=  terimi olarak kabul edilebilir ve 

(175), k 0=  dan k = ∞  a toplam olarak yazılabilmektedir. (175)in ilk birkaç terimi (16)da 
verilmiştir. 

 
 
 

VIII. DAHA YÜKSEK MOMENT ve YOĞUNLUK İHTİMALİ 
 

x(t) Gauss tipi olduğunda y(t) için ilk dört kümülanttaki öncü terimler, Bölüm VIII-A da 
türetilmiştir.Bölüm VIII-B de,bu kümülantların y(t) nin yoğunluk ihtimali hakkında bilgi 
elde etmek için nasıl kullanılabilecekleri göstermek için formüller verilmektedir.Bir Volterra 
serisinde ikinci terimden sonrası olmadığı zaman, y(t) nin yoğunluk ihtimali, belli 
parametreleri içeren bir integral olarak ifade edilebilmektedir.Parametrelerin değerleri, bir 
integral eşitliğini çözerek elde edilebilmektedir.Bölüm VIII-C de integral eşitliklerinin değişik 
formları listelenmiş ve kümülantların hesaplanma metotları tartışılmıştır. 
 
A. Kümülantlar 
 
Bu bölümde x(t),iki taraflı xW (f )güç spektrumuyla  reel bir sıfır-mana durağan Gauss işlemi 
olarak alınmaktadır. ng  kerneli reel olarak kabul edildi şöyle ki y(t) reel ve ( )n 1 nG f ,..., f− − , 

( )n 1 nG f ,...,f∗ ye eşittir. Madem ki x(t) durağandır o halde y(t)nin momentlerini veren 
averajlar t ye bağlı değildir. 
 
y(t)  için (11) serisinde y(t) ve 2G µ  yerine [ ]ly(t)  ve (l)

2G µ  yazılırsa, y(t) nin l.inci momenti 
için bir seri verir. 
 

  [ ] [ ] ( )l (l)
x 2 1 1

1

1
y(t) Q W (f) G f , f ,...,f , f

!2

∞

µ µ µ µµ
µ=

= − −
µ∑             ....................(176)  
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burada, (l)
2G µ , (24) ile nG in terimlerinde verilmektedir.(176)da (24) yerine konarak elde edilen 

seri, en çok arzulanan değildir çünkü nG in simetrisi x xW ( f) W (f)− =   ile kullanılarak ve 
integralin değişkenlerinin işaretleri değiştirilerek kolaylaştırılabilmektedir. Maalesef, 
kolaylaştırma için genel bir yöntem bilinmemektedir.Bununla birlikte, ( l 1=  için (176) 
sadeleşmiş formudur) l 2=  için sadeleşmiş form, y(t )z(t)+ τ için (158) serisinde 0τ =  ve 
z(t) y(t)=  alınarak elde edilebilmektedir: 
 

 [ ]2 k x2
k 1 k k 1 k

k 1

Q W (f)
y (t) y(t) a (f ,...,f )a ( f ,..., f )

k!

∞

=

= + − −∑             .....................(177)  

 
(177)deki öncü terimler 22

2 y (t) y(t)κ = −  için (180) de gösterilmektedir. 
 
Takip eden çalışmada y(t) nin nκ  kümülantlarıyla nα  momentlerinden daha fazla 
ilgilenebiliriz. Kümülantlar daha basit ve Bölüm VIII-B de verilen y(t)nin dağılımında direkt 
görünürler.[23,p.186] ile momentle ilgili ilk dört kümülant: 
  

 

1 1
2

2 2 1
3

3 3 1 2 1
2 2 4

4 4 2 1 3 1 2 1

3 2

3 4 12 6

κ = α

κ = α −α

κ = α − α α + α

κ = α − α − α α + α α − α

                                      .......................(178) 

 
n

n1
a x /n!

∞∑  olan (22) hafızasız durumu,genel durum için kullanışlı bir rehberdir.[ na  

katsayısının (177)deki k 1 ka (f ,...,f ) ile ilgisi yoktur.] Burada x , 0 ortalama ve 2σ  varyansı ile 
rasgele normal bir değişkendir. n 1,3,...=  tek olduğunda  x in n.inci momenti 0 ve n çift 
olduğunda n(n 1)− σ  dir. Önce momentler halledildikten sonra (178)de yerine yazılırsa 
aşağıdaki ifadeleri elde ederiz. 
 
 

 2 4 6
1 2 4 62 3

1 1 1a a a ...
2 2!2 3!2

κ = σ + σ + σ +  

 2 2 2 4 2 6
2 1 1 3 2 1 5 2 4 3

1 1 1 5a a a a a a a a a ...
2 4 2 12

⎛ ⎞ ⎛ ⎞κ = σ + + σ + + + σ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 2 4 2 3 6
3 1 2 1 4 1 2 3 2

33a a a a 6a a a a ...
2

⎛ ⎞κ = σ + + + σ +⎜ ⎟⎝ ⎠
                            ....................(179)  

 ( ) ( )3 2 2 6 3 2 2 2 2 4 8
4 1 3 1 2 1 5 1 2 4 1 2 3 1 3 24a a 12a a 2a a 18a a a 36a a a 12a a 3a ...κ = + σ + + + + + σ +  

 
y(t), hafızasız güç serisi yerine (1)le verilen genel Volterra serisi olduğunda,(179)a karşı 
gelen eşitlikteki öncü terimler benzer bir yöntemle elde edilebilmektedir. l 1=  ile 1κ  için 

sonuç (176) ile verilmektedir.i.e.(147). 22
2 y (t) y(t)κ = −  için sonuç (177) ile 

verilmektedir. 3κ  ve 4κ  için sonuçlar daha fazla çalışma ve (178)in kullanımını  
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gerektirmektedir.Yer kazanmak amacıyla  aşağıdaki listede xW (f)df  ve ( )3 1 2 3G f ,f ,f  yerine 
kısaca (W)  ve (1,2,3)vb. yazılmıştır. 
 

( ) ( )1 1 x 1 2 1 1 1 2 x 1 x 2 4 1 2 1 2
1 1

df W (f )G f , f df df W (f )W (f )G f ,f , f , f ...
2 8

+∞ +∞ +∞

−∞ −∞ −∞

κ = − + − − +∫ ∫ ∫  

 

     1 1(w)(1, 1) (WW)(1,2, 1, 2) ...
2 8

= − + − − +∫ ∫∫  

 

2
1(W)(1)( 1) (WW) (1)( 1,2, 2) (1,2)( 1, 2)
2

⎡ ⎤κ = − + − − + − −⎢ ⎥⎣ ⎦∫ ∫∫  

 
1 1 1 1(WWW) (1)( 1,2, 2,3, 3) (1,2)( 1, 2,3, 3) (1,2, 2)( 1,3, 3) (1,2,3)( 1, 2, 3) ...
4 2 4 6

⎡ ⎤+ − − − + − − − + − − − + − − − +⎢ ⎥⎣ ⎦∫∫∫
 

3 (WW)3(1)(2)( 1, 2)κ = − −∫∫  
 

3(WWW) (1)(2)( 1, 2,3, 3) 3(1)( 1,2)( 2,3, 3) 3(1)(2,3)( 1, 2, 3) (1,2)( 1,3)( 2, 3) ...
2
⎡ ⎤+ − − − + − − − + − − − + − − − +⎢ ⎥⎣ ⎦∫∫∫

 
[ ]4 (WWW) 4(1)(2)(3)( 1, 2, 3) 12(1)(2)( 1,3)( 2, 3)κ = − − − + − − −∫∫∫  

 
{ }(WWWW) 2(1)(2)(3)( 1, 2, 3,4, 4) 6(1)(2)(3,4)( 1, 2, 3, 4) 12(1)(2)( 1,3)( 2, 3,4, 4)⎡+ − − − − + − − − − + − − − −⎣∫∫∫ ∫

 
 
{ }12(1)( 1,2)( 2,3)( 3,4, 4) 12(1)(2, 3)(3,4)( 1, 2, 4) 12(1)( 1,2)(3,4)( 2, 3, 4)+ − − − − + − − − − + − − − −

 
{ }6(1)(2)( 1, 2,3)( 3,4, 4) 3(1)(2)( 1,3,4)( 2, 3, 4) 3(1)(2)( 1,3, 3)( 2,4, 4)+ − − − − + − − − − + − − − −

 
]3(1,2)( 1,3)( 2,4)( 3, 4) ...+ − − − − +                 ....................(180)  

 
 
 
Zorluğundan dolayı 4κ de dört katlı integralin doğru türetilmesi bitirilememiştir.(180)de 

verilen ifade, sadece lκ de görünen, ly (t)  de yapı ve integrallerine ayrılamayan terimler 
varsayımı üzerine oturtulmuştur. Eski  metotla elde edilen (180)deki terimler ve hafızasız 
durum(179) sonuçlarını sağladığı gerçekleriyle varsayım desteklenmiştir. 
 
Eğer varsayım doğru ise (176) ve (24)ü takip eder ki lκ  için olan seride µ -katlı integraldeki 
G lerin yapıları,  2µ  nün parçalarının l-kısmına karşılık gelir.Örnek olarak 3κ de  2-katlı 
integraldeki (1)(2)(-1,-2) yapısını göz önüne alalım. Burada 2µ =  ve l 3=  ve yapı, 
2 4µ = ün 1+1+2 parçasının 3-kısmına karşılık gelir.Bu yapı sadece 3κ de 2-katlı integralde 
görünür. 1κ  ve 2κ  deki 2-katlı integrallerde görünmez. 
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B.  Yaklaşık Yoğunluk İhtimali 
 
Bu bölümde nκ  kümülantından y(t)nin  p(y)  yoğunluk ihtimali hakkında bilgi edinme 
metoduna yeniden göz atıyoruz. 
 
y(t)nin ortalama ve varyansı sırasıyla 1κ  ve 2κ dir. “eğrilik” ve “fazlalık” ın 1γ  ve 2γ  
katsayıları, p(y)nin eğrilik ve yüksekliğini karşılaştırmak için istatistikçiler tarafından 
kullanılmıştır.Normal bir eğriye sahip ve aynı ortalama ve varyans, 

 
 3 / 2 2

1 3 2 2 4 2          γ = κ κ γ = κ κ                                 ....................(181)  
 
Teorik incelemeden p(y)nin merkez kısmının biçimi yaklaşık olarak bilindiğinde,bazı uygun 
eğriler tahsis etmek için, (ilk dört kümülantdan ede edilen) ilk dört momenti kullanmak 
mümkün olabilir. Örneğin Pearson –tipi bir eğri. 
 
p(y)nin merkez kısmı normal olarak bilindiğinde,normalden sapma, Edgeworth-tipi seriyle 
gösterilmektedir.[23.pp.221-232] 
 

  1/ 2 (3) (4) 2 (6)
2 1 2 1

1 1 1p(y) Z(u) Z (u) Z (u) Z (u) ...
6 24 72

− ⎧ ⎫⎡ ⎤ ⎡ ⎤= κ − γ + γ + γ +⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
   ..........(182) 

 
burada, ( ) 1/ 2

1 2u y(t)= − κ κ  ve, 
 

( ) 1/ 2 2 (k) kZ(u) 2 exp( u 2) ,                Z (u) (d/du) Z(u)−= π − =                 .......(183)  
 
(k)Z (u)  fonksiyonları, [18, Tablo 26.1,pp.966-973]de tabloda düzenlenmiştir. 

(182) alındığında p(y) , 0y y=  da pikine sahiptir. Burada, 
 

( )
1
2

1/ 21
0 1 1 22

2
0 2 2 1

  y
1 1p(y ) 2 1
8 12

−

≈ κ − γ κ

⎛ ⎞≈ πκ + γ − γ⎜ ⎟⎝ ⎠

         ...............(184)  

 
 
 
C. İki-Terim Volterra Serisinin Yoğunluk Olasılığı 
 
İki-terim serinin p(y)  yoğunluk ihtimali için bir ifade aşağıdadır. 
 

 1 1 1 1 1 2 2 1 2 1 2
1 1

y(t) du g (u )x(t u ) du du g (u ,u )x(t u )x(t u )
1! 2!

+∞ +∞ +∞

−∞ −∞ −∞

= − + − −∫ ∫ ∫      .........(185)  
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Bu ifade,[ xW (f )  güç spektrumu ve xR ( )τ otokorelasyon fonksiyonu ile] x(t) Gauss tipinde 
olduğunda , [24]e geri dönen bir metotla elde edilebilmektedir.Problem tümüyle yalnız ikinci 
terimin dağılımını elde etmeyle ilişkilidir ve buradan da normal değişikliklerin kuadratik 
formlarıyla ilişkilidir.Bu tipin problemleri  bir çok yazar tarafından çalışılmıştır. 
[17],[21],[24]-[26]. Burada, bu çalışmalar üzerine oturtulmuş p(y)yi hesaplamak için bir 
metot veriyoruz. Tüm integraller aksi belirtilmediği sürece −∞  dan  +∞  a dır ve 

n∑ toplamı da bir integral eşitliğinin tüm eigendurumları üzerindeki toplamı 
göstermektedir. 
 

TABLO II 
nλ ve nξ yi DÜZENLEMEK İÇİN İNTEGRAL EŞİTLİKLERİ 

F(x) k(x,y)F(y)dyλ = ∫  

   No F(t)veya F(f)     k(t,u)  veya  1k(f,f )                  Ortonormalizasyon                         nξ  

1 2 2 1 2 1 2 mn m n 1 n

1 2 1

    1              (t)               dv dv g (v ,v )a(t v )a(u v )    dt (t) (t)                       dudvg (u)a(v u) (v)

    2             (f )               A(f)A( f )G (f, f )         

ϕ − − δ = ϕ ϕ − ϕ

Φ − −

∫∫ ∫ ∫∫
mn m n 1 n

x 2 n mn 2 m n 1 n

                df (f ) ( f )                   dfG (f )A(f ) ( f )

    3             (t)               dvR (t v)g (v,u)                       dudvg (u,v) (u) (v)    dug (u) (u)

    4 

δ = Φ Φ − Φ −

ψ − λ δ = ψ ψ ψ

∫ ∫
∫ ∫∫ ∫

x 2 1 mn m n x 1 n

2 x

            (f)               W (f)G (f, f )                                 df (f) ( f) W (f)       df G (f ) ( f)

    5             (t)                dvg (t,v)R (v u)                       

Ψ − δ = Ψ Ψ − Ψ −

χ −

∫ ∫
∫ 2

n mn x m n 1 x n n

2
x 1 2 1 n mn x m n 1 x n n

n

dudvR (u v) (u) (v)  dudvg (u)R (u v) (v)

    6             (f)               W (f )G (f, f )                             dfW (f) (f) ( f)          dfG (f )W (f) ( f)

   

λ δ = − χ χ − χ λ

Χ − λ δ = Χ Χ − Χ − λ

ψ

∫∫ ∫∫
∫ ∫

2
n n n x x

n 2 n n 1 2 1 n 1 x n nn

(t) dua(u t) (u)         (f) A( f ) (f )                 R (t u) dva(t v)a(u v)                   W (f) A(f )

    (t) dug (t,u) (u)          (f) df G (f, f ) (f )     R (t u) (t) (u)  

= − ϕ Ψ = − Φ − = − − =

χ = ψ Χ = − Ψ − = ψ ψ

∫ ∫
∑∫ ∫ x 1 n n 1n

1 1
n n x n n n x n 2 n n n 2 1 2 n n 1 n 2n n

n mn m n

             W (f) (f f ) (f) ( f ) 

(t) duR (t u) (u)    (f) W (f) (f)                    g (u,v) (u) (v)                  G (f ,f ) (f ) (f )

  dt (t) (t)   

− −

δ − = Ψ Ψ −

λ ψ = − χ λ Ψ = Χ = λ χ χ = λ Χ Χ

λ δ = ψ χ

∑
∑ ∑∫

∫ n mn m n 2 1 2 2 1 2

n

           df (f) ( f)         dvdwg (v,w)a(t v)a(u w)      A(f )A(f )G (f ,f )

                                                                                                          

λ δ = Ψ Χ − − −

= λ ϕ
∫ ∫∫

n n n n 1 n 2n n
(t) (u)                               (f ) (f ) ϕ = λ Φ Φ∑ ∑  

Not: a(t), (t), (t), (t)ϕ ψ χ nin Fouier dönüşümleriA(f), (f), (f), (f)Φ Ψ Χ  dir; 2
xA(f ) W (f )= ,A( f) A (f )∗− =  

 
 
İlk problem nλ  eigendeğerlerinin bir kümesini ve nξ  çokluğunu hesaplamaktır.Bunlar 
bilindiğinde p(y)  aşağıdaki gibi verilmektedir. 
 

 

1
2

jyz

2 2
n

n
nnn

1
 p(y) e Q(z)dz

2

z1
Q(z) exp

2(1 j z)(1 j z)

+∞
−

−∞

=
π

⎡ ⎤ξ= −⎢ ⎥− λ− λ ⎣ ⎦

∫

∑∏

                        ...........................(186) 

 
burada, nλ  ve nξ reel ve z 0= da 

1
2

narg(1 j z) 0− λ = dır. Genelde p(y)  integralini değerini 
bulmak için  tek pratik yol sayısal integraldir. Tüm nλ  ler pozitif olduğunda,integralin  yolunu 
yukarı  Imz = ∞  kaydırma gösterir ki 2

n nn
2− ξ λ∑  den küçük y için p(y) sıfırdır, serinin 

yakınsak olmasını sağlar. 
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nλ  ve nξ  parametreleri, Tablo-II de listelenen altı integral eşitliğinin [ 2 1 2g (u ,u ), xR ( )τ  ve 
bunların Fourier dönüşümleri, 2 1 2 xG (f ,f ) , W (f)ye göre]  en uygun olanını çözerek elde 
edilmektedir.Bu eşitlikler aşağıdaki ifadenin formlarıdır. 
 
  F(x) k(x,y)F(y)dyλ = ∫                                      ....................(187)  
 
Kerneller, “k(t,u) veya 1k(f,f )” etiketli sütunda ve eigen fonksiyonları da “F(t) veya F(f )” 
etiketli sütunda listelenmiştir.İntegral eşitliğinin çözümü nλ yi ve eigen fonksiyonlarını verir. 
Sonradan nξ , “ nξ ” etiketli sütunda listelenen integrallerden karşı gelen integralin değeri 
hesaplanarak elde edilmektedir.Eğer çözüm için Tablo-II de 1 veya 2 integralleri seçildiyse, 
argA(f )nin seçiminde biraz bağısız kalınır maden ki A(f ),sadece 2A(f) W(f)= ile  
kısıtlanmakta ve argA( f) argA(f)− = − .(a(t) ,A(f )nin Fourier dönüşümüdür.) 
 
Tüm nλ  eigen değerleri reeldir çünkü tablonun 1.inci satırında gösterilen kernel, t ve u nun 
simetrik bir fonksiyonudur. 
 
Öncelikle x(t)yi x(t )x(t) ( )+ τ = δ τ  ile beyaz gürültü olarak alarak ve ensemblenin tipik bir 

x(t u)+  elemanının n nn
c (t) (u)ϕ∑  olarak açılmasıyla Tablo-II yapılabilmektedir. Burada 

n(u)ϕ lar bir as-yet-unspecified ortomormal kümedir.t yerleştirilmiş ensemblenin elemanından 
elemanına gittiğimiz sürece nc (t) ,birim varyans ve sıfır-mana ile normal rasgele değişkenler 
gibi davranır. Bu aşamada n(u)ϕ , 2g (t,u)  kerneline sahip bir integral eşitliğinin n.inci eigen 
fonksiyonu olarak seçilmektedir.İntegral eşitliğini, x(t)nin xW (f )genel güç spektrumuna 
sahip olduğu hale çevirme, A(f ) yi kazandırır ve Tablo-II de 1 e götürür. argA(f )ile ilgili 
keyfilik, n(t)ψ tanımlanarak ortadan kaldırılabilir. n(t)ψ  ve (t)χ   eigen fonksiyonları aslında 
aynı yönde ilgilidir şöyle ki bir Rg  matris yapısının n.inci modal sütunu n(t)ψ  ve m.inci 
modal satırı (t)χ dir.Burada, R ve g simetrik kare matrislerdir. 
 
 ( ) ( )n n mI Rg 0 , (t) I Rg 0 , I  birim matris ⎡ ⎤λ − ψ = χ λ − = =⎣ ⎦  
 
(t)ϕ , n(t)ψ , (t)χ  için üç integral eşitliğine karşı gelme, bunların (f ), (f ), (f )Φ Ψ Χ  Fourier 

dönüşümleri için üç daha karşı gelmedir. 
 
p(y)  yoğunluk olasılığı için kümülantlar, Q(z)karakteristik fonksiyonunun güç serisi 
açılımındaki katsayılarla orantılıdır. Q(z)  için (186) ve Tablo-II den aşağıdakiler bulunur. 
 

           1 n x 2n

1 1
dfW (f)G (f, f )

2 2
κ = λ = −∑ ∫  

          2 2 (2)
2 n n x 2 x 1 1n

1 1 1
dfW (f)G (f, f ) dfW (f )G (f )G ( f )

2 2 2
⎛ ⎞ ′κ = λ + ξ = − + −⎜ ⎟⎝ ⎠

∑ ∫ ∫  

          ( ) m 2 m 2
m n n nn

m 1 ! m!
2 2

−⎡ ⎤−
κ = λ + ξ λ⎢ ⎥

⎣ ⎦
∑                                                         ...............(188)  
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 ( ) (m) (m 2)
x 2 1 2 x 1 x 2 1 1 1 2 2 1 2

m 1 ! m!
dfW (f)G (f, f ) df df W (f )W (f )G (f )G (f )G ( f , f )

2 2
−−

′ ′= − + − −∫ ∫∫  

 
(m)
2 1 2G (f ,f )′  fonksiyonu  aşağıdaki gibi tanımlanmıştır. 

  
(l)
2 1 2 2 1 2G (f ,f ) G (f ,f )′ =  

 (k) (k 1)
2 1 2 x 2 1 2 2G (f ,f ) dfW (f)G (f ,f)G ( f,f ),          k 1.−′ ′= − >∫               .....................(189)  

 
2 1 2G (f ,f )nin  seri için Tablo-II de ortonormal ilişki 6 nın adım adım uygulanırsa aşağıdaki 

ifadeyi verir. 
  

(k) (k 2)
1 2 n n 1 n 2n

G (f ,f ) X (f )X (f )−′ = λ∑              .......................(190) 
 
(188)de kullanılan (k )

nλ  nın toplamı elde edilebilmektedir. 
 
n 2>  için n 1 nG (f ,...,f ) sıfır olduğunda (188) ile verilen 1 2 3 4, , ,κ κ κ κ  değerleri, (180) elde 
edilenle uygundur. 
  
  
 
 
 
 
 
  
                 
 
 
  
 
 
 
 


