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4.2 Volterra Serilerinin Temelleri

Hem zaman etki alaninda, hemde frekans alani i¢inde Volterra serisinin

temellerini kisaca bu bolimde acgiklayacagiz.

Volterra serileri; birinci dereceden dogrusal sistemlerin zayif dogrusal
olmayan sistemlerin teorisinin bir uzantisi olarak da gorulebilir.VVolterra serilerinin
aciklamasi olarak boyle bir sistemin farkli sirada farkli operatorlerin birlesimi olarak
kabul edilir ve Sekil 4.1’de gosterilir.

Bir dogrusal olmayan sisteme ¢ok dusuk genlikli bir giris sinyali verildikten
sonra c¢ikigin dogru hesaplanmasi igin hangi lineer davranista oldugu, blok
tarafindan H; temsil sistemi, sadece birinci dereceden davranig alarak
tanimlanabilir. Bu blok dogrusallastirimis devrenin frekans alanindaki transfer
fonksiyonudur.

Ne zaman giris genligi artarsa, ¢ikig sinyalinin dnemli bir pargasi dogrusal
olmayan etkilere neden olur. Yeterince dusuk giris genlikleri i¢cin bu dogrusal
olmayan etkiler dogru bir hesapla ikinci ve Uguncu dereceden etkiler, Sekil 4.1'deki
operatorleri Hy, ve Hs tarafindan modellenmistir. Toplam g¢ikis her operatorin

cikiglarinin toplamidir.

Dogrusal olmayan bir sistem modelinin kabaca c¢ikig sinyali bir ayristirma
icin farkh harmonik icinde karsilik gelen sinirli genlik bir sinus dalgadir. N’inci
harmonik oncelikle Sekil 4.1°deki n’inci dereceden operator tarafindan belirlenir.
Lineer devreler igin, analiz zaman etkisi yani sira frekans alaninda yapilabilir.
Dogrusal olmayan sistemler icin Volterra serisinin kullanimi analitik fonksiyonlar

igin Taylor serisi kullanimi ile karsilastirilabilir.
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SEKIL 4.2 Volterra serisiyle karakterize edilen bir sistemin sematik gésterimi

Giris sinyali 0 oldugunda cikista O olur. Herhangi bir giriste de iki yonde +1
veya -1 cikigi verir. Bundan dolayi guglu bir dogrusal olmayan etkinin varhgi agiktir.

4.2.1 Volterra operatorleri

ikinci dereceden dogrusal olmayan bir sistem yerine kisaca, ikinci
dereceden nonlinearity denebilir. ikinci dereceden nonlinearity olan nihai iki sinyal
benzerdir, ve bu sistem ikinci dereceden sinyalleri Gretmektedir. Uglinci dereceden
nonlinearity’de, Ug sinyali de benzerdir, onlari birlestiren bir Gglncu sinyali Uretmek
igin ¢arpar. Sinyallerin birlesimi sadece bir ¢arpma olabilir, ama Bolum 4.1.1 ve
4.1.3 bize sinyallerin daha karmasik bir sekilde kombine edilebilecegini
gOreceksiniz.

Bir frekans wq tek bir sintsoidal sinyal olup ikinci nonlinearity uygulanir.

Simdi varsayalim.w4+wz=2w1 ve wq-w2=0Hz olur. Bu durumda ikinci dereceden



nonlinearity ikinci dereceden sinyali Uretmek icin iki kez bu sinyal birlegtirir. wq+w,
ve |wi-wy| seklinde Uretilir.

Bu iki frekans w1 ve 3w+ diye adlandirilir.

Basit bir dogrusal olmayan sistemde, ayni frekanslardaki bilesenleri elde
etmek yukaridaki hususlar ile yapilabilir.

4.2.2 Zaman Alaninin Temelleri

Sekil 4.1°de lineer olmayan bir sistemin Volterra serisi modeli ile birkag
Volterra operatorlerinin paralel olarak olusumu gozikmektedir. Onceki béliimde
niteliksel bir giris sinyaline boyle operatorlerin hareketleri agiklandi. Bu bolimde bir
kantitatif sekilde bu agiklanacak.

(1) 4

Sekil 4.1 Volterra serileri ile karakterize edilen bir sistemin gematik gosterimi

Girig sinyali Volterra operatorleri igin



Ho[x(1)] [ / hol(my, 72 )x(t — 1)x(t — 72 )dnidTy
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seklinde verilmisgtir.

Bu iki integral ayrilmaz ve iki boyutlu bir integral olarak kabul edilmektedir.

Burada dogrusal bir sistem ile benzerlik gérmekteyiz: 4,(z,,z,) oldugunda bu ikinci

dereceden Volterra gekirde@i olarak adlandirilir. Uglincii dereceden bir Volterra

cekirdegi dusunecek olursak.

Bu Volterra operatoru:
S ] o R e
H,[x(t)] - / [ / ha(m, 7o, 13)z(t — 1)a(t — m)a(t — m)dndrdr (4.2)

seklinde verilir.

N.dereceden Volterra operatoru ise;

H,|z(t)] = / L / - B (71, T2y ooy To)a(t — m)a(t = 72) - - - a(t — 7 )dmidry ... dTy
| (4.3)

seklinde verilir.

N.dereceden Volterra’'nin gekirdegi % (7,,7,,........ ,7,) seklinde gosterilir.

Simdi Volterra serisi dogrusal olmayan sistemin gikis bigimciligi ile bir ¢ikis
ile birinci sirada Volterra operatorunun ¢ikis toplami olarak temsil edilir ve sekil
4.1’de gosterilmigtir.

Denklem 4.1, 4.2 ve 4.3’ten denklem 4.4 elde edilir.



y(t) = H,;[z(t)] + Ha[z(t)] + Hs[z(t)) + ...+ H,[z(t)] + ... (4.4)

Bu esitlik dogrusal olmayan bir sistemin Volterra serileri ile gosterimidir.

h(7,,7y557,) gaha detayl sekilde

Simdi n.dereceden volterra gekirdegini
inceleyelim. Bu  c¢ekirdek, her zaman simetriktit, yani c¢ekirdegin degerini
argumanlarin yer degistirmesi etkilemez. Bu bélumde kullanilacak olan tum volterra

serileri aksi belirtimedikge simetrik olarak varsayilacaktir.
Bundan dolay! giris gelecege baghdir.

Herhangi bir negatif arguman igin Volterra ¢ekirdekleri sifira egittir:

hn(71, T2y oy T) = 0 forany 7; < 0, i=12,...n (4.5)

Haydi simdi de bir Volterra serisinin seklini dugunelim. Volterra serisi bir gug
serisidir, bu durum bir faktor tarafindan girisin a degerini degistirilerek gorulebilir.

Yeni girig ax(t) olur ve bu esitlik 4.3 ve 4.4 ‘ten;

-

1 U) = Z HTJ_:U._’L'I:#.::IT

=1
]

Z a"H,[z(t)] (4.6)

=1

seklinde bulunur.

Ayrica, Volterra serileri bellekli serilerdir ve bundan dolayi gug¢ serisi olarak

gosterilir. Eger sistem 4.4’deki Volterra esitligi ile tanimlanirsa bellekli degildir.



Fn(T1, T2y ooy Tn) = 0 forany 7; > 0, 7=1,2,...n (4.7)

ve volterra serileri gug¢ serilerine indirgene bilir.

y(t) =Y ha(0,0,...,0)2"(t) (4.8)

Gucunl dizi karakterinin bir sonucu olarak, bazi problemlerde Volterra
serilerinin kullanimi ile iligkili sinirlamalar vardir. Tipki bir fonksiyonun Taylor serisi
temsil ile yakinlagsma sorunlari olugabilir.

Bunun yerine bu sinyallerin dikkatle ele alindig1 devrelere uygulandigi kabul
edilecektir,bunun icin yeterli kiguk bir Volterra serisi yakinsar. Bu ¢ogu durumda
gercekgei bir kabuldar.

4.2.3 Frekans Alani Gosterimi

Bir dogrusal sistemin ¢ikigi, zaman alaninda gosterilen bir sistemin impuls
cevabi ile girig sinyalinin alaninin temsilinin hesaplanabilir oldugunu biliyoruz.
Dogrusal bir sistemin frekans duzleminde ki sonucu Fourier donasumu yapilarak
hesaplanabilir. Bu yaklagsim dogrusal olmayan sistemlere de uygulanabilir.
n.dereceden Volterra c¢ekirdekleri n.dereceden durttlerle birlikte kabul edilebilir.
Eger dogrusal bir sistem ile paralel dusunursek, Fourierin n inci dereceden
Volterra operatorunun ¢ikis donusimu n’inci dereceden Volterra cekirdeginin

Fourier dontusumu igerir.

Oncelikle frekans alaninda n.dereceden bir volterra gekirdeginin cok yonli
laplace ve fourier donusumlerini tanimlamak gerekir. n.derecden bir volterra
cekirdeginin laplace donusumu n.dereceden nonlinear transfer fonksiyonu yada

n.dereceden cekirdek transformun olarak adlandirilir.



Dogrusal transfer fonksiyonu ile n.dereceden Volterra gekirdeleri benzerlik
gOsterir. Cogu zaman, higbir karisiklik yoktur, cekirdegin frekans temsiline bir
Volterra ¢ekirdegi denir. n’inci dereceden g¢ekirdek tam bir frekans alani ile temsil

edilirse n frekans degiskenleri gerektirir ve n zaman degiskenleri, bir islevdir.

Cekirdegi H (s,,....,s,) h (7,,....,7,) olan H (s,,....,s,)’nin gok boyulu Laplace

donusimu su sekilde

oo b e ]
-!IJL':;'E':.'. =t :“"I-'-; / - / 'r‘r"-':t:"rl LI :-Trl,]r"_l\sl nr --‘fn.-r;_.r!”._] e ”:T'.'r. (4{))
(L o] .

verilebilir.

Buradaki Si = @i + jwi (0 = 1,2,... 1) armagik bir sayidir.

Cok boyutlu Fourier donusumu de tumo, degerlerinin 0’a esitlenmesi

yoluyla Laplace donusumunden elde edilir.

Buradan da su sonuca varilir ki; zaman duzleminde simetrik olan n.dereceli
bir transfer fonksiyonu da simetriktir. Bu aslinda ¢ok dogal: dogrusal olmayan bir
operator farkli uygulanan frekanslari ayirt edemez. Simetrik n.dereceden transfer

fonksiyonlari kendi karmasik eslenik frekans iddialari ise isareti degistirilerek elde

edilebilir.
Hy(—jwi, =jws, ..., —jwn) = Hy(Jwr, jwa, . .., jwn) e wi)
Dogrusal transfer fonksiyonu ile n.dereceden dogrusal olmayan transfer

fonksiyonu esdegerdir ve bir sinUs ile uyarilmasi sonucu n dereceli sisteminin gikigi
bulunabilir. Ornegin sekil 4.1°deki H, operatdri ikinci derecedendir.

_"1? / ;o . Dwrpt fq‘f— P .
yo(t) = ?I Re (Hz(jws, jws)e’™ ) 4 2" Re ( Ho(jwy, —jwy))

42 11? . .

- -:; H?- I:.'f.f"'".':.:.}'."-‘-".!‘:': - COS '[21":t:t + arg (”2 UUI-‘.’E“J-&])} + ?ILHE UL""-‘N j:""ll) (4.11)



2wy frekansinda ikinci dereceden sistemin ¢ikisi sinusoidal ve sureklidir.Hafizasiz
ikinci dereceden dogrusal olmayan bir sistemin frekans bilesenleri Bolum 2’de
ayrintil sekilde anlatilmistir. Bu sinusoidal sinyallerinin toplaminin bulunmasi isi ise

bolim 4.4’e birakilmigtir.

Dogrusal olmayan sistemler i¢in Uguncu dereceden volterra operatorlerinin

sinusoidal ¢ikiglarini Ek-B’de bulabilirsiniz. 3.dereceden dogrusal olmayan transfer

fonksiyonu Hy(s1, 82, 53) na esgittir.
_ AP e % 3A o N
U3 [\'II:I r_]:_r H'E,' l:'lii':‘] ':,..Jr.‘”!:i"-. JUJI: Juxjiijj*rﬁ) + "1 B R'E" (H-Cl Il\.Jr;'{-I:r-. gy, _...l"'-‘-'!:r:jl (':JLJ‘ I)
As . \ . .
J;— |Hy(jwe, jwe, jwe)| « cos (Bw,t + arg(Hz{jws, Jw., jws)))
342 o P o
+ T Hy(jws, jw., —jwg)| - cos (wet + arg(Hs(jwz, jwse, —jw:))) (4.12)

ve buradan da frekans bilesenleri 3wy ve wy seklinde olur. ikinci seviyeden
dogrusal olmayan sistemlerde oldugu gibi hafizasiz Uguncu dereceden dogrusal
olmayan sistemlerin frekanslari da Bolum 2’de yer almaktadir.

Bolum 2 de ve Volterra serilerinden elde edilen sonuglarin farki ise genel

olarak su sekilde verilebilir: Ha(jwi, jwa) ye Hs(jewr, jws, jws) ‘nin fourier
transformu karmasik sayilara esit iken Bolum 2’deki temel hesaplamalarda hig ele

alinmamigtir. Bu durum ilerde 4.3.1 ve 4.3.2°de anlatilacaktir, bununla birlikte

Hy(jwr, jws) e Haliwn, jwz, jws) o Eourier déniisimleri ise Bolim 5'te

anlatilacaktir.

Ve burada tekrar ediyoruz ki birinci dereceden sistemlerin sinusoidal

A, cos w,t

karsiligi soyle verilebilir;



i1 (1) = ARe (H (g el f_)
= AH\(jwe)| cos (wyt + arg(Hi(jwr))) (4.13)

4.2.4 Zayif Dogrusal Olmayan Devre Davranisi

Bu noktada zayif dogrusal olmayan devrelerin Volterra serileriyle olan
tanimina gelebiliriz. En genel tanimiyla;eger bir devre volterra serileriyle
gosterilebiliyorsa verilen girige karsilik zayif bir nonlinearite vardir.Buna ragmen
birgok durumda volterra sistemleri ortalama giris seviyelerinde ¢ok duzgunce

tanimlanmalidir.

Genel ve pratik olarak adlandirilan her iki tanimda da sorunun bir kez daha
Volterra c¢ekirdeklerini birlestirmek oldugunu goralir. Bu nedenle, dogrusal
olmayan davranislar daha genel tanimi yerine analog entegre devreler de daha

kisitlayici pratik tanim kullanilabilir.

4.3 Volterra Cekirdegi Ornekleri

Volterra serilerinin matematiksel tanimlari dnceki bolumlerde verilmigtir. Bu

bolimde de birkag 6rnekle vererek bunlari agiklayalim.

4.3 Temel 2.dereceli Sistemler

Bu boliumde Sekil 4.1°deki 2.dereceden Volterra operatorlerinin genel blok
diyagrami ile olan goOsterimine konsantre olacagiz. 2.dereceden nonlinearite iki
sinyalden olusur. Genel olarak ikinci dereceden sistemler Sekil 4.3'te
gOsterilmektedir.

10



k J\
| R (f)

BTz,

r(t) " SRR y,(t)
I—LT-:- /@ - kc (t) -—2—1--

Sekil 4.3 Bu sekilde 2.dereceden bir sistem operatorunun blok-diyagrami

gOsteriliyor.

Bu basit ikinci dereceden bir sistem ikinci dereceden nonlinearity ise bir
calisma grubunu genel olarak agiklanmasi gerekirse goyledir: Gelen sinyal x(t) ilk
iki dogrusal blok i¢in impuls cevabi olan kj(t) ve Ky(t) sirasiyla gikislart Za(t) ve Zp(t)
olur. Bu sinyaller dogrusal sistemlerin impuls cevabi Kc(t) ile karakterize edilebilen

linear sistemlerdir. Dogrusal sistemin genel ¢ikis y(t)'dir.

Okuyucu igin verilmis olan Sekil 4.3’teki temsili bir genel blok olan blok
mutlaka fiziksel "alt blok" pratik bir dogrusal olmayan devreye karsilik gelmez ve
temsili oldugu bilinmelidir. Bu blok semasi sadece 2. dereceden nonlinear
operatorun nasil oldugunu genel olarak agiklamak igin kullanildi. 2.dereceden bir

Volterra ¢ekirdeginin agagidaki gibi oldugunu kanitlamak ¢ok da zor dedgil.

Jgf.'zl:"f 1y '.'-QIJ = / .:(.:fgl::f;:lka [T| - r.];l }Ib ::'l'_:.:[ - fjjl [J!ﬁ- (4' 1%

— )

Bu kitapta Fourier donusumleri yaptigimiz frekans duzlemiyle daha c¢ok

ilgilenecegiz. HZ(TI’TZ)’nin Fourier donusumua Ha(jw1, jw2) seklinde gozikur ve

biraz cebirsel islemle:

Ha (jwi, jwz) = Ka(jwi) Ky(jw2) Ke(jwi + jwa) [4']%

11



Buradaki Ks(jw),Kp(jw) ve Kc(jw) dogrusal alt sistemleri sirasiyla ka(t),ko(t) ve
ke(t)'ye baghdir.

» = “

. 1, (1

4

Sekil 4,4: Basit bir belleksiz ikinci dereceden sistemin Blok-diyagrami ile gosterimi.

Sekil 4.3 ve Sekil 4,4 karsilastirildiginda, bu baglantinin yanitini hig bir sinyal
degistirmez. Dolayisiyla, denklem (4.15) icin Sekil 4.4’teki Fourier donusumu

sistem tarafindan goyle verilir:
Hy(jwy, jwa) = Ky (4.16)

Bu belleksiz dogrusal olmayan devre ikinci sirada cekirdek (yani kapasitif veya
endlktif etkiler anlamina gelir) olan giris-¢ikis iligkisi formun bir kuvvet serileri

tarafindan agiklanmasi igin;
y(t) = Kiz(t) + Kao(z(t)? + Ks(z(t))® +. .. (4.17)

ikinci dereceden donusumu K olur.

4.3.2 Temel 3.dereceli sistemler

Onceki bélimde Volterra operatériiniin genel blok semasi temsili olarak
verilmisti simdi ise benzer sekilde Uguncu dereceli bir sistemi dugunelim. Sekil 4.3
ile ikinci dereceli sistemleri gosterdik, burada iki sinyal ¢garpimi lineer sistemleri ve
carpanlarini bir blok semasiyla ele alacagiz. Bu uguncu dereceden sistemin iki tur
carpan gerektirecegi agiktir. Uglincii dereceden sistemler de Uglincli sirada sinyali
Uretmek igin Ug sinyalin birlestirimesi bu sekilde verilir. Uglincli dereceden bir

sistemi sadece iki carpani Sekil 4,5 gosterilmistir. Gosterildigi gibi x(t) ikinci

12



dereceden bir sistem olan F2' nin girigi, Za(t) F2'nin ¢ikisidir zaten buradaki F2
sistemi Sekil 4.3’tekinin  benzeridir.Bu sistem hali hazirda 2 sinyal ile
carpiliyor(dyleki impuls cevabi ke(t)'dir) ve Ug sinyal ile toplaniyor. Bir kez daha

altini giziyoruz

—— — | k(1) —
F. e
x(1) Oy IR - I/’\‘ P yj(l;
| B l Kk O
o k, (1) / k
: — N o
[_f_-— (X ﬁf(”]’wﬂﬂj

Sekil 4.5: Basit bir Gguncu dereceden sisteminin ¢galismasini gostermekte

olan blok diyagramin gosterimi

Bu sekildeki parcalar pratik bir Gguncu dereceden nonlinear sistemin

“fiziksel” parcalari olmasina gerek yoktur.

Uglincii dereceden gekirdegin doniisimi sdyle verilebilir:
Ha(juwr, jwa, jws) = Ko(jwi) Ka(jwe) Ke(jwr + jwo Kaljws) Ke(jwr + jwz + jws) (4'1%
Hafizasiz bir sistem icin Sekil 4.5°teki blok semasini basitlestirirsek. Bu

bloklar ka(t),kb(t),kc(t) ve kd(t)'nin ke(t) ile baglanmasi ve K3’e dlgeklendiriimesiyle
yapilabilir. Sonug olarak elde edilen blok diyagram Sekil 4,6’da gosterilir:

13



x(t)

e F

Sekil 4.6: Basit bir iglncu dereceden hafizasiz sistemin blok-diyagraminin

gosterimi

Onceki bolimlerden 3.dereceden gekirdegdin dénlisimi su sekilde
indirgenebilir.

Hiy(jwn, jwa, jwa) = K3 (4.1

Bu sonug¢ onceki bolumun bilgisi ile tahmin edilebilirdi.

4.3.3 Uygulama: Lineer olmayan bir amplifikator

Simdi Sekil 4.7°deki devrenin analizi yapacagiz: Bu sekil dogrusal olmayan
bir amplifikator ile giris ve gikisinda RC devreleri kullanilarak olusturulmustur.

Ampilifikatérin kendi igindeki kapasitif etkileri ihmal edilmektedir.

14



-
My
=

—
R
™y

(=

|
[

- —_
= —

Sekil 4.7: RC devresi ve Amplifikator'den olusan dogrusal olmayan sistem

Amplifikator empedansini sonsuz, giris empedansi ve ¢ikis empedansinin
ise sifir oldugu varsayilir. Amplifikatoriin enduktif ve kapasitif etkileri ihmal edilirse,
Nonlinear sistemi i¢in frekansa bagh degil diyebiliriz. Amplifikatortn girig voltaji ile
cikis voltaji arasindaki iligki:

- 2 - 3
Cout(t) = Avig (1) + Kz, (vin(t))” + Ky, (vin(t)) (4.20)
Buradan anlasiliyorki amplifikator nonlinear ve hafizasizdir.

Bu 6rnegi frekans alaninda da incelersek, Giris voltaji Vi, ve Amplifikator’'in
cikis voltaji V¢ arasindaki iligki soyle olur:

vi 1
Vin 1 + jwR,C,

(4.21)

Bu dogrusallasgtiriimis devrenin Hq(jw) transfer fonksiyonu goyle verilebilir:

. Ifou A
H(jw) = L=

= 422

15



Simdi bu devrenin ikinci dereceden c¢ekirdek donusimune bakalim.
Amplifikatér *Gn ikinci dereceden nonlinearitesinin gekirdegi sifir degildir. Bu ikinci
dereceden nonlinearlik C kapasitori veya RC devresinin c¢ikigl ile beslenir.
Amplifikator ve ikinci dereceden hafizasiz nonlinear sistemin blok semasi Sekil
4 .4’teki gibi temsil edilebilir. Bu gosterim ile RC devresini birlestiriimesinden Sekil
4.8'deki gibi bir diyagrami cizebiliriz. Sekil 4.8'ten ikinci dereceden bir sistemin
yaniti hasaplanabilir.

TN —
input —» } L»‘ X\-- l-'[ K —'r‘ - i —_I - oufput -

I+joR,C, | Al | +joR,C,
| I~1 _ : / J
RC network . Ind-order nonlinearity RC network
of amplifier

Sekil 4.8: Blok semasi Sekil 4.7 devrenin ikinci dereceden yanitinin hesaplamasi

igin kullanilr.

Acikcasi bu blok diyagram Sekil 4.9daki gibi donusturulebilir. Bu
diyagramda ne oldugu kolayca aciklanabilir. Amplifikator'an ikinci dereceden
nonlinearitisi kapasitorde Uretilen ikinci derecen c¢ikis sinyaline baglidir. Bu ikinci

dereceden sinyal RC devresinin de ¢ikisidir. Bu gosterimde KzA, RC devresinin
cikigiyla birlegtirilir. Bu blok diyagrami Sekil 4.3’te agiklanmigtir.

16



7| THjoR,C _\
&
A output
input —=- ®—’ ] +jo RZCZ tpu
I _/
|

I +joR,C,

Hg(jwl,jwz)

Son olarak ikinci dereceden gekirdegin donusumu su ifade

kullanilarak bulunur:

K, A (423)g

Hy(jur, jun) = (1+ jw Ry Cy) (1 + jwa Ry Cr) (1 -+ 7 (wi +wy) RoCy)

4

Haydi artik Ugunclu dereceden linearitesi olan amplifikator'dn Uguncu
dereden bir ¢gekirdeginin donusumune bakalim. Bu uglncu dereceden nonlinearity
C+ kapasitorunun voltaji ile beslenir. Sekil 4.6’daki hafizasiz uglincu dereceden
dogrusal olmayan sistemin genel blok gosterimi kullanilarak, sekil 4.9’daki uguncud

dereci yanit hesaplanabilir.

Bu diyagram sekil 4.11’deki diyagrama donusturilebilir ve bu diyagramda

sekil 4.5'deki genel gosterimle agiklanabilir.

17



. K L !
— - : —= output
input I+joRC; |, @4» U T THjeRr,G P

.................................

3rd-order nonlinearity of
the amplifier

Sekil 4.10: Sekil 4.7’deki devrenin Gglincu dereceden yanitinin hesaplanmasi igin
kullanilan blok diyagrami

i
| T+joR,C,
K,
input = / T;m —»  output
| T+jwR,C
_ I
T T+joR,C
Hy(jwy, jwa, jw
Denklem 4.18 kullanilarak 'j('j b w2 3} uguncu dereceden bir gekirdegin
donusumu su sekilde,
K
H3(jwl Jwy, Jwy) = = .
1 ’J 3} (1 + jw;filcl) (1 + ngRICI} “ +jW3R10;} (1 +j{i.d1 + ) + W3)RQCQ)
(4.24)

hesaplanabilir.
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ikinci ve tiglincli dereceden déniisiimleri siniizoidal bir sinyal ile hesaplarsak

bu sinyal :

Vin(t) = Vip cos (wyt)

Birinci dereceden yanit : Birinci dereceden yanit y4(t) denklem 4.22'deki esitlikler
ve denklem 4.13’teki esitliklerin birlestiriimesiyle su sekilde hesaplanabilir.

yilt) = Vin - A - ¢os (w,t — atan (w Ry C}) — atan (w,5C3)) (4.26i

V1+wiRIC? /1 + wiR5CE i

ikinci dereceden yanit : ikinci dereceden yanit y,(t)nin 4.25teki esitliginin
sintzoidal kargiligi icin esitlik 4.11 ile birlestiriimesi ve birkag cebirsel iglem ile su
ifade elde edilebilir:

Vi - Koy
2 (1 + w2RIC?) /1 + 4w2RiC?
+ 'VE]KQA
2 (1 + w2RiC})

ya(t) = (1 + cos (2wt — 2atan(w, 1, C)) — atan(?w,_.:RQCgl

427

Acikgasi buradaki yanit DC kaydirma ve ikinci harmoniklerden gelmektedir.
Buradaki iki bilesen wyx frekansina baghdir. Arada bir parantezlede sunu
aciklayalim DC kaydirma Ry C, ‘den bagimsizdir. DC kaydirma amplifikatorin
ikinci dereceden cikigiyla Uretilen bir sinyaldir. RC devresinin ¢ikisi bu sinyal igin
0 Hz dir.

2w ve wy ‘in birbiriyle olan bagintisi ile ikinci harmonikler su sekilde

gOsterilebilir:
HD‘E — V_:'ﬂ . K?.A . : 1 . 1+ :?wz-R'ECE (4.23]|
T2 A 14 2RIC? | 1+ 4wiRICE p

4
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Ugiincii dereceden yanit : Ugiincii dereceden yanit ys(t)nin 4.12’teki esitliginin
sintzoidal kargihgi icin esitlik 4.24 ile birlestiriimesi ve birkag cebirsel islem ile elde

edilen ifadenin 3wy ve wy ile yaniti:

ir

4(1 + w2R2C2)*? /T + 02 REC2

Slf’i",’.}{‘;

A | e i LI ot vy | L Y

P — — - 08 (w,t — atan(w,R;C) — atan{w, R2Cy))
A(1 + w2R202)Y* \ /1 + W2RIC3

V3. K.
JA cos (3wt — Jatan(w.R,C) — atan(3w, R2C5))

L
y3(l) =

(4.30)
buradan dgtinct harmonikler
V.. I 1 1 + jweR,C
T e | (4.31)
4 A (14 jw, B Cy)" 1T+ j3weReCh|
V. K ] | 1+ w?R2C?
_ _mt 34 . [ - r z_ 22 (432)

4 A 1+wRIC} \|1+9w2R3CE

seklinde bulunabilir.

Farkl dereceli sistemlerin gekirdek donusumleri de bu sekilde
hesaplanabilir. Ancak bu sonraki konuya birakiimistir.

4.4 Volterra Cekirdeklerinin Dogrusal Olmayan

Performans Parametreleri

Bolum 2°deki frekans bagimliligi, Volterra serileri ile agiklanan dogrusal

olmayan bir sistemin agiklanmasini saglar.

4.4.1 Bir-Ton ve iki-Ton tanimi

20



Uglincli dereceye kadar Volterra serileriyle tanimlanabilen sistemler igin 2

sintzoidal sinyal Ajcoswt ve Axcosw, toplami ile tablo 4.1'deki ¢ikislar elde edilir.

Ek B’'de gosterildigi gibi bu yanitlar Volterra ¢ekirdekleri ile hesaplanir.

Toplam c¢ikis 18 yanit ve 13 farkh frekans’tan olusur. Tablo 4.1’te bu
cevaplar dogrusal sekilde, harmonikler, intermodulasyon vb. gibi bélum 2’de verilen

tanimlara gore verilmistir.

Tablo 4.1'deki vyanitlar ile gekil 2.6’daki hafizasiz bir devrenin
kargilastiriimasi ilgi gekici olabilir. Bolum 4.3'te zaten hafizasiz bir devrenin ikinci
ve Uguncu dereceden c¢ekirdek donusumleri, ikinci ve Uguncu dereceden K, ve Kj

ile sekil 2.6’da agiklanmigti. Sonugta Tablo 4.1’deki yanitlar
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frequency of )
order | amplitude of response type of response
response
I W Ar [Hi(jun)| :
linear
1 W) Ay | Hy (jun )|
o 2nd-order
2 Wi T W AvAg |Hy(gwy, jus)| , ,
_ . intermodulation
2 |ty — w Ay Ay | Hy(jwn, = jwy)|
products
2 D LA Hy(jwn, jw .
: 2 Il| aljwr, jun)] 2nd harmonics
2 pImy LAZ | Hyljwa, jus)|
———— — =
2 0 VAN Ho(Juy, —jw
A 1H{jer, =jan)] DC shift
2 0 1A | Hol o, —jn)
3 2w + wy SAT Ay [Hy(jun, iy, jun)] :
, third-order
3 Dudy ~ wa ',;’1 Ag |Hy(gw, jwy, —jus)| . _
2 4,42 H ion 4 } intermodulation
3 wy + 2w i 3(Jwr, Jwa, Jw
L 14| products
3 Juy = 2] 1A1A] [Hy(jun, = jwg, —jwg)|

3 W+ Wy — Wy = W

f?{a"j‘lﬂlit | Ha(jwn, jws, —fuws)l

third-order

desensitization

third-order compression

Or expansion

3w —wn = w | SAYA | H(jw, :jm,jw;”

3 oy —wy =w | A] [Hy(gwy, jwy, —jwn)|

3 Doy —wp =wy | {A] [Hy(wz, jun, —juwy)|
_3 Jun AL [ Hy(jwy, jw, jun )]

3 Juwiy SAS | Hy( g, juwa, o)

third harmonics

Tablo 4.1 : Volterra serileriyle agiklanabilen birinci,ikinci,aginctu derecede ve iki

sinlizoidalli dogrusal olmayan sistemlerin farkl yanitlari.ilk siitun gekirdegin

derecesini gostermektedir.
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Yani sekil 2.6'da yer alan yanitlar Tablo 4.1°deki ¢gok dusuk frekanslarin

cekirdek donugiimlerinden alinmis olan érneklerden cikartilmistir. Ornegin, Gglnci

H;(0,0,0)

dereceden ‘Un amplifikatorinun giriglerindeki A1 ve Az ‘nin A'ya esit

oldugu durumlardan,

-

TA*H3(0,0,0) = 2A%K3
seklinde yazilabilir. Zaten biz bunu Sekil 2.6’da bulmustuk.
Harmonik distorsiyon : Bolum 4.3.3’te gesitli 6rnekler yardimiyla zaten Harmonik

distorsiyonlari hesaplamistik. ikinci ve (iglincii harmoniklerin genel Volterra
egitlikler Tablo 4.1’den yada Denklem (4.11) ve (4.12)’'den su sekilde,

Ay L Hy(jw, jw
----- a1} (4.34)
cikartilabilir.

Sunu hatirlatalim ki bunu zaten Bolum 4.3.3’te kullanmistik.

intermodiilasyon distorsiyonu : Tablo 4.1 deki sinyallerin intermodiilasyon
distorsiyonu IM; ve IM3 hesaplanabilir. IM; su sekikde gosterilebilir;

| Ha(jwi, jws)

IM, = A 4.35
TN Hi(jwr) @)
farkh frekanslardaki intermodulasyonun sonucu
Ho(jwy, —jws]
M, = A, | H2Uen —)w)] (4.36)

Hrl[j;dl)
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seklinde olur.
IM2 ‘nin iki tanimi da gecerlidir, ikinci dereceden intermodulasyonun
sonucuna baghdir. Hafizasiz sistemler i¢cin amplikitdérin sonucu,
H,(jw, jwy) = H,(0,0) = H,(jw, = jw,)

seklindedir.

Uglincii dereceden intermodtlasyon sekilleri ayni yollarla ifade edilebilir. W
Sinyalleri kullanilir ve w, nin w4 ‘e esit yada yakin olmasi istenmez.Ornek verecek
olursak 2w,-w; tekrar durumunu olusturabilir. istenen bir sinyal ile bundan dolay!
istenmeyen intermodulasyonun sonuglari ilgi ¢ekici olabilir. Tablo 4.1°deki Volterra

¢ekirdeginin donusumu Uguncu dereceden intermodulasyonu:

IMA = —A? — (4.37)
4 " Hy(juw) |
esitlik 4.10’da kullanilarak;
3 4o | Hs(—Jjwi, jwa, jws) |
IMa, = —A% | = . ' , 3
3 2 77 l.?ﬁ-".} : (4.38)

seklinde bulunur.
2.Bolumde zayif dogrusal olmayan sistemlerin IMy/HD; esitlikleri ve IM3/HD3
esitliklerinden (denklem 2.31 ve 2.32'deki esitliklere bak) bulunabilir.

Esitlik 4.33, 4.34, 4.35 ve 4.38 ile Volterra sekirdeginin donusumu su sekilde

verilebilir:

IM, 9 Hy(jwy, jws) |

4.39
HD- Hy(jwy, jun) ( ]

w1 + W> igin intermodulasyon ise;
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IM; _3 Hy(—jwi, jwa, jws)

s 1 : : (4.40)
HD, Hﬂ(jwla.?whjwl)

seklindedir.

2w, —w, |igin hafizasiz sistemlerin H; ve Hz ayni frekanslari IM/HD, ve

IM2/HD3 ‘leri gok dusuk frekanslarda w1,w2 =0 seklindedir.
IM3/ HD3 esitlik 4.24 ile egitlik 4.40’dan soyle:

IMs (1 + jwy By Ch)* (1 + j3wi RaCy)
HDS []. - ju.JlRlCl) (1 + jw2R101}2 {1 -+ j (2&02 - LL.‘]_) RZCQ}

bulunur.

(4.41),

R1C1 , chz’den daha kUgUktUr.

wy w2 wy = wy 3 1/ (ReCa) and wy < 1/ (FaCh)

Buradan IM3/ HDs ile esitiligi

IM,
HD; ) ¢ )

seklinde bulunur.

Durdurma(Intercept) Puanlan : IP ile gosterilir. HD2 ve HDsigin P2, ve 1P3y

sirasiyla
H,(juwn)
IP = 2 : - (4.43
n H,(jwi, jwr) }!
H,y(jw) ] )I
Py = 2 I (4.44
i \/ H’&(J""’l:jwhjwll
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Durdurma (Intercept) icin intermodulasyon sonuclari benzer sekildedir. Tabi
ki intermodulasyon ihtiyacina gore Volterra cekirdekleri degisiklik gosterebilir

Ornegin intermodiilasyon sonucu 2w,-w ‘dur, burada IP; esitlik 4.38'den sdyle

) 2 H, (ML)
E \(/3 \('I Hii_fl:"’l .1.]':""'12:.}:."‘"2)

bulunur.

4.4.2 Capraz Modulasyon

2.Bolumde  gosterildigi  gibi  dusuk  frekanslardaki  amplifikator
modulasyonunun diger tasiyici ile donigumu dnceden verilmigsti.
z(t) = A (1 + my coswnt) coswit + A cos woyt (4.46)
Wn <<w1, Wz oldugunda ¢ikis frekansi wz ve w, £ w, sOyle verilebilir
y(t) = A |H (jwa)| [cos (wat + B1) + my cos (wot + F) cos wpt] (4.47)
buradan da
"..,-J . "Jﬁl r
JOLJT2)] 42 (4.48)

" | H (jws)|
seklinde olur ve Hi(jwz2) ve Ha(jwi,-jwz,jw2) sirasiyla fvef, seklindedir. wi=w2=0

4.47°de esitlenirse bolum 2.6’dan su sonuca gidilir.
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mx<<1, B, — B =¢ise esitlik 4.48'in gikig!:

y(t) = AIH) {juwq)| (1 + m; cos ¢ coswpyt) cos (wat + By + mysin ¢ cos wyt) (4.49)
Bundan dolayi tim faz ve amplifikator gapraz modulasyonlari ¢ ‘na baglidir.

Eger ¢ =0 ise capraz modulasyon olur. ¢=§ oldugu zaman sirf faz

¢apraz modulasyonu olur. Bolim 2.6’da sadece bir adet ¢apraz modulasyonu
tanimlanmigti.
Amplifikator ve faz gapraz modulasyonlar faktora CMa ve CM,, amplifikator

modulasyonu ve faz modulasyonu donugumu seklinde tanimlanir:

CM 4 Mg COS ¢ (4.50)

M

i Tly 1 'd} -
CM p My B (4.51)

ey

Esitlik 2.44’den dusuk frekanslardaki CMa ve Uglncu dereceden
intermodulasyon distorsiyonunun dort oldugu bulunur. Ancak bu yuksek
frekanslarda gecerli degildir.

4.5 Esit Dereceli Ve Garip Dereceli

Cekirdeklerin Bastiriimasi

Bolim 2.3’de dengeli bir devrenin ¢ikinin egit harmonikleri olmayacagini
yada giriglerin iki sinyal, esit amplifikator ve karsit fazli olacagi zamanlardaki
intermodulasyon yaniti olacagina deginilmisti. Bu bolumde Volterra serilerinin

genel sonucu verilecektir.
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Sekil 4.12 ve 4.13'Un her

gOsterilmektedir.

x(t)

R

birinde dogrusal olmayan bir

-x(t)

sistem

D

y(t)

172

el

Y

Sekil 4.12: p.dereceden iki sistemin (esit cekirdekli) baglantisi

—

1/2

®_.

- |
x(t) d
_._’-.
-x(t)
e ] —— Np

7

Sekil 4.13: p.dereceden iki sistemin (garip gekirdekli) baglantisi

Sekil 4.12'deki sistemin yaniti esit dereceli sinyallerdir. Buna mutakiben

sekil 4.13'deki sistem yaniti garip dereceli sinyalleri igermez. Bu durum cegitli

devrelerde kullanilabilir.

Bu iki sistemde de su teoremler kullaniimaktadir:

TEOREM 4.1: Volterra serileri ile aciklanan dogrusal olamayan sitemlerin

girisi x(t) sinyali ile ¢ikisi y(t) sinyallerinin iligkisi su sekildedir:

ve buradan da;

l'!i"HrtliTl

gt

- n

y(x(t)) = —y(—=x(t))

C Tan) =0forallm,. .. .mpandn =1,2,.. ..

28
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olur.

Eger tum giris sinyali x(t) olan Volterra serilerinde ¢ikis sinyalide y(x(t)) ise
aralarindaki iligki:

y(z(t)) = y(—=x(t))

seklindedir ve buradan da;

Tise o Ton4l n=012....
ve S oldugu her durumda

'J’fié??.—L{Ti 1t T2?1+lj =0

seklinde olur.
Volterra serilerinden teorem 2.1 ve 2.2’den tekrar formile edersek. Bu
devrenin gikigl teorem 4.1’in ilk boluminden $ekil 4.12'nin blok diyagramin x(t)

giris sinyali i¢in sonucu:

va(t) = 5 (~Ny[=2(t)] + N, [z(t))) (4.52)
ve —x(t) i¢in de;

Cyy(t) = 3 (Np[—z(t)] = Ny[z(1)]) (4.53)

seklindedir ve bu ya(t)'nin tersidir.

Benzer bicimde x(t) ve —x(t) i¢in sekil 4.13’Un yaniti;
Ye(t) = 5 (N [—z(t)] + N, [z(t)]) (4.54)

Sekil 4.12°nin blok diyagrami x(t) ve —x(t)'nin farkli devrelerle gosterimi Ny
seklinde gosterilir. iki blogunun arasindaki fark tim sistemin ¢ikisina esittir. Bundan
dolayi teorem 4.1 dogrusal olmayan bir sistemin ¢ikisini teorik olarak verir.
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4.5.1 Uygulama : Bir diferansiyel ¢iftin bastiriimasi

Diferansiyel bir analog devrenin yapimi. Sekil 4.14’de bipolar bir diferansiyel
cift gdzukmektedir. Girig sinyali farkli bir voltaj kaynagidir.

Vion

Urp

Vss
Burada dongudeki voltaj
vip vip _
5 = UBE, 4 *+ VBE1g T 5 = 0 (4.55)

Kolektdrin bir fonksiyonu olarak Q1a ve Qqg esitlik 3.12’den
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elde edilir ve Ige ‘de

B .. .
lee =77 (iciq +icyp)

olur. Esitlik 4.58 ve 4.59 kullanilarak ta

0. = BIEE
3 (B+1) (1+exp (—%))
t
o = BlgE
Y B+ (1 +exp (‘%))
t
elde edilir.

Cikis voltaji Vot ise;

vour = Ripic, , — Rraic
1B 1A

seklinde verilir.

Esitlik 4.60 ve 4.61 kullanilarak R a=R =R konularak sonucta;

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
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(4.63)

3 UIp
1 tanh 7

Girig fonksiyonu gibi Sekil 4.15'de de ¢ikis fonksiyonu gosterilir. Sekil

Your = j'Jz?f‘E.‘J:":jL.ﬁ

elde edilir.

4.14’Gn diferansiyel esleri Vg ;

Vg = 21D —thnif’g—ﬂ + Viln (1 + exp (—UI—D))

2 g+1 Ig Vi (4.64)

olur.

."jf;-,',rj;ﬁr.

A+1 | | | /

YouT
=

~8IggRy | —

1 _5

Sekil 4.15: Sekil 4.13’deki Diferansiyel fonksiyonlarin girisine bagl olarak
diferansiyel ¢ikiglari
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.

—0.75 - : —

0.9 0 0.9

Uip

Sekil 4.16: Diferansiyel girig voltaji fonksiyonundan elde edilen voltaj grafigi

4.6 Dogrusal olmayan sistemlerin Kaskad

baglanmasi

iki dogrusal olmayan blogun kaskad baglanmasindan hesaplana volterra
cekirdekleri bu bolimde incelenecektir. Buna bir 6rnek olarak iki seviyeli
amplifikator sistemi verilebilir.

Sekil 4.17°de dogrusal olmayan H sisteminin dogrusal olmayan F sistemiyle

baglantisi ve sonug olarak sistemin Q cevabi verilmistir.

() y(?) 2(t) = Qlir(2)]

Sekil 4.18: Q ile tanimlanan ¢ikisiyla H ve F sistemleri
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4.6.1 Genel tanimlar

H ve S sistemlerinin Volterra operatorleriyle Q'nun Volterra operatorinin

tanimi su sekilde verilebilir:

Q, = FH, (4.65)
Q, = F,H,+F.H, (4.66)

Q; = FH;+F,H, + Hy - F,.H, - FoHs + F3H, (4.67)

Bu ifadelerin Laplace déntsumlerinden

QI(SI) = F1(31]H1[51)
Q2(51,52) = Fi(s) + s2)Hy(s1, 82) + Fa(sy, s2)Hi(s1)Hi(s2)
Q3(311 525 33) = FB(SI;S‘E:: SS)HI(Sl}HI(SE}Hl(Sg] + Fl(é’] + &9 + Sg)Hg(Sh 8o, 53:

2
-+ -3' F:_}(S],Sz -+ Sg)HI(Sl]Hg(SQ,SE:) + FQ{SQ, 5 + Sg)Hl(Sg)Hz(Sl,
+ Fa(s3, 51 + s2)Hy (s3) Ha(s1, 52)
bulunur.

Simdi ikinci derecen gekirdeklerin donlsimuine bakalim. Bunun iki bileseni
vardir. ilki H'dan gelir ikincisi ise F’den.

e

Yy . e e g
contribution By

2nd
contribution

- 4+ output

34



Sekil 4.19: Farkli derecelerdeki Volterra operatorleri ile Sekil 4.18'deki Kaskad
baglantilarin gosterimi. Oklar Tum sistemdeki ikinci dereceden ¢ekirdegin iki

bilesenini gosteriyor.

Hafizasiz sistemlerin temelleri: Esitlik 4.70'den ve 4.68 ile ¢ikarilan donugsumlerin
H ve F’nin gosterimlerinden H; H¢, Hz ve H3’Un donusum fonksiyonlari F igin Fq, F2
ve F3; seklindedir.

Ve ugu seklindedir.

@ = 1A, @.71)
Qe = FiHy + FyH 4.72)
tgil = F!-Hi + F1H3 + 25, H, H, (4?3}

4.7 Ters sistemlerin kullanilarak pre-distorsiyon ve

post-distorsiyonlarin gosterimi

Onceki gélimde iki dogrusal olmayan sistemlin kaskad baglantilarinin

esitliklerini gorduk. $Simdi ise bazi devre dizaynlari i¢in uygulamalari gorecegiz.

4.7.1 Genel Gosterimler

F icin verilen Volterra ¢ekirdeklerinin gosteriminin turevi alindiginda F+’in

Laplace donusumu:

4.74
.I”] |::‘3:I| { }

F] [.‘:-;l

Esitlik 4.74’deki H1(s) ve F1(s)’in kutuplari O’a egitlenirse, F2’'nin Laplace

donusimu;
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(571, 59)
Halsn, 53) : (4.75)

2171 "'i:l ;_{1(:;_‘-1);}]'1[:.<;jo1'.\51 SI'}'::

Egder H hafizasiz bir sistem ise Fx(s1,S2);

Ho

- (4.76)
]

F, =
seklinde indirgenebilir.

Daha yUksek dereceli Laplace donusumleri igin p.derece tabiri kullanilir.

4.8 Dogrusal ve Dogrusal olmayan geri besleme

Parametre degdisimlerine karsin amplifikatori kazancini stabilize ettigi icin
dogrusal geri besleme analog devrelerde sik¢a kullanilir ve bu dogrusal geri
beslemenin 6nemli yaralarindan birisidir, bunun diginda bant genigligini arttirmasi

gibi birgcok faydasi vardir.

Bu bolimde ise dogrusal olmayan geri beslemeye yonelecegiz. Dogrusal
olmayan geri besleme her ne kadar dogrusal geri besleme tekniklerinden ortaya
cilkmig olsa da bu bodlumde anlatilacag! gibi iki sisteme de iyi bir sekilde de

uygulanabilir.
Sekil 4.23'te burada anlatilacak geri beslemeler genellenmistir. Genel olarak

uygulamalarda H amplifikatori, F ise geri beslemeyi gosterir.Geri besleme
sistemleri ise Q ile ifade edilir.
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Sekil 4.23 : Genel bir dogrusal olmayan geri besleme sistemi

4.8.1 Dogrusal olmayan geri besleme sistemleri

Birinci dereceden — Uguncu dereceye kadar dogrusa olmayan donusim
fonksiyonlari hem H hem de F i¢in Sekil 4.23’te gosterilmigtir. Bu degerlerin frekans
alanindaki gosterimi agagida verilmistir.

Birinci dereceden donusum fonksiyonlari

Q1(s1) = Hi(s1)R(s1) (4.85)

Buradan R(s) notasyonu kisaca;

1
| + H,(s)F(s)

v
4

R(s) = (4.86)

Esitlik 4.85'te temel amplifikatorin dogrusal kazanci R(s) faktortuyle azalmaktadir.

ikinci dereceden transfer fonksiyonu Qa(s1,s2) iki bolimliddir:
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{L';I;’I:ﬁl-'l;?] = j-f[“,lﬁﬂlrﬁ‘,:l Ijr-é[.jf“ H-‘::] — .HI-| |[.‘:||_-]Jt.ir||{f:|'-{:|j'_g':.""| .-‘:'2].{JT||:_-‘."'. + -'-‘".*.-:I -E‘[,SI. + '-'"'A:I
(4.87)

Bu esitlikteki faktorler koseli parantezin disina yazilmigtir. Parantezin
icindeki ilk kisim ikinci dereceden dogrusal olmayan temel amplifikator i¢indir ikinci

kisim ise dogrusal olmayan geri besleme agidir.

Uglincli dereceden déniisim fonksiyonunda da Ug boélim vardir ve ayni

faktorleri icerir:

gljk, 83) HH' 5\1:

H';Jrk.‘u.‘ So, 53) — 2Hy(51, 89)Fi (81 + s2) R(s1 + 52) Ho(53, 51 + 52)

3
JHH-.[-‘&:'( F3(s1, 82, 53)
1=1
—r?f‘ ( ‘))\IJFFIL\‘B | |‘;2]I£I:S] + J:“Q}FQI:S;;:-':'1 1 .‘?g}) H("q + 59 + b‘_‘:g}
Qf'fgih'],.%g:lf:].(!:ﬁ —.5'2)”11:53}}'—2(.‘3‘],FQ f .‘5';)4'[{1[-.‘\'] + 59 :'-.'3\)
2H\ (s1) Hy(52) Fo(s1, 52) R(s1 + s2) - Ha(s3, 51 + "’”Jj - R(s1 + 52+ s3)
' (4.88)

Parantezlerle gosterilen Ug bolum, noktalarla birbirinden ayrilmistir. Simetrik

olmayan gosterim bu sekilde formul ize edilebilir. Bunu simetrik hale getirmek ¢ok

daha komplikedir ve daha zor anlasilirdir.

4.8.2 Genis dongu ile geri besleme kazanci

Bir cok uygulamada dongu kazanci T(s) su sekilde verilir:
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T(s) = Fy(s)H(s) (4.89)

Bu kabule gore transfer fonksiyonlari egitlik 4.85,4.87 ve 4.88’den soyle

indirgenebilir.
Qi(s1) =ﬁ (4.90)
Hy(sy, s2) Fa(s1,82)
Qa1 92) =EE ST ()T (51 7 52)  Fo(s1) P (s2) Fi (1 + 52) @.91)
= ! [H (51,52, 53)
Qs”‘"‘”‘z’s?")‘T(SI)T(sg)T(sg) T(s1 -85 +53) | 2o boms

B 2H2[81,82)H2(33r51 + 32)}

H, (51 + s3)

..............................................

+ —
Fy(51)Fi(s2) Fi(ss) Fi(sy + s2 + s83) [
2F5(s1, 52) Fa(ss, 51 + 32)]
Fi(s1 + s2)
N —2H,(s1, 52) Fa(51, 52 + 83)
T{Sl + SQ)T(31)T(82)F1 (Sg)F][S] + 59 + 33)

—2F (51, 52)Hy (53, 51 + 82)
+
T(S] -+ Sz)T(Sg]T(Sl + 89 + Sa}FI(Sl }F] (32)

(4.92)

Esitlik 4.90 dogrusal bir sistemin genis dongusunun bilinen sonucunu verir.
Buradaki 4.91 esitligi ile 4.92 esitlikleri ise ikinci dereceden ve Uglncu dereceden

donusum fonksiyonlarinin dongu kazancini T(s)'yi verir.

4.8.3 Dogrusal geri besleme

Simdi de kusursuz bir dogrusal geri beslemeyi inceleyecegiz.
Dogrusal olmayan distorsiyonu azaltmada en ¢ok kullanilan yontem dogrusal geri
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beslemedir. Bundan dolayi bu konu daha genis olarak islenecektir. ilk olarak genel
tanimlar verildi. Sirada da genis dongulerin kazanci ve hafizasiz sistemlerin geri

beslemeleri tanimlanacak. Sonug olaraksa bir pratik 6érnek verilecek.

Dogrusal olan ve sekil 4.23’tede gosterildigi gibi bir gok uygulamada geri

besleme agi F ile gosterilir. Bu durumlarda #2(s1:52) = 0 ye Filsy, 82, 55) = Oqr,

Esitlik 4.87 ve 4.88'de verilen ikinci ve uguncu dereceden donusum
fonksiyonlari sirasiyla
h(s) = Hi(si)Risy) (4.93)
a5y, 89) = Rz ) R(s2) {3, + s2)Halsy, 52) (4.94)

Q3(s1, 52, 83) = R sy )i ag) 1 a3) [-E‘IH'::“"I: §2, 83)

2H2|:.‘-|'| . .‘;_z].f"l| |:-C:=-_ + SQ}R{-"I"_ + -qz:]H'g[i'g., &1 T .‘12}.] - _I.i‘?[:.'!'l —+ 82 + ."{3]
{4.95)

seklindedir.

Dogrusal kazang «:(s1) tabiki dogrusal durumla ayni olacaktir. Temel
amplifikatoriin ikinci dereceden déniisiim fonksiyonlar fils1)R(s2) R(s1+52) jle
azaltilacaktir. Eger buna ragmen dogrusal kazang giristen buylkse bu defa sadece
R(s1 + s2). ile azaltilr.

Benzer sekilde bu durum esitlik 4.95'tende bulunabilir.

4.8.3.1 Hafizasiz sistemlerin basitlestiriimesi

Hafizasiz sistemler icin esitlik 4.93’'den 4.95’e kadar olan denklemler

sadelestirilebilir. Buradan ¢ekirdek donugumleri

¢, = H R (4.96)
Q, = Ho R (4.97)
Qs = [H; — 2H;F, R| R* (4.98)
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/T = 1/(F Hy).

Burada dongu kazanglari ¢ok fazladir ve R tarafindan
azaltihr.
H, 1
et 4.99)
Q=7 F (
H, !
0y = TT: (4.100)
2HE] 1
I P 4.101
(23 [H,; . ] = { )

Simdi ise bu geri besleme distorsiyonlarinin karsilastirilmasi ilgi gekici
olacaktir. Esitlik 2.13 ve 2.14’an yardimiyla H4,H2 ve Hs temel amplifikatorun

harmonik distorsiyonlari modellenir.

Ay H,
Hﬂ!openhﬂp = ?I?‘; (4.102)
A2 H.
HD:{.npem loop = T]ﬁ {4.103)
A, 1 H
HD; gosed ioop = ?‘?ﬁ (4.104)
A1 |Hy 2H
HD 3 ciosed loop = ?IT IF: - H—; (4.105)
1

Nitelik agiklamasi : Temel amplifikatorun girig-gikig iligkileri Sekil 4.24°’te

karakterize edilmistir. Bu karakterize yapi u¢ pargadan olusuyor gibi

gOzukmektedir.
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outpiil +

fJLtIE t e o
out; | a, a;=t
- -
ou .
slope a, 4 Input
0y
a; =(} s . -\UHI;
1 -0l 5

Sekil 4.24 : Temel bir amplifikatorin donuasum karakteristigi

Orijin etrafindaki kisim linear amplifikator kazancini gosterir. Daha genis
sinyaller i¢in a; egimi ve daha kuguk sinyaller i¢in a; egimi karakterize edilmigtir.
Cok daha genis sinyaller igin ise bu egim 0’ a egittir.

Geri besleme aginin kazanci;

]

ain = ———
J 1+

|
~ o (4.106)!
1
seklindedir.

Kapali bir donginun donusumu sekil 4.25'de gozukmektedir.

output .

it 4

il TJ-

-

(1+T) input

oul;

f
...... |-t

- -ethif o

4.8.4 Geri beslemeli Aglarda Dogrusal olmama



Simdi burada dogrusal amplifikatorlerde ve dogrusal olmayan geri
beslemelerdeki, geri besleme konfigirasyonlarina bakacagiz. Geri besleme

agindaki dogrusal olmama efekti dongu kazanciyla azalmaz.
4.8.5 Dogrusal olmayan geri besleme aginin etkisi

Birgok geri besleme konfigirasyonu geri besleme devresi basit

amplifikatoran giris ve ¢ikislarina gore olur.

—A ,,f:b—l_o 1
A = — e
“”" ‘jfj’ i= flwa)
¥
+‘~L_ =
12

Sekil 4.28 Dogrusal olmayan geri besleme konfigirasyonu

Bolum 3.2’de daha 6nceden agiklanan gug serilerinin gosterimindeki i su

sekilde yazilabilir.

t=gi-thz + Ky, Uip + K, Uy + .. [4;1]9%
=Mt — §ts + H'r'dl.'| "|'.'|2 T h'-z_ﬁ'l '|'.5.§ — Qﬁ.’-&ﬂ Wyt E
+ Ky, vy + K3y, vy = 3K3, -vi-m + 3Ky, 0,03 (4.1208

filw)) + falvs) + falvy, ) (4.121)
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Vour

in()  h) Gh) @ lsvm)  fiv,m) S fau)E fiw)

Sekil 4.29: Sekil 4.28'deki geri besleme devresinin kargiligi

iki dogrusal olmayan geribesleme 4.120’deki esitliginden de goziikecegi gibi
girsi ve ¢ikis voltajina kargsilik gelir.

Denklem (4,120)'den eger cgapraz terimler ve sonraki formuller onceki
bolimlerde elde edilen yeni temel amplifikator ve yeni geribildirim agi kullanilarak
yapilabilir olmayacaktir. Ancak, c¢apraz terimler olarak bu geribildirim formdulleri
onceki bolumlerde artik zaman geribildirim sebeke tarafindan temel amplifikatorin

yukleme onemli oldugu kesin demektir diger sartlari gibi buyuk olabilir.

4.8.6 Dogrusal geri besleme

konfigirasyonlarinda amplifikator operatoru
Tekrar burada sekil 1.2°’deki amplifikatort Sekil 4,30'de daha kolayinin

yeniden ¢izilmesi oldugunu dasunun.Amplifikatorun R ile ¢ikisi yuklenir. Bu

operasyonel yukselte¢ dogrusal olmayan oldugu varsayiimistir ve sonlu bir bant
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genisligine sahiptir. Simdi tam bir amplifikator icin ikinci ve tGglincu harmonik

distorsiyon elde edecektir.

R

2
S — AN —‘

R, |~

i |
=

Sekil 4.30 Ters bir Amplifikator

Kullanima hazir amplifikatoriin modeli : Once kullanima hazir amplifikator igin
basitlestirilmis bir modeli kuralim. Bu amplifikatortn bir tersini Sekil 4,31’de verilen
katli kuvvetlendirici oldugu varsayilmistir. Frekans davranisi OPAMP sadece
baskin kutup igin dikkate alinir. OPAMP ve kutup ¢ok dugsuk frekanslarda olup ilk
asamasinin cikisindaki kondansatér C. tarafindan belirlenir. ilk asamadaki A1 ile
bir diferansiyel amplifikatér olarak modellenebilir.. ikinci asamada bir diren¢ Ryint
yukli bir ortak kaynak kuvvetlendirici kadar edilerek modellendi. ikinci asamada da

bir ¢ikis 1 bir gerilim kazanci ile bir tampon verilir.
OPAMP ve kutup dikkate ilk asamada amplifikator frekansa bagli olarak alinir. Bu

sekilde, hangi i¢c dugum 1 igin giristen gerilim kazanci olan ilk asamada kazang, su
sekilde verilir.
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Vi _ Ao (4.122)

Vout

Bu ornegi dikkate alirsak sadece nonlinear drenaj transistorinde My akimi
nonlinear olur. Bu simdiki M4, yani gn tarafindan, ikinci ve Uglncl dereceden
aciklanan nonlinear katsayilari Kogm ve Ksgm olur.

ilk etapta Nonlinearite gézardi edilmektedir. Bu gercedi iki yiikseltec blok
ikinci asamasinin nonlinearit bir ¢aglayan baglantilh olarak ikinci ve uaglncu igin
egemen oldugu kaskad baglanti sirasina Volterra gekirdek tarafindan (Bolim 4,6)
verilmigtir. Bu da Bolum 8de bir Miller harmonigi ayrintili bir hesaplama ile
kullanilan bir amplifikator igin telafi edilir.

Simdi frekans alaninda amplifikatorin dogrusal olmayan AC davranigini
analiz edersek. Dogrusallastiriimis kullanilan amplifikatoran toplam kazanci iki etap
Kazang aranuddr:

¢ ‘.Uit.' \ -'11: m 1{ p
“lr".'\‘) = V. - '41“1(3_) (_qrnr{[.‘_,‘) — —Jg—"'l—m{' (4.]23)

id ] + —

Pa
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Bu bolumdn geri kalani i¢in bu sinyalin frekans devresi uygulandigi

varsayilir |pd|/(21) ama hala kazanci ¢ok daha dusuk olarak verilir OPAMP, bant

genisligi urinu oldukga Uzerinde bir frekans vardir:

GBW = (AyogmBRe., |pal)/(21) (4.124)
Dolayisiyla denklem (4,123) yeniden;
2rGEBW
— (4.125)

Ay(s) = -
]

Son olarak, OPAMP ve giris empedansi ¢ikis empedansi ise sonsuz sifir

oldugu varsayilmistir.
Temel amplifikatér ve geri besleme aginin Volterra gekirdekleri : ilk

olarak sekil 4.30°daki devrenin temel amplifikator aglari igin tanimlayalim. Bunun
icin girig voltajinin ilk gosterimini sekil 4.32°de gorebilirsiniz. Giris burada iix(t)

degeri

-

M
[ - —
=
L
—
!
\ -
L = !
\ /
IIII- ¥
Voo
\
I"u ."I
-+

I

(4.126)

T
i
H,

olur.
Sonrada Rz direnci 2 bolum olarak y paremetreleri ile tanimlanir.
Sekil 4,33'de gosterilen akimlar bu iki port Gzerinden gerilimi icin iki baglanti

noktasinin girisi ile ilgili asagidaki gibi olur:
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1 = Hn*-‘:\ + izt (4.127)
=10 =1
i3 = Yty + Vet (4.128)
iy = [ v =1
R2 direncinin iki portlu gosteriminin sonucu;
- ol e
o— —0
+ +
v, Vs,
- -
iz
+ +
V " P
. '}12!' I -}'22 2
= = _;L
Sekil 4.34: sekil 4.32'deki R, direncinin iki portlu gosterimi
Sekil 4.34°U su sekilde kolayca tanimlayabiliriz.
~ L 4.129
Y = R, (4.129)
1
Yz = _ﬁ; {4.[3(}}.
] ]
WY1 = —E (4-131}:
1 :
Y2 A {4.[32]i
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Bu iki temsilin temel amplifikatort ve Sekil 4.35’te gdozukmektedir. Temel

amplifikatort gosterilen direngler R operasyonel amplifikatorinu igererek

tanimlanabilir.

[\—*—gi ] e
iin(% i R‘l gRl jvl AV(S)VI

" feedback network

Sekil 4.35 : Sekil 4.32°deki amplifikator temel amplifikator ve geri besleme

ag! olarak iki pargaya bolunmausgtur.

overall system Q

........................................

feedback network F

Sekil 4.36 : Amplifikatorun son blok-diyagrami

ikinci bélimdeki nonlinearite G operatéri ile gésterilmektedir.
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Sekil 4,36; blok semasi ve islem olarak yorumlanabilir : Wnich girisi bir

akim, bir gerilim i¢ine ilk blok tarafindan donusturilmus olmasidir.

Sekil 4.31'de gekirdek donusumleri G su sekilde bulunabilir. Sonugta G1(s1),

Ga(s1,82) ve G3(s1,52,83);

Ghils1) = Gy = —gm AL,
(:1'1-2{51,.‘?2} - f:-_a: = —f‘l:znm RL.M

Gyls1, 82,53) = Gy = -Ky, Ry,

(4.133)
(4.134)
(4.135)

Ikinci agsamada kapasitif etkileri ele alinmamistir, ve argiman s+, sy ve s3
ihmal edilmistir. Buradaki G; faktérii dlcisiizdiir, G, ve Gs ise sirasiyla V™ ve V2

boyutlarindadir.

Artik sekil 4.36’daki temel amplifikatorin c¢ekirdek donusumunin(H
operatoruyle gosterilen) ne olacagl konusunda yeterli bilgiye sahibiz.Temel
amplifikatore uygulana egitlik 4.68 ve 4.70'den elde edilen H4(s4), Ha(s1,82) ve
Hs(s1,S2,83) ifadeleri (R1R2/(R1+R2)) transfer fonksiyonlarinin iki dogrusal blogunu

verir ve su sekilde bulunur:

Hi(s)) = G1Au(s1) R‘?f;g = —gmRL,, Au(s1) R’?;_Rj%z (4.]36)%
Hy(s1,52) = G ( R‘?ﬁ;ﬁ)ﬂ Au(81)Aut (3)
~ — K, Ry, (%%)QAM{SI)AM(SQJ (4.1375

Hy(s1, 59, 53) = Gy (RIR:_REQ)S A1 (51)Av1 (52) A (53)
= — K3, Ry, ( R‘?f;ﬁf Ayt (1) Ayt (82) Ayr (53) (4.138%
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H1(s1), Ha(s1,S2) ve Hi(s1,52,S3) sirasiyla Q%% seklindedir.

Sekil 4.36’dan geri beslemeli devrenin ¢ekirdek donugsumlerinde biri

1

Fi(s)) = Fy = —— 4.139))
151 7 ( }=
olur ve geri beslemeli devre linearliginden
Fylsy,82) =0 (4.140)
.f':'-;{.‘l"|. Ha, .‘J:!_:l = “ {414]}.

bulunur.

Goraldugu gibi frekans arttikga kazancin azaltma faktort artar. Diger bir
deyigle, kazang frekans arttikga daha az oldugunu bastirilir. Ancak, kendisi de

azalir.

Tum devrenin ve harmonic distorsiyonun Volterra ¢ekirdekleri: Tum
sistemin yani Q'nun ¢ekirdek donusimunun ne olduguna karar verebilecek tum
paremetleri suan biliyoruz tek ihtiyacimiz olan sey ise; esitlik 4.33 ve esitlik
4.34’ten  bildigimiz  amplifikatorin  harmonik  distorsiyonlarinin  frekans
argumanlarinin belirlenmesidir. Yani bagka bir sekilde Qx(s1,s1) ve Qs(s1,51,S1)
Qa(s1,82) ve Qas(s1,82,83) yerine kullanabiliriz de denebilir. Tium geri besleme
sisteminin birinci dereceden donusum fonksiyonunu esitlik 4.93, esitlik 4.136 ve
4.144 kullanarak bulabiliriz:

Cg-_[:.‘h‘lj = H] [H1)H[-‘:’]) 'Ifg {4145)

ikinci dereceden gekirdek déniisimii de esitlik 4.94 esitlik 4.137 ve esitlik
4.144 kullanilarak bulunabilir.
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Qa(s51,51) = (R(s1))” R(281) Ha(s1, 1) (4.146)
R+ R, RgGg

= . 4.147
ng?“Riim Aﬂ] (231] ( )

Q2(s1,51)'nin bolumu Q/ A4 olur. Ve Qo(s1s4) frekans ile orantili olarak
artmaktadir. Sonug olarak 3.dereceden gekirdek donusimu Qs(s1,81,51) esitlik
4.95,4.137,4.138 ve 4.144’ten

2Hy (81,81 ) Hy(s,2
QS(SI, 31,31} — (R(Sl))g . [H3(311 81’ 31) . 2(151 31} 2(51 sl)
H1(231)

_ R, + R, _ R% [G 26’%]
T RigARL, Au(s) [T Gy

] ‘R(3s))  (4.148)

(4.149)

Qs(s1,51,81)'nin bolimi Q/ 4> olur. Qx(s1,s1)’'de goruldigu gibi Qs(s1,51,81)

dogrusal olarak frekansla artar.

Esitlik 4.33 ve 4.34’ten ikinci ve uguncu harmonil distorsiyonlar bulunabiir.

‘i':,jn(t) = Iin Siﬂ(uﬁt} (4.‘50)

Girig sinyali Vin(t)=R1iin(t) seklinde ise;

Vin(t) = Vin sin(w;t) (4.151)

ve Vi, ve |y genlikleri arasindaki iligki su sekildedir:

Vin = Ral (4.152)
4

ikinci harmonigin distorsiyonu ise;



1 Q2(jwy, jwn) %
HDy = = - Iy, - - 4.153)
P Q1(3wn) ( )
L Ve Rt Ry Rk, R, (4.154)
2 Ry RighRy ., |An(2jw) o
seklindedir.
Anl2g
} 1( jwi” faktoru icin bu ifade;
| A | rGBW
A1 (2 )| = | 2P a (4.155),
2jwy gmBL,, wi g
i
seklinde yazilabilir
ve buradan da birkag¢ cebirsel islemden sonra
1 Ry R+ Ry wh !
HDy =5 -Vig+ = ——— K} 156);
2 Ry R, i 2gm gmBL, TGBW @ 156?}
elde edilir.

Bu ikinci harmonik distorsiyonu da frekansla orantili olarak artar.

Ry = 1kS2, Ry = 20K8L pratik bir 6rnek icin esitlik 4.156’ya denktir. Disiik
frekanslardaki tum amplifikatorun voltaj kazanci -20°dir. Bundan da bant genigligi
kazanci 1MHz ve sinyal frekansi 10kHz olur. Opamp devresinin ikinci bolum
kazancl gmRLint i¢in 50 olur. Burada tablo 3.2'den dogrusal olmayan normalize

K,ng ;

I{J‘ _ Kzﬂ'm . 1
2gm G - Q(VGS _ V:r}

(4.157)

seklinde bulunur.
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Vgs-V7igin 0.2V K’ggm=2.5V'1 olarak bulunur. Girig genligi 100mV olur. Bu
cikis genliginin 2V olacagi anlamina gelir. Esitlik 4.156 kullanilarak bulunan ikinci
harmonik distorsiyonu 0.021 yada %2.1 olarak bulunabilir.

Simdi sirada dguncu harmonik distorsiyon var. Esitlik 4.34 kullanilarak biz

sunu bulacagiz;

1, |Qliwn, jer, jun)
HD3 = - Iin @lJ | (4.158)
1 Qi(jw) |
Esitlik 4.145 ve 4.149 kullanilarak ikinci harmonik distorsiyonu
1 e H::: R+ R_g | g ] . "-!":'-"1 4.159
HD, = i Vi ?: . R ‘ K dg. T 2K g E?F(L'!EH’—'Q;";, I?;rt..,._. (4.15%)
bulunur.

HD,'de gozuktugu sekilde HDs'de frekansla orantili olarak artmaktadir.
Esitlik 4.159'dan denk olarak elde edilecek dederler HD; igin 2.5x10™ ‘dir.
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