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HARMONIK VE GAUSSIAN GIRIiSLi BELLEKLi NONLINEAR
VOLTERRA SISTEMLERIN CIKIS OZELLIKLERI

THE OUTPUT PROPERTIES OF VOLTERRA SYSTEMS
(NONLINEAR SYSTEMS WITH MEMORY) DRIVEN HARMONICS
AND GAUSSIAN INPUTS

i R.RICE AND E. BEDROSSIAN
Ozet

[letisim sistemlerinde siklikla distorsiyon kaynaklanan bozulmalar meydana gelir. Sistemlerin
genis bir kesimi i¢in bu tip bozulmalar Volterra serisi yardimiyla hesaplanabilmektedir.

Okuyucuya, siniis dalgalar1 veya Gauss giiriiltiileri ile iletilen(nakledilen) sistemler ig¢in
Volterra-serisi-tlir-analizlerinin uygulanmasinda, yardimci olacak hem eski hem de yeni
sonuclar verilmistir.

Analizlerde n.inci Volterra kernelinin, G, n-katli Fourier doniisiimii énemli bir rol oynar.
Sistem esitliklerinden G, hesaplama metotlar1 tanimlanmis ve birgok 6zel sistem g6z Oniinde
bulundurulmustur. G, bilindiginde, ¢ikis hakkindaki ilginin parcalari, G, in genel formiillerde
yerine yazilarak Volterra serisinden tiiretilmesiyle elde edilebilir. Giris iki veya ii¢ siniis
dalgasinin toplami oldugunda ve gii¢ spektrumu ve farkli momentler, giris Gauss tiirlinde
oldugunda, bu parcalar ¢ikis harmonikleri i¢in ifadeler igerir.Volterra serisinin sadece lineer
ve kuadratik terimlerden olusan durumlarina 6zel ilgi verildi.

1. GIRIS

Volterra Serileri ilk kez 1942 de Wiener tarafindan dogrusal olmayan devre analizi igerisinde
ortaya c¢ikartilmistir. Wiener [1] daha sonra teoriyi genisletti ve FM spectrada kapsanan
birtakim problemlere uyguladi.Wiener’in ¢alismasindan buyana konuyla ilgili bir ¢ok rapor ve
makaleler yazildi.

Volterra serileri 0Ozellikle iletisim sistemlerindeki kiigiik (fakat zahametli) tahrifatlarin
hesaplanmasinda ve sonlarda amplifikatorlerin farkli tiirlerinde meydana gelen tahrifatin
diizenlenmesinde kullanilmaktadir [2]-[6] . Bir FM sistemindeki filtreler yoluyla olusan
tahrifat da yine bir Volterra serisi olarak ifade edilebilmektedir.

Yazinin konusu Okuyucuya, sinilis dalgalar1 veya Gauss giiriiltiileri ile iletilen(nakledilen)
sistemler i¢in Volterra-serileri-tiir-analizlerinin uygulanmasinda, yardimec1 olacak hem eski
hem de yeni sonuglar vermektir. Bir FM sisteminde filtrelerden meydana gelen tahrifatlarin
giic spektrumlart i¢in Mircea nin[7] miikemmel serilerini ve bunun, Mircea ve Sinnreich[5]
tarafindan Volterra serileri ile tanimlanan sistemlere genisletilmesini 6grendigimizde bu
makaleyi yazmamiza yon veren olaylar basladi.Mircea nin ¢alismasindan haberimiz yokken
yayimmladigimiz [8]-[10] yazilarda, Mircea nmin FM serilerinde ikinci ve {igiincii-cins
modiilasyon terimlerini verdik.(Proceedings of the IEEE nin editorii olarak) Mircea ile olan



mektuplagsmalarimiz  sonucunda bazi yeni fikirler ortaya c¢ikti. Makale bu fikileri
genisletmektedir.

Yazimizda,bazi1 konular farkli sekilde konu edilmekle beraber, 1955 de Deutsch[12] tarafinda
yazilan makaleye ve (biraz da) 1959 da George[13] tarafindan yazilan rapora benzemektedir.

Volterra serisi, X(t) girisinin giiciinde dogrusal olmayan bir sistemin c¢ikisini ifade
eden(tastyan) “hafizali gii¢ serileri” olarak tanimlanmaktadir.iletisim problemlerinde ¢akisan
sistemlerin bazilar1 Volterra serileri olarak ifade edilebilmektedir.Tipik bir sistem i¢in seriyi
asagidaki gibi yazabiliriz.

y(t):ilfdu1...fdungn(u1,...,un)f[x(t—ur) ........... (1)

Burada, y(t) ¢ikis, x(t) giris ve g, (U,,...,U,) kernelleri sistemi tanimlar.' Birinci seviye kernel
9,(u,), dogrusal bir agin tepkisine benzer etkidedir. Béylece yiiksek seviye kerneller, lineer

olmamanin farkli seviyelerinin karakterize edilmesini saglayan, daha yiiksek seviyeden etki
tepkileri olarak goriilebilmektedir.

(1) formiiliindeki l' katsay1s1 ¢cogu yazarlar tarafindan yazilmamaktadir.Bir ¢ok esitligimizi
n

basitlestirdiginden dolay1 biz yazdik.Bazi yazarlar kernellerin u.. larin simetrik olmayan
fonksiyonlar1 olmasina izin vermelerine ragmen, burada ele alinan sonuclar i¢in simetri
gereklidir. Eger bir sistemin tepkisi, (1) formiiliiniin, simetrik olmayan bir v, kerneli i¢ceren

bir serisi olarak elde edilebilirse g, in hanesinde simetrizasyon ile elde edilebilir.Bu islem ,u,
ler tizerinde indislerin yerlerinin degitirilmesinden ve g,in 1/nlkere 7y, sonucunun toplami
olarak alinmasindan ibarettir.

n-kathi Fourier dontistimii
G, (f,...f,)= J du1...j du.g,(Us,...,u,).exp[-jlou+...+ou.)] .. (2)

burada w, = 2nf, analizde 6nemli bir rol oynar. Gy sifirdir ¢iinkii bizim Volterra serileri n =1

den baslamaktadir.( n =0 yerine bir aktif sistemi belirtenn =1 den basliyor. Or. Girissiz bir
cikis). Yine G,(f,),dogrusal bir agin bilinen bir transfer fonksiyonu olarak kabul edilecektir.

Boylece n. inci seviye Volterra kerneli, n.inci seviye transfer fonksiyonuna benzer goriiniir.
G, (f1,...,fn) n.inci seviye Volterra transfer fonksiyonu. g (u,,...,u.), U,,...,u, lerin simetrik

bir fonksiyonu oldugundan G, (f,,..

fonksiyonudur. III. Béliimde deginildigi iizere bircok durumda G, g,in ilk hesaplamasi

LR

f,) fonksiyonu da  f,,...,f lerin simetrik bir

olmadan elde edilebilir.

! g, (U1, Uy ) in argiimanlari ve bunun (2)deki Fourier doniisiimii Gn (f1,. ce fn ) bazen anlam agik

oldugunda kisalik agisindan atlanacaktir.



Kabul edelim ki G_,n=12,... , belli bir sistem i¢in bilinsin.Yine (1) deki sitem igin x(t)
girisi; 1) bir veya iki siniis dalgasi. 2) Gauss giiriiltiileri. 3) bir siniis dalgas1 arti Gauss
glriiltiileri veya 4) rasgele bir nabiz silsilesi. den olugsun. Sonra y(t) icin Volterra
serilerinden tiiretilen formiillerde G yerine yazarak, y(t) ¢ikisi hakkinda bazi ifadeler elde

edebiliriz. 1.B6liimde bu formiillerin bazi1 Oncii terimleri listelenmistir. Bu liste sonraki
boliimde tiiretilen formiillerle bir rehber olarak genisletilmistir.

Tiim formiiller sonsuz serilerdir.Cok siikiir ki iletisim sistemlerindeki ¢aligsmalarda ikinci veya
ticlincii mertebenin tizerindeki modiilasyon terimlerini ihmal etmek genelde miimkiindiir.

Xit) MODULATOR hixitil FILTRE zit) DEMODULATOR y(t) = Flz(0)]
’ h(x) 9(9,6(0) F(z)

sekill. Modiilator-Filtre-Demodaiilator Sistemi

"-\-_\_‘h-\-\--\_
x(t) wi(t) nogrusalm\ yit) yit)

> (=) — p— Amplifikator > —
M

A A4\

z(t) FILTRE
B(f) «

gekil2. Dogrusal olmayan amplifikatorle feedback sistemi

Pratikte Volterra serisi, diger tarafta yapilmamis hicbir seyi yapmamiza imkan
tanimaz.Bununla beraber modiilasyon problemleri cebirin bir batakligina gotiiriir.Volterra
serileri yaklagimiyla, bir¢cok problem, ilkin G_ hesaplanmasi sonra da bunlarin genel

formiilde yerine yazilmasi yoluyla islemden gecirilebilmektedir.

Kolaylik ag¢isindan yazi iki ana kisma ayrilmistir: 1) Sonu¢ ve Orneklerin ifadesi
2)Formiillerin tiiretilmesi.Bu girisi, baslica sonuglarin 6ncii terimlerinden olusan bir dzet

form takip etmektedir.Bundan sonra bir¢ok sistem tiirli i¢in G, (f1,...,fn) Volterra transfer

fonksiyonlariin hesaplanmasi i¢in metotlar verilmis ve son olarak da formiillerin kullanimini
tarif etmek icin bazi ornekler ¢oziilmiistiir.Bunlarin arasinda Sekill de verilen genel sistem,
FM tahrifatlart i¢in Mircea serilerindeki Oncii terimleri elde etmek i¢in kullanildi ve Sekil2
deki dogrusal olmayan sistem son zamanda Narayanan[6] tarafindan islenmistir.

Ikinci boliim ¢ogunlukla degisik sonuglarm tiirevlerinden olusmaktadir.Cikis ve bunun bazi
girigler i¢in olan spektrumu hakkinda ifadeler icermektedir. Ek olarak daha yiiksek seviye
momentleri,yayilma ¢ikisinin birikimleri i¢in ifadeler elde etmek icin, bir Gauss tipi giris
durumu i¢in goz oniine alindi.Formiiler , birikimler bilindiginde y(t) nin yogunluk ihtimali

hakkinda verdikleri bilgiye gore listelenmistir.Kuadratik formlarin yayilmasinda bilinen
sonuglarin ilgisi, y(t)nin yogunluk ihtimali i¢in bir ifade elde etmek i¢in uygulanmistir. y(t)

i¢in Volterra serisinde x(t) Gauss tipinde ve terimler ikiden 6te oldugunda atlanmustir.



2. FORMULLERDEKI ONCU TERIMLER

Bu béliimde G Volterra transfer fonksiyonlar1 bilindiginde, baz1 x(t) girisleri i¢in y(t) ¢ikist

hakkinda bilgi veren formiillerin 6ncii terimleri listelenmektedir.Listelenen oncii terimlerin
cogunlugu G,(f,,f,,f,)den Steye gitmez.Bu arada G, simetriktir.

Sonraki boliimlerde verilen formiillerle liste rehbere genisletilmistir.Oncii terimler genelde
yeterlidir. Gergekten de okuyucu, tim formiillerden pratikte fazla bir yardim
beklememelidir.Genelde bu boliimde listelenenlerden 6te sadece iki veya {i¢ terim, hiz artirma
giicligiinden dolay1 giiniimiiz bilgisayarlariyla kullanilabilmistir.

A. Siniisodal Girisler.

X(t) =Pcospt oldugunda, (137) asagidaki tiim seri ifadeyi verir verdiginde,

y(t)= 22( je"pk[f ik k;‘)pt]len_k(fp) ........... 3)

n=1k=0

Burada p =2nf ve G, (f)) de G (f,...f,) yi ifade etmektedir. f nin ilk k siyle f ye
esittir ve kalan n—k da —f ye esittir.Gelecek bolimde hafizasiz dogrusal olmamanin drnegi
igin (23) gosterir ki G, (f,,...,f, ) bir a, sabiti haline gevrilir ve (3) serisi p vea, gére yakinsak
veya 1raksak olabilir. (3) deki Oncti terimler,

()—[p G,(f,,—f )+ ]+e‘p‘[pG(f)+ G, (f,, f)+...]+ej2m[%2c;2(fp,fp)+...]
+ei3pt[4—8c33( B8 )+ +e th[pG( f)+ G( £, )+

2
+e_J2pt[%G2(_fp’_fp)+"']+e_J3pt[Z_8G3(_f ,—fp,—fp)+...]+...

x(t)=Pcos(pt + @) oldugunda (3) ve (4) ifadelerinde, iislerdept yerine (pt+ ¢) yazilmasi
y(t) yi verir.

p ve q orantili degilken, Xx=Pcospt+Qcosqt oldugunda y(t)nin, exp[j(Np+Mq)t]
bileseni i¢in tiim seriler (139) da verilmistir.dc deki oncii terimler vey(t) nin baz1 diisiik
seviyeli bilesenleri (5) dedir.

{%262( v, )}

{e”’t[pG(f) p° —G,(f,f,—f )+ pQ —G,(f.f,, fq)]}



e P G (£ £)
8 2\'p’’p

ej(p+q)t ? Gz(fp’fq )

P?Q
glpralt

S Gl (5)

exp[j(p+q)t] bileseninde q ve f, nun isaretlerinin degistirilmesiyle exp[j(p—Qq)t] ifadesi
elde edilir vesaire. p ve q orantili iken bilesenlerin bazilar1 ¢akisir(birlesir). Ornegin, eger
q=2p ise ve X =Pcospt+Qcos2pt, 2p—q ve —2p +q terimleri , yeni dc bilesenlerinde
oncii terimler vermek i¢in (5)deki dc terimleriyle bir araya getirilirse,

2 Q? P2Q P?Q
[F’_Gz(fp,—fp)JrTGz(z 26+ =Gy, f, 2fp)+WGs(—fp,—fp,2fp)} .......... (6)

Benzer sekilde (5) de exp(jpt)bileseninin toplami olarak verilen yeniexp(jpt)deki oncii
terimler f, = 2f ile, q = 2p oldugunda (—p + q)teriminin katkisi olan.

e ? G(-f.2f) (7)

u (—-p+q) terimi, (p+q) teriminden p ve f nin isaretlerinin degistirilmesiyle elde

edilmekte ve sonra q = 2p ile f, = 2f  yerlestirilir.

x(t)=Pcospt+Qcosqt+Rcosrt oldugunda y(t)nin exp[j(Np+Mq+Lr)t] bileseni i¢in
tiim seriler (140) ile verilmistir.Ornegin y(t)nin exp[j(p+q+r)t]bileseni igin dncii terimi,

G,(f,f.f)di. (8)

p’g’r

eJ(p+q+r)t PQR
8

r vef, nin isaret degisimi, exp[j(p+q—r)t] bilesenindeki dncii terimi verir vesaire.

X(t) bazi siniisodal bilesenlerin sonlu toplamina esit oldugunda X(f) Fourier doniisiimiine
sahiptir.i.e.

x(t) = Te"mtX(f)df W=21f e, (9)

—oo

sonra (l)de yerine yazilmasi, y(t) ve bunun Fourier doniisiimii Y(f) asagidaki gibi
verildigini gosterir.



y(t) :i ff TdfG R A Y e t]‘[X(f)
Y(f) = 1G(f)X(f)+ jdfG (F,F — £ IX(F,)X(F )

+§ j df, j d,G, (£, F,, F —f, — £, )X(E )X(E)X(F =, —F,) 4. coverenrenn (10)

B. Gauss Tipi Giiriiltii Giris.
<y(t)> i(;in (147)deki tiim serilerdeki oncii terimler asagidadir.

< y(t) >_— j dfW._(f,)G,(f,,—f,) jdf jdf W, (f )W, (f,)G, (f,, =, f,,—F,) +... ..(11)
< y?(t) > igin (177)deki tiim serilerdeki 6ncii terimler asagidadir.

<YA(t) >=< y(1) 52 + | dEW, (161G, ()

+Tdf1Tdf2WX(f1) W, (£,)[G,(f,)G,(~f f)+;G (f,F,)G,(~F, —F,) +oee oo (12)

Uclii integralde kapsanan (12) de gosterilmeyen {iiincii seviye terim ikinci cumulant
K, =< y*(t)> - < y(t) > i¢in (180)de verilmistir. <y?(t)> mn tam serileri (152),(156)-
(158) de verilen < y(t+1)z(t) >nin tam serisinin 6zel bir halidir.Burada z(t), y(t)i¢in (1)
serisinden elde edilen bir Volterra serisi ileg, (U,,...,U, )yerine yazilmasiyla farkli bir kernel
g, (uy...,u_ )olarak tanimlanmustir. y(t) vez(t) her ikisi de aymi Gauss tipi x(t)girisine
sahiptir. (157)de ¢ikanG/ (u,,...,U, ), g, (U,,...,u, )nin Fourier doniisiimidir. y(t) nin yogunluk
olasilig1 i¢in birinci cumulant

K, =<y(t) >, ikincisi K, =<y?(t)>-<y(t)>* ve (180)den K,ve K, deki éncii terimler
asagidadir.

Ky =3 [ df, [ df,W, (£, )W, (f,)G,(f,)G(f,)G,(~F,~F,) +...

K, =4 [ o, [ o,  df, W,(E)W, ()W, (£,)G,(1)Gf,)
G5, ) 430, (< )G ) F e o (13)

(13) de gosterilen ifadelerden sonra gelecek terimler (180) de verilmistir, fakat K ,ve K, i¢in
serilerin genel formlar1 bilinmemektedir. y(t) nin yogunluk olasilif1 hakkinda bilgi elde

etmek icin ilk dort K (cumulants) nin kullanimi I1.Boliimde tartisilmis ve (84) bir 6rnek
verilmistir.



y(t)nin ¢ift tarafli gii¢ spektrumu W, (f)i¢in Mircea-Sinnreich [5] deki oncii terimleri
asagidadir.

2

177
W, (f) =< y(t) > §(f) + W, (f) G1(f)+§ I df,W_(f,)G,(f,f,,—f,) +...
1°¢ 2
+§ j df,W_(f, )W, (f —f1)|G2(f1,f —f1)+...|
+% j df, J df,W_(f, )W, (f,)W (f —f, —f2)|G3(f1,f2,f —f, —f2)+...|2 Fore e (14)

Burada <y(t)>,(11) de wverilen y(t)nin dc bileseni ve o(f) birim etki(tesir)
fonksiyonudur.(14) {in sag tarafi tiim ikinci seviye terimleri gosterir fakat bazilari {igiincii-
seviye terimlerdir. Eger (14)iin iki katli integrali G.i ve tek katli integrali G, igerir de kesin

deger uygun sekilde ikinci ve {igiincii satirlara eklenirse, tiim ii¢lincii seviye terimler ve bazi
dordiincii ve besinci seviler gosterilebilir.

C. Siniis Dalgasi art1 Giiriiltii Giris.

Asagida, giris X(t) =Pcospt +1(t) dir

P? 17
<Y(t)> = {T Gz(fp’_fp )+ Eidf1w1(f1 )G, (f,—f,) +:|

. p 3 i
+ert |:§G1(fp)+$—6G3(fp,fp,—fp)+% J df1W1(f1 Bs(f1!_f1’fp)+"':|

-, 5 oo
+e!%t p§C52(fp,—fp)+§)—6 Jdf1W1(f1)G4(f1s_f1’fp’fp)+'“:|

3

+e| PG (f 1 f)+..1+...+{e"kpt[...]}. K=120 ceorereeeirnnns (15)

48 3\'p?’p?p

burada f = 2%Edir. l\(t) sifira 6zdes oldugunda W,(f)sifirdir ve x = P cospt oldugunda (15)
y(t)igin (4) e sadelesir.P sifir, x(t) Gauss tipi oldugunda , (15) ,< y(t) >i¢in (11) e sadelesir.

y(t)nin gii¢c spektrumu igin tiim ifade (175) de verilmistir.Burada gosterilen 6ncii terimler,

W, (f) ={ < y(t) >deki siniis dalgasi ve dc den pikler , }



p? 17 2
+W|(f)|G1(f)+TG3(fp’_fp’f)+E j df1W1(f1)Gs(f1,—f1,f)+...|
) 2

%Gs(f £.6-20 )+ +...

2

+V\/|(f—fp)ng(fp,f—fp)+... +W(f - 2f ) f,

+ {W(f- kfp )||2 def, icin—f li terimler k=1,2,...}
|2

(i
# o AW )G (1, =) ..

2

1°¢F
o J AW~ 1) B Gy f, = F, =)+

2

1 +oo
o [ IRWE(E 1,62 Gy (F,~, f =, =6, +...

1 +oo +oo
+§Jdf1dezw,(f1)W|(f2)W,(f—f1 —1,)|Gs(f, Fpf =F, =) +..[ +... . (16)

<y(t)> i¢in dc ve <y(t)>deki siniis dalgalarindan, W, (f)deki pikler, (15)den
hesaplanabilmektedir. A, (f,,P)exp(jkpt),k =1,2,...bileseni  yoluyla  olusan  pik,

o(f —kfp)‘Ak(fp,P)‘2 dir. x(t) Gauss tipi oldugunda, P sifir oldugunda W, (f)i¢in (16), (14) e
sadelesir. | (t) sifira 6zdes oldugunda W (f), y(t)nin sadece siniisodal bilesenlerinden olusan

piklerden meydana gelir.

D. Rasgele Nabiz Silsile Girisi.

Son olarak heniiz tam manasiyla ¢alisilmamis olan bazi ilgilerin(konu) sonuglarini veriyoruz.
Giris, nabiz silsilesidir.

xty=Y ast-nT) (17)

N=—c0

a,ler yogunluk olasihgi a =0 olan bagimsiz rasgele degiskenler diizenlendiginde
(distrubute) ve y(t)icin Volterra serileri kuadratik terimle kalir, y(t)nin (ensemble) averaji (T
periyodunun)  periyodik kismindan olusur.ve

2T =

—oo

(y(t)) = @ i el T df,G, (n,?—n ] ....................... (18)



y(t)nin gii¢ spektrumu asagidadir.
2

az
W, (f) ={ < y(t) >deki den pikler } +%|G1(f)|2 +

(#)-2(#]
4T

J diG, (fvf - f1)

a?)’ = =
+<2T>2 ) fdf1Gz(f1,f—f1).G2*(f1—?,f—fﬁ?} ......................... (19)

Burada <am>,an nin m.inci momentidir. G,(f,f,)bunun gibi integralleri oldugu farz

edilmistir ve toplam yakinsaktir. (*) yildiz kompleks karsiligin1 géstermektedir.(18) ve (19)
esitlikleri y(t) icin (10)daki ilk iki terim kullanilarak saglatilabilir ve sonuglar asagidadir.

Y e T =TIY §(f-nT"),  o=2nf

N=—co N=—oco

W, (f) = ]o dr}dtﬁ (y(t+1)y (t))e .

Eger nabiz bigimi §(t) yerine F(t)olursa giris,(17) yerine asagidaki gibi olur.
x()=> aFt-nT) (20)

N=—oco

<y(t)> veW, (f) tekabuli S(f,)G,(f)) , S(f)S(f,)G,(f,.f,) ile (18) ve (19) daG(f)) ,
G, (f,,f,)yerine yazilmak suretiyle elde edilebilir.Burada S(f),

S(f) = Teiwa(t)dt ................................ (21)

III. VOLTERRA TRANSFER FONKSiYONLARININ HESAPLANMASI

[13],[15],[16] sistemlerinde Olglimler yapilarak g (u,,...,u ) kernelleri ve bunun Fourier
f ) lizerinde ciddi bir ¢aligma yapildi.

doniisiimleri, Volterra transfer fonksiyonlar1 G _(f,,..., .

Burada biz prensipte sistem esitlikleri bilindiginde ve sistem bir Volterra serisi olarak
tanimlanabildigi(acilabildigi) (her zaman bu durum olmaz) zaman Volterra transfer
fonksiyonlarinin hesaplanmasiyla ilgilenmekteyiz.

Bu hesaplamalarin en basitlerinden biri hafizasiz durumla verilmektedir.

y(t)=>a, [xt)] % ......................... (22)

g,(u,...,u ), ad(u,)...5(u,) ifadesine esit oldugunda Volterra serisi sadelesir.Burada (u)

birim etki fonksiyonudur. a, bir sabittir ve Volterra transfer fonksiyonunun tanimindan(2),

G,(f,...f

n

)=, e (23)

n



Bu durum daha komplike sonuglarin kontrolii i¢in kullanighdir.

Bu bolim t¢ kisma ayrilmustir.Birinei bolimde n in genel degerleri i¢in tutan ifadelerle
ugrasmakta kullanislt olan toplam notasyonlar tanimlanmaktadir.Ikinci ve ti¢lincii boliimlerde
e “harmonik giris” ve “direkt agilim” olarak adlandirilan G in hesaplanmasinin iki

metoduyla ilgilenilmistir.

Harmonik giris metodu, n in ilk birka¢ degeri i¢in G (f,,...,f )in hesaplanmasinda
kullanishdir ve bu boliimde ornekler icin listelenen G,(f,), G,(f,.f,) ve G,(f,.f,,f;) icin

ifadeler elde etmek i¢in kullanlabilmektedir.n keyfi olmak tizere G_(f,,...,

ifadelerin tiirevleri V-A ve V-B boliimlerinde kabaca verilmis ve direkt agilim metodunun
kullanim1 yapilmistir.

f )igin listelenen

A. Toplam Sembolii

n in genel degerleri i¢in G_ ile ilgili kullanilan toplam notasyonlari tanimlamak i¢in fomiil
ornegi diye V-A boliimiinde tiiretileni aldik.

GOy f) =11 S Y UG, (Fref, )Gy, (B reensfy i )Gy (B ) v (24)

(v;l,n)

[y(’[)]I icin Volterra serisinde n.inci kernelin n mertebeli Fourier doniisiimii icin, 1 bir pozitif
tam sayt ve 1<I<n. I2n igin GU(f,...f )sifirdr ve GM(f,,...,f ) ifadesi esittir
n!Gy(f).Gy(f,)..G,(F,)-

(24) de p=v,+Vv,+...+v +1=n-v +1 ve 2 in sol alt tarafindaki (v;l,n),asagidaki

gibiv, tamsayilar kiimeleri {izerindeki kisaltmalar1 gosterir.
Vi+Vo+.+v,=n, 1SV, SV, S0SV 0 (25)

Baska bir ifadeyle, kisaltma 1 kismi1 olan n in bu kisimlarindan alinmistir.(24) deki 2 1, ikinci

toplam,f lerin siralamasi degistirmek suretiyle elde edilebilen , N iizerinde 6zdes olmayan
yapilara genisletilir. G_(f,,...,f )simetriktir ve “6zdeslik” kavrami G,(f,,f,) ile G,(f,,f,) ve

G,(f,)G,(f,) ile G,(f,)G,(f,) 0zdestir anlaminda kullanilmistir. 2 i deki terimler,
N=nl/vIv,l.vIrir,ln! (26)

Burada r,, v,<v, <..<v, dizeninde birinci uzantidaki esit v lerin sayisidir. r,, ikinci
uzantidaki sayidir. vs. v ler esit olmadiginda r ler géziikmez.

Bazen ileride verilen Tablo I deki gibi toplamdaki terimleri agik yaziminda yardimci olacak
kisimlarin bir tablosu.

n=2 ve |=2 oldugunda v, =v, =1,r, =2, N=2l/(11112!) ve (24), asagidaki gibi olur.
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%G(j)(ﬁ,fz) =G,(f)G,(F,) e, (27)

n=3 ve |=2 oldugunda v, =1, v, =2, N=3 ve

%G‘32><f1,f2,f3>=ZsG1<f1>Gz(f2,f3)=(1><23)+<2>(13>+(3)<12) ...... (28)

Nn=4 ve |=2 oldugunda n nin iki tane 2-par¢a (l-parg¢a) kismi vardir.Bunlar ayri ayr
1+3=4 ve 2+2=4,v,=1, v, =3,N=4 ve v, =2, v, =2, N=3dir.Buradan

%Gf)(f1,f2,f3,f4) = (1)(234) +(2)(134) +(3)(124) + (4)(123)
+(12)(34)+(13)(24) + (14)(23). oo (29)

Ifadelerdeki G(zz)/Z!, ng)/Z!, Gf)/Z! icinG lerin ¢arpanlarinin numaralari ((27)-(29) da
sayilarak) sirastyla 1, 3, 7 dir.Bunlarn = 2,3,4 i¢in ikinci tiir S(n,2) in Stirling numaralaridir.
Genelde, Gﬂ)(f1,f2,...,fn)/ I' i¢in (24) toplamindaki ¢arpanlarin numarasit S(n,l)dir. Bu,
hafizasiz durumda (22) teklik olmasi igin tiima_ ler almarak gosterilebilir ve (e* —1) nin

acilimsinde X" /n! nin katsayist 1'S(n,l) kullanilarak gosterilebilir.

B. Harmonik Giris Metodu

Bu metot, (1) devam ettirildiginde, bir harmonik giris yine bir harmonik ¢ikigla sonuglanmali
gercegine dayanir.Boylece X(t)asagidaki toplam oldugunda G (31) ile verilmektedir.

X(t)=exp(jot)+exp(jo,t)+...+exp(jo.t) (30)
Burada @ =2nf , i=12,...,n ve w,ler orantisizdr.
G, (f,f,-...T,) ={ exp[j(®, +...+ @, )t]nin katsayisi . y(t)nin agilimsindeki terim}  ....(31)

Bu sonug (1) den takip eder. G,(f,), G,(f,,f,),...ifadelerini basariyla hesaplamamiza imkan
tanir. Boylece sistem esitliklerinde exp(jw,t) ile x(t) yi yerine yazdigimizda

yty=ceexp(ot) (32)

k=1

¢, = G,(f,).Benzer sekilde c,, = G,(f,,f,). Burada,
(1) = exp(joot) + exp(jo,t)
yt) =YY coexp[itke, +lo)t] (33)

k=1 1=0
Coo =0, €y =Gy(f)) . €5y =Gy(f,)

ve G,(f,.f,.1,), ¢y, = G,(f,,1,,1;) dir, {iclii toplam,
Cogo =0 Ci10 = Gy(f1,1,)
Ci00 = Gy(f;) Coo =Gi(F) s e, (34)

11



Bu metodun kullanimini izah etmek i¢in asagidaki esitlikle tanimlanan bir sistemi ele alalim.

yO=x®)+e[XO Xty s (35)

Bu esitlik, filtreli FM igin yari-statik yaklagimin bazi formlarinda ortaya ¢ikar. Burada € bir
sabit ve t ye bagh degisimi gosterir. X(t) ,exp(jw,t) esitligi almirsaG,(f,)=1.
X(t), exp(jw,t)+exp(jw,t) esitligi almrsa G,(f,f,)=0. (35)de x(t) ile ii¢ iisselin
katsayilar1 disar1 alinmis exp[j(w, +W, +w,)t] toplaminmn esitligi alnirsa G,ii verir.

Bundan dolayz,
Gy(f) =1 G,(f,.f,)=0
G;(f,.f,.f;) =2e00,0, (0 +0, +®,) (36)

ve n>3 i¢in G, =0. (35) ile iliskili volterra serisinde g,(u,)=9J(u,) ve g,,etki
fonksiyonlarinin tiirevlerinin yapilarinin toplamidir.

Metodun daha genis bir uygulamasi,asagidaki diferansiyel esitlikle belirtilen sistem goz oniine
alinarak izah edilebilmektedir.

Fa/dy+Yay =x(t) (37)

Burada x(t) yapildiginda y(t) sifira 6zdestir.Buradan sadece bir tek ¢oziim ¢ikar ve bu
sistem kararlidir. F(d/dt), d/dt de polinom tipindedir ve F(d/dt) deki katsayilar ve a,
katsayilari, t,x ve y nin bagimsiz katsayilaridir.ilk iig G, (34) yoluyla (30)dan tiiretilmis ve
Boliim V-B de tiiretilen tekrarl iligki asagidadir.

G,(f) = 1/F(j(’)1)
G, (f,.f,) = —2a,G,(f,)G,(f, )/F(j(’)1 +joy,)
_ 232 2 I/3G1 (f‘l )GZ(fZ’fS ) + 6a3G1 (f1 )G1(f2 )G1(f3)
F(jo, +jo, +jo,) e (38)
3 aGl(f,...f,)

F(jo, +...+ jo,)

Gs(fvfz’fs) =

G, (f,...f.)=—

Son esitlik bir tekrardir ¢ilinkii GS), (24) ile verilmistir ve (2 <1< n i¢in ) (24)iin sag tarafi (1
ye bagh olarak) G,(f,),G,(f,.f,),....G, 4(f,....f _,) lerin bir kismmmn veya hepsinin bir

kombinasyonudur.

Bu sonuglarin kullaniminin bir 6rnegi olarak,dogrusal olmayan zayif bir direncle, seride bagh
bir birim indiiktans i¢in uygulanan voltaj giris X(t) olsun. y(t) ¢ikis1 devre ilizerindeki akimi

ve agagidaki Riccati esitliginin ¢oziimiidiir.

c(jj_};+xy+gy2 =x(t) (39)

12



X(t) girdiginde esitlik sifira yonelir.Boyle bir ¢oziimiin varlig1 ve kararliligy, fiziksel temeller
tizerinde beklemek, devrenin operasyonu siiresince hemen hi¢ negatif olmayan o+ €y direnci

gibi o ve € saglamaktadir. € yi ¢ok kii¢iik kabul ediyoruz boylece ¢ ile karsilastirdigimizda
ey her zaman daha kiiciiktiir.

(37) nin (39) da uygulanmasinda, (d/dt)+o ,a, =€ olarak F(d/dt) aliyoruz ve w, = 2nrf,
ile (38) den elde ediyoruz.
G,(f,)=(o+ jo, )"

G, )= (—2¢)[ o+ j(, + o, )]71

(ot jo, (o + j,)

(—2e) [0+ (o, + o, + o, )]71

1
>

G3(f1’f2’f3):

(o0 + ooy )(ou+ joo, )(ou+ jooy) o+ jo, + jo,
G, (ffpens ) = €[00 (@ +.oo+ 0,)] GO (Fernsf) o (40)
Burada G? (24) de verilmistir. G, de
vy, -+ , r ., 1 . (41)

30c+ju)2+jco3 o+ jm, +jo, o+ jo,+jo, o+ jo,+jo,

(37) deki dogrusal olmayan diferansiyel esitlik sistemine biraz benzeyen, sekil-3 te gdsterilen
dogrusal olmayan aygit iizerinden geceny(t)voltaji icin G ile ilgili, harmonik giris
metodunun bagka bir uygulamasidir. X(t) voltaji, asagida (42) ile tanimlanan dogrusal
olmayan aygitin kombinasyon serisine ve H(f) dogrusal girisine uygulanmustir.

I(t) = E‘t’:ll[y(t)]I .................... (42)
t=1
Deutsch un[12],[17] ¢aligmalarinda izah ettigi gibi y(t) i¢in serinin bir bilgisi, bazi dogrusal

olmayan problemlerin ¢0ziimii i¢in anahtardir. y(t) i¢in Volterra transfer fonksiyonlari
asagidadir.
G1(f1) = H(f1 )/[81 +H(f1 )]
G,(f,f,) =—28,G,(F)G,(F,)/ [a, +H(f, +1,)]
!

Y aG(f,....f,)
=2

G (f,. f=—2— 43
ol ) a, +H(f +...+f) (43)

Burada son esitlik Bolim V-B den tiiretilmistir. n>1 igin bu esitligin (38)den tek farki
F(jw,+...+jw_) yerine paydasinda a,+H(f, +...+f )bulunmasidir.onlar aslinda Deutsch

[12],[17]e uygun olan G (f,,f,,...,f )igin tekrarln iliskilerin kiimesini veriyorlar. Bizim
G,(f.f,,....f.), Dutsch un Q (w,,...,w, ) fonksiyonlarmin, n! kere simetrize edilmis
versiyonudur.(w, = 2xf). Sekil-3 teki devre igin K(w,)¢ok evreli cereyani(katsayisi) Deutsch
nin Q,(w,) inde teklikle goriiniir.
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Dogrusal Olmayan

Cihaz 1
L y(9) J
+

+ Dogrusal
xS Girig
- H(f)

Sekil-3. Dogrusal Girigli Seride Dogrusal Olmayan Cihaz

Bu uygulamanin bir érnegi olarak,seride I(t)=a,[y(t)]* ikinci derece cihazla dogrusal bir L
indiiktans1 gz linline aliyoruz. Devre esitligi asagidadir(44).

d
Bd—yy2 +y=x(t), B=Lla, e (44)
Bu, seride seride dogrusal olmayan direncle bir indiiktans i¢in (39) daki Riccati esitliginden
biraz farkhidir.indiiktans igin girig(kabul) fonksiyonu H(f) = 1jwL dir ve sadece sifir olmayan

a, katsayis1 a,dir.(43) te yerine koymalar,asagidaki arglimanlarin atlanmasi iizerinedir.

G, =1
G, =—2a,j(w, + W, )L = -2jB(w, +w,)
G, = 2(=2jB)* (W, +wW,*W, ¥ (45)

Burada ifade, G, i¢in tekrarli iliskiden ve GY) i¢in de (28) den elde edilmektedir.
G, = —jB(W, +..4w_)G2(f,...f )

G, in w,,...,w, de iigiincii derece simetrik bir ¢ok terimli (polinom) olmasina ragmen Gﬁf)

i¢in (29) un kullanimu gosteriyor ki G, sanildig1 kadar kolay olmayabilir.

C. Direkt A¢ilim Metodu.

Sistemi deneme”’probing” i¢in baska bir alternatif, harmonik giris metodunda oldugu gibi, bir
Volterra serisi agiliminin (1)deki haline getirene kadar sistem esitliklerini tanimlamadir. (2) k
Volterra kernellerinin n.inci Fourier doniisiimleri alinarak, Volterra transfer fonksiyonlari
bulunabilmektedir.Bu, hafizasiz durumda(22) kullanilan alisilmis teknikti.Direkt agilim
metodunun baglica degeri, Bolim V-B deki gibi, n in genel degerleri igin alinan ifadelerin
tiiretilmesindedir.n kiiciik oldugunda harmonik giris metodunun kullanim1 daha basit
goriinmektedir.

Direkt genisleme metodu ile analiz edilebilen dogrusal olmayan bir sistem 6rnegi Sekil-1 de
gosterilen modiilator-filtre-demodiilator sistemidir.
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Sistem ¢ikisi (46) ile verilen,

y(t) = F{ j g(u)h[x(t—u)]du} ................. (46)

Modiilator ve demodiilator fonksiyonlar: gii¢ serilerine agilabilirler.

h(x)= 3 h,x* /v! Fz)= S F(z-2,) /!
v=0 I=1
z,=h, j g(u)du F(Z,)=0 s (47)
ve filtrenin g(t) etki(tesir) tepki si filtre transfer fonksiyonu G(f) ile iligkilidir.
G(f) = j eMgydt. e, (48)
Kisim 1 N G, (f,,f,,f;,f, )deki terimler
4 1 1 Fh,G(f, +f, +f, +1,)
1+3 2 4 F2h1h32 LG(F)G(f, +1, +1,)
2+2 2 3 FhZZ’Gf+f)G(f +f,)
1+1+2 3 6 Fhih, Y (G(f, G(f, +f,)
1+1+1+1 4 1 F,hih,G(f, )G(fz) (f3 )G(f,)

Tablo-1

(46)dan elde edilen Volterra transfer fonksiyonlart vey(t) igin Volterra serilerindeki
kernellerin Fourier doniisiimleri asagidadir.

G(f,) =Fh,G(f,)
G,(f,.f,) =Fh,G(f, +1,)+ F2h12G(f1 )G(f,)

Gy(f, fy,F,) = Fh,G(f, +f, +f,) +Fnh,G(F,)G(F,) Y 1G(F, )G(f, +f,) +F,hiG(f, )G(f, )G(f, )

Gy(fpt) = S F S 0, by, S UG+, +o 46, )+ FPGE)CE)GE,) - oo (49)

1=1 (vil,n)

Son esitlik Boliim V-B de tiiretilmistir.Burada 2’3 , (28) de gosterilen tipin bir toplamidir. ve
2 (vin) V€ 2,’\‘ toplamlar, (24)-(29) arasindaki baglantida tanimlanmustir.

Y=Y (50)

I=1 (viln)  =(n)
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Burada 2 toplaminin altindaki m(n), n nin tiim kisimlarmm toplamimni gostermektedir.

Kisimdaki béliimler 1 ve v ler de béliimlerdir.Boliimler (25) ile ilgilidir. G, icin (49) genel

formu iki tlirlii yazilabilmektedir. 1) [18, pp. 831-832] de verilen kisimlarin tablosundan.
Burada N nin degerleri M3 ile etiketli kolonda listelenmistir. 2) [19, p.125] de verilen Bell
polinomlarmin tablosu.Tablo-1 , n =4 igin prosediir izah ediyor. G, iin degeri son kolondaki

terimlerin toplamut ile verilmistir.

G,(f,) icin B, =1[bak(49)], G,(f.f,) icin B,, G,(f,f,,f;) i¢cin B, =1+3+1=5 ve
(BakTablo-1) G, i¢in B, =1+4+3+6+1=15 seklinde hesaplandiginda B_,G, (f,,...,.)
deki farkli yapilarin numarast olsun. G(f)=1 oldugunda, g(u),d(u)dir, y(t),F{h[x(t)]}dir,
sistem hafizasizdir ve y(t)nin agiliminda [X(’[)]n /n! nin katsayis1 G, dir. (47)den h =1 ve
F, =1ayarlamasi y=exp [ex - 1} —11i verir ve (49)dan G, =B, dir.Buradan, exp[ex - 1} in
acihminda X" /n! in katsayis1 B_dir ve bundan B_igin tekrarli bir iliski elde edilebilmektedir.
B, . nile birlikte artar.Ornegin, B, =52 ve B, =203.B, ler Bell numaralaridir [19, p.192].

modiilator-filtre-demodiilator sisteminin 6zel bir hali, sekil-4 te gosterilen modiilasyon-
evre(faz)(phase) sistemiyle verilmis ve sonraki boliimde goz oniine alinmistir.Kisaca, x(t)

girisi, K(f)transfer fonksiyonuna sahip bir filtre lizerinden gecen tastyici bir dalgayr modiile
faz  kullanilmaktadir. 6(t) cikisi, filtre ¢ikisinin faz agisinin parga degiskeni olarak
alinmaktadir.Sekil-1 sistemi i¢inh(X) = exp(jx) ile bu, F(z)=Inz ve z, =1 ye tekabiil eder.
Sonra,

h, =j" F=0"0=-1) . (51)

ve Bolim IV-C de gosterildigi gibi (49) da yerine yazma 6(t)igin Volterra transfer
fonksiyonlarina gotiiriir. n =1 ve n =2 igin bunlar,

Guf) = ST +T(-F)]

cos|[w,f+x(t)] oR(t)cos[w,f +b+6(t)]
Lﬁ— Modiiltor Lﬁ- K“::[IJ:::::;;;I:[?Sfer —¢P—Demodulattjr

Sekil-4. Faz-Modiilasyon Sistemi

G, (f, ) = %I:r(ﬂ +5,)-T(f)I(f,)-T" (-f, - f,)+ " (-f)I" (-, ):I ................ (52)

burada yildiz, kompleks karsiligi gostermekte ve I'(f) =K(f, +f)/K(f,).f,, tasiciyr frekans
w, /(2r). T(f)= exp(—jbfz) ile G,(f,f,) i¢in (52) ifadesi, bir FM dalgasimnin iyonkiiresine

dogru ilerlemesiyle ortaya c¢ikan tahrifat calismasinda kullanilmistir. Burada verilen
G,,(f;,....T,) genel terimin yapisi, FM tahrifatlar1 ¢calismasinda Mircea[7] tarafindan tamitilan

intermodiilasyon yapisina ¢ok benzemektedir.
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Volterra transfer fonksiyonunu diizenlemek i¢in direkt agilim metodunun kullaniminin diger
bir genel 6rnegi de Sekil-2 de gdsterilen feedback sistemidir.

Sistem girisi X(t) ve cikis1 y(t) dir. x(t) vey(t) ile ilgili sistem esitlikleri:

y(t) :i:—'jdu; Jdum ‘. u)Hw U)o, (53)
wit)=x(t)—z(t) (54)
z(t)= i[ b(v)y(t—v)dv (55)

Burada B(f) filtre doniisiim fonksiyonu [b(v)nin Fourier déniisiimii] ve m_(u,,...,u)
f

’'n

Volterra kernellerinin M_(f,,...
edilmektedir.

) n-katli simetrik Fourier doniisiimlerinin bilindigi kabul

Problem, G_(f,,...,f ) Volterra transfer fonksiyonunu diizenlemedir.i.e. y(t) i¢in (1) serisinde
n.inci kernelin n-katli Fourier doniisiimii. n =123 i¢in cevap, harmonik giris metoduyla
elde edilebilir ve asagidaki gibidir.

G,(f,) = [1+M,(f,)B(f,)] "M, (f,)
G,(f,f,)=[1+M,(f, +F,)B(f, + )] 'K, (F)K,(FM(FE) (56)
(KA (F K (5, T M, (., +15)
K, (8, Ky (B, ML (F,, F, +1,)
+K (K, (£, £ M, (F, F +£,)]
HK, (K, (5, K (F M (£, ., )

G, (f,.f,.5) =[1+M,(f, +f, + £, )B(f, +1, +f3)]71.

burada,

K,(f)) =1-B(f)G,(f,)
K, (fy....f)=—B(f,+..+)G.(f,...f.),  n>1

G,(f,.f,) icin ifade, K,(f,) yoluyla G,(f,)e gore degisir ve G,(f,f,,f,) icin ifade, K,(f,) ve
K,(f.f,) yoluyla G,(f,) ve G,(f,,f,)e gore degisir.Bunda dolay1 (56)nin ikinci ve ligiinciisii
tekrarlt iligkilerdir.

(56)daki ti¢ ifade, Narayanan[6] tarafindan verilen iicliiye esittir. Narayanan’in kullandigi
u,(f,....f.), G, (f,...f,) ve P(f) ifadeleri bizim gosterimimizde M,(f,,...,f,)/n!,
G, (f,....f,)/n!, B(f)dir.

Direkt agilim metoduyla Boliim V-B de elde edilen n>1 igin n.inci tekrarli iliski,
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G, (foonf) =[1+M(F, +... 4+ )B(E, +...+1)]

n

YN K Fenf, K Fenfon) (58)
1=2 (v;l,n)
K Ee s M+ 4+ e )

burada N tamsay1 ve v, tamsayilariimn (v;l,n) kiimeleri tizerindeki toplam (24)deki gibidir.

w(t) = iii'Tdu1...+fduiki(u1,...,ui)ﬁw(t—ur) ..................... (59)

i=1 1= oo

K., (59)daki kernellerin n-katli Fourier doniisiimiidiir. z(t) i¢in bir seri elde etmek igin bu,

(55)de y(t) icin (1) serisinde yerine konmasiyla elde edilebilmektedir ve sonra (54)de z(t)
i¢in bu seri yerine konur w(t) = x(t) — z(t).

IV. AcikLavict ORNEKLER

Giriglerin bir degisimi i¢in dogrusal olmayan cihazlarin ¢ikis Ozellikleri Bolim II de
verilmekte, formiillerin listelerinin ¢esitliligi ,bunlar1  pratik Orneklere uygulayarak
kullanimlarint izah etmeyi gerektirmistir.Bu boliimde, Volterra transfer fonksiyonlarinin
hesaplanmasini acgiklamak, buna ilaveten spesifik giris sinyalleri i¢in ¢ikis 6zeliklerini elde
etmek icin BolimlIII de kullanilan 6rneklerin bazilar1 konu edilecek.

A. Yari-Statik Filtreli FM

BolumlII-B den, bu durum i¢in sistem esitligi ve Volterra transfer fonksiyonlari;

y(t) = x(t)+e[X ()] X'(t)
G(f)=1  G,(f,f,,f,)=2eW,W,W (W, +W, +W;) oo, (60)

burada, w =2nf ve degismeyen tiim G_ler sifirdir. X(t) Gauss tipinde oldugu zaman (11)
gosterir ki <y(t)> sifirdir.(14) ten, y(t) icin gili¢ spektrumundaki Oncii terimler;

W, (F) = W,(F) 1 —e(@)? | dfW, (£ )2, + %Tdfffdfzwx(ﬂ W, (£ W, (F —F, ~F,)
ey (F—f, ~E)FR [ (61)

Bu aym zamanda W, (f) i¢in kesin ifadedir ¢iinkii W (f)i¢in tim ifadenin(160) bir
denemesi(inceleme) gosterir ki bu durum i¢in tiim degismeyen terimler sifirdir. X(t)nin giic
spektrumu ile bunun X(t) zaman tiirevi arasinda W,,(f) = (2rf)*W, (f) = w?W (f) iliskisini
kullandigimizda (61) ifadesi asagidaki hale gelir.
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Wy(f)=WX(f)‘1—eszdf1WX,(f1) 482WZTdf jdfw (F )W (F, )W, (F —f, —f,)

(60)da | (t) Gauss tipi olmak iizere x(t)=Pcospt+] (t) oldugunda (15) ve (16) gosterir ki
y(t)nin periyodik kism1 ensemble averajdir.

(y(t)) = P{1 - % P?ep* —ep? '[ of W.(f, )}cos pt + %P%p“ cos3pt v, (63)
ve y(t)nin gii¢ spektrumu vardir.
W, (f)={ (y(t))nin exp(£jpt) ve exp(+13pt) bilesenleri ile dort pik}

1 1
+W|(f)‘1 —Engpzw2 —ew? j df1W,,(f1) +%P482p4wz [ W, (F = 2,)+ W, (f +2f,) ]

+%P282p2W2 j df, W, (F)[ W, (F =, =)+ W, (f = f, +f,) |

2 oo

482"" jdfjdfw (F )W, (£, )W, (f —f, —f,)

Burada 2nf =pdir. P sifir oldugunda x(t)yalniz Gauss giriiltiisiinden olusuyorsa (64)
ifadesi (62) ye sadelesir.

B. Seri endiiktans ve Dogrusal Olmayan Direng

Kabul edelim ki Bolim II-B de [(39)] tanimlanan birim indiiktans ve dogrusal olmayan
(au+ey) direncin serilerine, X(t) = P cospt + Qcosqt voltaji uygulansin. € kii¢iik oldugunda
y(t) akimmim (p—q) bilesenindeki dncii terim nedir? +(p —q)terimlerini elde etmek icin
(p+q) terimiigin (5) de p ve q larm isaret degisimi ve (40) dan G,(f,,f,)yerine (vekil)
koyma gosteriyor ki (o ve € reel farz ediliyor) istenen dncii terim asagidakidir(65).

2Re| elP-ar PQ (—2¢)[o+j(p _q)]—1
4 (a+ip)o-ja)

X(t) voltaji seri kombinasyonuna uygulandiginda Gauss tipidir,(14) ten, y(t) akiminin gii¢
spektrumundaki Oncii terimler asagidadir.

2

W, (f) = (y(t))* &(F) +W, (F)|G,(F) + jdfw (f,)G,(f,f,,—f,)
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1°7
+2 [ AW, (W, (F-£)[G,(Ff—£) +6(e)) (66)

Burada (40) ve (11) den,
G,(f)=(a+jw)" w=2nf

4e?(0® +w?)™"

|Gz(f1,f—f1)| :(a2+w12)|:(12+(w_w1)2:|

(y(t)) = —soc‘1Tdf1WX(f1 N2 +W2) e, (67)

ve (40) dan G,(f,f,,—f,)=0(e*)dir. € kiigiik ve x(t) Gauss tipinde oldugunda y(t)nin p(y)
yogunluk olasilig1 tam olmasa da normale yakindir.B6liim VIII-B de iizerinde duruldugu gibi
p(y)nin normalden sapmasi, ¥,,X,,K;,K, kumulantlarmin degerlerinden tahmin edilebilir.
Bununla beraber (40) dan, G, ler kullanildiginda (13) integraller, «,,x, i¢in oldukga

karmagsiktir ve burada degerlendirmeyi bitiremeyiz. Bir filtrenin takip ettigi karesel bir aygit
iizerinde giiriiltii ile baglantili, daha az karmasik bir 6rnek, Boliim IV-D de verilmektedir.

C. Filtre Edilmis Faz Modiilasyonu

Bu ornekte, Sekil-1 deki modiilator-filtre-demodiilator sisteminin 6zel bir durumu olan Sekil-
4 gosterilen faz-modiilasyon sistemini goz Oniine alarak, G, (f,,...,f.) i¢in (49) un kullanimini

izah ediyoruz.Bu sistemde filtre istek disi tahrifatlar(biikiilme) meydana getirir. Xx(t) giris,
0(t) cikis ve K(f) de filtre transfer fonksiyonudur. x(t) sifir oldugunda filtre ¢ikisi bir
cos(w,t+b)dir.Burada [w, =2nfolmak izere], K(f,)=K,(-f,)=aexp(jb), (filtre
cikisindaki R(t)0orten faktor tektir(birim) ve 6(t)sifirdir. Faz-modiilasyon teoreminden [8]-
[10]

0(t) =Imy(t)

y(t) = In{Tduy(u)e"““‘”’}

Y(u) = j dfe™T(f), w =2nf

) =K(E+1)/KE) e, (68)

Bu Ornekte sistem c¢ikist y(t) yerine 6(t) dir.Burada y(t)=InR(t)+jO(t) dir. Filtre
bulunmadig1 zaman, K(f), f frekansinin bagimsizidir, T'(f)=1, y(u)=906(u), y(t)=jx(t) ve
0(t), x(t)ye esittir.Biz, filtre bulundugu zaman, 6(t)ve x(t) arasindaki genelde kiiciik olan
farklilikla ilgilenmekteyiz.
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O(t)ye Bolim II de listelenen formiilleri uygulamak igin, 6(t)i¢in Volterra serisindeki
kernellerin G, (f,,...,f,) Fourier doniisiimlerine ihiyacimz var. y(t)i¢in Volterra serisini reel
ve sanal kisimlarina aywrarak ve 6(t)=Imy(t) ifadesini kullanarak, asagidaki(69) ifaade
gosterilebilir.

Gy (fy-f) =[ Gy (FrennsF) =G (s ) A(2]) e (69)

Burada G_(f,,...,.), y(t)icin n.inci kernelin Fourier doniisiimiidiir. Hakikaten su genel sonuca

sahibiz ki x(t) reel oldugunda, y(t)nin reel ve sanal kisimlar1 y.(t)vey,(t) i¢in serideki
kernellerin Fourier doniisiimleri asagida (70)dur.

Ya(t) icin [ G (F,...F,)+Gi(~F,...,) |/(2)
V() dein [ G (fooef) = Go(Fuees £ 2] o (70)

(68) ve (49) un y(t)i¢in karsilastirmasi gosterir ki g(u) = y(u),h(x) = exp(jx) ve F(z)=Inz.
Buradan, G(f),I'(f)ye gider, h(x)in agilimindaki katsayilar h = j* ve z, 1 belirten esitlik de
z, =h,I(0)=1olur. z=2z, =1de F(z) agilimi, F(-1)""(1-1)!ifadesini verir.Genel esitlikler
(49) gosteriyor ki faz-modiilasyon (68) esitlikleriyle tanimlanmis y(t)icin Volterra serisindeki
kernellerin Fourier doniisiimleri asagidaki (71) dir.

G1(f1) = jr(f1)
G,(f.f,) = & [1"(f1 +f,)—T(f, )I'(f, )]

Gylffyufy) = I [T(F, +, + £,) = T(E)T(E, +£,) = (6O, +£,) ~T(E, T, +£,) + DO, )]

n

Gy (Ferns £ = XN Y S AT+ A £ T,y o4, )T et F) (71)

=1 (v;l,n)

G,, icin (69)daki genel iliskide (71)in yerine konulmasiyla elde edilen Gy,ve G,,ifadeleri
(52)de gosterildigi gibi asagidadir (72).

G () = 5 [T(0)+ T (-1)]

N

Gy, (f.F,) = j—[F(ﬂ +£,) = D(f ()~ T (=, =)+ T (=F)C(=F,) | o (72)

—

I (—f),I'(f) ye esit oldugunda f, tastyict frekansin her yerinde K(f)filtre transfer fonksiyonu

“simetrik” oldugunda ,eger n ¢ift ise G, sifir ve eger n tek ise G ,—jG,, ye esittir.

Artik G, bilinmekte, farklt x(t) girisleri i¢in Boliim II de listelenen formiillerde y(t) yerine
o(t) ve G,(f,....f) yerine G, (f,,....f) yerlestirilerek 6(t) hakkinda bilgi elde

TN FEEEETA™
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edilebilmektedir. Ornegin x(t) =Pcospt+Qcosqtoldugunda 6(t) deki exp[j(p—q)t]
bileseni [(5)deki exp[j(p—q)t] teriminde q vef, nun isaretlerini degistirmek suretiyle]
asagidaki oncii terime sahiptir.

i(p—a)t E
4

i(p—q)? PQ . B % B
e Gy, (f,—f,) = g/P-a) ?J[F(fp —f,)-T(E)0(-F,)-T"(-f +f )+ ()T (fq)] (73)
Mircea[20] x(t) =Pcosptoldugundaki durumu g6z Oniine aldi ve Xx(t) Gauss tipinde
oldugunda (bak [8]-[11]) W,(f) glic spektrumu igin [7] de verilen serideki genel teerimin
yapisini elde etti. Mircea-Sinnreich (14) serisinde yerine koyma kosuluyla, W,(f) deki
dogrusal ve ikinci seviye modiilasyon terimlerinin toplamindaki oncii terimler,

|2

17
W, (F)|Gey () +5 j df, W, (f, )W, (f - f,)|Gy, (f,, T —T,)

Burada G, ve G, (72) de verilmistir.

Volterra serileri yaklagiminin kullanish oldugu bolim, x(t)=Pcosptdurumu goéz oniine
alinarak elde edilebilmektedir.Bizim notasyonumuzda bu durum i¢in 6(t)nin aligilmis ifadesi,

6(t) = arctan ImS
ReS

S= S PLPIOLE™ (75)

N=—co

Burada J_ (P),n seviyesinin Bessel fonksiyonudur. I'(f) =1 oldugunda , S =exp(jPcospt)
ve O(t),x(t) girisine esittir. Filtre band1 genis oldugunda S, exp(jPcospt) olarak kalir.
O(t)nin her degeri i¢in P ,

S- 1| <1 olacak sekilde kiiciik oldugunda, asagidaki ifade
kullanilarak 6(t), P de yakinsak bir gii¢ serisine agilabilir.

ot)=Im [1+S-1] (76)

Diger taraftan (3) tiim seri gosterir ki

= (p T expli(2k —njpt
o(t) = 21( g] > eka[!JEn . k;)p ]Ge(k,n_k)(fp) ...................... (77)

burada,G nin O(k,n—k) indisi gosterir ki f; nin ilk k s1 ile G, (f,,...,f )., ye esittir ve kalan

n—k da —f  ye esittir Bundan dolay1 (77) , P nin giiciinde arctan[ImS/Re S| nin giig serisi

acilimini verir.Bir FM sisteminde P “sapma oran1” dir. Bu gosterir ki FM sistemine Volterra
serisi analizi uygulandiginda sistemler i¢in kiigiik sapma oranlar1 kullamak c¢ok daha
kullanighdir .bir ¢ok mikrodalga radyo diizenleyici sistemlerde.
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D.Filtreli Kare-law Dedektor

Bir filtrenin takip ettigi kare-law bir aygit i¢in sistem esitligi asagidadir.

y(t) = Tb(u)xz(t—u)du ...................... (78)

burada x(t) kare-law aygit igin giris ve y(t) cikis filtresidir. W (f) = (2r)exp(-f*/2) gii¢
spektrumlu x(t) Gauss giiriiltiisii girisi oldugunda, y(t) ninp(y) yogunluk olasiligiyla
ilgileniyoruz ve filtre etki tepkisi b(u) ve bunun Fourier doéniistimii B(f) asagidadir.

b(u) = B(2r)"? exp(—2r°B°u?)
B(f)y=exp[ /(2B | (79)

Filtrenin etkili gecis bandi, —fdan +f ya ve giriiltiiniin etkili band1 —1 den +1 e kadar
u| <T/2 igin b(u)=1ve
|u| >T/2 i¢in b(u) =0 ,x(t) RLC Gauss giiriiltiisii, durumundan daha basit bir durumdur.

kapsama alanina alir.Bu durum, Slepian [21] tarafindan incelenen,

Oncelikle baz1 genel fikirler.(78) in her iki tarafinin ortalamasmi cikarip <X2(t)> =11
kullanmak gosteriyor ki band genisligi ne olursa olsun <y(t)>=B(0)=1. b(u)>0
2

oldugundan beri y <0 iken p(y)sifirdir. § =ccoldugunda filtre etkisizdir, y(t)=x"(t) ve
y >0 igin
y2

p(y)=(2ry) "“exp(-y/2) dir. L (80)

B — Oiken bant genisligi sifira yaklasir ve y =1 ortalama degerinde merkezilestirilmis
genislik sifira yaklasmanin normal kurali p(y)yi asagidaki gibi bekleriz.

py) > (mB) exp[ Hy -1 /(2B)] (81)
B, 0 dan o aartarken p(y), (81) den (80) e degisir.

Simdi Boliim II de bahsedilen bazi sonuglar1 Volterra serisi i¢in uyguluyoruz.(78) sistem
esitligi sifir harig tiim kernelleriyle bir Volterra serisine karsilik gelirn =2 igin,

9,(u;,u,) = 2b(u, )5(U2 —u)
G,(f,5,)=2B(f, +f,) e, (82)

(11) ve (13) e kars1 gelen daha tamam (180)seriden goriiyoruz ki p(y)icink,,K,,K,,K,
kumulantlart , (W)(1,-1)/2 , (WW)(1,2)(-1,-2)/2 , (WWW)(1,2)(-1,3)(-2,-3)
B(WWWW)(1,2)(-1,3)(—2,4)(—3,—4) ifadelerinin integralleridir. Burada (180) de oldugu
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gibi  (w),(ww),(1,2),... ifadeleri swastyla W, (f,),W (f )W (f,),G,(f,f,),...ifadelerini

gostermektedir.Integrantlari Gauss formu integral alinmasina olanak saglar.
K, =1 K, =2/¢, c=(4B7+1)""
Ky =32/(3¢*+1)  x, =96/ c(c®+1)]

K, ve ¥, degerleri(ortalama ve varyans), p(y)nin (80) ve (81) formlarindan limitinin
alinmastyla elde edilmektedir. B kii¢iik oldugu zaman ¢ — 2/ ve x,,%,,%, iin degerleri
sirastyla B, 8B?/3,12B%degerlerine yaklasir.Béylece varyans B ya yaklasir ve (181)
gosteriyor ki vy, egriligi, (8/3)B"? ye 7v,fazlahg, 12B ya yaklagir.Edgeworth
serisi(182),normal kural(81) i nasil yaklastirildigini gosteriyor:

p(y) =B {Z(u)-2B"°ZO(u)+ B[ 1ZV(U)+ EZOW) |-} (84)

Burada u=(y—1)/B"? ve Z(u)=(2r)""?exp(-u®/2). (184) ten p(y)nin en yogun elektrik
yikii y, =1-(4B/3) da meydana ¢ikar, burada p(y,),B varyansiyla bir normal kuralin
(2nB)""?olan zirve degerinden yaklasik [1+(49B/54)]defa daha yiiksektir.

Bu asamada, iki terim Volterra serisi i¢cin Boliim III-C de verilen 6zel sonuglara gidiyoruz.

W, (f)nin Gauss formu ve G,(f,,f,) icin 6rnegimizde,Tablo II nin 4.lincii satir1 ile galigmak
uygundur.Ornegimiz igin integral esitlikleri ,

AP(f) = (2r) "2 exp(—f? /2)T df, 2%(f,)exp| (f =2 /(2B%) | oo (85)

k.inci eigen degeri ve fonksiyonu asagidaki gibi bulunmustur.
4 (c-1Y
A =— —
c+1\ c+1
1/2
1 2 c

W, (f)=A, exp| - 1(c+1f* |H, [f(z) ] ......................... (86)

Burada A, , sadece k ya ve asagida verilen Hermite polinomuna baglidir.

Hk<x>=ex2(‘£) e H()=1 Hx)=2x.
dx

(86)nin (85) in bir ¢dziimii oldugu asagidaki (87)nin yardimiyla gosterilebilir.

o 1/2 (2 Y2 ) . 2 Y2
J'e—px2+quk(rX)dX: T 1-— exp[q—}Hk R L T (87)
e p p 4p 2p P
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Ornegimizde &, parametresi sifirdir ¢iinkii iki terim Volterra serisinin ilk terimi eksiktir ve
p(y) ve x_leri hesaplamak i¢in sadece A, ihtiyactmiz var. p(y)i¢in (186) integrali,
asagidaki gibi olur.

17 vz T . 02
p(y):ﬁidze i /g[1—412pk(C+1) T (88)

Burada p =(c —1)(c +1).(188)deki seri m.inci kiimiilant i¢in (89) u verir.

= o (m-ty2z
kZ;, (C+1) vy S e (89)

m=12,3,4 i¢in (83) ile mutabiktir.(188)deki integrallerden x_yi hesaplama, aslinda (83)ii
elde etmek i¢in kullanilan katli integralleri degerlendirmeyle aynidir.

Prosediirii izah i¢in iki terim Volterra serinin ilk terimi verildiginde,

y(t):Tdug1(u)x(t—u)++fdub(u)x2(t—u) ................... (90)

ifadesini géz Oniine aliyoruz.Burada,
g,(u)= OLB1(271:)1/2 exp(—2n2[312u2) G,(f)=aexp [—fz /(2[312 )} dir. (91)

Simdi p(y) ve <« leri hesaplamak icin [(86)da verilen] A, ya ek olarak bir de
€, parametresine ihtiyacimiz var.Tablo II nin 4.incii satirinda verilen P, (f)igin

ortonormalizasyon iligkisi Hermit polinomlar1 i¢in meydana gelir(ters yiiz) ve (86)daki
A, normalizasyon sabiti i¢in jc*(2nk!2*)™"?ifadesini verir.Tablo II nin son siitununda

verilen & igin integralde normalize edilmis W (—f) yerine yazildiginda ve (87) nin
yardimiyla degerlendilen sonug, bulundu ki k tek iken &, ,sifir ve k ¢ift iken asagidaki gibidir.

e reny2]"?fa-1T , 5
P, = =(2B2+1D/C e, 92

Halen x, =1 fakat (188)den m =2 i¢in x,_ (89) un toplamu arti,

ZE-‘ A2 —o2c2 m! i . i 1/2 a-1Y(c-1Y™" "
2nen a+1lc+1] = nl |la+1)|c+1

-1/2

= o’c™"ml4" [ (@ +1)° (c+1)" " = (a =)’ (e~ 1) | ...(93)
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buradan >0 oldugunda (o), =1 ve (o) =o(a+1)(0+2)...(+n-1). m=2 oldugunda

seri daima yakinsar ve m=2,3,4 ic¢in (180)genel katli integrallerden elde edilenlerle uygun
degerler verir.

m=1 oldugunda (93) iin sol tarafi & /(2),) formudur.Béliim VIII-C de belirtildigi iizere
eger bu seri bir S degerine yakinsarsa ve tiim A, lar pozitif ise y(t)asla —S degerinden kiigiik
degildir.(93)de m=1 koyup ¢ ve a’ yerine B ve P, bant genisliklerinin terimlerdeki
ifadeleri yeniden yerlestirilmesi gosterir ki B* < 2[312 oldugunda seri yakinsaktir ve asagidaki
degeri verir.

o’

4p

Pollak a borgulu oldugumuz y(t)>-S esitsizligi daha genel bir sonucun 6zel bir halidir.

-1/2

S= (2B2-B%) © e (94)

Boylece b(u) (90) da asla negatif olamaz.
g, (UK(t—u)+b(u)X2(t - u) = ~g2(u) (4b(u))

y(t)>— j:gf(u)du/(4b(u)). ................... (95)

B? < 2B? oldugunda Srnegimizin g,(u) ve b(u) igin integral yakimsaktir ve y(t)>-S verir.

Sonug olarak, B — e oldugunda y(t) i¢in (90)da ikinci integral x*(t) olur ve k >0igin
c—1, A, > 2, A, > 0. Bununla beraber ¥, (f) ve bunlardan hesaplanan&, degismez. p(y)
igin (186) integralindeki Q(z) faktdriindeki iis, (188)denk, —A5/2 ye esit olan Y &2

toplamini igerir.

Genelde iki terim Volterra serisinde ikinci terim a,x*(t)/2 oldugunda yukaridaki &rnekle

karsilasirmadan ve Tablo II nin 4.incii satirindan anlasilir ki k>0 igin 2, =3202,

¥, (f)=W.(f)/c, A, =0 ve

; 172 z ; 2 : 1
Q(Z) = (1 - Jxoz) exp {_E[Kz + J}‘“ozéo (1 - J}“oz) :I}
£, = | dfG (W, (F)/o

K, = Tdex(f)G1(f)G1(—f) ................... (96)

burada ¢° = <X2(t)>.
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BOLUM II. FORMULLERIN TURETILMESI

V. DIREKT ACILIM METODUYLA ILGILi FORMULLER

Direkt acilim metodu keyfi derecenin Volterra transfer fonksiyonuyla ugrasirken
kullanighdir. Brunonun bir fonsiyonun fonksiyonunun n.inci tiirev formiilii ve Maclaurin
serisinin ~ yardimiyla ac¢ilim genelde basarilidir(iistesinden  gelir).Siklikla  agilim
sonucu,simetrize edilmek zorunda olan simetrik olmayan kernellerle bir Volterra serisidir.

Burada Boliim III de listelenen Volterra transfer fonksiyonlar: i¢in genel ifadelerin ¢atisina
kisaca deginilmektedir.

A. [y(t)]I I¢in Volterra Serisi

Bu boliim, 1 bir pozitif tamsayr olmak {iizere [y(’[)]I icin Volterra serisindeki n.inci

g,(u,,...,u. ) kerneli i¢in bir ifadenin tiirevine ayrilmistir.

y(t) i¢in (1) Volterra serisinde x(t—u,) ile Ex(t—u,)yeniden yazilmasiyla elde edilen
H(§)fonksiyonunu tanitiyoruz. t zamani H(§)ye parametre olarak girer ve H(1) ,y(t) ye
esittir. F(z),Z' olsun.

[HE) =FlHE)] 25,[

} dir. e, (97)
£=0

n.inci tiirev belki Brunonun bir fonksiyonun fonksiyonunun tlirevi formiiliiyle
degerlendirilmistir:

ZF“ HE)] Y, NV, Ve, VOHYEHY(E). HY(E) ..(98)

(vik,n)

burada,k 1 yerine ge¢mistir,toplam sembolii (24)dekiyle aynidir ve N, (26) ile verilen
N(v,,V,,...,V, ) dir.

k.inci tiirev F®(z), I(1=1)...(1 =k +1)z2"* dir. & =0 i¢in H(E) sifir oldugundan beri k #1 igin
“H(0)] sifirdir ve k=1 iginl! dir. y(t) i¢in (1) Volterra serisinde & koyarak elde edilen

H(E) i¢in seriyi diferansiyelini almak gosterir ki

(0){ o& [H(f%)]} =Tdu1--zduvgv(u1,...,uv)]:[x(tﬂr) ................ (99)

S

Bu degerler (98) de yerine gegirildiginde, | < n i¢in sonug asagidadir.

27



[ddz_,n“ ,:[H(g)]} =1y N(v1,...,v,)_|-du1..._[dungv1(u1,...,uv1)...gvl(uu,...,un)ﬁx(t—ur)
£=0 (vkn) o o r=1

[ >n igin (100) iin sag tarafi sifirdir.

(97) de (100) yerine yazilip , § =1 yerlestirildigi ve integraller igerisinde (v;l,n) toplami
alindiginda [y(’[)]I icin bir seri verir.Bu seri (101) deki yapilar simetrize edilerek Volterra

serisine ¢evrilebilmektedir.
g, (U4, )9, (U, u ) =Puy,.u) (101)
Burada g, ler simetriktir.

P(u,,...,u,) de n indislerinin permiite edilmesiyle meydana gelen simetrik fonksiyon ve
eklemek agagidaki ifadenin sag tarafina sadelestirilebilir [bak(120)].

1 1
2P i) = TP th) (102)

Burada N, (26) ile verilmis ve (100)deki N(v,,...,v,) gibi aynidir. (24) deki gibi 2,’\‘ toplami,
0zdes olmayan N yapilari lizerinde toplami gostermektedir. u, atanmis olan keyfi bir sayisal
deger, u, bundan farkl fakat diger taraftan keyfi bir deger vb olsun.Bu durumda P(u,,...,u,)
kesin bir sayisal deger alacaktirBolim V-C de (102) , P(u,,...,u )nin bu degerini
degistirmeyen permiitasyonlar hesaplanarak elde edilecektir.

Boylece,(101)deki yapilar1 simetrize etmenin etkisi,E{,’\l toplamiyla (100)de N(v,,...,v,) i

yeniden yerlestirmek i¢indir.Bu bizi (103)e gotiiriir.
(U U)) =10 DG, (Uil )Gy (Usensly) (103)

(103) ifadesinin her iki tarafinin n-katli Fourier doniisiimiinii almirsa GU(f,,...,f )igin (24)ii

Verir;

GO(fyrf) =Y UG, (Feenf, )Gy (Fen) s (104)

(viln)

B. Keyfi Seviyeden Volterra Transfer Fonksiyonlari

n keyfi oldugunda G_(f,,...,f )i¢in Boliim III de bulunan ifadeleri tiiretmek igin, [y(’[)]I ile

freees
ilgili sonuglar ve simetrizasyon bu boéliimde kullanilmistir.
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Oncelikle (37) diferansiyel esitligi gdz oniine al. x(t),exp(jwt) olarak alindiginda ve y(t),
(32) islerinin serisi olarak alindiginda,(37) de yerine koyma ve exp(jw,t)nin katsayilarmi
esitleme, n > 1 ifadesini verir. n >1 i¢in, X(t) yi n Gslerinin toplam1 olarak alalim ve kabul
edelim ki y(t) n-kath bir seriye agilabilsin, Nn=2 durumu icin (33)e benzer

exp[j(w,+...+w,)t| nin kasayisi G,(f,...,f ) dir. Bundan sonra [y(t)]l,

FELLETN

exp[j(w, +...+w,)t| nin katsayiss GU(f,,...,f,) olan benzer bir seriye agilabilir. |>n
oldugunda bu serileri (37) diferansiyel esitliginde yerine yazma , exp[j(w, +...+w, )t|nin

katsayilarini esitleme ve GS) nin sifir olmasi agagidaki ifadeyi verir.
F(iw, +...+jw,)G, (f,.....f )+ > aGl(f,...f)=0 (105)
1=2

Sekil3 te gosterilen sistem igin sistem esitligi,(42) serisini esitleyerek elde edilmektedir. H(f)
kabulii izerindeki akim igin:...

Y alyt)] = fh(r)[x(t —)-yt-tdt (106)

1=1

burada h(t),H(f)nin Fourier doniisiimiidiir. x(t)yi exp(jw,t)olarak almak, y(t)i¢in
(32)serisini alma ve (106)da exp(jw,t)nin katsayilarini esitlemek asagidaki ifadeyi verir.

n>1 igin, X(t)yi n iislerinin toplami olarak alma ve exp[j(w,+...+w, )t|nin katsayilarin
esitleme (108)i verir.

a,G,(fyenf)+ Y 2B, £) = =G (e FOHE, + 46 s (108)
1=2

Sekil3 {in devresi i¢in (43) tekrarl iligkisi,(107) ve (108) i takip eder.

Simdi Sekill e doniiyoruz. modiilator-filtre-demodiilator sistemi igin sistem esitligi (46) ve
(47) ile verilmektedir. G (f,,...,f ) i¢in (49) ifadesinin tiiretilmesine baslamak i¢in H(E)yi

"
asagidaki gibi tanimlariz.

H(E) = fg(u)h [Ex(t-u)]du (109)

burada t , H(§)de bir parametre olarak iliskilendirilmistir. &=1 oldugunda F[H(E)]
fonksiyonu y(t) ye esittir.Yine direkt agilimla,
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[H(E)] ié—'[ (&)]} ...................... (110)

&=0

burada Bronun (98) formiiliiyle n.inci tiirevi degerlendirebiliriz.Bunun i¢in, (47) ve (109) u
takip eden asagidakilere ihtiyacimiz var.

HY(0) = thg(u)[x(t ~u)] du

H(0) =
F[H(O)]=F(Z )=0 ...................... (111)

)| e |
2=H(0)

(
110) da Brunonun formiiliiniin kullanim1 ve & =1 yerlestirmesi asagidaki ifadeyi verir.
oo 1 oo , ,
)= X 2R SNV YO0 (112)
n=1 =1 (viln)

HY)(0) igin integrali yeniden asagidaki gibi yazariz.

HY(0) =h, [ du,... | du,@, (Uy,...u, X(t—u,)..x(t-u,)

o(u)=9(u) (113)
@, (Uy,...,u, ) = g(u,)8(u, —u,)...8(u, —u,) v>1

burada G(f),g(t)nin Fourier doniisiimii (48) olmak iizere , @, (u,,...,u,), G(f, +...+f,) V-

katli Fourier doniistimiine sahip bir simetrik fonksiyon olarak iliskilendirilebilmektedir.
Bundan sonra (112) asagidaki gibi olmaktadir.

oo 1 +oo +oo n
y(t) = Zm j du1..._[ du, v, (uy,...,u ) [ x(t-u,)
n=1'1_ oo r=1
Va(Upseoslp) = DR Y 0y e NV V)0 (U U)o Oy (U Uy ) s (114)
=1 (viln)

burada vy (u,,...,u ),n>2 oldugunda genelde simetrik degildir.(114) i Volterra serisine
cevirmek i¢in (112)nin yardmmiyla v (u,,...,u,)i simetrize edebiliriz.simetrizasyonun
basarilmas1 6zdes olmayan N yapilar iizerinde alinan 2,’\‘ toplamiyla N(v,,...,v,) yi
yeniden yerlestirmektir Boylece (114), simetrik kernelle Volterra serisine(1) gider.

g, (Uy,-..,u ZFZhV, Dy Y P (U U)o @y (U U)o, (115)

=1 (viln)
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Bu kernel,gdstermek istedigimiz gibi (49)da bulunan n-katli G_(f,,...,f ) Fourier doniisiimiine
sahiptir.

Son olarak,Sekil2 sisteminin feedback i¢in G, (f,,...,f )i veren genel tekrarl iligki(58) nin
tiirevikisaca tanimliyoruz. X(t) nin giictinde w(t) icin Volterra serisinde(59) t yerine t—uy,
yerlestirilirse W(t—u;)igin bir seri elde edilir. y(t) i¢in (53) sistem esitliginde
quﬂw(t—u;) yapist  bir i +...+i, =n-kath integralin n kath toplami olarak

yazilabilmektedir. Toplamin seviyesini degistirip kullanilirsa y(t) i¢in bir seriye(116) gotiiriir.

PHIBISH D)

=1 i=1 = n=1 I1=1 ij+i,+...4i=n
y(t):zmjdu1...JdJn(pn(u1,...,un)Hx(t—ur) ...................... (116)
n=111-_ oo r=1
burada,
. 1 - n! i ’ T 7 ’ ’ ’ ’ ’
¢, (u,,...,u; )= m Z T i'_[du1...jdu1m|(u1,...,u|)ki1(u1 = Uyl —Uy) K (U, =)
=1 i+ H=n el o —oo
...................... (117)
(116)nin (1) y(t) icin Volterra seri ile karsilastirilmas: gosterir ki@, (u,,...,u )nin simetrize
edilmis veriyonu @ (u,,...,u )dirie. @ nin n-kath & (f,...,f ) Fourier doniisiimiiniin

f

simetrize edilmis versiyonu G_(f,,...,f )dir. G (f,,...,f ) icin (58) genel ifadesinde goriinen
KV1,KV2,...,KVIM|yap1s1yla aynt forma sahip(v lerle i ler yeniden yerlestirilmis) bir
Ki1 ,Ki2 ,...,KiIMI yapistyla 1-katl integral yeniden yerlestirilerek @ igin bir ifade (117) nin sag
tafindan elde edilebilmektedir. Bu yap1 (ve ayn: zamanda f, +...+fi1 arglimanlartyla M,

fonksiyonu) Boliim III-C de iizerinde durulan P(f,...f :i,...,

sahiptir. @ i (123) yardimiyla simetrize etme, G_ye esit sonuglar1 yerlestirme, @ de I=1

i) yapisiyla aym tip simetriye

i¢in G, iigeren tek terim dir ve G igin ¢6ziim, (58)in tiiretilmesini tamamlar.

C. Simetrik Fonksiyonlarin Yapilarinin Simetrizasyonu

“ SV ” “simetrize edilmis versiyonu” temsil etmek iizere, keyfi F (f,..

1s-.,f) fonksiyonunun

simetrize edilmesiyle elde edilen fonsiyon {SV F (f,,...,f,)} seklinde ifade edilmektedir:

ISV F(f,,...,f, )} = 'sz(f,...,fn) ................ (118)

Buradaz tizerindeki n! indisi, flerin tizerindeki indislerin tim n! permiitasyonlar

tizerinde toplamin acildigini gosterir. P(...) yapist asagidaki gibi tanimlanir.

ooy tiped) = s (F+ )8 (F g+ 46 s (F g+ 4 1)

|1+|2+...+||_n, 1<i, <n, q=12...,1 (119)
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Burada s(...) fonksiyonlari, argliimanlarinin simetrik fonksiyonlaridur.

Oncelikle asagidakini ele aliyoruz,
{SV F(f,,...f,)} = %z WPEL LT v,y (120)

burada n,l ve v, tamsayilarinin kiimesi verilmektedir. v ler (25)de oldugu gibi tam sayilardur.

V,+V,+...+v,=n, 1<v,<v,..<v, . (121)

(120)nin sag tarafindaki toplam,(26) ile baglantili olarak tim 6zdes olmayan yapilar
tizerinedir. Toplamdaki bu tip yap1 asagidadir.

N=nl/(v,L.v!nle)y (122)

Burada r,, v, <v, <... <V, diizeninde esit v lerin ilk adiminda esit v lerin saysi, r, ise ikinci
adimin numarasi vb. dir.

(120) nin saglamasimi yapmak i¢in, S (...)nin arglimanlar1 i¢indeki f, lar permiite edildiginde
P(...)nin degerinin v,,...,v, degerlerinin verilen bir kiimesi degistirilmedi. v,!...v, gibi
permiitasyonlar vardir. Dahast P(...)nin degeri, esit indislerle s, permiite etmeyle
degistirilmemistir.Bu tiriin permiitasyonu v, <v, <...<v, durumunu bozmaz. r!r,l.r!
seklinde permiitasyonlar vardir. f,...,f nin n! permiitasyonu ile verilen P(...)n!nicelikleri,
P(...)nin degerine gore kiimeler igerisine bdliimlenebilmektedir.Her kiimedeki eleman
sayilart aymdir (v L.v/!r!r,l.r1=M ve kimelerin sayisi, N=n!/M dirN kiimeleri

tizerinde bir toplam i¢in n! permiitasyonlar1 [gor(118)] lizerinde toplami degistirme, istenen
iligkiyi (120) verir.

Asagidakini saglatacagiz. Verilen nvel,

1 n! ol / _
{SV—' z T i'P(f1,...,fn.|1,...,||)}—ZZNP(ﬂ,...,fn.v1,...,v|) ........... (123)

I- iy o+ Hy=n 1= el s (vil,n)

burada soldaki toplam i +...+i=n gibi i,...,i tamsayilar iizerinde alinmakta ve
1<i, <n[gdr(119)]. Sagdaki 2 altindaki (v;l,n), (121)i saglayan v tamsayilarinin tiim
kiimeleri tizerindeki toplami gostermektedir.(123) i saglatmak i¢in (v;l,n)de her bir
V,,V,,...,V kiimesi i¢in kars1 gelme ,v lerin degeri degistirilmis olan sinyali i lerin i,...,inin
kimeleri  11/(r,!r,!..r1) tane vardirBu i lerin kiimelerinden herhangi biri i¢in

Dilil=v,l.v!ve2)

SV P(f,.of, i) =SV P(Fes VeV (124)
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Bundan dolay1 (123)iin sol tarafi,istenen iliski(123) olan asagidaki gibi yazilabilmektedir.

oo

|1| S SV Py, )}

g+ H=n 1 e

1T O n! '

= ¥ ¥sv P(f1,...,fn .v1,...,V|)}

(v;ln)

=Y Y PEfiveLv) (125)

(v;l,n)

VL. CIKISIN BASIT OZELLIiKLERi

Burada, Volterra transfer fonksiyonlar1 icin (1) Volterra serisi ve (2) ifadesi, harmonik ve
Gauss girigleriyle ugrasmaya uygun formlarda yeniden hesaplanmaktadir.Yeni formlar 1) ve
2) yi elde etmek icin uygulanarak izah edilmekde, 1) x(t) bir siniis dalgas1 veya iki veya li¢

siniis dalgasinin toplami oldugunda y(t) i¢in Boliim II-A da listelenen ifadelerin genel formu.
ve 2) Xx(t) Gauss tipinde oldugunda y(t)nin dc degeri igin ifade. x(t) Gauss tipinde
oldugunda y(t)nin dc degeri, beklenen degerine veya <y(t)> benzer miktarina esittir.

A. Genel Iliskiler

expax(t—u,)+...+ o x(t—u,)|nin  agihminda  o0,...0,,nin  katsayist  olarak
x(t-u,),...,x(t—u_ ) yapilarin1 (1) de yazarak, oncii terimleri Bolim II-A da verilen

formiillerin tiiretilmesi basitlestirildi; i.e. asagidakiyle iissel fonksiyon iizerindeki islemin
sonucu olarak

&
do,,...00

n

Dp =

0y =0lp=...=0,, =0

Boylece, x(t—u,)..x(t—u_ )=D exp[Zasx(t—us)} ..................... (127)
s=1

_o [Z ax(t— us)}n /1! .................... (128)

ve y(t) igin (1) Volterra serisi asagidaki iki sekilde tekrar yazilabilmektedir.

y(t) = i%Tdu1...Tdungn(u1,...,un ) D exp[i o X(t - us)} .................... (129)
y(t):i%Tdu1...+fdungn(u1,...,un)D?x{iasx(t—us)} /1! .................... (130)

y(t) igin (130) serisi ve n iissel terimlerin toplami olarak X(t)yi alarak G, (f,,...,f )in
hesaplanma metodu, kullanigh ifadelere gotiiriir.
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1 +oo +oo ) u
Gy(fyfi) = [du,... [ du,g, (e, DL TALEIA(R) (131)

burada, A (f)= Ze’jwus , w=2nf L (132)

s=1

Asagidaki sonug, X(t), iki tarafli W _(f) giic spektrumuyla Gauss tipinde oldugunda, y(t) i¢in

(129) tekrar yazilan Volterra serisiyle birlikte kullanilacaktir.L, asagidaki gibi bir lineer
operator( t nin fonksiyonlari iizerinde islem) olsun.

L[e™|=Hfe" , w=2« (133)

Sonra

<exp{L[x(t)]}> =exp % fdeX(f)H(f)H(—f) .................... (134)

B. Harmonik Giris
X(t)=Pcospt, p=2nf oldugunda (130)daki sag kisim toplam1 asagidadir.

. 1 _Q . .
Z aX(t-u )=~ Pz ocs(elpt*JPUs + g ipt+pyg )
s=1 2 s=1

1 jpt —jpt
zip[e A(E)+e ™A (-E)] (135)

burada A _,(132) ile verilmektedir. Binomial teoreminden,

[ " PY & exp[i(2k —n)pt] e
DQ[Z,OCSX(’[—US)} /n!=(§j2 T AS(F)AMK () ....(136)

k=0

Bunu y(t) igin (130)da yerine yazip G, igin (131)i kullanmak asagidaki ifadeyi verir.

- (P Y &, explj(2k —n)pt
y(t)= 21[2] > eka[!JEn . k;)p ]Gk.n_k(fp) .................. (137)

Burada G, ,(f,),G,(f,,....f,)yi gosterir. f ninilk k s1, +f ye esittir ve kalan n—k,-f  ye

esittir.

2k—n=N2=0 icin (137)de terimleri segme gosterir ki y(t)nin exp(jNt) bileseni asagidadur.

. - (p/2)2I+N
e % N GeuF) (138)
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N=0 oldugunda gériinen G, (f, )nin degeri sifirdir ¢iinkii G, =0 dur. (138)de p ve f nin
isaretlerini degistirme, y(t)nin exp(—jNt) bilesenini verir. x(t)=Pcos(pt+) igin y(t)
(137) ve (138)de ptyerine pt+¢ yazilarak verilmektedir.Cikis bilesenleri i¢in bu ifadeler
Mircea [7] tarafinda verilen formiillere benzemektedir.

Ay tip arglimanlar gosterir ki x(t) =Pcospt+Qcosqt oldugunda M>0 ve N>0 igin

y(t)deki exp[j(Np+Mq)t] bileseni asagidadur.

j(Np+Mag+)t __
€ :202 N+| ||| M+k)'k' N+||M+kk(fp fq) .................... (139)

burada, p=2nf,q=2nf ve G deki dort indisin manasi su ki n=N+21+M+2k ile
G, (f,,....T, )ye esittir vef; nin ilk N+1si f ye esit, sonraki I, —f ye esit, sonraki M+k, f, ye
esit ve son olarak k da —f ya esittir.(139)da p ve f nin isaretlerini degistirme, y(t)nin
exp[j(—-Np +Maq)t] bilesenini verir. vb.

Benzer sekilde x(t)=Pcospt+Qcosqt+Rcosrt oldugunda M>0,N>0 ve L>0 igin
y(t)deki exp[j(Np+Mq-+Lr)t] bileseni asagidadur.

_— oL P/2 24N Q2 2Kk+M L/2 2i+L
gt :zzz N+)| |||(M+|z)|k|EL+|))||lFN+'-|:M+k.k;L+II(fp fq’f ) e (140)

I=0 k=0 i=0

burada G, (f,,...,f,) in seviyesi, N =N+2I+M+2k +L +2i dir.
X(t)deki kosiniis terimlerinde faz acilar1 goriindiigiinde (139) ve (140) daki iissel terimlerde

Npt yerine Npt+No, , Mgtyerine Mgt + Mg, vb. yazariz.

C. Gauss Girisi I¢in y(t) nin Beklenen Degeri

X(t) bir sifir-mana duragan Gauss islemi oldugunda, y(t)nin beklenen degeri,(129)un iki

tarafli averajindan elde edilen <y(t)> benzer averajidir ve (134)iin kullanimi asagidakini

gosterir.
<exp20csx(t—uS )> =expJd (141)
s=1
o :% [dWMOAMAD s (142)

Burada nAA indisi (142) ve (150) ile one siiriilmektedir. W (f),x(t)nin iki tarafli gii¢
spektrumu ve A (f), (132) ile tanimlanmistir. J_,, i¢in (142) integrali, (134) i (141) ile bir
tutarak elde edilmekte ve H(f) in A _(f) ye gittigini gostemek i¢in kullanilir.
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L[e™]= e’WtZOLeJW“ —e™A (F) . (143)

Boylece y(t) icin (129) ifadesi asagidakini verir.

{y(t)) 2 jdu jdungn(u1, U DT eXpd e (144)

Bundan sonraki adim expJ ,, nin agilimidir. oo limitleriyle(smnir) X,,X,,...,X, ya gore n-
katli integal belirten Q, [h(x)] operatériinii tanimlamak igin uygundur. X,,X,,...,X,nin
fonksiyonu h(x,)...h(x,) kere, integrant, Q, [h(x)]in sag tarafina yerlesen terimlerle

tanitilmaktadir. Q, [h(x)] 6zdes operatorii gostermektedir.

=3

. 1
eXP joan = ZEJ‘:M

=1+iﬁ(}“ WO TAEAE) oo (145)

<y(t)> icin (145)i (144) de yerine yazdigimizda, w =0 a karst gelen (145)deki 1 in katkisi
yoktur ¢iinkii n>1 i¢in 1 iizerinde D] isleminin degeri 0 dir. n ve p toplamlarmmn yer

degistirmesi asagidakini verir.
(y(t)) 2 ,2u JW O jdu jdungn - Dl:[ (EA(F) (146)

A (f ), o larin ayni cinsten lineer fonksiyonu oldugundan beri, (146)daki yap: o larda 2
derecedesinde; ven=2ui¢in olan haric  n-toplamindaki tiim terimler 0 dir. n=2u
yerlestirme ve G i¢in (131)i kullanilinca asagidaki ifadeye gotiiriir.

(y(t) = iu.—;% (W, (D]Gu(fy ooy fuf) v (147)

bu ifade (11)de verilenin ilk iki terimidir.
<y(t)> icin biraz benzer bir ifade Deutsch[12] tarafindan verilmektedir.

VII. GUC SPEKTRASI

Bu bélimde y(t)nin iki tarafi W (f) gii¢ spektrumu iki durum i¢in hesaplanmaktadir.Ilkinde,
x(t) girisi, W_(f)gli¢c spektrumu ile sifir-mana duragan Gauss giiriiltiisiidiir(Mircea-Sinnreich
durumu).Ikincisinde x(t) girisi, bir siniis dalgasi arti sifi-mana duragan Gauss giiriiltiisi,
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Pcospt + 1 (t) dir.iki durumda da <y(t + r)y*(t)> benzer averaji hesaplandi ve sonra W, (f)yi

elde etmek icin Fourier doniisiimii alind1.

A. Gauss Girisi I¢in y(t +7)z(t)

y(t) (1) ile verilen Volterra serisi ve z(t) de g (u,,...,u,) in yerinde g/ (U,,...,u_) olan benzer
bir seri olsun.ikisi de aym1 Gauss giiriiltiisii Xx(t) girisine sahip. <y(t+’c)z(t)> benzer
averajinin hesaplan adimlar1 benzer fakat <y(t)>nin hesaplanmasinda kullanilandan daha

karmasiktir.

Tekrar yazilan (129) serisinden,
o oo 1 400 +oo 400 +oo , -
(y(t+1)z(t)) = ZZW [du,... [ du, [ dv,... [ dv,g,(U....u, ) (V.. v, JDID;
n=1m=1 =10 —oo —oo —o0

.<exp[i o x(t+T-u,)+ Y Bxit- vs)+}> ................ (148)

Ussel fonksiyonun benzer averaji yine (134)le verilendir fakat simdi H(f) asagidaki gibi
diizenlenmistir.

L[e"|=e[e™A(f)+B,()|=e"Hf) s (149)

Burada A (f) halen (132) ile verilendir ve n, o, u yerine m, 3, v yerlestirilmesiyle B_(f)
yine (132) ile verilmektedir.Bundan dolay1 (148)de iissel fonksiyonun benzer averaji expK
olarak yazilabilmektedir.Burada K,

K =2 J AW (D[ A, (DA, (-)+B, (1B (-F)+26™A (1B, (-]

=d ot ) e, (150)
nAA mBB nmAB

W, (f)in ¢ift olmasi, exp(jwt) igeren terimleri elde etmek ic¢in kullanilmustir; J
A_(f)A_(—f) igeren integraldir;vb.

nAA°

expJd. g Yi(145)de expd ., yapildigi gibi ayni yolla agilmas: asagidaki ifadeyi verir.

e =exp[Jan + s ]| 1+ i%ﬁewm(ﬁ ) =T 15 1 (151)

r=1
BB ] kere 1 in katkist,(151)de

k=0 icin karsi gelen 1 olma, t))(z(t))dir. Bu, t)) icin (144) serisini takip
y y

eder.Degismeyen kismin Kkatkisii.e. (151)deki k>1 terimlerinden ortaya ¢ikan kisim,
integrallerin ve toplamin seviyesini degistirerek elde edilebilmektedir.ikili m yi degistirdikten

(148) de benzer averaj i¢in yerine kondugu zaman exp [JnAA +J
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sonra, n-toplami, m-toplam ve n-toplamin yapist olarak yazilabilmektedir.Bundan dolay1
(151) in (148)de yerine konmas1 asagidaki ifadeyi ortaya cikarir.

oo CJk[ (f)]E J(wyt 4wt

(Yt T)2() = by 3, — - ER IR N (AR 5 W (152)
burada, a, =<y(t)>, b, :<Z(t)> ve k >0 igin,
:ilf jdu 6, (Upnt, DN TTAL(F) (153)
ol 9ol U D [TAR) e

b, (,,...,f, ) fonksiyonu, (153)de n, u, g,,0, J LA, (f) yerine m, v, g .B, J zB,. ()
yazilarak elde edilen bir ifadeyle verilmektedir. Ornegin, z(t)=y(t) ise
b.(f,,....f.)=a (..., ) dir.

(153)de (145) serisini yerine koyma agagidaki niceligi kazandirir.

D" [ﬂAn(f; A, (-, )}[ﬁAn(fr )} .................... (154)

burada,(145)de r, f, f yerine q, f’, f; yazildi. A (f), o larda lineer ve ayni cinsten

oldugundan beri n=2u+k olmadig: siirece sifirdir. a,ig¢in p ve n fiizerinde alinan ikili
toplam, n = 2u +K ile .iincii terim olan p iizerinde tekli toplama sadelesir.

1 177 T : .
1 Q, [W,(f )]m{du1...{dungn(u1,...,un){(154)|fade5|} ................... (155)
G, (f,,....f ) i¢in (131) ifadesi gosterir ki kath integral bir G_ fonksiyonuna gider.netice
olarak k >0, a, i¢in (153) serisi asagidaki gibi olur.
f )] ’ ’ ’ ’
(.. f )= 2 '2“ PYIDL (PO W A N PR
u=0

:Gk(f1,...,fk)+ﬁ j dfW, (F)G,,. (F,y....f T —E)

1 T I+Do ’ ’ ’ ’ ’7 g7 ’
+W_[df1Jdf2WX(f1)WX(fZ)G4+k(f1,...,fk,f1,—f1,f2,—f2)+... ....(156)
b (f,,....T) icin  yerini tutan ifade, (156)da G, fonksiyonlar1 yerine

G'ZH( —fye, =, . ofo
serisinde Gm, g, kernelinin Fourier doniistimidir. f,...,f larin isaretleri korunda g¢iinkii

—f;) konularak elde edilmektedir. Burada z(t)i¢in Volterra
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analizlerde A (f )yerineB_(—f) ge¢er.Madem ki G, _ler simetriktir o halde a,(f,,....f,) ve
b (f,,....f, ) da simetriktir. b, (f,,..., ) i¢in seri asagidadur.

’ 1 v 4 ’ 4
b (f,....f.) = Gk(—f1,...,—fk)+ﬁ I df W (f)G,,, (... f, ) +... ... (157)
(152)de Q [ (f )] ile elde edilen integralleri yazmak, agsagidaki gerekli ifadeyi verir.
(y(t+*c)z(t)> =< (t))(z(t deejw1tW (f,)a,(f,)b,(f,)
1 i j(wy+w
+or [ o, j df,e!™ W (FIW, (£, )a, (F, £, )0, (F F) +ooe e (158)

burada a, ve b, , (156) ve (157) serileriyle verilmektedir.

z(t) = y(t) ozel halinin {izerinde, <y(t + ’c)z(t)> yi hesaplayan bir prosediir tasarlayan Deutsch
[12] tarafindan duruldu.
B. Gauss Girisi I¢in Gii¢c Spektrumu

Karmagik y(t) ve Gauss tipi x(t) igin iki tarafl W (f) gii¢ spektrumu, (152)de z(t) =y (t)

yerlestirilerek elde edilent nun <y(t + I)y*(t)> fonksiyonunun Fourier doniisiimiidiir. Sonra

D g, =9,.2 G, (F, ) =G, (B f B 1 D) (159)
Ve 3) (156) ve (157) gosterir ki by(f,.....f,)=ay(f,....f,). Netice olarak, (y(t+1)y’(t))
ifadesi, a (f,,..., T o, (f,,...,f, ) yerine |ak(f1, £ )| yazilarak (152) serisiyle elde edilmektedir.

exp(—jwt) ile carpilir ve —co dan +eco a T nun integrali alinirsa y(t)nin gii¢ spektrumu igin
,bizim notasyonumuzda, Mircea-Sinnreich [5] serisini verir:

2 — Qk WX f 2
W, (f) =|a,| 8(f)+2%8(f—f1—...—fk)|ak(f1,...,fk)|
= [a, [ 8(F)+ W, (F)fa,(F)” jdfw (F )W, (F =), (F, f —F,)f
+%+Edf1+j:dfzwx(f1 W, (£, )W, (F — f, = £, )lag(F, F,,f =, — ) +... ... (160)

Burada a, =(y(t)) ve k>O0icin a(f,...f) (156) serisiyle verilmektedir. Q,[W,(f)]
operatoriindeki f, f,,...,f degerlerini alir. §(f —f, —...—f, ) daki file ilgisi yoktur. a, igin seri,
<y(t)> icin (147) serisiyle verilmektedir. kK =1,2,3 icin (156)daki ilk birkag terim asagidadir.
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a,(f)=G jdfw NG, (F,f,—F) +...

3,(p,0) = G,(p.0) J oW, (F)G,(p,0, 1) +
a3(p,c,7»):Gz(p,0,7L)+... ....................... (161)

W, (f) i¢in (160)daki 6ncii terimler (14)de verilmistir.

y(t) karmasik oldugunda,(70)i takiben,analizde y(t) nin reel kisminin gii¢ spektrumu,

G,(fy-...f,) ile |G (F....T,)+ Gy (oo, /2 yer degistirilerek elde edilebilmektedir.

y(t) nin reel kisminmn gii¢ spektrumunu elde etmek i¢in W (f) i¢in (160) serisinde

|ak(f1,...,fk )|2 yerine ‘ak(f1,...,fk)—ai(—fv...,—fk )‘2/4 yazmak igin esitliktir.Bunun gibi, y(t)
f

nin sanal kismimin  gii¢  spektrumu, W, (f) icin analizde, G (f,...,f;) yerine

[Go(Ferf,) = Gi(,vere—f,) ] /2] yazilarak elde edilmektedir ve (160)da [a,(f,.....f,)|”

8 (v f) =85 (e ) /4 ver degistirir

C. Siniis Dalgas1 Art1 Giiriiltii Girisi Icin Giic Spektrumu

X(t) =Pcospt +I(t)oldugunda , 9/f = 2r/p periyodu ile<y(t)> averaj1 periyodiktir. Burada
I (t), iki tarafli W, (f) gii¢ spektrumuna sahip bir Gauss giiriiltiisiidiir. <y(t)> yi elde etmek

icin Boliim VI-C deki gibi bir yontem takip ediyoruz.(135) ve (141) i bir araya getirirsek
asagidaki ifadeyi verir.

<exp iocnx(t —-u )> =exp {g[ej"tAn(fp )+e ™A (-, )]}exp Jan e (162)

burada J_,,, W, (f) yerine W,(f) konarak (142) ile verilmektedir. (162)nin sag tarafi (145)in
yardimiyla acilirsa agagidaki gibi olur.

= 1 (P& NIel@-Net W
%m(a) ;W[An(fp)][ ] [’HZ o Q, [Wi( HAn(fr)An(—fr)}

(129)un averajini alarak elde edilen integrallerin serisinde yerine yazilip ve toplamin seviyesi
degistirildigi zaman D] operatorii, [+(N—1)+2u =N+ 2u =n harig tiim terimleri sifir yapar.
Sonug asagidadir.

oo N N Lj(2-N)pt o
()’(t)):z(P) Ze Z W(f)]G2N+H(1, e, fw(fp)|’(_fp)N_|) ...(164)

N=0 2 I0|' u
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burada, G, =0 ve (f),f

sifir olursa G

oo 105 T, 1 arglimanlarini gostermektedir.Eger p veya | veya N—|

de kars1 gelen argiimanlar goriinmez.(164)te u=0,G,,, terimine karsi

2N+p 2N+p

gelen G, ((fp )|’(_f )N_I),(137)nin notasyonunda G, (f )olarak aymdir. Q, [W,(f)]deki f,

p
f,yi degil sadece f;,...,f, yiisaret eder.(164) ilk birkag terimi (15)de verilmistir.

<y(t)> deki exp(jnpt)bileseni asagidadir.

o=0 =0

o =) 26+n| o
el 912(5] 0+|n|)lzul2” W(f)] 26+n}+2u (f1’_f1""’fu’ f (fpS”)GJrH ( fpsn) )

burada, n=0i¢in s, =1ve n<0 i¢in s =—1 dir. P sifir oldugunda (165), (147) haline gelir
ve W,(f) sifir oldugunda, N=|n| ile (165), (138) haline gelir.

Bolim VII-A  da z(t)de oldugu gibi simdi <y(t+’c)z(t)>yi elde ediyoruz.

X(t) =Pcospt +1(t) i¢in

<exp[i o x(t+t-u,)+ Y Bx(t-v, )D ......................... (166)

s=1

:expaLZ{e”’tLertAn( )+B,(F) | +e7[ePA (-f)+B,( f)Jexp(JnAA+J B)}
buradallder,(150) 1ntegral1nde W f) yerine W, ( konarak tammlanmakta ve A ?? 116@

(149)dakiyle aymdir.ilk terimin katkist ie. teklik, J__ .
<y(t+’c)z(t)>igin duble serinin degeri i¢in [y(t+1) ve z(t) igin (129) serisinin yapisini

nin aciliminda [gor(151)],

averaj ile ve (166) kulaalnilarak elde edilen]n-toplam ve m-toplamin yapilarina
ayrilabilmektedir. B6limVII-A da oldugu gibi bu katki,averaji (164)ten elde edilebilen

(y(t+1)) (z(t)) dir.

exp(J, s )nin acilminda degismeyen terimlerin katkisini elde etmek icin asagidaki gibi
(166)da sagdaki ilk iissii acariz..

o 1 (P NIt g I(N-I)! Lot AL (£ \RIA(F \AG/_ £ RN0
ZW( ]2 N 22N o BB (A B ,)
....................... (167)
bu da asagidaki ifadeye gotiiriir.
N N g0kt
(y(t+0)z(t) = (y(t + 1)) (2 t)+2( ]zeﬂz'“w%;m_ S e

W (f)] J(Wet. 4wy )T

5%

A ox (o fore f B )0 ok (Ffoen By ) e (168)
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- , o
8, o (Fufpren fif) ) = EOWQ (WG, caurcan (= = o () (). ) (169)

ve b, (f1,...,fk;fp ), (169)un sag tarafindaG yerine G’ ve f,,...,f, yerine —f,,...,—f_yazlarak
elde edilmektedir.

y(t)nin giic spektrumu asagida verilmistir.

W, ()= % j d(pt)Tdte‘jW‘ (Yt (1) s (170)

burada averaj, z(t)=y"(t) ile (168)de verilmistir.a lar (169) ile tanimlanmistir ve mademki
G, (fsf,) = G (i),

bk,o,k (f1""’fk’fp) = a;,cs,k (f1’---:fk;_fp)
=a; o (frfof))
Modifiye edilmis (168) averaj1 (170) de yerine kondugunda (pt)ye gore integral, 21 =N hari¢

N ve | ye gore toplamda tim terimleri ¢ikarir ve 7T ya gore integral,
O(—f, —f,...—f —=Af +of)) alir(ithal eder)

Ayrica, <y(t)> icin (164) ifadesi agsagidaki gibi yazilirsa,

(y(t)) 2 c,exp(jnpt) e (172)

N=—oc0

(170)in sag tarafi igin <y(t + ’c)> <y(t)> yapisinin katkisi sonsuz piklerin serisidir.

S fof-nf) e (173)

N=—co

Bu sonuglar bir araya getirirsek asagidakini elde ederiz.

w,(f) =3 |o, (F —nf,) +2( ]zl’czl’k'(l—k)'c' |_G),i%Qk[W|(f)]

N=—co 1=0 A=0

8(F —f...—f, =M, +0f )ay o (Fufpre i )argrne (o foen o) e (174)

Dort katli toplamda toplamin seviyesini degistirmek ta ki k-toplam sol tarafdir ve sabit bir n
sayisina esit olan A — o i¢in | A, o -toplamdaki terimler g6z ontine alinirsa asagidaki istenen
ifadeye gotiirtir.
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oo

W, (f)= 2|c [ 8(f —nf )+ lek Wl(f)]ié‘)(f—ﬂ—fz—...—fk—nfp)

= k=1 k' N=—co
= (P 26+n| 1 2
. ;(EJ W ook (f ’fk;fpsn) ................. (175)

burada, ¢, ,(172) ve (165) ile a, , (...) da (169) ile verilmistir. n>0 oldugunda fs =f ve
n<O0 oldugunda f's =—f dir. P sifir oldugunda x(t) Gauss tipi i¢in (175), (160)a sadelesir.
(160)da oldugu gibi Q [W,

(f)] daki f sadece f,f,,....f degerlerini alir ve
O(f —f, —f, —...—f, —nf)) ifadesinde goriinen f veya f, ile iliskili degildir. Yine (160) oldugu
gibi delta fonksiyonunun etkisi, k>0 oldugunda Q, [W,(f)] operatoriiyle gdsterilen k
integrallerini “tiketmek”dir. Q,[W,(f)]=1 ve (165)in c, exp(jnpt)ye esit oldugunu goz
oniine alirsak goriiriiz ki |Cn|2 O(f —nf ) nin toplam1 k=0 terimi olarak kabul edilebilir ve

(175), k=0 dan k =0 a toplam olarak yazilabilmektedir. (175)in ilk birka¢ terimi (16)da
verilmistir.

VIII. DAHA YUKSEK MOMENT ve YOGUNLUK IHTIMALI

X(t) Gauss tipi oldugunda y(t) i¢in ilk dort kiimiilanttaki 6ncii terimler, Bolim VIII-A da
tiiretilmistir. B6liim VIII-B de,bu kiimiilantlarin y(t) nin yogunluk ihtimali hakkinda bilgi

elde etmek icin nasil kullanilabilecekleri gostermek i¢in formiiller verilmektedir.Bir Volterra
serisinde ikinci terimden sonrast olmadifi zaman, y(t) nin yogunluk ihtimali, belli

parametreleri igeren bir integral olarak ifade edilebilmektedir.Parametrelerin degerleri, bir
integral esitligini ¢ozerek elde edilebilmektedir.Boliim VIII-C de integral esitliklerinin degisik
formlar1 listelenmis ve kiimiilantlarin hesaplanma metotlar tartisilmistir.

A. Kiimiilantlar

Bu boliimde x(t),iki tarafli W _(f)glic spektrumuyla reel bir sifir-mana duragan Gauss islemi
olarak alinmaktadir. g, kerneli reel olarak kabul edildi soyle ki y(t) reel ve G, (—f,,...,—f,),

G, (f,....f, )ye esittir. Madem ki x(t) duragandir o halde y(t)nin momentlerini veren
averajlar t ye bagh degildir.

<y(t)> igin (11) serisinde y(t) ve G, yerine [y(’[)]I ve ngl yazilirsa, y(t) nin l.inci momenti

icin bir seri verir.

< >:i OIGY (e ff) e (176)
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burada, ngw (24) ile G, in terimlerinde verilmektedir.(176)da (24) yerine konarak elde edilen

seri, en ¢ok arzulanan degildir ¢iinkii G_in simetrisi W (—f)=W, (f) ile kullanilarak ve

integralin  degiskenlerinin isaretleri degistirilerek kolaylastirilabilmektedir. Maalesef,
kolaylastirma i¢in genel bir yontem bilinmemektedir.Bununla birlikte, (I=1 i¢in (176)

sadelesmis formudur) |=2 igin sadelesmis form, <y(t+ ’c)z(t)> icin (158) serisinde T=0 ve
z(t) = y(t) almarak elde edilebilmektedir:

2 — Qk WX f
(y2(t)) = (¥(t)) +Z%ak(fw..,ﬁ()ak(—f1,...,—fk) ..................... (177)

(177)deki 6ncii terimler k, = <y2(t)> - <y(’()>2 i¢in (180) de gosterilmektedir.

Takip eden ¢alismada y(t) nin x, kiimiilantlariyla o, momentlerinden daha fazla
ilgilenebiliriz. Kiimiilantlar daha basit ve Bolim VIII-B de verilen y(t)nin dagiliminda direkt
goriiniirler.[23,p.186] ile momentle ilgili ilk dort kiimiilant:

Ky =0y

_ 2
K, =0, — 0,
— 3
Ky = 0Ly — 30,0, + 20
— 2 2 4
K, = o, — 3o, — 40,0, + 12050, — 60

Zjanxn/ n! olan (22) hafizasiz durumu,genel durum icin kullamisli bir rehberdir.[ a,
katsayisinin (177)deki a, (f,..., ) ile ilgisi yoktur.] Burada x , 0 ortalama ve ¢ varyanst ile
rasgele normal bir degiskendir. n=1,3,... tek oldugunda x in n.inci momenti 0 ve n ¢ift
oldugunda (n—1)c" dir. Once momentler halledildikten sonra (178)de yerine yazlirsa

asagidaki ifadeleri elde ederiz.

B P IO I
1—5 2,0 +ﬁa40 +w36(5 +...

K, =a’c’ +(a1a3 +%a§ )04 +[%a185 +%a2a4 +%a§ ](56 +...

3
K, = 3a’a,c’ +[§a12a4 +6a@,a,+a [6°+... e, (179)
K, =(4aja, +12aal o +(2aja, +18a7a,a, +36a,a%a, +12a7a; +3a; o’ +...

y(t), hafizasiz gii¢ serisi yerine (1)le verilen genel Volterra serisi oldugunda,(179)a kars1
gelen esitlikteki oncii terimler benzer bir yontemle elde edilebilmektedir. 1=1 ile x, i¢in

sonug (176) ile verilmektedir.i.e.(147). K2=<y2(t)>—<y(t)>2 icin sonug (177) ile

verilmektedir. k, ve K, i¢in sonuglar daha fazla ¢alisma ve (178)in kullanimini
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gerektirmektedir.Yer kazanmak amaciyla asagidaki listede W, (f)df ve G, (f,.f,.f;) yerine
kisaca (W) ve (1,2,3)vb. yazilmistir.

:_jde(f)G (f,f,) jdfjde(f)W ()8, (fi f =, ;) +..
:_j(w)m —1)+ jj(WW)(12 ~1,-2)+...

= [W)N) 1+ ] (WW)[U)H 2,—2)+%(1,2)(—1, —2)}

+ m (WWW)B(1)(—1,2,—2,3,—3)+%(1,2)(—1,—2,3,—3)+%(1,2,—2)(—1,3,—3)+%(1,2,3)(—1,—2,—3)}...

= [Jovw)3)2)(-1-2)
+m (WWW) [ (1)(2)(~1 —2,3,—3)+3(1)(—1,2)(—2,3,—3)+3(1)(2,3)(—1,—2,—3)+(1,2)(—1,3)(—2,—3)}...

K, = m (WWW)[4(1)(2)(3)(-1,-2-3) + 12(1)(2)(-1,3)(-2,-3)]

+mJ(WWWW)[2(1)(2)(3)(—1, —2,-3,4,—4)+{6(1)(2)(3,4)(-1-2,-3,—4)+12(1)(2)(-1,3)(-2,-3,4,—4)}

+{12(1)(-1,2)(-2,3)(-3,4,—4) +12(1)(2,-3)(3,4)(-1,-2,—4) +12(1)(-1,2)(3,4)(-2,-3,4)}
+{6(1)(2)(—1,-2,3)(-3,4,—4) + 3(1)(2)(-1,3,4)(-2,-3,-4) + 3(1)(2)(-1,3,-3)(-2,4,—4)}

+3(12)(-13)(-24)=3-4)]+... (180)

Zorlugundan dolayr x,de dort kath integralin dogru tiiretilmesi bitirilememistir.(180)de

verilen ifade, sadece « de gérﬁnen,(y'(t)> de yap1 ve integrallerine ayrilamayan terimler

varsayimi iizerine oturtulmustur. Eski metotla elde edilen (180)deki terimler ve hafizasiz
durum(179) sonuglarini sagladig: gercekleriyle varsayim desteklenmistir.

Eger varsayim dogru ise (176) ve (24)ii takip eder ki k, i¢in olan seride p-katl integraldeki
G lerin yapilari, 2 niin pargalarimin I-kismina karsilik gelir.Ornek olarak K,de 2-kath
integraldeki (1)(2)(-1,-2) yapisin1 gz Oniine alalim. Burada pu=2 ve 1=3 ve yapi,
21 =41in 1+1+2 pargasmn 3-kismina karsilik gelir.Bu yap1 sadece x,de 2-kath integralde
goriiniir. K, ve K, deki 2-kath integrallerde goriinmez.
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B. Yaklasik Yogunluk Thtimali

Bu boliimde x, kiimiilantindan y(t)nin p(y) yogunluk ihtimali hakkinda bilgi edinme

metoduna yeniden goz atiyoruz.

y(t)nin ortalama ve varyans: swrasiyla ¥, ve x,dir. “egrilik” ve “fazlalik” m vy, ve v,
katsayilarr, p(y)nin egrilik ve yiiksekligini karsilastirmak igin istatistik¢iler tarafindan
kullanilmistir.Normal bir egriye sahip ve ayni ortalama ve varyans,

3/2

Y, =K, /13 Y, =K /K, (181)

Teorik incelemeden p(y)nin merkez kisminin bi¢imi yaklasik olarak bilindiginde,bazi uygun

egriler tahsis etmek icin, (ilk dort kiimiilantdan ede edilen) ilk dort momenti kullanmak
miimkiin olabilir. Ornegin Pearson —tipi bir egri.

p(y)nin merkez kismi normal olarak bilindiginde,normalden sapma, Edgeworth-tipi seriyle
gosterilmektedir.[23.pp.221-232]

p(y) = 15" {Z(u)— E v1z<3>(u)} + [% 1,2 (u) + %yfz@(u)} + } .......... (182)

burada, u=(y(t)-x,)/x;? ve,

1/

Z(u)=(2n) " exp(-u?/2) ZOW)=(d/du)Zu) . (183)

Z™®(u) fonksiyonlari, [18, Tablo 26.1,pp.966-973]de tabloda diizenlenmistir.
(182) alindiginda p(y), y =Y, da pikine sahiptir. Burada,

e Ay 12
Yo = K =321

Y VP V0 T — 184
p(Yo) = (2mx,) 2[1+%72—%y12] (184)

C. Iki-Terim Volterra Serisinin Yogunluk Olasilig

Iki-terim serinin p(y) yogunluk ihtimali igin bir ifade asagidadir.

y(t)= %+-Edu1g1(u1 X(t-u,)+ %zdu1+j:duzgz(u1,u2 X(t-u)x(t—-u,) ... (1895)
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Bu ifade,[ W, (f) gii¢ spektrumu ve R (T)otokorelasyon fonksiyonu ile] x(t) Gauss tipinde

oldugunda , [24]e geri donen bir metotla elde edilebilmektedir.Problem tiimiiyle yalniz ikinci
terimin dagilimini elde etmeyle iligkilidir ve buradan da normal degisikliklerin kuadratik
formlartyla iligkilidir.Bu tipin problemleri  bir ¢ok yazar tarafindan ¢alisilmistir.
[17],[21],[24]-[26]. Burada, bu ¢alismalar iizerine oturtulmus p(y)yi hesaplamak i¢in bir
metot veriyoruz. Tim integraller aksi belirtilmedigi slirece —co dan +eco a dir ve
Zn toplam1  da bir integral esitliginin tim eigendurumlar1 iizerindeki toplami

gostermektedir.

TABLO II
A, ve €, yi DUZENLEMEK iCiN INTEGRAL ESiTLIKLERI

AF(x) = [k(x,y)F(y)dy

No F(t)veya F(f) k(t,u) veya k(f,f,) Ortonormalizasyon €,

1 o(t) [Javidv,g, (v,.v,)at-v )au-v,) 8, = [dte,(th,(t) [ dudvg,ua(v -u)p,(v)

2 @(f) AMHA(-,)G,(f,~,) By = [ dfd, (F)D, () [dfG (DA, ()

3 () JavR, (t=v)g,(v.u) Moo = [[ dudvg, (U Vv, (U, (v) [ dug,(u)y,(u)

4 ¥(f) W, (f)G,(f, -f,) By = [Af W (OW,(~H)/W, ()  [dfG,(F)¥,(~T)

5 1) Javg, (L V)R, (v—u) A28 = [[AUAVR, (U= VYt (u)ta(v) [[dudvg,(WR, (u=v)x,(V)/,
6 X(f) W, (f,)G,(f,-1,) Ay = Idex(f)Xm(f)Xn( -f) deG1(f)Wx(f)Xn( =N/,

v,(0) = [dua(u-t)p,u) ¥, =A@, (f) R,(t-u) = [dva(t-v)a(u-v) W, (f) = |A()]
xn(t)=fdug2(t,U)wn(U) Xn(f)=IdﬂGz(f,—ﬂ)‘Pn(ﬂ) R (t-u)=2" w,(th,(u) W, (A3 —f,) = Y., (~)
A, (1) = deRx(t () AL () = W, (DX, () g (V)= X A (W, (V) G,(fuf,) = X, X (F)X, ()

Mo = [ dtwr (0, (1) Moo = [ AW ()X, () [Javdwg,(v,wha(t-via(u-w)  A(f)A(,)G,(f, f,)
=2 M0 (10, (u) =2 M@, (F)P, (F,)

Not: a(t),(p(t),\p(t),x(t)nin Fouier doniisiimleri A(f),cD(f),‘P(f),X(f) dir; A(f)|2 = WX (f), A(—f) = A(f)

Ik problem A, eigendegerlerinin bir kiimesini ve & ¢oklugunu hesaplamaktir.Bunlar
bilindiginde p(y) asagidaki gibi verilmektedir.

1%
P(y) = J e "Q(z)dz

........................... (186)
Q@)= %exp[—z é—z}
I1,0-ix2) "201-j,2)
burada, A, ve & reel ve z=0da arg(1—jknz)% = 0dir. Genelde p(y) integralini degerini
bulmak i¢in tek pratik yol sayisal integraldir. Tiim A ler pozitif oldugunda,integralin yolunu
yukart Imz =0 kaydirma gosterir ki —Zn Ej / 2, den kiiciik y igin p(y)sifirdir, serinin
yakinsak olmasini saglar.
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A, ve & parametreleri, Tablo-II de listelenen alt1 integral esitliginin [g,(u,,u,),R (t) ve
bunlarin Fourier doniisiimleri, G,(f,,f,), W, (f)ye gore] en uygun olanmi ¢dzerek elde
edilmektedir.Bu esitlikler agagidaki ifadenin formlaridir.

AF(x) = Jk(x,y)F(y)dy .................... (187)

Kerneller, “k(t,u) veya K(f,f,)” etiketli siitunda ve eigen fonksiyonlar1 da “F(t) veya F(f)”
etiketli siitunda listelenmistir.Integral esitliginin ¢oziimii A, yi ve eigen fonksiyonlarini verir.
Sonradan &, “E 7 etiketli siitunda listelenen integrallerden karsi gelen integralin degeri
hesaplanarak elde edilmektedir.Eger ¢oziim i¢in Tablo-II de 1 veya 2 integralleri secildiyse,
argA(f)nin segiminde biraz bagisiz kalinir maden ki A(f),sadece |A(f)|2 = W(f)ile
kisitlanmakta ve arg A(—f) =—argA(f).(a(t), A(f)nin Fourier doniisiimiidiir.)

Tum A, eigen degerleri reeldir ¢iinkii tablonun 1.inci satirinda gosterilen kernel, t ve u nun
simetrik bir fonksiyonudur.

Oncelikle X(t)yi(X(t +1:)X(t)> = 9(1) ile beyaz giiriiltii olarak alarak ve ensemblenin tipik bir
X(t+u) elemaninin Encn(t)(pn(u) olarak agilmasiyla Tablo-1I yapilabilmektedir. Burada
@, (u)lar bir as-yet-unspecified ortomormal kiimedir.t yerlestirilmis ensemblenin elemanindan
elemanina gittigimiz siirece C, (t),birim varyans ve sifir-mana ile normal rasgele degiskenler
gibi davranir. Bu asamada @, (u),g,(t,u) kerneline sahip bir integral esitliginin n.inci eigen
fonksiyonu olarak segilmektedir.Integral esitligini, X(t)nin W (f)genel gii¢ spektrumuna
sahip oldugu hale ¢evirme, A(f) yi kazandirir ve Tablo-II de 1 e gotiiriir. argA(f)ile ilgili
keyfilik, y_(t)tanimlanarak ortadan kaldirilabilir. y_(t) ve y(t) eigen fonksiyonlar: aslinda
ayni yonde ilgilidir sdyle ki bir Rg matris yapisinin n.inci modal siitunu y, (t) ve m.inci
modal satir1 y(t)dir.Burada, R ve g simetrik kare matrislerdir.

[(Ih, -Rg)w, =0, x(t)(IA,,—Rg) =0, I= birim matris |

o(t), v, (t),x(t) icin lic integral esitligine karsi gelme, bunlarmd(f),¥(f),X(f) Fourier
doniisiimleri i¢in ti¢ daha kars1 gelmedir.

p(y) yogunluk olasiligr icin kiimiilantlar, Q(z)karakteristik fonksiyonunun gii¢ serisi
agilimindaki katsayilarla orantilidir. Q(z) i¢in (186) ve Tablo-II den asagidakiler bulunur.

1 1
K =5 X b =55 [AW, (F)G,(F,~)
1 1 2 2 1 72
K, = 52{5’% +&2 ): Efdfwx(f)Gz( )(F,~f)+ [ dfW, (F)B,(F)G ()

K = z{w AT + m?!aﬁxgﬂ-ﬂ ............... (188)
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_(m-1)! j dfw, (FYGI™(f, f)+—jj dfdf, W (f, W, (f,)G,(f,)G,(f,)G ™2 (-, f,)

G, ™(f,,f,) fonksiyonu asagidaki gibi tanimlanmustir.

G(f,.f,) = G,(f.f,)
G(F, £,) = [dfW, (GL(f, TG, (. f,), K>1. e (189)

G,(f,,f,)nin seri i¢in Tablo-II de ortonormal iliski 6 nin adim adim uygulanirsa asagidaki

ifadeyi verir.
= Zn kﬁk_z)Xn(ﬂ X (F) (190)
(188)de kullanilan Mk) nin toplami elde edilebilmektedir.

n>2 icin G (f,...,f,) sifir oldugunda (188) ile verilenk,,K,,«,,%, degerleri, (180) elde

edilenle uygundur.
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