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VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION 
 
The basic laser diode equations are: 
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The expansion of equation (1) is: 
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Adding equation (1) and (2) 
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The input current is composed of the sum of I0 , D.C component , Î ,a time –varying component.  
We thus let 
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The Volterra expansion of the photon density and the electron density are: 
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substituting this expansion in equation (3) we obtain 
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we now equate like power of  “c” to obtain 
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For  c3

 

[ ] [ 122130302130333 22ˆ)1( PNPNNPPNAPPPPNAPNNP tr
p

tr
n

+++Γ++Γ++Γ−
Γ

=′ ε
τ

β
τ

]β  

 
[ ]210210201

2
113

2
0300 2222ˆ NPPPPNPPNPNNPPPNA +++++Γ− ε    (4D) 

 
Substituting the expansion for N and P in equation (3) we obtain 
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We now solve simultaneous equations (4) and (5) for the Volterra operator Nn and Pn 
successively. 
 

To solve for N0 and P0 from equation (4A) and (5A) we note that 000 =′+′ PN  since 
I0=constant. Thus from equation(4A) we have  
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solving equation(6B) for P0  we have 
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We now expand the brackets to obtain 
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Collecting terms in like power of N0  we obtain the cubic: 
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This a cubic polynomial  
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in which the coefficients are: 
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Each of these coefficients is polynomial in I0. 
Thus: 
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N[1] P[1] N[2] P[2] N[3] P[3] 

1 -.1467259972e10 .140006e6 .13749985e8 .3102 .115969558e9 -.74338e5 
5 -.1416062618e10 .1079832e7 .68747800e8 3.099 .119777690e9 -.37108e5 
10 -.1352436817e10 .1083560e7 .124865398e9 .9191e4 .137538416e9 -24.938 
15 -.1289270627e10 .1087623e7 .130477016e9 .55110e5 .206264734e9 -6.2158 
20 -.1226622294e10 .1092062e7 .136583079e9 .100669e6 .275014463e9 -4.5184 
30 -.1103158230e10 .1102272e7 .150624473e9 .190458e6 .412517255e9 -3.5491 
40 -.982715730e9 .1114680e7 .167686571e9 .278049e6 .550020907e9 -3.2053 
50 -.866183936e9 .1129933e7 .188659144e9 .362797e6 .687524790e9 -3.0291 
60 -.754720709e9 .1148871e7 .214700197e9 .443859e6 .825028767e9 -2.9215 
70 -.649776392e9 .1172550e7 .247260097e9 .520179e6 .962532794e9 -2.8495 
80 -.553037478e9 .1202197e7 .288025379e9 .590533e6 .1100036849e10 -2.7985 
90 -.466219398e9 .1239058e7 .338711478e9 .653671e6 .1237540920e10 -2.7591 
100 -.390683388e9 .1284124e7 .400679635e9 .708605e6 .1375045003e10 -2.728 
500 -.18366120e8 .5013356e7 .5528527641e10 .979373e6 .6875209739e10 -2.533 
1000 -.2646556e7 .10001924e8 .1238801435e11 .990805e6 .1375041598e11. -2.52 
1238 -.3807e4 .12380000e8 .1565796988e11 .992727e6 .1702301405e11 -2.44 
1239 .4970e4 .12389996e8 .1567171143e11 .992733e6 .1703676455e11 -2.51 
1300 .512759e7 .12999627e8 .1650997879e11 .993102e6 .1787553974e11 -2.50 
1500 .1867543e7 .14998641e8 .1925870654e11 .994088e6 .2062562220e11 -2.50 
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There are three roots for N0 of Equation (7). For each root, there is a corresponding value of P0  
obtained from equation (6C). 
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for a physical solution, we require N0>0 and P0>0 .We thus expect that only one of these solution 
pairs satisfy this condition for any value of I0. The procedure to determine N0 and P0  is to use 
equation(8), (9) and (10) to determine the coefficients C0, C1  and C2 as polynomials in  I0 and 
solving equation (7) and (6C) for the three solution pairs of N0 and P0.IF our equations are 
physically proper ones, there will be only one pair for which both N0 and P0  are positive and 
real. This is then the physical electron density N0, and photon density P0  of the laser diode as a 
function of the injection current, I0.. 
 
Observe that for large values of I0  
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The cubic equation for N0,  , equation(7), then is approximately  
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For large values of I0 one root of this equation is approximately obtained as  
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2 =− trNINI αα  
 
For which the solution is 
 

trNN =0   
 
We thus observe that, for large values of I0 , N0 is a  constant equal to Ntr . from a computer 
solution of equation (7) , this is observed to be true for I0≥ 7ma. 
 
We this approximation, the photon density for large  (I0≥ 7ma ) is from equation (6C) 
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This the equation of a straight line as show 
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Also, P0=0 for 
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n

pp NI
qV

)1(0 Γ−= β
τ
ττ

 

 

amperesNqVI tr
n

....)1(0 Γ−= β
τ

 

 
this result is observed valid from an exact computer solution of the equation for P0≥0 note that  
we thus here that the threshold current =Ith
 

tr
n

th NqVI )1( Γ−= β
τ

.         (12) 

 
This corresponds to the numerical value obtained experimentally. Note from our theoretical 
solution the threshold current, Ith is proportional to  Ntr which is temperature dependent and 
increase with increasing temperature. However, the slope of P0 – I0  curves is  )(qVm pp τ=  
which is essentially independent of temperature. We thus expect the graph of P0 – I0  curves to be  
 
 
We now determine the first-order  Volterra operator for  N1 and P1 by solving equation(4B) and 
(5B) simultaneously 
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Collecting terms in equation(4B) 
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This equation can be expressed as 
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in which 
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Equation (21) can be solved for N1 as 
 

 14



1
0

1
1

0
1

1 P
B
BP

B
N +′=         (21C) 

We now substitute equation (21C) into equation (5B) 
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collecting terms 
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multiplying by B0 
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Equation (22) is a linear differential equation 
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The Laplace  transform of this equation is 
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Then 
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in which 
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which can be represented as  
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Now the Laplace transform of equation (21C) is  
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Figure 
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We now examine the constants D0 and D1 substituting equation (21B) into equation (23A), we 
obtain  
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We now observe  that for large I0,  N0=Ntr  Thus for large I0  
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The poles of H1(s) are the roots of  
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Figure 
 
Note that the system is stable. Also,  are  pole is proportional the P0  which is proportional to I0 . 
 
We now determine the second-order Volterra  operator, P2 and N2 .For this  We use equation(4C) 
and (5C) 
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Collecting terms in equation(4C) 
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This equation can be expressed as  
 

220212 FNBPBP +=+′          (41) 
 
in which B0 and B1 are given by equation (21B) and (21A) respectively and 
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2
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Equation 41 can be solved for N2 as  
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We now substitute equation (41B) in equation (5C) 
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Collecting terms 
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Multiplying by B0 
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This equation is a linear differential equation equation 
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In which D1 and D0  are given by equation (23A) and (23B) respectively. A block diagram thus 
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Now from equation (41B) 
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Which is equivalent to 
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Now from Equation (41A) 
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For large I0, N0=Ntr so that 
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We now determine the third-order Volterra operators, P3 and N3. For this, We use equation (4D) 
and (5D) 
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Collecting terms in equation (4D) 
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This equation can be expressed as 
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in which B0 and B1 are given by equation (21B) and (21A) respectively and 
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Equation (61) can be solved for N3 as 
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We now substitute equation (61B) in equation (5D) 
 

( ) ( ) ( )
33

0
3

0

1
3

0
3

0
3

0

1
3

0
3

11111111 PF
B

P
B
BP

B
F

B
P

B
BP

B
P

pnnn ττ
β

τ
β

τ
β

−′
−Γ

−′
−Γ

+′
−Γ

=′+′+′′+′  

 
Collecting terms and multiplying by B0 we obtain  
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This is a linear differential equation 
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In which D1 and D0 are given by equation (23A) and (23B)  respectively. 
Similar to second-order operator, we have  
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In which F3 is given by equation (61A) note that N0=Ntr for large  
Io so that for large I0  
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Also, for  1ˆ21 0 ≈− Pε   we have  
 

( )2
111221

2
1112213 ˆˆ PNPNPNAPNAPANPANF εε −+Γ=Γ−Γ+Γ=  

 
which is obtained as 
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In which N1, P1 , N2,  and P2  are fist and second-order operator of n and P respectively. Also N3 , 
if desired, is obtained from equation (61B). 
 
 
For linear feedback in which K=K,  

111 RHP =            (116) 

1212 RHRP =            (117) 
{ } 1211211313 ,,,2 RHKRIHRRHRP −=  

[ ] 1211211211211211313 RHRRHKRHRRHKRIHRRHRP −−−+=     (118) 
 

[ ][ ] 1221122112313 RHHKRHHKRIHHRP −−−+=  
sec too #7 for linearization using NL feedback in our case, 
 

ee nsst KKK −− == 0

1           (119) 
note that feedback system operator ,Pn  are stable operators if R1  is a stable operator now 
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The eq (27) is a stable operator if the roots of  
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 are all in the left- half plane. 
 For convenience,  we define nnn jsts ωσ +== 0  in which σσ 0tn =   and ωω 0tn = . Then 
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i wh ch n i ),(),()( nninnrn jFFsF ωσωσ +=  . Now F=0 if only if Fr and Fi=0. From eq.(125) 
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To the equation to be stable, this equation can not have any solutions for 0≥nσ . Now the right side of 

eq. (127) is a monotonically  incresing function of  nσ . Thus, eq(127) has no solutions for 0≥nσ  if 

1
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00
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KtB

qD
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or 

0
00

1 K
tB

qDK =<           (129) 

The range of K which the system is stable can be large since  we have not considered that  eq(125) must 
be simultaneously satisfied. For our laser diode parameters, result of a computer simulate are  
 

t0 10-12 10-11 10-10

0

max
K

K
 

1.01 1.26 1.32 

In which Kmax  is the maximum value of K for which the equation is stable. We thus observe that K0  is a 
reasonable lower bound of K for stability. 
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 For  K0≥K≥0 , the system definitely is stable. For  K∈[0,K0] we than have  
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