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4.2.Volterra Serilerinin Temelleri 
 Hem zaman etki alanında, hemde frekans alanı içinde Volterra serisinin 

temellerini kısaca bu bölümde açıklayacağız. 

  

Volterra serileri; birinci dereceden doğrusal sistemlerin zayıf doğrusal 

olmayan sistemlerin teorisinin bir uzantısı olarak da görülebilir.Volterra serilerinin 

açıklaması olarak böyle bir sistemin farklı sırada farklı operatörlerin birleşimi olarak 

kabul edilir ve Şekil 4.1’de gösterilir. 

 

Bir doğrusal olmayan sisteme çok düşük genlikli bir giriş sinyali verildikten 

sonra çıkışın doğru hesaplanması için hangi lineer davranışta olduğu, blok 

tarafından Hj temsil sistemi, sadece birinci dereceden davranış alarak 

tanımlanabilir. Bu blok doğrusallaştırılmış devrenin frekans alanındaki transfer 

fonksiyonudur. 

 

Ne zaman giriş genliği artarsa, çıkış sinyalinin önemli bir parçası doğrusal 

olmayan etkilere neden olur. Yeterince düşük giriş genlikleri için bu doğrusal 

olmayan etkiler doğru bir hesapla ikinci ve üçüncü dereceden etkiler, Şekil 4.1’deki 

operatörleri H2 ve H3 tarafından modellenmiştir. Toplam çıkış her operatörün 

çıkışlarının toplamıdır.  

 

Doğrusal olmayan bir sistem modelinin kabaca çıkış sinyali bir ayrıştırma 

için farklı harmonik içinde karşılık gelen sınırlı genlik bir sinüs dalgadır. N’inci 

harmonik öncelikle Şekil 4.1’deki n’inci dereceden operatör tarafından belirlenir. 

Lineer devreler için, analiz zaman etkisi yanı sıra frekans alanında yapılabilir. 

Doğrusal olmayan sistemler için Volterra serisinin kullanımı analitik fonksiyonlar 

için Taylor serisi kullanımı ile karşılaştırılabilir. 
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ŞEKİL 4.2 Volterra serisiyle karakterize edilen bir sistemin şematik gösterimi 

 

Giriş sinyali 0 olduğunda çıkışta 0 olur. Herhangi bir girişte de iki yönde +1 

veya -1 çıkışı verir. Bundan dolayı güçlü bir doğrusal olmayan etkinin varlığı açıktır. 

 

4.2.1 Volterra operatörleri 
 İkinci dereceden doğrusal olmayan bir sistem yerine kısaca, ikinci 

dereceden nonlinearity denebilir. İkinci dereceden nonlinearity olan nihai iki sinyal 

benzerdir, ve bu sistem ikinci dereceden sinyalleri üretmektedir. Üçüncü dereceden 

nonlinearity’de, üç sinyali de benzerdir, onları birleştiren bir üçüncü sinyali üretmek 

için çarpar. Sinyallerin birleşimi sadece bir çarpma olabilir, ama Bölüm 4.1.1 ve 

4.1.3 bize sinyallerin daha karmaşık bir şekilde kombine edilebileceğini 

göreceksiniz. 

Bir frekans w1 tek bir sinüsoidal sinyal olup ikinci nonlinearity uygulanır. 

Şimdi varsayalım.w1+w2=2w1 ve w1-w2=0Hz olur. Bu durumda ikinci dereceden 
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nonlinearity ikinci dereceden sinyali üretmek için iki kez bu sinyal birleştirir. w1+w2  

ve |w1-w2| seklinde üretilir. 

Bu iki frekans w1 ve 3w1 diye adlandırılır. 

Basit bir doğrusal olmayan sistemde, aynı frekanslardaki bileşenleri elde 

etmek yukarıdaki hususlar ile yapılabilir. 

 

4.2.2 Zaman Alanının Temelleri 
 Şekil 4.1’de lineer olmayan bir sistemin Volterra serisi modeli ile birkaç 

Volterra operatörlerinin paralel olarak oluşumu gözükmektedir. Önceki bölümde 

niteliksel bir giriş sinyaline böyle operatörlerin hareketleri açıklandı. Bu bölümde bir 

kantitatif şekilde bu açıklanacak. 

 
 

Şekil 4.1 Volterra serileri ile karakterize edilen bir sistemin şematik gosterimi 

 

Giriş sinyali Volterra operatörleri için  
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şeklinde verilmiştir. 

 

Bu iki integral ayrılmaz ve iki boyutlu bir integral olarak kabul edilmektedir. 

Burada doğrusal bir sistem ile benzerlik görmekteyiz: 2 1 2( , )h τ τ  olduğunda bu ikinci 

dereceden Volterra çekirdeği olarak adlandırılır. Üçüncü dereceden bir Volterra 

çekirdeği düşünecek olursak. 

 

Bu Volterra operatörü: 

 

 
 

 şeklinde verilir. 

 

 N.dereceden Volterra operatörü ise; 

 

 
 şeklinde verilir. 

 N.dereceden Volterra’nın çekirdeği 1 2( , ,........, )n nh τ τ τ  şeklinde gösterilir. 

 

Şimdi Volterra serisi doğrusal olmayan sistemin çıkış biçimciliği ile bir çıkış 

ile birinci sırada Volterra operatörünün çıkış toplamı olarak temsil edilir ve şekil 

4.1’de gösterilmiştir. 

Denklem 4.1, 4.2 ve 4.3’ten denklem 4.4 elde edilir. 
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Bu eşitlik doğrusal olmayan bir sistemin Volterra serileri ile gösterimidir. 

  

Şimdi n.dereceden volterra çekirdeğini 1 2( , ,........, )n nh τ τ τ  daha detaylı şekilde 

inceleyelim. Bu  çekirdek, her zaman simetriktit, yani çekirdeğin değerini 

argümanların yer değiştirmesi etkilemez. Bu bölümde kullanılacak olan tüm volterra 

serileri aksi belirtilmedikçe simetrik olarak varsayılacaktır. 

 

Bundan dolayı giriş geleceğe bağlıdır. 

 

Herhangi bir negatif argüman için Volterra çekirdekleri sıfıra eşittir: 

 
 

 Haydi şimdi de bir Volterra serisinin şeklini düşünelim. Volterra serisi bir güç 

serisidir, bu durum bir faktör tarafından girişin a değerini değiştirilerek görülebilir. 

Yeni giriş ax(t) olur ve bu eşitlik 4.3 ve 4.4 ‘ten; 

 
şeklinde bulunur. 

 

Ayrıca, Volterra serileri bellekli serilerdir ve bundan dolayı güç serisi olarak 

gösterilir. Eger sistem 4.4’deki Volterra eşitliği ile tanımlanırsa bellekli değildir.  
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ve volterra serileri güç serilerine indirgene bilir. 

 
  

Gücünü dizi karakterinin bir sonucu olarak, bazı problemlerde Volterra 

serilerinin  kullanımı ile ilişkili sınırlamalar vardır. Tıpkı bir fonksiyonun Taylor serisi 

temsil ile yakınlaşma sorunları oluşabilir. 

Bunun yerine bu sinyallerin dikkatle ele alındığı devrelere uygulandığı kabul 

edilecektir,bunun için yeterli küçük bir Volterra serisi yakınsar. Bu çoğu durumda 

gerçekçi bir kabuldür. 

 

4.2.3 Frekans Alanı Gösterimi 
Bir doğrusal sistemin çıkışı, zaman alanında gösterilen bir sistemin impuls 

cevabı ile giriş sinyalinin alanının temsilinin hesaplanabilir olduğunu biliyoruz. 

Doğrusal bir sistemin frekans düzleminde ki sonucu Fourier dönüşümü yapılarak 

hesaplanabilir. Bu yaklaşım doğrusal olmayan sistemlere de uygulanabilir. 

n.dereceden Volterra çekirdekleri n.dereceden dürtülerle birlikte kabul edilebilir. 

Eğer doğrusal bir sistem ile paralel düşünürsek, Fourier’in n inci dereceden 

Volterra operatörünün çıkış dönüşümü n’inci dereceden Volterra çekirdeğinin 

Fourier  dönüşümü içerir. 

 

Öncelikle frekans alanında n.dereceden bir volterra çekirdeğinin çok yönlü 

laplace ve fourier dönüşümlerini tanımlamak gerekir. n.derecden bir volterra 

çekirdeğinin laplace dönüşümü n.dereceden nonlinear transfer fonksiyonu yada 

n.dereceden çekirdek transformun olarak adlandirilir. 
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Doğrusal transfer fonksiyonu ile n.dereceden Volterra çekirdeleri benzerlik 

gösterir. Çoğu zaman, hiçbir karışıklık yoktur, çekirdeğin frekans temsiline bir 

Volterra çekirdeği denir. n’inci dereceden çekirdek tam bir frekans alanı ile temsil 

edilirse n frekans değişkenleri gerektirir ve n zaman değişkenleri, bir işlevdir. 

 

Çekirdeği 1( ,...., )n nH s s 1( ,...., )n nh τ τ  olan 1( ,...., )n nH s s ’nin çok boyulu Laplace 

dönüşümü şu şekilde  

 

 
verilebilir. 

Buradaki karmaşık bir sayıdır. 

 

Cok boyutlu Fourier dönüşümü de  tüm iσ  degerlerinin 0’a eşitlenmesi 

yoluyla Laplace dönüşümünden elde edilir. 

 

Buradan da şu sonuca varılır ki;  zaman düzleminde simetrik olan n.dereceli 

bir transfer fonksiyonu da simetriktir. Bu aslında çok doğal: doğrusal olmayan bir 

operatör farklı uygulanan frekansları ayırt edemez. Simetrik n.dereceden transfer 

fonksiyonları kendi karmaşık eşlenik frekans iddiaları ise işareti değiştirilerek elde 

edilebilir. 

 
Doğrusal transfer fonksiyonu ile n.dereceden doğrusal olmayan transfer 

fonksiyonu esdegerdir ve bir sinüs ile uyarılması sonucu n dereceli sisteminin çıkışı 

bulunabilir. Örneğin şekil 4.1’deki H2 operatörü ikinci derecedendir. 
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2wx frekansında ikinci dereceden sistemin çıkışı sinusoidal ve süreklidir.Hafızasız 

ikinci dereceden doğrusal olmayan bir sistemin frekans bileşenleri Bölum 2’de 

ayrıntılı şekilde anlatılmıştır. Bu sinusoidal sinyallerinin toplamının bulunması işi ise 

bölüm 4.4’e bırakılmıştır. 

 

 Doğrusal olmayan sistemler için üçüncü dereceden volterra operatörlerinin 

sinusoidal çıkışlarını Ek-B’de bulabilirsiniz. 3.dereceden doğrusal olmayan transfer 

fonksiyonu  na eşittir. 

 
 ve buradan da frekans bileşenleri 3wx ve wx şeklinde olur. İkinci seviyeden 

doğrusal olmayan sistemlerde olduğu gibi hafızasız üçüncü dereceden doğrusal 

olmayan sistemlerin frekansları da Bölüm 2’de yer almaktadır. 

 

 Bölüm 2 de ve Volterra serilerinden elde edilen sonuçların farkı ise genel 

olarak şu şekilde verilebilir:  ve  ‘nin fourier 

transformu karmaşık sayılara eşit iken Bölüm 2’deki temel hesaplamalarda hiç ele 

alınmamıştır. Bu durum ilerde 4.3.1 ve 4.3.2’de anlatılacaktır, bununla birlikte 

 ve ’nin Fourier dönüşümleri ise Bölüm 5’te 

anlatılacaktır. 

 

 Ve burada tekrar ediyoruz ki birinci dereceden sistemlerin sinusoidal 

 karşılığı şöyle verilebilir; 

 



 10 

 

4.2.4 Zayıf Doğrusal Olmayan Devre Davranışı 
   

 Bu noktada zayıf doğrusal olmayan devrelerin Volterra serileriyle olan 

tanımına gelebiliriz. En genel tanımıyla;eğer bir devre volterra serileriyle 

gösterilebiliyorsa verilen girişe karşılık zayıf bir nonlinearite vardır.Buna rağmen 

birçok durumda volterra sistemleri ortalama giriş seviyelerinde çok düzgünce 

tanımlanmalıdır. 

 

Genel ve pratik olarak adlandırılan her iki tanımda da sorunun  bir kez daha 

Volterra çekirdeklerini birleştirmek olduğunu görülür. Bu nedenle, doğrusal 

olmayan davranışlar daha genel tanımı yerine analog entegre devreler de daha 

kısıtlayıcı pratik tanım kullanılabilir. 

 

4.3 Volterra Çekirdeği Örnekleri 
 Volterra serilerinin matematiksel tanımları önceki bölümlerde verilmiştir. Bu 

bölümde de birkaç örnekle vererek bunları açıklayalım. 

4.3 Temel 2.dereceli Sistemler 
 Bu bölümde Şekil 4.1’deki 2.dereceden Volterra operatörlerinin genel blok 

diyagramı ile olan gösterimine konsantre olacağız. 2.dereceden nonlinearite iki 

sinyalden oluşur. Genel olarak ikinci dereceden sistemler Şekil 4.3’te 

gösterilmektedir. 
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Şekil 4.3 Bu şekilde 2.dereceden bir sistem operatörünün blok-diyagramı 

gösteriliyor. 

 

Bu basit ikinci dereceden bir sistem ikinci dereceden nonlinearity ise bir 

çalışma grubunu genel olarak açıklanması gerekirse şöyledir: Gelen sinyal x(t) ilk 

iki doğrusal blok için impuls cevabı olan ka(t) ve kb(t) sırasıyla çıkışları Za(t) ve Zb(t) 

olur. Bu sinyaller doğrusal sistemlerin impuls cevabı Kc(t) ile karakterize edilebilen 

linear sistemlerdir. Doğrusal sistemin genel çıkış y2(t)’dir. 
 

Okuyucu için verilmiş olan Şekil 4.3’teki temsili bir genel blok olan blok 

mutlaka fiziksel "alt blok" pratik bir doğrusal olmayan devreye karşılık gelmez ve 

temsili olduğu bilinmelidir. Bu blok şeması sadece 2. dereceden nonlinear 

operatörün nasıl olduğunu genel olarak açıklamak için kullanıldı. 2.dereceden bir 

Volterra çekirdeğinin aşağıdaki gibi olduğunu kanıtlamak çok da zor değil. 

 

Bu kitapta Fourier dönüşümleri yaptığımız frekans düzlemiyle daha çok 

ilgileneceğiz. H2( 1 2,τ τ )’nin Fourier dönüşümü H2(jw1, jw2) şeklinde gözükür ve 

biraz cebirsel işlemle: 
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Buradaki Ka(jw),Kb(jw) ve Kc(jw) doğrusal alt sistemleri sırasıyla ka(t),kb(t) ve 

kc(t)’ye bağlıdır.  

 
Şekil 4,4: Basit bir belleksiz ikinci dereceden sistemin Blok-diyagramı ile gösterimi. 
 

Şekil 4.3 ve Şekil 4,4 karşılaştırıldığında, bu bağlantının yanıtını hiç bir sinyal 

değiştirmez. Dolayısıyla, denklem (4.15) için Şekil 4.4’teki Fourier dönüşümü 

sistem tarafından şöyle verilir: 

 
Bu belleksiz doğrusal olmayan devre ikinci sırada çekirdek (yani kapasitif veya 

endüktif etkiler anlamına gelir) olan giriş-çıkış ilişkisi formun bir kuvvet serileri 

tarafından açıklanması için; 

 
ikinci dereceden dönüşümü K2 olur. 

4.3.2 Temel 3.dereceli sistemler 
Önceki bölümde Volterra operatörünün genel blok şeması temsili olarak 

verilmişti şimdi ise benzer şekilde üçüncü dereceli bir sistemi düşünelim. Şekil 4.3 

ile ikinci dereceli sistemleri gösterdik, burada iki sinyal çarpımı lineer sistemleri ve 

çarpanlarını bir blok şemasıyla ele alacağız. Bu üçüncü dereceden sistemin iki tür 

çarpan gerektireceği açıktır. Üçüncü dereceden sistemler de üçüncü sırada sinyali 

üretmek için üç sinyalin birleştirilmesi bu şekilde verilir. Üçüncü dereceden bir 

sistemi sadece iki çarpanı Şekil 4,5 gösterilmiştir. Gösterildiği gibi x(t) ikinci 
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dereceden bir sistem olan F2’ nin girişi, Za(t) F2’nin çıkışıdır zaten buradaki F2 

sistemi Şekil 4.3’tekinin benzeridir.Bu sistem hali hazırda 2 sinyal ile 

çarpılıyor(öyleki impuls cevabı ke(t)’dir) ve üç sinyal ile toplanıyor. Bir kez daha 

altını çiziyoruz 

 
Şekil 4.5: Basit bir üçüncü dereceden  sisteminin çalışmasını göstermekte 

olan blok diyagramın gösterimi 

 

Bu şekildeki parçalar pratik bir üçüncü dereceden nonlinear sistemin 

“fiziksel” parçaları olmasına gerek yoktur. 

 

 Üçüncü dereceden çekirdeğin dönüşümü şöyle verilebilir: 

 
Hafızasız bir sistem için Şekil 4.5’teki blok şemasını basitleştirirsek. Bu 

blokları ka(t),kb(t),kc(t) ve kd(t)’nin ke(t) ile bağlanması ve K3’e ölçeklendirilmesiyle 

yapılabilir. Sonuç olarak elde edilen blok diyagram Şekil 4,6’da gösterilir: 
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Şekil 4.6: Basit bir üçüncü dereceden hafızasız sistemin blok-diyagramının 

gösterimi 

 

Önceki bölümlerden 3.dereceden çekirdeğin dönüşümü şu şekilde 

indirgenebilir. 

 

 

Bu sonuç önceki bölümün bilgisi ile tahmin edilebilirdi. 
 

 

4.3.3 Uygulama: Lineer olmayan bir amplifikatör 
Şimdi Şekil 4.7’deki devrenin analizi yapacağız: Bu şekil doğrusal olmayan 

bir amplifikatör ile giriş ve çıkışında RC devreleri kullanılarak oluşturulmuştur.  

 

Amplifikatörün kendi içindeki kapasitif etkileri ihmal edilmektedir. 
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Şekil 4.7: RC devresi ve Amplifikatör’den oluşan doğrusal olmayan sistem 
 

Amplifikatör empedansını sonsuz, giriş empedansı ve çıkış empedansının 

ise sıfır olduğu varsayılır. Amplifikatörün endüktif ve kapasitif etkileri ihmal edilirse, 

Nonlinear sistemi için frekansa bağlı değil diyebiliriz. Amplifikatörün giriş voltajı ile  

çıkış voltajı arasındaki ilişki: 
 

 

Buradan anlaşılıyorki amplifikatör nonlinear ve hafızasızdır. 

 

 Bu örneği frekans alanında da incelersek, Giriş voltajı Vin  ve Amplifikatör’ün 

çıkış voltajı V1 arasındaki ilişki şöyle olur: 
 

 

Bu doğrusallaştırılmış devrenin H1(jw) transfer fonksiyonu şöyle verilebilir: 
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Şimdi bu devrenin ikinci dereceden çekirdek dönüşümüne bakalım. 

Amplifikatör ’ün İkinci dereceden nonlinearitesinin çekirdeği sıfır değildir. Bu ikinci 

dereceden nonlinearlik  C kapasitörü veya RC devresinin çıkışı ile beslenir. 

Amplifikatör ve ikinci dereceden hafızasız nonlinear sistemin blok şeması Şekil 

4.4’teki gibi temsil edilebilir. Bu gösterim ile RC devresini birleştirilmesinden Şekil 

4.8’deki gibi bir diyagramı çizebiliriz. Şekil 4.8’ten ikinci dereceden bir sistemin 

yanıtı hasaplanabilir. 

 

Şekil 4.8: Blok şeması Şekil 4.7 devrenin ikinci dereceden yanıtının hesaplaması 

için kullanılır. 

 

 Açıkçası bu blok diyagram Şekil 4.9’daki gibi dönüştürülebilir. Bu 

diyagramda ne olduğu kolayca açıklanabilir. Amplifikatör’ün ikinci dereceden 

nonlinearitisi kapasitörde üretilen ikinci derecen çıkış sinyaline bağlıdır. Bu ikinci 

dereceden sinyal RC devresinin de çıkışıdır. Bu gösterimde 2A
K , RC devresinin 

çıkışıyla birleştirilir. Bu blok diyagramı Şekil 4.3’te açıklanmıştır.  
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Son olarak ikinci dereceden çekirdeğin dönüşümü  şu ifade 

kullanılarak bulunur: 

 
 Haydi artık üçüncü dereceden linearitesi olan amplifikatör’ün üçüncü 

dereden bir çekirdeğinin dönüşümüne bakalım. Bu üçüncü dereceden nonlinearity 

C1 kapasitörünün voltajı ile beslenir. Şekil 4.6’daki hafızasız üçüncü dereceden 

doğrusal olmayan sistemin genel blok gösterimi kullanılarak, şekil 4.9’daki üçüncüd 

dereci yanıt hesaplanabilir. 

 

 Bu diyagram şekil 4.11’deki diyagrama dönüştürülebilir ve bu diyagramda 

şekil 4.5’deki genel gösterimle açıklanabilir.  
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Şekil 4.10: Şekil 4.7’deki devrenin üçüncü dereceden yanıtının hesaplanması için 

kullanılan blok diyagramı 

 

Denklem 4.18 kullanılarak  üçüncü dereceden bir çekirdeğin 

dönüşümü şu şekilde, 

 
hesaplanabilir. 



 19 

İkinci ve üçüncü dereceden dönüşümleri sinüzoidal bir sinyal ile hesaplarsak 

bu sinyal : 

 
Birinci dereceden yanıt :  Birinci dereceden yanıt y1(t) denklem 4.22’deki eşitlikler 

ve denklem 4.13’teki eşitliklerin birleştirilmesiyle şu şekilde hesaplanabilir.  

  
İkinci dereceden yanıt : İkinci dereceden yanıt y2(t)’nin 4.25’teki eşitliğinin 

sinüzoidal karşılığı için eşitlik 4.11 ile birleştirilmesi ve birkaç cebirsel işlem ile şu 

ifade elde edilebilir: 

    
Açıkçası buradaki yanıt DC kaydırma ve ikinci harmoniklerden  gelmektedir. 

Buradaki iki bileşen wx frekansına bağlıdır. Arada bir parantezlede şunu 

açıklayalım DC kaydırma R2 C2 ‘den bağımsızdır. DC kaydırma amplifikatörün 

ikinci dereceden çıkışıyla üretilen bir sinyaldir.   RC devresinin çıkışı bu sinyal için 

0 Hz dir. 

 

2w ve wx ‘in birbiriyle olan bağıntısı ile ikinci harmonikler şu şekilde 

gösterilebilir: 
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Üçüncü dereceden yanıt : Üçüncü dereceden yanıt y3(t)’nin 4.12’teki eşitliğinin 

sinüzoidal karşılığı için eşitlik 4.24 ile birleştirilmesi ve birkaç cebirsel işlem ile elde 

edilen ifadenin 3wx ve wx ile yanıtı: 

 

 
buradan üçüncü harmonikler  

 

 
şeklinde bulunabilir. 

 

 Farklı dereceli sistemlerin çekirdek dönüşümleri de bu şekilde 

hesaplanabilir. Ancak bu sonraki konuya bırakılmıştır. 

 

4.4 Volterra Çekirdeklerinin Doğrusal Olmayan 
Performans Parametreleri 
 

 Bölüm 2’deki frekans bağımlılığı, Volterra serileri ile açıklanan doğrusal 

olmayan bir sistemin açıklanmasını sağlar. 

 

4.4.1 Bir-Ton ve İki-Ton tanımı 
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Üçüncü dereceye kadar Volterra serileriyle tanımlanabilen sistemler için 2 

sinüzoidal sinyal A1cosw1t ve A2cosw2 toplamı ile tablo 4.1’deki çıkışlar elde edilir. 

 

Ek B’de gösterildiği gibi bu yanıtlar Volterra çekirdekleri ile hesaplanır. 

 

Toplam çıkış 18 yanıt ve 13 farklı frekans’tan oluşur. Tablo 4.1’te bu 

cevaplar doğrusal şekilde, harmonikler, intermodulasyon vb. gibi bölüm 2’de verilen 

tanımlara göre verilmiştir.   

 

Tablo 4.1’deki yanıtlar ile şekil 2.6’daki hafızasız bir devrenin 

karşılaştırılması ilgi çekici olabilir. Bölüm 4.3’te zaten hafızasız bir devrenin ikinci 

ve üçüncü dereceden çekirdek dönüşümleri, ikinci ve üçüncü dereceden K2  ve K3 

ile şekil  2.6’da açıklanmıştı. Sonuçta Tablo 4.1’deki yanıtlar  
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Tablo 4.1 : Volterra serileriyle açıklanabilen birinci,ikinci,üçüncü derecede ve iki 

sinüzoidalli doğrusal olmayan sistemlerin farklı yanıtları.İlk sütun çekirdeğin 

derecesini göstermektedir. 
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Yani şekil 2.6’da yer alan yanıtlar Tablo 4.1’deki çok düşük frekansların 

çekirdek dönüşümlerinden alınmış olan örneklerden çıkartılmıştır. Örneğin, üçüncü 

dereceden  ‘ün amplifikatörünün girişlerindeki A1 ve A2  ‘nin A’ya eşit 

olduğu durumlardan, 

 
şeklinde yazılabilir. Zaten biz bunu Şekil 2.6’da bulmuştuk. 

 

Harmonik distorsiyon : Bölüm 4.3.3’te çeşitli örnekler yardımıyla zaten Harmonik 

distorsiyonları hesaplamıştık. İkinci ve üçüncü harmoniklerin genel Volterra 

eşitlikler Tablo 4.1’den yada Denklem (4.11) ve (4.12)’den şu şekilde, 

 
çıkartılabilir. 

 

Şunu hatırlatalım ki bunu zaten Bölüm 4.3.3’te kullanmıştık. 

 

İntermodülasyon distorsiyonu : Tablo 4.1 deki sinyallerin intermodülasyon 

distorsiyonu IM2 ve IM3 hesaplanabilir. IM2 şu şekikde gösterilebilir; 

 
farklı frekanslardaki intermodülasyonun sonucu  
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şeklinde olur. 

 IM2  ‘nin iki tanımı da geçerlidir, ikinci dereceden intermodülasyonun 

sonucuna bağlıdır. Hafızasız sistemler için amplikitörün sonucu,    

   2 1 2 2 2 1 2( , ) (0,0) ( )H jw jw H H jw jw= = −  

şeklindedir. 

  

Üçüncü dereceden intermodülasyon şekilleri aynı yollarla ifade edilebilir. W1 

Sinyalleri kullanılır ve w2 nin w1 ‘e eşit yada yakın olması istenmez.Örnek verecek 

olursak 2w2-w1 tekrar durumunu oluşturabilir. İstenen bir sinyal ile bundan dolayı 

istenmeyen intermodülasyonun sonuçları ilgi çekici olabilir. Tablo 4.1’deki Volterra 

çekirdeğinin dönüşümü üçüncü dereceden intermodülasyonu:  

 
eşitlik 4.10’da kullanılarak; 

 
şeklinde bulunur. 

 2.Bölümde zayıf doğrusal olmayan sistemlerin IM2/HD2 eşitlikleri ve IM3/HD3  

eşitliklerinden (denklem 2.31 ve 2.32’deki eşitliklere bak)  bulunabilir. 

 

 Eşitlik 4.33, 4.34, 4.35 ve 4.38 ile Volterra şekirdeğinin dönüşümü şu şekilde 

verilebilir: 

 

w1 + w2 için intermodülasyon ise; 
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şeklindedir. 

 

 2 22w w− için hafızasız sistemlerin H2 ve H3 aynı frekansları IM2/HD2 ve 

IM2/HD3 ‘leri çok düşük frekanslarda w1,w2 !0 şeklindedir.  

 IM3 / HD3 eşitlik 4.24 ile eşitlik 4.40’dan şöyle: 

 
bulunur. 

 

 R1C1 , R2C2’den daha küçüktür.  

 
Buradan IM3/ HD3 ile eşitiliği 

 
şeklinde bulunur. 

 

Durdurma(Intercept) Puanları : IP ile gösterilir. HD2  ve HD3 için IP2h ve IP3h 

sırasıyla  
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Durdurma (Intercept) için intermodülasyon sonucları benzer şekildedir. Tabi 

ki intermodülasyon ihtiyacına göre Volterra çekirdekleri değişiklik gösterebilir. 

Örneğin intermodülasyon sonucu 2w2-w1 ‘dur, burada IP3 eşitlik 4.38’den şöyle 

 

 
bulunur. 

 

4.4.2 Çapraz Modülasyon 
 

2.Bölümde gösterildiği gibi düşük frekanslardaki amplifikatör 

modülasyonunun diğer taşıyıcı ile dönüşümü önceden verilmişti. 

 

 
wm <<w1, w2 olduğunda çıkış frekansı w2 ve 2 mw w± şöyle verilebilir 

 
buradan da 

şeklinde olur ve H1(jw2) ve H3(jw1,-jw2,jw2) sırasıyla 1 2veβ β  şeklindedir. w1=w2=0 

4.47’de eşitlenirse bölüm 2.6’dan şu sonuca gidilir. 
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mx<<1, 2 1β β φ− = ise eşitlik 4.48’in çıkışı: 

 
 

Bundan dolayı tüm faz ve amplifikatör çapraz modülasyonları φ  ‘na bağlıdır.  

 

Eğer φ  =0 ise çapraz modülasyon olur. 
2
πφ =  olduğu zaman sırf faz 

çapraz modülasyonu olur. Bölüm 2.6’da sadece bir adet çapraz modülasyonu 

tanımlanmıştı.   

Amplifikatör ve faz çapraz modülasyonları faktörü CMA ve CMp amplifikatör 

modülasyonu ve faz modülasyonu dönüşümü şeklinde tanımlanır: 

 
Eşitlik 2.44’den düşük frekanslardaki CMA ve üçüncü dereceden 

intermodülasyon distorsiyonunun dört olduğu bulunur. Ancak bu yüksek 

frekanslarda geçerli değildir. 

 

 4.5 Eşit Dereceli Ve Garip Dereceli 
Çekirdeklerin Bastırılması 

Bölüm 2.3’de dengeli bir devrenin çıkının eşit harmonikleri olmayacağını 

yada girişlerin iki sinyal, eşit amplifikatör ve karşıt fazlı olacağı zamanlardaki 

intermodülasyon yanıtı olacağına değinilmişti. Bu bölümde Volterra serilerinin 

genel sonucu verilecektir. 
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Şekil 4.12 ve 4.13’ün her birinde doğrusal olmayan bir sistem 

gösterilmektedir. 

 
  Şekil 4.12: p.dereceden iki sistemin (eşit çekirdekli) bağlantısı  

 
Şekil 4.13: p.dereceden iki sistemin (garip çekirdekli) bağlantısı 

 

Şekil 4.12’deki sistemin yanıtı eşit  dereceli sinyallerdir. Buna mütakiben 

şekil 4.13’deki sistem yanıtı garip dereceli sinyalleri içermez. Bu durum çeşitli 

devrelerde kullanılabilir. 

Bu iki sistemde de şu teoremler kullanılmaktadır: 

TEOREM 4.1: Volterra serileri ile açıklanan doğrusal olamayan sitemlerin 

girişi x(t) sinyali ile çıkışı y(t) sinyallerinin ilişkisi şu şekildedir: 

 
ve buradan da; 
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olur. 

 

Eğer tüm giriş sinyali x(t) olan Volterra serilerinde çıkış sinyalide y(x(t)) ise 

aralarındaki ilişki: 

 
şeklindedir ve buradan da; 

 ve olduğu her durumda  

 
şeklinde olur. 

Volterra serilerinden teorem 2.1 ve 2.2’den tekrar formüle edersek. Bu 

devrenin çıkışı teorem 4.1’in ilk bölümünden Şekil 4.12’nin blok diyagramın x(t) 

giriş sinyali için sonucu: 

ve –x(t) için de; 

şeklindedir ve bu ya(t)’nin tersidir. 

 

Benzer biçimde x(t) ve –x(t) için şekil 4.13’ün yanıtı; 

 
Şekil 4.12’nin blok diyagramı x(t) ve –x(t)’nin farklı devrelerle gösterimi Np 

şeklinde gösterilir. İki bloğunun arasındaki fark tüm sistemin çıkışına eşittir. Bundan 

dolayı teorem 4.1 doğrusal olmayan bir sistemin çıkışını teorik olarak verir.   
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4.5.1 Uygulama : Bir diferansiyel çiftin bastırılması 
Diferansiyel bir analog devrenin yapımı. Şekil 4.14’de bipolar bir diferansiyel 

çift gözükmektedir. Giriş sinyali farklı bir voltaj kaynağıdır.  

 

 
 

 

Burada döngüdeki voltaj  

 
Kolektörün bir fonksiyonu olarak Q1A ve Q1B eşitlik 3.12’den  
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buradan da 4.55, 4.56 ve 4.57 denklemlerini kullanırsak; 

 
elde edilir ve IEE ‘de  

 
olur. Eşitlik 4.58 ve 4.59 kullanılarak ta 

 

 
elde edilir. 

 

 

Çıkış voltajı Vout ise; 

  
şeklinde verilir. 

Eşitlik 4.60 ve 4.61 kullanılarak RLA=RLB=RL konularak sonuçta; 
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elde edilir. 

Giriş fonksiyonu gibi Şekil 4.15’de de çıkış fonksiyonu gösterilir. Şekil 

4.14’ün diferansiyel eşleri VE ; 

 
olur. 

 

 

 
Şekil 4.15: Şekil 4.13’deki Diferansiyel fonksiyonların girişine bağlı olarak 

diferansiyel çıkışları 
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Şekil 4.16: Diferansiyel giriş voltajı fonksiyonundan elde edilen voltaj grafiği 

 

4.6 Doğrusal olmayan sistemlerin Kaskad 
bağlanması 
 İki doğrusal olmayan bloğun kaskad bağlanmasından hesaplana volterra 

çekirdekleri bu bölümde incelenecektir. Buna bir örnek olarak iki seviyeli 

amplifikatör sistemi verilebilir. 

 Şekil 4.17’de doğrusal olmayan H sisteminin doğrusal olmayan F sistemiyle 

bağlantısı ve sonuç olarak sistemin Q cevabı verilmiştir. 

 

 
 

Şekil 4.18: Q ile tanımlanan çıkışıyla H ve F sistemleri 
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4.6.1 Genel tanımlar 
H ve S sistemlerinin Volterra operatörleriyle Q’nun Volterra operatörünün 

tanımı şu şekilde verilebilir: 

 
  

Bu ifadelerin Laplace dönüşümlerinden 

 
bulunur. 

 

 Şimdi ikinci derecen çekirdeklerin dönüşümüne bakalım. Bunun iki bileşeni 

vardır. İlki H’dan gelir ikincisi ise F’den.  
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Şekil 4.19: Farklı derecelerdeki Volterra operatörleri ile Şekil 4.18’deki Kaskad 

bağlantıların gösterimi. Oklar Tüm sistemdeki ikinci dereceden çekirdeğin iki 

bileşenini gösteriyor. 

 

Hafızasız sistemlerin temelleri: Eşitlik 4.70’den ve 4.68 ile çıkarılan dönüşümlerin 

H ve F’nin gösterimlerinden H; H1, H2 ve H3’ün dönüşüm fonksiyonları F için F1, F2 

ve F3 şeklindedir. 

Ve üçü şeklindedir. 

 
 

 

4.7 Ters sistemlerin kullanılarak pre-distorsiyon ve 
post-distorsiyonların gösterimi 
 Önceki gölümde iki doğrusal olmayan sistemlin kaskad bağlantılarının 

eşitliklerini gördük. Şimdi ise bazı devre dizaynları için uygulamaları göreceğiz.  

 

   

4.7.1 Genel Gösterimler 
 
 F için verilen Volterra çekirdeklerinin gösteriminin türevi alındığında F1’in 

Laplace dönüşümü: 

 
Eşitlik 4.74’deki H1(s) ve F1(s)’in kutupları 0’a eşitlenirse, F2’nin Laplace 

dönüşümü; 



 36 

 
Eğer H hafızasız bir sistem ise F2(s1,s2); 

 
şeklinde indirgenebilir. 

 Daha yüksek dereceli Laplace dönüşümleri için p.derece tabiri kullanılır. 

 

4.8 Doğrusal ve Doğrusal olmayan geri besleme 
 Parametre değişimlerine karşın amplifikatörü kazancını stabilize ettiği için 

doğrusal geri besleme analog devrelerde sıkça kullanılır ve bu doğrusal geri 

beslemenin önemli yaralarından birisidir, bunun dışında bant genişliğini arttırması 

gibi birçok faydası vardır. 

 

 Bu bölümde ise doğrusal olmayan geri beslemeye yöneleceğiz. Doğrusal 

olmayan geri besleme her ne kadar doğrusal geri besleme tekniklerinden ortaya 

çıkmış olsa da bu bölümde anlatılacağı gibi iki sisteme de iyi bir şekilde de 

uygulanabilir. 

 

 Şekil 4.23’te burada anlatılacak geri beslemeler genellenmiştir. Genel olarak 

uygulamalarda H amplifikatörü, F ise geri beslemeyi gösterir.Geri besleme 

sistemleri ise Q ile ifade edilir. 
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Şekil 4.23 : Genel bir doğrusal olmayan geri besleme sistemi 

 

 

4.8.1 Doğrusal olmayan geri besleme sistemleri 
 Birinci dereceden – üçüncü dereceye kadar doğrusa olmayan dönüşüm 

fonksiyonları hem H hem de F için Şekil 4.23’te gösterilmiştir. Bu değerlerin frekans 

alanındaki gösterimi aşağıda verilmiştir. 

 

 Birinci dereceden dönüşüm fonksiyonları  

 
 

Buradan R(s) notasyonu kısaca;  

 
Eşitlik 4.85’te temel amplifikatörün doğrusal kazancı R(s) faktörüyle azalmaktadır. 

  

 İkinci dereceden transfer fonksiyonu Q2(s1,s2) iki bölümlüdür: 
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Bu eşitlikteki faktörler köşeli parantezin dışına yazılmıştır. Parantezin 

içindeki ilk kısım ikinci dereceden doğrusal olmayan temel amplifikatör içindir ikinci 

kısım ise doğrusal olmayan geri besleme ağıdır.  

 

 Üçüncü dereceden dönüşüm fonksiyonunda da üç bölüm vardır ve aynı 

faktörleri içerir: 

 

 
 Parantezlerle gösterilen üç bölüm, noktalarla birbirinden ayrılmıştır. Simetrik 

olmayan gösterim bu şekilde formül ize edilebilir. Bunu simetrik hale getirmek çok 

daha komplikedir ve daha zor anlaşılırdır. 

 

 

 4.8.2 Geniş döngü ile geri besleme kazancı 
 Bir çok uygulamada döngü kazancı T(s) şu şekilde verilir: 
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Bu kabule göre transfer fonksiyonları eşitlik 4.85,4.87 ve 4.88’den şöyle 

indirgenebilir. 

 

 
Eşitlik 4.90 doğrusal bir sistemin geniş döngüsünün bilinen sonucunu verir. 

Buradaki 4.91 eşitliği ile 4.92 eşitlikleri ise ikinci dereceden ve üçüncü dereceden 

dönüşüm fonksiyonlarının döngü kazancını T(s)’yi verir. 

 

 

 

 4.8.3 Doğrusal geri besleme 
 Şimdi de kusursuz bir doğrusal geri beslemeyi inceleyeceğiz. 

Doğrusal olmayan distorsiyonu azaltmada en çok kullanılan yöntem doğrusal geri 
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beslemedir. Bundan dolayı bu konu daha geniş olarak işlenecektir. İlk olarak genel 

tanımlar verildi. Sırada da geniş döngülerin kazancı ve hafızasız sistemlerin geri 

beslemeleri tanımlanacak. Sonuç olaraksa bir pratik örnek verilecek. 

 

Doğrusal olan ve şekil 4.23’tede gösterildiği gibi bir çok uygulamada geri 

besleme ağı F ile gösterilir. Bu durumlarda  ve ’dır. 

 

Eşitlik 4.87 ve 4.88’de verilen ikinci ve üçüncü dereceden dönüşüm 

fonksiyonları sırasıyla  

 
şeklindedir. 

 

Doğrusal kazanç  tabiki doğrusal durumla aynı olacaktır. Temel 

amplifikatörün ikinci dereceden dönüşüm fonksiyonları  ile 

azaltılacaktır. Eğer buna rağmen doğrusal kazanç girişten büyükse bu defa sadece 

ile azaltılır. 

Benzer şekilde bu durum eşitlik 4.95’tende bulunabilir. 

 

4.8.3.1 Hafızasız sistemlerin basitleştirilmesi 
Hafızasız sistemler için eşitlik 4.93’den 4.95’e kadar olan denklemler 

sadeleştirilebilir. Buradan çekirdek dönüşümleri  
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Burada döngü kazançları çok fazladır ve  R tarafından 

azaltılır. 

 
Şimdi ise bu geri besleme distorsiyonlarının karşılaştırılması ilgi çekici 

olacaktır. Eşitlik 2.13 ve 2.14’ün yardımıyla H1,H2 ve H3 temel amplifikatörün  

harmonik distorsiyonları modellenir. 

 

 
 

 

Nitelik açıklaması : Temel amplifikatörün giriş-çıkış ilişkileri Şekil 4.24’te 

karakterize edilmiştir. Bu karakterize yapı üç parçadan oluşuyor gibi 

gözükmektedir. 
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Şekil 4.24 : Temel bir amplifikatörün dönüşüm karakteristiği 

 

Orijin etrafındaki kısım linear amplifikatör kazancını gösterir. Daha geniş 

sinyaller için a2 eğimi ve daha küçük sinyaller için a1 eğimi karakterize edilmiştir. 

Çok daha geniş sinyaller için ise bu eğim 0’ a eşittir.  

 

Geri besleme ağının kazancı; 

 
şeklindedir.  

Kapalı bir döngünün dönüşümü şekil 4.25’de gözükmektedir. 

 
 

4.8.4 Geri beslemeli Ağlarda Doğrusal olmama  
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Şimdi burada doğrusal amplifikatörlerde ve doğrusal olmayan geri 

beslemelerdeki, geri besleme konfigirasyonlarına bakacağız. Geri besleme 

ağındaki doğrusal olmama efekti  döngü kazancıyla azalmaz. 

 

4.8.5 Doğrusal olmayan geri besleme ağının etkisi 
 

Birçok geri besleme konfigirasyonu geri besleme devresi basit 

amplifikatörün giriş ve çıkışlarına göre olur.  

 
Şekil 4.28 Doğrusal olmayan geri besleme konfigirasyonu 

 

Bölüm 3.2’de daha önceden açıklanan güç serilerinin gösterimindeki i şu 

şekilde yazılabilir. 
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Şekil 4.29: Şekil 4.28’deki geri besleme devresinin karşılığı 

 

İki doğrusal olmayan geribesleme 4.120’deki eşitliğinden de gözükeceği gibi 

girşi ve çıkış voltajına karşılık gelir.   

Denklem (4,120)’den eğer çapraz terimler ve sonraki formüller önceki 

bölümlerde elde edilen yeni temel amplifikatör ve yeni geribildirim ağı kullanılarak 

yapılabilir olmayacaktır. Ancak, çapraz terimler olarak bu geribildirim formülleri 

önceki bölümlerde artık zaman geribildirim şebeke tarafından temel amplifikatörün 

yükleme önemli olduğu kesin demektir diğer şartları gibi büyük olabilir. 

 

4.8.6 Doğrusal geri besleme 
konfigirasyonlarında amplifikatör operatörü 

Tekrar burada şekil 1.2’deki amplifikatörü Şekil 4,30’de  daha kolayının 

yeniden çizilmesi olduğunu düşünün.Amplifikatörün RL ile çıkışı yüklenir. Bu 

operasyonel yükselteç doğrusal olmayan olduğu varsayılmıştır ve sonlu bir bant 
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genişliğine sahiptir. Şimdi tam bir amplifikatör için ikinci ve üçüncü harmonik 

distorsiyon elde edecektir. 

 
Şekil 4.30 Ters bir Amplifikatör 

  

Kullanıma hazır amplifikatörün modeli : Önce kullanıma hazır amplifikatör için  

basitleştirilmiş bir modeli kuralım. Bu amplifikatörün bir tersini Şekil 4,31’de verilen 

katlı kuvvetlendirici olduğu varsayılmıştır. Frekans davranışı OPAMP sadece 

baskın kutup için dikkate alınır. OPAMP ve kutup çok düşük frekanslarda olup ilk 

aşamasının çıkışındaki kondansatör Cc tarafından belirlenir. İlk aşamadaki Av10 ile 

bir diferansiyel amplifikatör olarak modellenebilir.. İkinci aşamada bir direnç RLint 

yüklü bir ortak kaynak kuvvetlendirici kadar edilerek modellendi. İkinci aşamada da 

bir çıkış 1 bir gerilim kazancı ile bir tampon verilir. 

 

OPAMP ve kutup dikkate İlk aşamada amplifikatör frekansa bağlı olarak alınır. Bu 

şekilde, hangi iç düğüm 1 için girişten gerilim kazancı olan ilk aşamada kazanç, şu 

şekilde verilir. 
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Bu örneği dikkate alırsak sadece nonlinear drenaj transistöründe Mx akımı 
nonlinear olur. Bu şimdiki M1, yani gm tarafından, ikinci ve üçüncü dereceden 
açıklanan nonlinear katsayıları K2gm ve K3gm olur. 

 
 
İlk etapta Nonlinearite gözardı edilmektedir. Bu gerçeği iki yükseltec blok 

ikinci aşamasının nonlinearit bir çağlayan bağlantılı olarak ikinci ve üçüncü için 
egemen olduğu kaskad bağlantı sırasına Volterra çekirdek tarafından (Bölüm 4,6) 
verilmiştir. Bu da Bölüm 8’de bir Miller harmoniği ayrıntılı bir hesaplama ile 
kullanılan bir amplifikatör için telafi edilir.  
 
 
 Şimdi frekans alanında amplifikatörün doğrusal olmayan AC davranışını 
analiz edersek. Doğrusallaştırılmış kullanılan amplifikatörün toplam kazancı iki etap 
Kazanç ürünüdür: 
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Bu bölümün geri kalanı için bu sinyalin frekans devresi uygulandığı 

varsayılır |pd|/(2π) ama hala kazancı çok daha düşük olarak verilir OPAMP, bant 

genişliği ürünü oldukça üzerinde bir frekans vardır: 

 
Dolayısıyla denklem (4,123) yeniden; 

 
Son olarak, OPAMP ve giriş empedansı çıkış empedansı ise sonsuz sıfır 

olduğu varsayılmıştır. 

 
Temel amplifikatör ve geri besleme ağının Volterra çekirdekleri : İlk 

olarak şekil 4.30’daki devrenin temel amplifikatör ağları için tanımlayalım. Bunun 

için giriş voltajının ilk gösterimini şekil 4.32’de görebilirsiniz. Giriş burada iin(t) 

değeri 

 

 
olur. 
 
Sonrada R2 direnci 2 bölüm olarak y paremetreleri ile tanımlanır. 
 
Şekil 4,33’de gösterilen akımlar bu iki port üzerinden gerilimi için iki bağlantı 

noktasının girişi ile ilgili aşağıdaki gibi olur:  
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R2 direncinin iki portlu gösteriminin sonucu; 

 
Şekil 4.33: iki portlu devrenin genel gösterimi 
 

 
 
Şekil 4.34:  şekil 4.32’deki R2 direncinin iki portlu gösterimi 
 
 
Şekil 4.34’ü şu şekilde kolayca tanımlayabiliriz. 
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Bu iki temsilin temel amplifikatörü ve Şekil 4.35’te gözükmektedir. Temel 

amplifikatörü gösterilen dirençler R operasyonel amplifikatörünü içererek 

tanımlanabilir. 

 

 
Şekil 4.35 : Şekil 4.32’deki amplifikatör temel amplifikatör ve geri besleme 

ağı olarak iki parçaya bölünmüştür. 

 
Şekil 4.36 : Amplifikatörün son blok-diyagramı 

İkinci bölümdeki nonlinearite G operatörü ile gösterilmektedir. 
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Şekil 4,36; blok şeması ve işlem olarak yorumlanabilir : Wnich girişi bir 

akım, bir gerilim içine ilk blok tarafından dönüştürülmüş olmasıdır. 

  
Şekil 4.31’de çekirdek dönüşümleri G şu şekilde bulunabilir. Sonuçta G1(s1), 

G2(s1,s2) ve G3(s1,s2,s3); 

 
Ikinci aşamada kapasitif etkileri ele alınmamıştır, ve argüman s1, s2 ve s3 

ihmal edilmiştir. Buradaki G1 faktörü ölçüsüzdür, G2 ve G3 ise sırasıyla V- ve V-2 

boyutlarındadır.  

 

Artık şekil 4.36’daki temel amplifikatörün çekirdek dönüşümünün(H 

operatörüyle gösterilen) ne olacağı konusunda yeterli bilgiye sahibiz.Temel 

amplifikatöre uygulana eşitlik 4.68 ve 4.70’den elde edilen  H1(s1), H2(s1,s2) ve 

H3(s1,s2,s3) ifadeleri (R1R2/(R1+R2)) transfer fonksiyonlarının iki doğrusal bloğunu 

verir ve şu şekilde bulunur: 
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H1(s1), H2(s1,s2) ve H3(s1,s2,s3) sırasıyla 2, ,
A A
Ω ΩΩ  şeklindedir. 

 
Şekil 4.36’dan geri beslemeli devrenin çekirdek dönüşümlerinde biri  
 

 
 
olur ve geri beslemeli devre linearliğinden 
 

 
bulunur. 
 
Görüldüğü gibi frekans arttıkça kazancın azaltma faktörü artar. Diğer bir 

deyişle, kazanç frekans arttıkça daha az olduğunu bastırılır. Ancak, kendisi de 

azalır. 

 

 
Tüm devrenin ve harmonic distorsiyonun Volterra çekirdekleri: Tüm 

sistemin yani Q’nun çekirdek dönüşümünün ne olduğuna karar verebilecek tüm 

paremetleri şuan biliyoruz tek ihtiyacımız olan şey ise; eşitlik 4.33 ve eşitlik 

4.34’ten bildiğimiz amplifikatörün harmonik distorsiyonlarının frekans 

argümanlarının belirlenmesidir. Yani başka bir şekilde Q2(s1,s1) ve Q3(s1,s1,s1)’ 

Q2(s1,s2) ve Q3(s1,s2,s3) yerine kullanabiliriz de denebilir. Tüm geri besleme 

sisteminin birinci dereceden dönüşüm fonksiyonunu  eşitlik 4.93, eşitlik 4.136 ve 

4.144 kullanarak bulabiliriz: 

 
İkinci dereceden çekirdek dönüşümü de eşitlik 4.94 eşitlik 4.137 ve eşitlik 

4.144 kullanılarak bulunabilir. 
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Q2(s1,s1)’nin  bölümü / AΩ  olur. Ve Q2(s1s1) frekans ile  orantılı olarak 

artmaktadır. Şonuç olarak 3.dereceden çekirdek dönüşümü Q3(s1,s1,s1) eşitlik 

4.95, 4.137, 4.138 ve 4.144’ten  

 
  Q3(s1,s1,s1)’nin bölümü 2/ AΩ  olur. Q2(s1,s1)’de görüldüğü gibi Q3(s1,s1,s1) 

doğrusal olarak frekansla artar.  

 

 

 

 Eşitlik 4.33 ve 4.34’ten ikinci ve üçüncü harmonil distorsiyonlar bulunabiir.  

 
Giriş sinyali Vin(t)=R1iin(t) şeklinde ise;  

 
ve Vin ve Iin genlikleri arasındaki ilişki şu şekildedir: 

 
İkinci harmoniğin distorsiyonu ise; 
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şeklindedir. 

faktörü için bu ifade; 

 
şeklinde yazılabilir  

ve buradan da birkaç cebirsel işlemden sonra 

 
elde edilir. 

  Bu ikinci harmonik distorsiyonu da frekansla orantılı olarak artar.  

pratik bir örnek için eşitlik 4.156’ya denktir. Düşük 

frekanslardaki tüm amplifikatörün voltaj kazancı -20’dir.  Bundan da bant genişliği 

kazancı 1MHz ve sinyal frekansı 10kHz olur. Opamp devresinin ikinci bölüm 

kazancı gmRLint için 50 olur. Burada tablo 3.2’den  doğrusal olmayan normalize 

K’2gm ; 

 
şeklinde bulunur. 
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  VGS-VT için 0.2V K’2gm=2.5V-1 olarak bulunur. Giriş genliği 100mV olur. Bu 

çıkış genliğinin 2V olacağı anlamına gelir. Eşitlik 4.156 kullanılarak bulunan ikinci 

harmonik distorsiyonu 0.021 yada %2.1 olarak bulunabilir.  

  Şimdi sırada üçüncü harmonik distorsiyon var. Eşitlik 4.34 kullanılarak biz 

şunu bulacağız; 

 
Eşitlik 4.145 ve 4.149 kullanılarak ikinci harmonik distorsiyonu 

 
bulunur. 

  HD2’de gözüktüğü şekilde HD3’de frekansla orantılı olarak artmaktadır. 

Eşitlik 4.159’dan denk olarak elde edilecek değerler HD3 için 2.5x10-5  ‘dir. 
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