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BÖLÜM 1 
 

AĞ TEMELLERİ 
 

İnternette bilgisayarlar, mesajlarını paket adı verilen birimlere bölerek 

birbirleriyle haberleşirler. İnternette her bir bilgisayarda diğer bir bilgisayara bağlanmak 

için kablo olmadığından, paketler kaynaktan gidilecek yere yönlendirici adı verilen ara 

bilgisayarlar ile taşınırlar. Herbir paket kaynağın ve gidilecek yerin adresini içerir böylece 

yönlendiriciler paketin nereye iletileceğini ve kimin gönderdiğini bilirler. Paketler 

yönlendiricilere işlem yapılmasından ve gönderilmesinden daha hızlı ulaştığı zaman, 

yönlendirici paketleri bir sırada saklar. Ağ sıkışması, bu sıradaki paketlerin sürekli olan bir 

periyodda artması sonucunda oluşur. Sıranın daha uzun olması, sıranın sonundaki paketin 

transfer edilmesi için daha çok beklemesi demektir, bundan dolayı gecikmeleri artar. Ağ 

sıkışması sıranın tamamen dolmasına sebep olur. Bu şekilde sıra dolduğunda, gelen 

paketler düşürülür ve asla gidecekleri  yere ulaşamazlar. TCP gibi iletişimi kontrol eden 

protokoller, bu paket kayıplarını dikkate almalıdırlar. 

 

İnternetteki web sayfalarının transferi bir bağlantı-tabanlı (connection-oriented) 

servisdir. Bu paket anahtarlamalı (packet-switched) bir ağ üzerinde çalışır, transfer 

protokolü olarak TCP kullanır. Bu bölümün kalanında, paket-anahtarlamalı bir ağı, 

bağlantı tabanlı iletişimi ve TCP tanımlanacaktır. 

 

1.1 Devre Anahtarlama ve Paket Anahtarlama 
 

Bir iletişim ağı devre anahtarlamalı (circuit-switching) yada paket anahtarlamalı 

(packet-switching) tabanlı olabilir. Devre anahtarlamalı da, veri transferinin 

başlayabilmesi için kullanılacak tüm ağın rezerve edilmiş olması gerekmektedir. Buna bir 

örnek olarak telefon sistemlerini verebiliriz. Ağda, sınırlı bant genişliği kapasitesi vardır, 

aynı anda sabit sayıda bağlantıyı destekleyebilir. (ağın  bant genişliğine ve herbir bağlantı 

tarafından ayrılan bant genişliği miktarına bağlıdır). Eğer bant genişliği ayrılmışsa ve 
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bağlantı kurulmuşsa ama veri transferi başlamamışsa, başka bir bağlantı boş da bulunan 

bant genişliğini kullanamaz çünkü o başka bir bağlantı tarafından ayrılmıştır. Şekil 1.1 de 

bir devre-anahtarlamalının örneği gösterilmiştir. A bilgisayarı, C bilgisayarı için bir 

ayırma yapmıştır ve B bilgisayarıda, D bilgisayarı için bir ayırma yapmıştır. Bu devrelerin 

her ikiside aynı yönlendirici boyunca gitmektedir. Yol her ikisi tarafından da 

kullanılmaktadır. Devre anahtarlamalı ağlarda, çoklama (Multiplexing) ile bant genişliği 

zaman bölümlerine (time-division multiple access) yada frekans bölünmelerine 

(frequency-division multiple access) ayrılır. Eğer bir bağlantı boşsa ve ayırma etkin iken, 

boş bant genişliğini başka kullanan bağlantı yoksa çoklama söz konusu değildir. Bunlara 

ilaveten, kaynaklar önce ayrılmıştır ve trafiğin bant genişliği kapasitesini aşmayacağı 

garanti edilmiştir, sıra yoktur ve dolayısıyla sıkışmada yoktur. 

 

 
Şekil 1.1. Devre – Anahtarlamalı örnek. 

 

Paket anahtarlama, internette kullanılan data transfer metodudur. Paket 

anahtarlamada ayırma yapılmaz ama verinin dağıtılacağının da garantisi yoktur. Ağ datayı 

hızlı bir şekilde transfer etmek için ”en iyi gücünü(best-effort)” ortaya koyar. Datanın 

transfer edilebilmesi için paket adı verilen küçük parçalara bölünmesi gerekir. Herbir 

paket kaynağın ve gidilecek yerin adresini içerir. Ağdaki ara bilgisayarlar yönlendiriciler 

olarak adlandırılır ve  ağda paketlerin kaynaktan ulaşılmak istenen yere iletilmesi için 

kullanılırlar. Ayırma olmadığından, birçok kaynaktan paketler araya girebilir. Bu işlem 

istatiksel çoklama olarak adlandırılır ve istenen sayıdaki bilgisayarın bilgilerini aynı anda 

aralarında değiş-tokuş etmesine izin verir. Paket anahtarlamalı bir örnek şekil 1.2 de 

gösterilmiştir. Şekil 1.1 deki gibi A bilgisayarı C bilgisayarına veri gönderiyor ve B 
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bilgisayarıda D bilgisayarına veri gönderiyor. A’dan giden datalar siyah paketler olarak 

B’den giden datalarda beyaz paketler olarak gösterilmiştir. Paket anahtarlamalı ağ ile, 

çeşitli bağlantılardaki paketler ağın bant genişliği kapasitesini paylaşırlar. Devre 

anahtarlamalı ağların aksine, paketler diğer bağlantılardan boşta kalana kapasiteyi 

kullanabilirler. Bunun yanında varışların oranı yönlendiricilerdeki gönderme kapasitesini 

arttırırlar, bir sıra oluşturulur, sıkışma ve paket kayıpları olabilir. 

 

 
Şekil 1.2. Paket – Anahtarlamalı  örnek. 

 

Bağlantısız sistemlerde, el sıkışma yoktur. Bilgi göndericiden alıcıya doğruluğu 

onaylanmadan gönderilir, buda daha çok mektubun yazılıp posta kutusuna  koyulması 

işlemine benzer. Bağlantısız sistemler posta servisi gibidir, gönderici ne zaman alındığını 

veya alınıp alınmadığını bilemez. 

 

İnternet bağlantısız servisleri UDP ile bağlantıya yönelik servisleride TCP ile 

sağlar. TCP; email, veri dosyaları ve web sayfaları vb. içeren birçok uygulamayı transfer 

için kullanılır. Araştırmam doğrudan TCP ile ilgili olduğundan bağlatıya yönelik servisler 

üzerinde odaklanacağım. 

 

1.2 TCP Taşıması 
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TCP internetin bağlantıya yönelik taşıma servisidir. İnternet paket-anahtarlamalı 

olduğundan, TCP bilgiyi gönderilebilmesi için TCP parçalarına (segmentlerine) böler, 

bunlar daha sonra kaynak ve gidilecek yerin adreslerinide içeren paketlerde paketlenir. 

TCP kaynakdan gidilecek yere güvenli bir şekilde dağıtılacağına söz verir.  Güvenli bir 

dağıtımından emin olmak için tüm parçalar alıcı tarafından doğrulanır (ACK gönderilir). 

Göndericiden gönderilen her parça bir sıra numarası (sequence number) ile gönderilir. 

TCP deki ACK’ler, sıra numarasına sahip tüm byte’ların toplu olarak alındığını  bildirmek 

amacıyla kullanılır (ACK, alıcı tarafından göndericiden beklenen sıra numarasını tanıtır). 

Bir TCP göndericisi, bu ACK’leri kabaca, gönderilen fakat daha henüz doğrulanmayan 

dataların kayıtlarını tutmak ve gönderilecek pencereyi (send window) hesaplamak için 

kullanır. Dağıtımı sağlamak amacıyla, TCP alıcısı alınan her parçayı, hatalı sırada alınan 

sıra numaralarındaki boşluklar dolduruluncaya kadar tamponda (buffer) tutmak 

zorundadır.  

 

TCP tarafından gönderilen mesajlar keyfi büyüklerde gönderilir, ama alıcının bu 

parçaları tutmak için kullandığı tampon sınırlıdır.  Herbir ACK’da, alıcının tamponunda 

ne kadar boş yer kaldığının bilgisi vardır. Bu alıcının ilan edilen penceresi’dir. Alınan bu 

pencere güncelleninceye kadar, gönderici burada bildirilen miktardan daha büyük verinin 

gönderilmesine izin vermez (alıcının penceresinde hiç oda yoksa, yeni data gönderilmez).  

Bu TCP akış kontrolünü (flow control) nasıl sağlamaktadır ? Akış kontrolünün amacı 

göndericinin, alıcının tampon kapasitesinin üzerinde veri göndermemesinden emin 

olmasıdır. Akış kontrolü için gönderilen pencere, alıcının penceresinden geniş 

olmamalıdır. Eğer bir TCP göndericisi 6 parçaya bölünmüş bir mesaj göndermek istiyor 

ve alıcının pencere büyüklüğü 3 parçaysa, gönderici ilk başta 1-3 arasındaki parçaları 

gönderir, şekil 1.3. parça 1 için ACK geri döndüğü zaman, 4. parçayı gönderir. Bu işlem 6 

parça da gönderilinceye kadar devam eder. 
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Şekil 1.3. TCP Gönderilecek pencere. 

 

Gönderilen  pencerenin büyüklüğü gönderici tarafından transfer edilen dataların 

oranını yürütür. Bunu göstermek için önceki örnek farklı bir biçimde şekil 1.4 de 

gösterilmiştir. Paralel çizgiler gönderici ve alıcıyı belirtirler, zaman ilerlemesi şeklin 

altında gösterilir. Burada da alıcının penceresi 3 parçadır. Bir parçanın gönderilmesi ve 

ACK’inin alınması arasındaki zaman gidiş - dönüş zamanı (round-trip time, RTT) olarak 

adlandırılır. 3 parçalık başlangıç penceresi ile, TCP ilk 3 parçayı arka arkaya gönderir. Bu 

parçalar için ACK’ler yakın boşluklarla alınırlar. RTT1 parça 1 in RTT’sini belirtir, ve 

RTT2 parça 4 ün RTT’sini belirtir. Bu transferin gönderme oranı RTT başına 3 parçadır, 

bundan dolayı her RTT’de ortalama 3 parça gönderilir. Daha genelleştirirsek, TCP 

göndericisinin oranı, 

 

    Oran = w / RTT                                                  (1.1) 
 

 
şeklinde belirtilmiştir. Eşitlik (1.1)’de kullanılan  w pencere büyüklüğüdür. 

 

Şekil 1.5’de bir paketin düşmesi ve geri kurtarılmasının örneği gösterilmiştir. Bu 

örnek şekil 1.4 gibi 3 parçalık pencereyle başlar. Parça 2 ağ tarafından düşürülür. Parça 

3’ün alındısı, alıcının parça 2 isteği için aynı ACK göndermesine sebep olur. Parça 2‘yi 
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isteyen ilk ACK alındığında parça 2 geri döner (parça 1’in alındısı) ve TCP göndericisi bir 

zamanlayıcı ayarlar. Bu örnek de, zamanlayıcının süresi yeni bir veri isteğinden önce biter 

(parça 2 den başka bişey), böylece gönderici parça 2’nin kaybolduğunu varsayar. Pencere 

ölçüsü 3 parça olduğundan, TCP parça 2’den başlayarak 3 parça gönderir. Bu gösterim 

“Go-Back-N” olarak adlandırılan hata kurtarma yaklaşımıdır. Parça 2 alındığında, parça 

5’i isteyen ACK gönderilir. 

 

 
Şekil 1.4. TCP Gönderme Oranı. 

 

Geciken ACK’ler : Esas olarak, TCP alıcıları bir parça alındığı zaman, hemen bir ACK 

gönderirler. İki yönlü trafik ile, geciken ACK’lar, göndericiye geri gönderilecek veri 

oluncaya kadar beklemesine izin verir ve alıcı ACK’i veri parçalarının sırtında 

göndericiye geri iletir. Eğer ACK’ler çok fazla gecikirse, gönderici parçanın 

kaybolmasından şüphelenir. Bu gecikmeyi sınırlandırmak için, geciken ACK’ler bir 

zamanlayıcı çalıştırır, genellikle 200 ms’ye ayarlanır. Zamanlayıcı dolmadan, eğer 

alıcıdan, göndericiye veri parçası gönderilmemişse (ACK üzerinde), doğrulanmamış veri 

vardır, hemen bir ACK gönderilir. Ayrıca göze çarpan bir ACK eşiği vardır, genellikle 2 

parçaya ayarlanır, böylece, eğer iki doğrulanmamış parça varsa hemen bir ACK 

gönderilir. 
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Şekil 1.5. TCP düşme ve geri kurtarma. 
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BÖLÜM 2 
 

TCP SIKIŞIKLIK KONTROLÜ 
 

Günlük yaşantımızda hepimiz belli zamanlarda sıkışma yaşarız. Sıkışma sadece 

bilgisayar ağlarında değildir. Örneğin araba ile otoyola girişte, alışveriş için faturamızı 

ödemekde vb. durumlarda sıkışma yaşayabiliriz. Bu örneklerdeki esas kural aynıdır. 

Kapıdan geçmek isteyen varlıkların sayısı kapının kapasitesinden büyüktür. Bilgisayar 

ağlarında ise bir yönlendiriciye gelen paketlerin sayısının, yönlendiricinin işlem 

yapabileceği sayıdan büyük olmasıdır, yada çıkışın girişden yavaş olmasıdır. Genellikle 

yönlendiriciler, gelen paketlerin işlem yapılıncaya kadar saklandığı bir tampon ile 

sağlanır. Bir yönlendiricideki sıkışmada, tampon taşması yaşanır, sonuç olarak da paket 

kaybolur. 

 

2.1 Ağ Sıkışıklığı 
 

İnterneti kullanan herkes gecikmeleri farketmiştir. Web trafiği için gecikmeler, 

web sayfalarının yavaş yüklenmesine sebep olurlar. Ses ve video’ların oynatılmasında, 

gecikmeler boşluklara yada oynatılması sırasında düzensizliklere neden olur. Bu 

gecikmeler genellikle, yönlendiricilerde, gelen oran giden hat hızını aşarsa, belli bir zaman 

periyodunda oluşan ağ sıkışklığı (network congestion) dan kaynaklanır.  

 

Ağ sıkışıklığı, internetin tasarlandığı paket-anahtarlamanın bir yan etkisidir. 

Paket anahtarlama, farklı kaynaklardan verinin aynı yol boyunca iletilmesine izin verir. 

İnternette yönlendiriciler, paketlerin anlık alım oranı dış-sınır iletim oranından büyükse, 

paketleri tampona almak için sıralar kullanırlar. Bu sıralar first-in/first-out (FIFO) yani ilk 

giren ilk çıkar prensibine göre çalışır ve sınırlı bir kapasiteleri vardır. Bir paketi 

yönlendiricilerde tampona alındığında, ilk önce daha önceden sıralanan paketlerin 

iletilmesini beklemek zorundadır. Sıranın uzaması yani sırada daha fazla paket olması, 
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daha uzun sıra gecikmesi demektir. Sıra sınırlı olduğundan, gelen paketler eğer dolu bir 

sıraya ulaşıyorlarsa, sıra tarafından düşürülürler. İnternetteki çoğu sıra “drop-tail” dır. 

Yani, eğer sıra doluysa gelen paketler sadece düşürülür. 

 

Ağ sıkışıklığı, yönlendiricilerdeki sonlu sıraların ölçülerinin artmasına, er geç bu 

sıraların dolmasına ve gelen paketlerin düşmesine sebep olurlar. Sıradaki gecikmeler, 

verinin göndericiden alıcıya dağıtılmasını yavaşça azaltır, uygulamanın performansı 

kullanıcının farkedebileceği kadar düşer. Paket düşmeleri, TCP akışları için özellikle 

problemdir. TCP sıralı ve güvenli bir dağıtım için söz verir, böylece bir TCP paketi 

düşürülürse, düşen paket alıcıya ulaşıncaya kadar sonradan gelen paketler alıcıya 

dağıtılmaz. Bir paket düştüğü zaman, TCP düşmeyi tespit etmek ve kaybolan paketi 

yeniden göndermek zorundadır. Bunların her ikiside zaman alır. TCP’nin güvenilirlik 

özelliğinden dolayı, kayıp paketler son kullanıcı için gecikmeyi arttırır. 

 

Kullanıcının amacı paketlerini mümkün olduğunca çabuk bir şekilde 

göndermektir. Bunu yapmak için bağlantı yolunun kendi tarafı ve karşı tarafı arasındaki 

en yavaş parçasına göre göndermelidir. TCP protokolü bir iletim penceresi (transmission 

window) ile çalışır. Bu önceki gönderilen paketin ACK’i alınmadan gönderilebilecek 

paketlerin sayısıdır. Alıcı periyodik olarak kendi ilan ettiği pencereyi (advertised window) 

gönderir . Bu alabileceği paketlerin sayısıdır. Sıkışmadan otomatik olarak kaçınmak için  

iletim penceresinin seçilmesi ve düzenlenmesi gerekmektedir. 

 

Son nokta gibi, yönlendiriciler de sıkışıklıktan kaçınmanın önemli parçasıdır, 

genellikle yönlendiricilerin, gelen paketlerin tutulduğu sınırlı tampon kapasiteleri vardır 

ve bu bellek dolduğunda sıkışma oluşur. Tampon dolduğu zaman, yükü azaltmanın tek 

yolu paketlerin atılmasıdır. Paketlerin atılması sıkışıklığı düşürmek için bir yoldur fakat 

yeterli değildir. Paketlerin atılması devamlı sıkışıklık için etkili değildir ve dahası TCP 

protokolü sıkışıklığa ek olarak kaybolan paketleri yeniden gönderir. Bundan dolayı 

yönlendiriciler, herhangi bir sıkışıklık durumunda son noktalara sinyal iletmelidir, böylece 

iletim penceresi düşer. Bu sistemlerin gerçekleştirilmesinde, bazı görüntüler de dikkate 

alınmalıdır. Birincisi patlama ve devamlı sıkışıklık arasında ayrım yapmaktır. Diğer 

görüntü ise kaynakların  dağıtımında dürüst olmaktır. Sonuç olarak eş zamanlılıktan 
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kaçınmak için, eğer yönlendirici bir zamanda aniden fazla paketi işaretlerse, tüm 

kaynakların oranı ve ağın performansı aynı anda dramatik bir şekilde düşer. Bu bölümde, 

ayrıca atılan paketlerin çeşitli ve daha etkili yollarla nasıl atıldığını göreceğiz. 

 

Bir TCP bağlantısının akışı, paketlerin korunmuş bir şekilde iletilmesi ilkesine 

dayanır.  Sıkışıklık kontrolü, bu kuralı bozan yerleri bulmaya ve düzeltmeye çalışır. 

Paketlerin korunmasında yaşanan başarısızlıkların sadece üç nedeni olabilir. 

 

1. Bağlantı dengeli değildir.  

2. Gönderici, henüz eski paket ayrılmadan yeni paketi göndermiş olabilir. 

3. Bağlantı yolu boyunca kullanılan kaynak limitlerinden, denge sağlanmamış 

olabilir. 

 

2.2 TCP’nin Gelişim Tarihi 
 

TCP, ilk tanımlandığı 1974’den beri birçok değişim geçirmiştir. Şekil 2.1 

TCP’deki anlamlı gelişmelerin zaman çizgisini göstermektedir. 

 
Şekil 2.1.  TCP’nin gelişimi 

TCP sıkışıklık kontrolünün gelişimi için yönetim problemi 1980’lerin ortasında 

sıkışıklık çökmeleri (congestion collapse) ile ortaya çıkmıştır. Sıkışıklık çökmeleri yeni 

veri alınamadığı ve kayıp dataların yeniden iletimi ile ağın çok yüklenmesi durumunu 

tanımlar. TCP, bir paket gönderildiği zaman bir zamanlayıcı ayarlayarak kayıp parçaları 

tespit eder. Eğer paket alındığına dair ACK alınmadan önce zamanlayıcının süresi dolarsa, 
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paketin kaybolduğu varsayılır ve bu sıra numarasından başlayarak tüm paketler yeniden 

iletilirler (Go-Back-N). Bu sıkışıklık çökmesinden önce, TCP’de sadece akış kontrolü 

gerçekleştirilmişti. Ağ da sıkışma oluştuğunda ne yapılabileceği ile ilgili hiç birşey yoktu. 

Sıkışıklık çökmelerine cevap olarak, TCP için sıkışıklık kontrolü (congestion control) 

algoritması geliştirildi. Sıra taştığı zaman oluşan paket kaybındaki temel düşünce, 

sıkışıklığın işaretidir. Paket kayıpları tespit edildiği zaman, göndericiler, gönderme 

oranlarını düşürmelidirler. 

 

2.3 TCP Tahoe 
 
 

Sıkışıklık kontrolü için ilk olarak TCP Tahoe geliştirilmiştir ve esas TCP’den 

farklı olarak birçok değişiklik içermektedir. Yavaş başlama (slow-start) fazı, sıkışıklıkdan 

kaçınma (congestion avoidance) fazı ve hızlı tekrar iletim (fast retransmit) fazlarını 

içermektedir. 

 

2.3.1 Yavaş Başlama 

 

 

TCP, paketlerin muhafaza edilmesi düşüncesini takip eder. Bir paket ağı terk 

edinceye kadar yeni bir paket gönderilmez (ACK geri dönmeden). TCP Thaoe 

tanıtılmadan önce, başlangıç dışında paketlerin korunmasına uyulurdu. Başlangıçda, yeni 

parça göndermek için doğrulanmış bir paket yoktur, bundan dolayı gönderici dolu bir 

pencerenin değerini bir kere gönderir. Gönderici buna rağmen, ağın bir seferde ne kadar 

veri taşıyacağını bilemez,  bundan dolayı sıklıkla olan patlamalar paketlerin 

yönlendiricilerde düşmesine izin verir. 

 

Paket gönderen gönderici, paketlerin muhafaza edilmesi özelliğine bakmak  ve  

ağa yeni bir paket göndermek  için bir saat olarak ACK’leri kullanır. Bundan dolayı alıcı, 

paketlerin ağ üzerindeki alınmasından daha hızlı olmayacak şekilde ACK’ler oluşturur. 

Bu protokolün kendi kendine saatli denetimidir (Self - clocking) [1]. 
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Kendi kendine saat denetimli sistemler, otomatik olarak bant genişliği ve 

gecikme çeşitlerini ayarlarlar ve geniş dinamik bir aralığa sahiptirler. (800 mbps Cray 

kanallardan, 1200 bps paket radyo linkine kadar) [1]. 

 

Saati (clock) başlatmak için bir “yavaş-başlama” algoritması geliştirilmiştir. Bu 

algoritmada iletilen datanın miktarı yavaş yavaş artmaktadır [1]. 

 

• Herbir bağlantı durumuna, bir sıkışıklık penceresi (cwnd) eklenir. 

• Başladığında yada kayıp sonrası yeniden başladığında cwnd bire ayarlanır. 

• Herbir ACK’de cwnd bir paket arttırılır. 

• Gönderirken, alıcının bildirilen en küçük pencere ve cwnd’sini gönderilir. 

 

 
Şekil 2.2. Pencere akış kontrolü “kendi kendine saatli denetim” 

 

Başlangıçda (ve paket düştükten sonra), paketlerin mümkün olduğunca hızlı bir 

şekilde gönderilmesi yerine, ACK’in alıcıdan iki kat oranında geri dönmesi için, yavaş 

başlama, ağa giren paketlerin oranını sınırlar. TCP Tahoe sıkışıklık penceresi (congestion 

window , cwnd) tanıtır. İlk başta bir pakete ayarlanır. Gönderilen pencere cwnd’nin en 

küçüğüne ve alıcının duyuru penceresine (advertised window) ayarlanır. Her ACK 

alındığında, cwnd bir paket arttırılır. Gönderilen pencerenin büyüklüğü, göndericinin 

gönderme oranını kontrol eder.  (oran = w / RTT). Bu gönderme oranını arttırmak için, 

gönderici, cwnd penceresini arttırarak, gönderilen pencerenin değerini arttırabilir. Sıkışma 
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penceresinin ilk penceresindeki ilk paket doğrulanmadan önce, ilave dataların ağa transfer 

olmasına izin verir. Sıkışma penceresi sadece, alıcıdan datanın başarılı bir biçimde 

dağıtıldığını belirten ACK alındığında arttırabilir. Gönderici, ağ sıkışması tespit edilinceye 

kadar cwnd’yi arttırır. 

 

Şekil 2.3 yavaş başlama işleminin bir örneğini göstermektedir. x ekseni zaman ve 

y eksenide sıra numarasıdır. Kutular paketin iletimini göstermektedir ve sıra numaraları 

ile etiketlenmişlerdir. Örneği tutmak için kutuların 1 byte’lık paketler olduğu varsayılır. 

Kutuların üstündeki numaralar, paketler gönderildiği zaman cwnd’nin değerini belirtir. 

Noktalar gelen ACK’yı belirtir ve  en yüksek sıra numarasının y ekseni boyunca 

merkezlenir. ACK’lar aynı zamanda x ekseni boyunca, alınan ACK tarafından serbest 

bırakılan paketlerle merkezlenir.  ACK’nın altındaki sayılar ACK’da taşınan sıra 

numarasını belirtir (sonraki paketin sıra numarası alıcı tarafından beklenir), ACK 

numarasına tekabül eder.  Örneğin ilk nokta paket 1 in doğrulanmasıdır ve alıcı paket 2’yi 

almayı bekler. Bundan dolayı nokta y ekseninde konumlanmıştır, noktanın altındaki 2 ile 

paket 1 merkezlidir, bu da 2 nin ACK numarasının ACK ile taşındığını gösterir. Şekil 

1.8’de cwnd’nin ilk değeri 2 dir, bundan dolayı 0. zamanda paket 1 ve 2 gönderilir. Paket 

1 için ACK alındığında, cwnd 3’e arttırılır ve paket 3 ve 4 göndeilir – paket 3 gönderilir 

çünkü paket 1 doğrulanmıştır, paket 4 de sıkışma penceresini doldurmak için gönderilir. 

Bundan dolayı,  yavaş başlama sırasında,  herbir ACK alındığında,  iki yeni paket 

gönderilir. 

 

Yavaş başlamada, göndericinin sıkışma penceresi her bir ACK alındığında bir 

parça arttırılır. Eğer bir ACK, iki parçanın alındısını doğrularsa (geciken ACK da), 

ACK’nın alındısı tarafından iki parça bırakılır. Bir gönderici, bir alıcı ile iletişim kurar ve 

geciken ack’ları kullanmazsa, şekil 2.3 deki gibi herbir ACK alındığı zaman iki parça 

gönderilir (bir tanesi doğrulanan parça için ve bir taneside artan cwnd için gönderilir). Bir 

gönderici, bir alıcı ile iletişim kurar ve geciken ACK’ları kullanırsa, her bir ACK 

alındığında üç parça gönderir (iki tanesi doğrulanan ACK için bir taneside artan cwnd 

için). Bu şekil 2.4’de gösterilmiştir. 
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Şekil 2.3. Yavaş başlama 

 

 
Şekil 2.4. Geciken ack’larla yavaş başlama 

2.4 Gidiş – Dönüş Zamanı (RTT) 
 

Yavaş başlama ile paket kaybetmediğimizi varsayarsak, belli bir zamanda sistem 

bir iletim penceresi tarafından belirtilen dengeye ulaşır. Bu noktada, ACK alınmazsa, 

sistemde bir başarısızlık olur, gönderici paketi yeniden gönderir. İletim ve ACK’in 

alınması arasındaki zamanı göz önüne almamız gerekir ki bu zaman gidiş dönüş 

zamanıdır (RTT) . RTT’nin temelinde, iletim ve ACK arasında geçen zamanın kaydını 

tutabilmek için gönderici bir zamanlayıcı tanımlar (retransmission timeout, RTO). Eğer 
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zaman, tanımlanan zamanı geçerse paket yeniden gönderilir. Zamanlayıcı için iyi bir 

zaman seçmek çok önemlidir, aksi takdirde eğer seçilen değer çok düşükse, yeniden 

gönderme çok fazla olur, ama paketler kaybolmaz. Eğer çok büyük olursa, bağlantının hızı 

düşer. TCP de, M RTT’nin tahmini değeridir ve paketin son RTT değeri ve önceki M 

değeri ile birlikte hesaplanır. 

 

yeniM = a*eskiM+(1-a)*RTT                                      (2.1) 

 

Eşitlik (2.1)’de belirtilen a için 0.9 iyi bir değerdir. RTO seçilmiş olmalıdır, örneğin  β = 

2 için β*M değeri. Bir RTO içerisinde bir ACK alınmadığı zaman, paketin kaybedildiği 

düşünülür. Eşik değere ulaşıldığında sıkışıklıkdan kaçınma başlar, pencere üstel olarak 

artma yerine doğrusal olarak artar [2].  

 

2.5 Sıkışıklıkdan Kaçınma 

 
 

Paketlerin kaybolmasının iki nedeni vardır, iletişim sırasında zarar görmeleri 

veya iletim yolunda bulunan bazı yerlerdeki tampon kapasitesinin yetersizliğinden oluşan 

ağ sıkışıklarıdır. Ağ yolunda paketlerin zarara uğramasından dolayı olan kayıplar çok 

azdır (<< %1), paketlerin kaybolmasının en büyük nedeni ağdaki sıkışıklıktır [1]. 

 

Sıkışıklıktan kaçınma stratijisinin iki bileşeni vardır; ağ sıkışmanın olduğu son 

noktaya sinyali iletmek zorundadır ve son noktalarında sinyal alındığı zaman kullanımı 

azaltacağı, sinyal alınmadığı zaman kullanımı arttıracağı bir politikası olmalıdır [1]. 

 

Eğer paketler her zaman sıkışmadan dolayı kayboluyorsa ve zaman aşımıda 

genellikle paketlerin bu şekilde kaybolmasından oluşuyorsa, “sıkışık ağ” sinyali için de iyi 

bir adayımız vardır. Özellikle özel bir değişiklik (paket başlığına yeni bir bit eklenmeden) 

olmadan, bu sinyal tüm varolan ağlar tarafından otomatik olarak dağıtılır [1]. 
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Diğer bir sıkışıklıkdan kaçınma stratejisi, son düğüm hareketidir. Doğrudan 

birinci-derece zaman-serisi  ağ modeli tarafından izlenir. Bu model, ağ yükünün, bazı 

uygun uzunlukların sınırlandırılmış aralıkları üzerindeki ortalama sıra uzunluğu ile 

ölçüldüğünü söyler. i aralığındaki yük Li ise, Li örnek alınan zamanla karşılaştırıldığında 

değiştini söyleyen, sıkışık olmayan bir ağ modellenir [1]. 

 

     Li =N                                                (2.2) 

 
N sabittir. Eğer ağda sıkışıklık söz konusu olursa, bu sıfırıncı dereceden model çalışmaz. 

Ortalama sıra uzunluğu iki terimin toplamı olur, yukarıdaki N esas gecikme ve yeni ağın  

ortalama gelişi olarak kabul edilir, yeni terimde son zaman aralığından ayrılan ve bu 

trafiğin etkisinin bir bölümü olarak kabul edilir. Örneğin irkilmiş yeni iletim, 

 

Li =N  + γLi-1                                                (2.3) 
 

şeklinde tanımlanır [1]. Bunlar L(t) nin Taylor serisi açılımdaki ilk iki terimidir. 

 

Ağ sıkıştığı zaman, γ genişlemek ve sıra uzunluğu üstel olarak artmaya 

başlamalıdır. Eğer trafik kaynakları en az sıranın artması kadar çabuk büyürse sistem 

kararlı olabilir. Bir kaynak yükü pencere – tabanlı bir protokolde, pencere büyüklüğünün  

(W) ayarlanması ile kontrol eder [1]. Sıkışıklık durumunda, 

 

Wi = dWi-1         (d < 1)                                            (2.4)   

 

şeklinde tanımlanır.           

 

Eğer sıkışma yoksa, γ sıfıra yakın olmak zorundadır ve yük hemen hemen 

sabittir. Ağ , talep fazla olduğunda, kaybolan bir paket yoluyla, bu durumu bildirir. Eğer 

bağlantı, paylaşımdan daha az kullanıyorsa  hiç bir şey söylemez. Bundan dolayı bir 

bağlantı o anda ki limiti bulmak için bant genişliğinden daha fazla  faydalanmalıdır. 

Örneğin, aynı ağ yolunu başka birisi ile paylaşıyorsunuz ve bir noktada birleştiniz ve 
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varolan bant genişliği yarı yarıya paylaştırıldı. Daha sonra karşı taraftaki kişi bağlantısını 

kapattı. Eğer siz pencere büyüklüğünüzü arttırmazsanız bant genişliğinin %50’ si boş yere 

kullanılmamış olacaktır. Burada nasıl bir arttırma politikası izlenmelidir ? 

 

En iyi arttırma politikası, pencere ölçüsünde küçük, sabit değişiklikler yapılarak 

bulunmuştur. Sıkışıklık yokken , 

 

Wi = Wi-1 + u         (u<< Wmax)                                    (2.5) 

 

şeklinde tanımlanır ve Wmax hattın bant genişliğidir.  

 

Önceki, sıkışma kontrol algoritması sesi müthişdir. Ama bu değildir. Yavaş 

başlama gibi, kodun üç satırıdr. 

 

• Herhangi bir zaman aşımında şimdiki cwnd yarıya düşürülür (çarpımsal düşüş). 

• Yeni bir veri için gelen her bir ACK’de cwnd, 1/cwnd kadar arttırılır (katkılı artış). 

• Gönderirken, alıcının bildirdiği en küçük pencere ve cwnd gönderilir. 

 

Bu algoritma sadece sıkışıklıkdan kaçınma içindir. Daha önceden tanımlanan 

yavaş başlamayı içermez. Paket kaybolmasında, sinyal sıkışmasında yeniden başlatılır. Bu 

yukarıdakilere ek olarak kesinlikle yavaş başlamaya ihtiyaç vardır. Çünkü sıkışıklıkdan 

kaçınma ve yavaş başlama bir zaman aşımı ile tetiklenir ve her ikiside  sıkışıklık 

penceresini (cwnd) etkiler. Bunlar sıklıkla karıştırılır. Aslında tamamen farklı ve bağımsız 

algoritmalardır [1]. 

 

TCP’deki sıkışıklık kontrolünün amacı ağ sıkışmasına tepki verirken varolan 

tüm kaynakların kullanılmasını sağlamaktır (örneğin yönlendiricilerin sıralarındaki 

tampon bellek boşlukları). Varolan bant genişliğinin miktarı bilinen bir miktar değildir, 

akışların girip ayrılmasına göre değişir. TCP, varolan ek bant genişliklerini, sıkışma tespit 

edilinceye kadar gönderme oranını düzenli olarak arttırmak için araştırır. Ağda oluşan 

sıkışmanın tek bildirisi paketlerin kaybedilmesidir. Düşürülen paketler dışardan 
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bilinemez, yönlendirici gönderir, böylece gönderici paketin kaybolduğu ve hangi paketin 

kaybolduğunun sonucunu çıkarır [3]. 

 

Sıkışmadan kaçınmada, doğrusal bir şekilde artan iletim oranı ek bant 

genişliklerini sıkı bir şekilde arar. TCP Tahoe’de, gönderici yavaş başlama ile başlar ve 

sonradan sıkışıklıkdan kaçınmaya geçiş yapar. TCP Tahoe, ssthresh isimli, yavaş 

başlamadan sıkışıklıkdan kaçınmaya geçiş için eşik değerini belirten bir değişken ekler. 

cwnd >ssthresh olduğunda, yavaş başlama sonlanır ve sıkışıklıkdan kaçınma başlar. 

Buradaki düşüncede her bir RTT’de, cwnd büyüklüğündeki bir pencere ile TCP 

göndericisi en fazla cwnd alır, bu sonuçlardan bir sıkışma penceresi, her RTT de en fazla 

bir paket artar. Bu  doğrusal artış, her RTT’de iki katı artan yavaş başlama ile çelişir [3]. 

 

Şekil 2.5 sıkışıklıkdan kaçınma işlemini göstermektedir. Tekrar, cwnd’ nin ilk 

değeri 2 dir, bundan dolayı iki paket iletişimi başlatmak için gönderilir. Burada 

ssthresh‘ın ilk değeri de 2’dir. cwnd >= ssthresh olduğundan, sıkışıklıkdan kaçınma 

etkindir. Paket 1 için ACK alındığı zaman, cwnd , 2.5 olur (2+1/2) ve paket 1 ağı 

terkettiğinden bir paket gönderilir. paket 2 için ACK alındığında, cwnd 2.9 olur    (2,5 + 1 

/ 2.5). Tekrar, ağda göze çarpan sadece  iki paket tutmak için, bir paket gönderilir. paket 3 

için ACK alındığı zaman, cwnd 3’den büyük olur, böylece iki paket gönderilebilir [3]. 

 
Şekil 2.5. Sıkışıklıktan kaçınma 
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Şekil 2.5’la karşılaştırıldığında, şekil 2.6, geciken ACK kullanıldığındaki 

sıkışıklıktan kaçınma operasyonunu gösterir [3].   

 
Şekil 2.6. Geciken ack’lar ile sıkışıklıkdan kaçınma. 

2.5.1 Yönlendiricilerde Sıkışıklıkdan Kaçınma 
 

Son nokta gibi, yönlendiriciler de sıkışıklıktan kaçınmanın önemli bir parçasıdır. 

Genellikle yönlendiricilerin, gelen paketlerin tutulduğu sınırlı tampon kapasiteleri vardır 

ve bu tampon dolduğu zaman sıkışma oluşur. Tampon dolduğu zaman, yükü azaltmak için 

tek yol paketlerin atılmasıdır. Paketlerin atılması sıkışıklığı düşürmek için bir yoldur fakat 

yeterli değildir. Paketlerin atılması devamlı sıkışıklık için etkili değildir ve dahası TCP 

protokolü sıkışıklığa ek olarak kaybolan paketleri yeniden gönderir. Bundan dolayı 

yönlendiriciler, herhangi bir sıkışıklık durumunda son noktalara sinyal iletmelidir, böylece 

iletim penceresi düşer. Bu sistemlerin gerçekleştirilmesinde, bazı görüntüler hesap içine 

alınmalıdır. Birincisi patlama ve devamlı sıkışıklık arasında ayrım yapmaktır. Diğer 

görüntü ise kaynakların  dağıtımında dürüst olmaktır. Sonuç olarak eş zamanlılıktan 

kaçınmak için eğer yönlendirici bir zamanda aniden fazla paketi işaretlerse, tüm 

kaynakların oranı ve ağın performansı aynı anda dramatik bir şekilde düşer.  

2.5.1.1 Rastgele Erken Düşürme 
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Bu sistemin temeli, sıranın uzunluğu belli bir eşik değerini geçtiği zaman, 

paketlerin rastgele atılması temeline dayanır. Bu algoritma patlamış trafikleri ayıramaz. 

Basitçe görüldüğü gibi, bu algoritma eş zamanlılığa da liderlik eder, çünkü, aniden sıra 

uzunluğu eşik değerine ulaştığı zaman herhangi bir dikkat gözetilmeksizin tüm paketler 

düşürülür. Eş zamanlılıkdan kaçınmak için paketlerin atılması işlemi kademeli olarak, az 

ile başlanıp sonra arttırarak yapılmalıdır.  

 

2.5.1.2 Rastgele Erken Tespit Etme (Random Early Detection - RED) 

 
Sıkışmadan korunmak için en ilginç algoritmadır. Paketlerin düşürülmesi 

yolunda erken düşürmeye benzer, eşik değerinin üzerine çıkıldığı zaman biraz daha 

karmaşıklaşır [2]. 

 

Tanımlanan bazı değişkenler; avg, sıranın ortalama uzunluğu, minimum ve 

maksimum eşik değerleri ve pa, paketlerin düşürülme olasılığıdır. Bu algoritma şu şekilde 

çalışır [4], 

 

• Her gelen paket için avg hesaplanır. 

• pa hesaplanır 

• minimum < avg < maksimum ise paket pa olasılığı ile atılır. 

• Eğer avg maksimum dan büyükse paket atılır 

 

Bazı görüntüler bu algoritma ile ilgilidir. Ortalama uzunluk, önceki değerlerin 

formülde hesaplanması ile bulunur [4]. 

   

yeniAvg= (1-w)eskiAvg+w*q                                           (2.7) 

 

q, o andaki sıra ölçüsü, w de bir ağırlık faktörüdür. w’nın seçimi önemlidir çünkü eğer çok 

küçük olursa avg de değişimler çok yavaş olur ve sıkışmalar tespit edilemez. Eğer çok 

büyük olursa avg de değişimler çok hızlı olur ve patlayan trafikler (bursty traffic) sıkışma 

gibi düşünülür.  Ortalama sıra uzunluğunun kullanılmasıyla, patlayan trafiklerin sıkışma 
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gibi tespit edilmesi önlenmiş olur. avg nin hesaplanmasında periyod da hesaba katılır, bu 

periyod da sıra boş olduğu zaman belli sayıda bir paketin iletildiği varsayılır [2]. 

 

pa sabit bir değer değildir, avg nin temel hesabında ve daha önceki pa değerleri 

kullanılır ve sıra uzunluğu arttıkça yavaş yavaş artar. Bu eş zamanlama dan kaçınmak için 

kullanışlı bir yöntemdir, sıkışıklığın düştüğü kadar uzar, az sayıda paket atılır; sıkışıklık 

arttığı zaman paketlerin düşme olasılığı daha fazladır. Sonuç olarak sıkışıklık çok 

yüksekse tüm paketler atılır [2].  

 

Minimum ve maksimum seçimi tampon uzunluğuna ve elbetteki gelen trafiğin 

türüne bağlıdır. Minimum ve maksimum arasındaki fark eş zamanlılıktan kaçınmak için 

yeterince büyük seçilmelidir. Çünkü, eğer çok küçükse sistem tüm paketleri, sıkışma 

yoğun olmadan, erkenden atmaya başlar. Kural olarak önerilen  maksimum = 2*minimum 

dır [4]. Ayrıca minimum yeterince geniş seçilmelidir ki bant genişliğinin kullanılması 

maksimuma çıkarılabilsin [2]. 

 

Sonunda, dikkat edersek RED dahili olarak yüksek yüklü bağlantıları ve düşük 

yüklü bağlantıları ayırmaktadır, aslında belli bir olasılıkla paketlerin atılmasıyla ağır yüklü 

bağlantılar için paketleri atanların sayısı hafif yüklü bağlantılarınkinden daha geniştir. Bu 

da kaynakları daha doğru ayırmamız konusunda yol gösterir [2]. 

 

2.6 Hızlı Tekrar İletim 

 

 

Parçaların kaybolduğu yada yeniden gönderilmesini gerektiren durumların tespiti 

için TCP bir zamanlayıcı kullanır. Bu tekrar iletim zaman aşımı (RTO) zamanlayıcısı her 

zaman bir veri paketi gönderilecek diye ayarlanmıştır (eğer zamanlayıcı henüz 

ayarlanmamışsa). Yeni bir data için ACK alındığında RTO baştan başlar. Eğer yeni bir 

kayıt için beklenen ACK’den önce RTO’nun süresi dolarsa, en eski doğrulanmamış 

paketin kaybolduğu ve yeniden iletileceği düşünülür. RTO zamanlayıcısı RTT’nin 3-4 

katına ayarlanır, böylece geciken paketler gereksiz yeniden iletimlere sebep olmazlar. 
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TCP Tahoe’de sıkışıklıkdan kaçınma eki ile RTO’nun süresi dolarsa, 1/2 cwnd, sstresh  da 

saklanır ve cwnd 1 parçaya ayarlanır. Bu noktada cwnd < sstresh, bu bir zaman aşımı ile 

yavaş başlamaya dönmektir [3]. 

 

TCP Tahoe, paket kayıplarını tespit edebilmek için daha hızlı bir  yol ekler ve bu 

hızlı tekrar iletim (fast retransmit) olarak adlandırılır. TCP Tahoe’den önce, parça 

kayıplarını tespit etmenin tek yolu RTO’nun süresinin dolmasıydı. Bir alıcı sıralı olmayan 

bir paket görür görmez, alınan son sıralı paket için bir ACK gönderir. Gönderici, sadece 

paketlerin yeniden sıralanacağından çok kayıp paket olduğunu ifade etmek için aynı 

ACK’nın üç tane tekrarlanan alındısını kullanır [3]. 

 

Şekil 2.7 TCP Tahoe hızlı tekrar iletimi göstermektedir. Bu şekil, şekil 2.3’ün 

devamıdır ve paket 9’un kaybolduğundaki durumu göstermektedir. Paket 7 için ACK geri 

döndüğünde, paket 15 ve 16 gönderilir ve cwnd 9’a çıkar. Paket 8 için ACK alınırsa, cwnd  

10’a çıkar ve paket 17 ve 18 gönderilir. Ama paket 9 ‘un ACK sı alınmazsa, paket 10’un 

ACK’sı paket 8 in tekrarlanan ACK’sıdır. Sıkışma penceresi, tekrarlanan ACK’lar 

alınınca, değişmez. Tekrarlanan ACK’lar geri dönmeye devam eder. Üçüncü tekrarlanan 

alındığında, hızlı tekrar iletim girilir. Paket 9 kaybolduğu varsayılır ve hemen gönderilir. 

Bu noktada, cwnd , 1 pakete düşürülür. Tekrarlanan ACK’lar alınmaya devam eder ama 

gönderilen data paketi olmadığından cwnd de değişiklik yapılmaz. Kaybolan paketin 

başarılı bir şekilde alındığına dair ACK gelirse, cwnd 2’ye çıkarılır  ve paket 19 ve 20 

gönderilir. Bu noktadan yavaş başlama normal olarak başlar [3]. 

 

Hızlı  tekrar iletimi kullanmanın avantajı, kaybolan parçanın tespiti için ihtiyaç 

duyulan zamanı düşürmesidir. Hızlı tekrar iletim olmadan, kayıpları tespit etmek için 

RTO’nun süresinin dolması gerekmektedir. Akışlar için geniş sıkışma pencerelerine sahip 

olmak, üç tane tekrarlanan ACK’nın tetiklemesiyle, çoklu ACK’ların bir RTT içerisinde 

tipik olarak alınmasıdır. Kayıp bir parçanın tespit edilmesi bir RTT’den daha az sürededir. 

Bu yolda, hızlı tekrar iletim, veri gönderilemediği sırada uzun zaman aşımlarından 

kaçınmaya izin verir [3]. 
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2.7 AIMD 

 

TCP Tahoe’nin TCP’ye en büyük katkısı AIMD (additive Increase / 

Multiplecative  Decrease) pencere düzeltme algoritmasıdır.  Eklemeli artış  w(t+1) = α + 

w(t) olarak tanımlanır. w(t), bir RTT zaman biriminde t zamanında parçalarda o andaki 

sıkışma penceresinin ölçüsüdür. Sıkışıklıkdan kaçınmada,   α = 1 dir. Her ACK 

alındığında, sıkışma penceresi 1 / w(t) kadar arttırılır,  sonuçda bir RTT’de en fazla bir 

paket arttırabilir. Çarpımsal düşüş ise w(t+1) = βw(t) olarak tanımlanır. TCP Tahoe’de, β 

= 0.5’dir, ssthresh de geri iletim sırasında  ½ cwnd ye ayarlanır [3]. 

 

 
Şekil 2.7. TCP Tahoe hızlı tekrar iletim 

 

2.8 TCP Reno 

 
1990 yılında Van Jacobsen TCP Tahoe’ye hızlı düzeltme (fast recovery) adı 

verilen yeni bir özellik ekledi. Hızlı düzeltme ile TCP Tahoe, TCP Reno olarak bilinir. Bu 

aslında Internet üzerinde TCP’nin standardı olarak kabul edilir [44]. 
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2.8.1 Hızlı Düzeltme (Fast Recovery) 

 

 

TCP Tahoe’de olduğu gibi, eğer parçanın tekrarlanan ACK’i üç kez alındıysa,  o 

parçanın kaybolduğu varsayılır. Parçanın kaybolduğu üç kez tekrarlanan ACK yoluyla 

tespit edilirse,  yavaş başlama yerine hızlı düzeltme (fast recovery)  devreye girer. Hızlı 

düzeltmede, ssthresh, 1/2 cwnd ye ayarlanır (AIMD algoritmasına göre),  ve cwnd ise,  

ssthresh + 3  olur. Her bir  ek tekrarlı ACK alındığında, cwnd, yavaş başlamadaki gibi  bir 

parça arttırılır. Yeni parçalar cwnd izin verdiği sürece gönderilebilir. Geri iletilen parça 

için ACK alındığında, cwnd tekrar ssthresh’e ayarlanır. Kayıp parça bir kez 

doğrulandığında, TCP hızlı düzeltmeden ayrılır ve sıkışmadan kaçınmaya (congestion 

avoidance) geri döner. Eğer cwnd önceden genişse, cwnd yarıya bölünür ve cwnd 1 

parçaya düşürülmek yerine sıkışıklıkdan kaçınmaya geçilir ve yavaş başlamaya geri 

dönülür, göndericiye varolan bant genişliğini sıkıca araştırması için izin verir ve cwnd nin 

önceki değerine yaklaşma şansı  ağ sıralarındaki taşmanın şansı, yavaş başlama 

kullanmakdan daha azdır. 

 

Şekil 2.8 hızlı tekrar iletim ve hızlı düzeltmeleri göstermektedir.  Bu durum şekil 

2.7’ye çok benzemektedir. Parça 9 kaybolur, hızlı tekrar iletim de belirtildiği gibi yeniden 

iletilir. Hızlı düzeltmeye göre, cwnd  1’e düşürülmüyor ama 8’e değiştiriliyor (cwnd 

yarısına yani 5’e düşer ama sonra herbir tekrarlı ACK alındığında , 3 arttırılır). Hızlı tekrar 

iletimden sonra iki yada daha fazla tekrarlı ACK alınırsa, bunların herbirisi için, cwnd 

arttırılır. Bundan dolayı cwnd 10’dur ama gönderilecek ilave parça yoktur, çünkü  TCP 

göndericisi, gönderilecek parçayı 10 olarak bilmektedir. Parça 15 alındığında, alındısı 

olarak ACK  gönderildiğinde, cwnd tekrar arttırılır. Bundan dolayı cwnd şimdi 11’dir, 

daha fazla parça göndermek için boş yer yoktur ve parça 19 bırakılır. Bu parça 9’un  geri 

iletilmesi doğrulanıncaya kadar devam eder. Bu olursa  cwnd 5’e geri döner (kayıp tespit 

edildiğinde sıkışma penceresinin yarısı) ve sıkışıklıkdan kaçınma girilir ve normal olarak 

işletilir.  
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Şekil 2.8. TCP Reno hızlı tekrar iletim ve hızlı düzeltme 

 

Yukarıdaki örnekte görüldüğü gibi, hızlı düzeltme ayrıca yavaş başlamadan, 

sıkışıklıkdan kaçınmaya bir geçis sağlar. Eğer bir gönderici yavaş başlamadaysa ve üç 

tekrarlı ACK ile kayıp parça tespit ederse, kayıp yerine koyulduktan sonra, sıkışmadan 

kaçınmaya girilir. TCP Tahoe’deki gibi, sıkışmadan kaçınma ayrıca  cwnd > ssthresh 

olduğunda girilir. Bir çok durumda, ssthresh’in ilk değeri geniş bir değere ayarlanmasına 

rağmen parça kaybı genellikle sadece sıkışıklıkdan kaçınmaya geçisi tetikler [45].  

 

TCP Reno, tek bir hızlı iletim ve hızlı düzeltme fazları boyunca sadece bir 

parçanın düzeltilmesi ile sınırlıdır. Aynı pencerede ek bir parça kaybı  parçalar yeniden 

iletilmeden önce RTO’nun zamanının dolmasını gerektirebilir. Bu istisna,  girilen hızlı 

düzeltme üzerinde cwnd 10 parçadan büyük olduğunda , göndericinin bir zaman aşımı 

tecrübesi olmadan düzeltmek için iki parçanın  kaybına izin verir. Hızlı düzeltme 

sırasında, gönderilmiş olan yeni parçalardan birisi  ilk hızlı düzeltme tamamlandıktan 

sonra  kaybolabilir ve üç tekrarlı ACK ile tespit edilmiş olabilir. Bu durumda  TCP Reno, 

yerine geçmede (succession) iki kez hızlı düzeltmenin girilmesiyle kayıp iki parçadan  

düzeltilebilir. Bu cwnd nin etkin bir şekilde iki RTO’da azaltılmasına sebep olur. 
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2.9 Seçici Alındı Bilgileri 

 
 

TCP yürütme standartlarına son eklenenlerden biri seçici alındı bilgileridir 

(SACK). SACK, kayıpları kurtarmak ve göndericiye, pencerede çok sayıda kayıpların 

olması durumunda kısımların düşürülmesinde yardımcı olmak içindir. SACK opsiyonu, 

son zamanlarda alınan verilerin bitişik bloklarının özelleştirilmesini yapan 4’e kadar 

çıkabilen (yada RFC 1323 zaman sayacı opsiyonu kullanılırsa 3) SACK blokları içerir. 

Her bir SACK bloğu alıcıların tuttuğu verinin dizisini sınırlandıran iki sıra numaradan 

oluşmaktadır. Alıcı ACK opsiyonuna SACK opsiyonunu ekleyebilir. O da SACK’i 

seçilebilir hale getiren göndericiye tekrar geri gönderir. SACK bloklarındaki bilgiyi 

kullanarak gönderici hangi kısımların kaybolduğunu ifade edebilir (kaybolan kısımlardan 

3’e kadarından bitişik olmayan blokları). SACK opsiyonu  belirli bir işleyiş sırasının 

dışındaki kısımlar alındıktan sonra oluşan ACK üzerinde gönderilir.  Bir SACK 

opsiyonuna 3 SACK bloğuna izin vermek, herbir SACK bloğunun en az 3 ACK içinde 

iletilmesini sağlar. Bu da ACK’ın yüzünde dinçliğin kaybolmasına sebep olur. SACK 

RFC sadece SACK opsiyonunu özelleştirir ve SACK opsiyonunda verilen bilginin 

gönderici tarafından nasıl kullanması gerektiğine karışmaz. Etkili veri kurtarma [42] için 

SACK opsiyonunu kullanarak bir metod sunulmuştur. Bu metod Fall ve Floyd [43] 

tarafından SACK’in yürütülmesi üzerine kuruludur.  SACK kurtarma algoritması sadece 3 

çift ACK alıcısından girilerek  sadece bir kere hızlı bir şekilde işletir. SACK kullanımı 

gönderdiği kısımdan tekrar ilettiğinde TCP’ye bildirileri çözmesi için izin verir. Bunu 

yapmak için SACK TCP’ye iki değişken ekler, skor tahtası (göndermesi gereken kısımlar) 

ve hat bant genişliği (kısımları göndereceği zaman). 

 

Skor tahtası, SACK tabanlı bilginin hangi kısımlarının kaybedildiğini kayıt eder. 

Skor tahtasındaki kısımlar en yüksek toplam değeri geçen bütün sıradaki numaralara 

sahiptir. Hızlı kurtarma boyunca, borudaki veri’nin büyük bir çoğunluğu onaylanmamıştır. 

Her seferinde kısım gönderilir, boru artırılır. Çift ACK, yeni bir verinin alındığını 

söyleyen SACK bloğu ile birlikte yerine ulaşır ulaşmaz borunun değeri azaltılır. cwnd – 

boru ≥ 1  olduğu durumda, gönderici hem tekrar ileti gönderir hemde yeni bir veri iletir. 

Göndericiye veri göndermesi için verildiği zaman, ilk önce skor tahtasına bakar ve 
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alıcıdaki boşlukların doldurulmasında gerekli olan kısımları gönderir. Gerekli olan 

kısımlar yoksa gönderici yeni veri iletimi yapar. Hızlı kurtarmanın başındaki 

onaylanmamış veriler onaylandığı zaman gönderici hızlı kurtarmayı bırakır [3]. 

 

2.10 TCP NewReno 

 

 

Hızlı kurtarma süresince, TCP Reno zaman aşımına uğramadan sadece kaybolan 

bir kısımdan kurtarma işlemi yapar. Çift ACK tekrar oluştuğu sürece, gönderici ağ’a yeni 

kısımlar gönderir fakat hızlı kurtarma kaybolan kısım için ACK alınana kadar olmaz.  

Sadece yeniden ileti herbir kurtarma periyodu boyunca gönderilir. RTO süre ölçerin 

süresinin dolmasıyla çok sayıda yeni ileti tetiklenmiş olur. TCP NewReno, göndericinin 

bir kısım ACK [46,47] alındıktan sonra hızlı kurtarmaya devam ettiği yerde, non-SACK-

enabled TCP Reno olarak değişir. Bir kısım ACK alındı bilgileri, kısımlar kaybolmadan 

tespit edilir. Bir kısım ACK alındısı ile, gönderici alıcının beklediği diğer bir kısmın 

kaybolduğunu ifade eder. TCP NewReno  tek bir hızlı kurtarma boyunca göndericinin 

birden fazla kısmı göndermesine izin verir. Fakat sadece bir kayıp kısım her bir RTT 

tarafından yeniden iletilebilir. 

 

 Yakın zamanda yapılmış bir çalışma, TCP NewReno’nun Internet Web sunucuları 

[48] örneği için  en popüler TCP versiyonun olduğunu belirtmektedir. 

 

 
2.11 TCP Eşleştirmesi 
 

TCP Reno’daki ağın tıkanıklığında tek gösterge TCP’nin en sık uygulaması olan 

kısım kaybıdır. TCP host’larında kayıp kısımlar açıkca yönlendiriciler tarafından 

belirtilmezler. Fakat, kayıpları belirtmek için zaman aşımına ve çift alındı bilgisine 

güvenmelidir. TCP tıkanıklık kontrolündeki tek problem, kısım kaybı olduktan sonra 

gönderme oranını düşürmesidir. Araştırma mekanizması olan cwnd’yi veri kaybı 
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oluşuncaya kadar artırmakla, TCP ek bant aralığı ararken sıranın taşmasına sebep olabilir. 

Ek olarak, TCP’nin sıkışıklık sinyali çift koddur. Hem ACK döner ve TCP cwnd’yi artırır 

hemde kısım kaybı tespit edilir ve cwnd büyük ölçüde azaltılır. Böylece TCP tıkanıklık 

kontrolü veri kurtarma için kendi mekanizmasına bağlanır. İdeal sıkışıklık kontrol 

algoritması sıkışıklığı tespit edebilmelidir ve kısım kaybı olmadan reaksiyon vermelidir. 

 

Yönlendirici  tampon bellekleri taşmadan önce tıkanıklığı tespit etmek için iki 

ana yaklaşım vardır, uç uca metodu ve yönlendirici tabanlı mekanizmayı kullanmak. Aktif 

sıra yönetimi(AQM) gibi yönlendirici tabanlı mekanizmalar, drop-tail yönlendiriciler 

problemdir fikriyle ortaya çıkmıştır. Bu mekanizmalar paketler düşürülmeden önce 

sıkışıklık olduğunda yönlendiricilere değişiklik yaparlar ve böylece göndericileri uyarırlar. 

Uç uca yaklaşımlar drop-tail sıralama mekanizmasından daha çok TCP Reno’da değişiklik 

yapmak üzerine yoğunlaşmışlardır. Bu tür bir çok yaklaşım uç uca ölçümleri kullanıp ağ’ı 

görüntüleyerek TCP Reno’dan daha önce tıkanıklığı tespit etmeye ve reaksiyon vermeye 

çalışır (örneğin, kısım kaybolması olmadan önce). Teorik olarak sıkışık yönlendiriciler, 

sıkışıklık olduğu zaman sıkışıklığı anlamak için en iyi pozisyonda olduklarından, AQM en 

iyi performansı vermektedir.  Karmaşıklık içeren AQM metodları kullanmak ve ağda 

yönlendiricileri değiştirmeye ihtiyaç duymak sakıncalardır. Yaklaşımım yönlendirici 

tabanlı mekanizmalara performans kolaylığı sağlamaya çalışan uç uca metodlarına 

bakmaktır. 

 

Sıkışıklıkları erkenden tespit ederek ve kısım kayıplarından kaçınarak akışın tek-

yol iletim sayısı bilgisi TCP sıkışıklık kontrolünde kullanılabilir. Bağlantının ileri doğru 

aldığı yolda OTT göndericiden alıcıya bütün bağlantıları döndüren ve yayılma ve dizi 

gecikmesi olan bir zamandır. Diziler taşmadan önce yönlendiriciler de toplanırlar, artan 

OTT ile sonuçlanırlar. Bütün göndericiler OTT’lerdeki değişiklikleri doğrudan ölçerlerse 

ve OTT sıkışıklığın oluştuğunu belirttiğinde düşerse, tıkanıklık hafifleyebilir. 
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BÖLÜM 3 
 

AKTİF SIRA YÖNETİMİ 
 

 

Aktif sıra yönetimi (Active Queue Management - AQM), bir yönlendirici tabanlı 

sıkışma kontrol mekanizmasıdır, burada bir yönlendirici sıra uzunluğunu görüntüler ve 

paketlerin sıraya nasıl alınacağına karar verir. Geleneksel yönlendiriciler bir drop-tail 

politikası kullanırlar, bu mekanizmada eğer sıra dolu değilse paketler sıraya alınırlar. 

Bundan dolayı bir drop-tail yönlendirici sadece sıranın dolu olup olmadığına bakar. AQM 

yönlendiricileri, sıra dolmadan önce potansiyel olarak paketleri düşürür. Bu aksiyonlar, 

paketler düşürüldüğü zaman gönderme oranı azaltılan, TCP Reno gibi, ağ trafiğinin büyük 

kısmında kullanılan bir sıkışma kontrol algoritması ile yapılan temel varsayımlara dayanır. 

Birçok AQM algoritması nispeten daha küçük sırayı devam ettirmek için tasarlanır ama 

paketleri sıraya koymak için paketleri düşürmeden kısa patlamalara izin verir.  Sırayı 

küçük tutmak amacıyla “erkenden” sıklıkla birçok paket düşürülür, yani sıra dolmadan 

önce. Küçük bir sıra, paketlerin düşmeden daha küçük gecikmelerle sonuçlandırır [3].  

 

TCP’nin şimdiki versiyonları sıkışmanın göstergesi olarak kayıplara güvenir. 

Açıkca, eğer birisi kayıpların düşük seviyedeki kayıplarda ağı işletmek isterse, bu istenen 

bir durum değildir. Diğer taraftan, kayıplar sıkışmanın iyi bir göstergesidir ve az veya hiç 

sıkışma olmayacağına, sıkışma kontrol kararı için ağdan başka sinyallere ihtiyaç duyar. 

Son zamanlarda, ağdaki sıkışmanın yakın zamanda, kaynaklara erken bildirmek için kesin 

sıkışma bildirisi (Explicit Congestion Notification, ECN), önerilmiştir. ECN işaretlemesi, 

ağ hakkındaki böyle bilgileri kullanıcılara sağlamak için kullanılan bir mekanizmadır [8]. 

 

ECN işaretlerini sağlamak için, yönlendiriciler, ağın şimdiki durumu hakkındaki 

bilgiyi kullanıcılara taşıyan paketleri zekice işaretlemelidir. Böyle bilgileri taşımak için 
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yönlendiricilerde çalıştırılan algoritmalar Aktif Sıra Yönetimi (AQM) şemaları olarak 

adlandırılır. Bunlardan bazıları, 

 

• Drop Tail 

• RED 

• REM 

• BLUE 

• GREEN 

• PURPLE 

  

Genel olarak, AQM şemaları, kontrol akışları ile sıkışmayı kontrol eder. Sıkışma 

ölçülür ve ona göre yapılacaklar belirlenir. Sıkışmayı ölçmek için esas olarak iki yaklaşım 

vardır. 

 

1. Sıra Tabanlı 

2. Akış Tabanlı 

 

Sıra tabanlı AQM’lerin sıkışmaları sıra uzunluğu tarafından elde edilir. Bunun 

dezavantajı, kontrol mekanizmasının, sıra pozitif olduğu zaman, sıkışma olarak paketleri 

geciktirmesidir. Bu, gereksiz gecikme ve gecikme değişimlerine sebep olur. Diğer taraftan 

akış tabanlı AQM’ler, sıkışmaya karar verir ve  paketlerin alınma oranına göre 

yapılacakları belirler. Böyle şemalar için, ihmal etme ve tüm zıt çıkarımlar kontrol 

mekanizması için gereksizdir [6]. 

 

Bir aktif sıra yönetim mekanizmasının amacı, aşağıdaki gibi özetlenmiştir [7]. 

 

1. Yönlendiricilerde düşürülen paketlerin sayısını azaltmak : Ortalama sıra uzunluğu 

küçük tutulur, bundan dolayı patlamalar için yeterli alan ayrılır. 

2. Daha düşük etkileşim servisini destekler : Ortalama sıra uzunluğunun küçük 

tutulmasıyla, uçtan uca gecikmeler daha kısa olur. 
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3. Dışarda bırakma davranışından kaçınma : Düşük bant genişliği ve patlak akışlara 

karşı eğilimlerden kaçınmak. Tampon belleğe yeni gelen bir paketin hemen hemen 

her zaman yer bulabileceğini garanti etmektir. 

 

3.1 DROP-TAIL 

 

 

Yönlendiricilerdeki sıra uzunluğunu yönetmek için en bilindik ve geleneksel 

teknikdir. Bu teknikde her bir sıra için en fazla sıra uzunluğu (paket cinsinden) ayarlanır. 

Sıra en fazla uzunluğa ulaştığı zaman, sonra gelen paketleri reddeder yani düşürür, taki 

sıra uzunluğu düşünceye kadar. Çünkü, sıradaki bir paket iletilmiş olmalıdır. Bu teknik 

“Drop Tail” olarak bilinir, sıra dolu olduğu zaman son alınan paketlerin hemen hemen 

hepsi düşürülür. Bu metod internette uzun yıllar iyi bir şekilde kullanıldı, ama bu metodun 

iki önemli dezavantajı vardır [7]. 

 

1. Dışarda Bırakma : Bazı durumlarda, drop tail tek bir bağlantıya izin verir yada 

sıradaki yerleri diğer bağlantılardan korumak için bazı akışlar tekellerine alırlar. 

Bu “dışarda bırakma” olayı genellikle eşlemenin yada diğer zamanlama etkilerinin 

sonucudur. 

 

2. Dolu Sıralar : Drop tail disiplini, sıralara uzun zaman periyodu için dolu 

durumunda kalmasına izin verir, bundan dolayı sıkışma sinyali sadece sıra dolu 

olduğu zaman oluşur. Bu kararlı durum sıra uzunluğunu düşürmek için önemlidir 

ve bu sıra  yönetiminin en önemli amacıdır . 

 

Kısaca, drop tail etkin bir yönetim değildir. Ağdaki talepler arttığı zaman hatlar 

boyunca geçen verinin yönetilebilir miktarı daha uzun olamaz. Daha sonra ilk defa 

sıkışmayı kontrol etmek için “ Rastgele Erken Tespit” (Random Early Detection, RED) 

olarak bilinen gerçek yeni bir AQM algoritması geliştirildi.[8] 
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3.2 RED 
 

 

Drop  tail sıralarının üzerindeki TCP’nin sıkışıklık kontrol algoritması ile en 

büyük problemlerinden birisi, kaynakların iletim oranlarını, sadece sıra taşması yüzünden 

oluşan paket düşmesinin ardından düşürmedir. Yönlendiricideki paketin düşmesi ile 

bunun kaynaklarda tespit edilmesi arasında büyük bir zaman  geçtiğinden dolayı, ağın 

desteklemediği oranda devam eden iletim, bir çok paketin düşmesine neden olabilir. RED, 

henüz yeni başlayan sıkışmanın tespiti ve sıkışmanın uç noktalara bildirilmesiyle bu 

problemi yatıştırmıştır. Böylece sıradaki taşmalar oluşmadan, kaynakların iletim 

oranlarını düşürmelerine izin verir. 

 

RED algoritmasını ilk defa 1993 Ağustos’unda Van Jacobson ve Sally Floyed 

tanıtmışlardır [4,13]. RED, paket düşmelerini ve sıra gecikmelerini en aza indirmek 

amacıyla kaynakların toplu eşlemelerinden kaçınmak, yüksek hat kullanımını sağlamak ve 

patlamalı kaynaklara karşı olan ön yargıları silmek için tasarlanmışdır. 

 
Şekil 3.1. RED örneği [16] 
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Geniş sayıda TCP kaynağının aktif olduğu ve daralan kısımda kullanılan tampon 

kapasitesinin küçük olduğunda oluşan sıkışma senaryosu şekil 3.1 ‘de gösterilmiştir. 

Şeklin gösterdiği gibi, t = 1 anında TCP yükündeki yeterli değişimler, TCP kaynaklarının 

iletim oranının, hattın daralan kısmındaki  kapasiteyi aşmasına sebep olmuşlardır. t = 2 

anında kapasite ve yük arasındaki eşleşme daralan kısımda bir sıranın oluşmasına sebep 

olur. t = 3 anında ortalama sıra uzunluğu minth ‘ı aşar ve sıkışma kontrol 

mekanizmalarının tetiklenmesine sebep olurlar. Bu noktada, sıkışma bildirisi, sıra 

uzunluğuna ve işaretlenme olasılığı maxp ye bağlı olan oranlarda uç noktalara geri 

gönderilir. t = 4 anında TCP alıcıları ya paket kayıplarını tespit eder yada ECN biti 

ayarlanmış paketleri elde eder. Cevap olarak, aynı doğrulamayı ve varsa TCP tabanlı ECN 

sinyalini kaynaklara geri gönderir. t = 5 anında tekrarlanan doğrulamalar ve varsa ECN 

sinyalleri sıkışma sinyali için kaynaklara geri gönderilirler. t = 6 anında, kaynaklar 

sonunda sıkışmayı tespit eder ve iletim oranlarını düşürürler. Son olarak t = 7 anında, 

daralan kısımda önerilen yükde bir düşüş elde edilir. Toplu TCP kaynaklarının 

agresifliğine ve daralan kısımdaki tamponda mevcut olan boşluğun miktarına bağlı olarak, 

paket kayıplarının büyük miktarı ve varsa belirleyici ECN işaretlemesi oluşur. Böyle 

davranma sonuç olarak daralan hattın kullanım altında olmasını sağlar [16].  

 

Bu problemi çözmenin bir yoluda, RED yönlendiricilerinde geniş miktarda 

tampon kullanılmasıdır. Örneğin, RED’in iyi çalışması amacıyla, bir orta yönlendirici, iki 

katı miktarda bant genişliği gecikmesi olan tampon alanı gerektirmektedir. Bu yaklaşım, 

aslında, sayıları artan yönlendirici satıcıları tarafından alınmıştır. Maalesef, geniş bant 

genişliği gecikmesi olan ağ ürünlerinde  geniş miktarda tampon kullanımı, uçtan uca 

gecikme ve gecikme stresi ekler. Bu uygulamalar arasındaki çalışma yeteneğini şiddetli 

bir şekilde azaltır. Buna ek olarak, sınırlı hafıza kaynaklarına sahip hedeflendirilmiş 

yönlendiricilerin çokluğu, bu çözümü istenmeyen hale getirir [16]. 

 

Şekil 3.2’de ideal bir sıra yönetim algoritmasının nasıl çalıştığı gösterilmiştir. Bu 

şekilde, sıkışık yönlendiriciler, sıkışıklık bildirisini TCP’nin toplu iletim oranlarını tutan 

yada altında olan bir oranda dağıtır. RED bu ideal işletim noktasını başarabilirken, uygun 
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miktarda tampon bellek alanına sahip olduğu zaman ve doğru şekilde parametreleri 

ayarlandığında yapabilir [16].  

 

 
Şekil 3.2. İdeal senaryo [16] 

 

RED kapıları, üstel ağırlıklandırılmış taşıma ortalaması ile bir low-pass filtre 

kullanarak, ortalama sıra uzunluğunu hesaplar. Ortalama sıra uzunluğu en düşük ve en 

yüksek eşik değerleri ile karşılaştırılır [4]. Ortalama sıra uzunluğu en düşük eşik 

değerinden düşükse, hiç bir paket işaretlenmez. Ortalama sıra uzunluğu en büyük eşik 

değerinden büyükse, her alınan paket işaretlenir. Eğer işaretli paketler düşürülürse yada 

tüm kaynaklar işbirliği yaparsa, ortalama sıra uzunluğunun  en büyük eşik değerini ciddi 

bir şekilde aşmaması sağlanır [4]. 

 

Ortalama sıra uzunluğu en düşük ve en yüksek eşik değerleri arasındaysa, her 

alınan paket pa olasılığı ile işaretlenir. Buradaki pa , ortalama sıra uzunluğu avg nin bir 

fonksiyonudur. Paketin işaretlendiği her zaman, olasılık, belli bir bağlantıdan işaretlenen 

paketin kabaca bağlantının kapıdaki bant genişliğinin paylaşımına uygun olmasıdır. Genel 

RED algoritması aşağıda verilmiştir [4]. 

 

alınan herbir paket için 

 ortalama sıra uzunluğu avg’yi hesapla 

 eğer min_th<avg<max_th ise 

  pa olasılığını hesapla 
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  pa olasılığı ile: 

   alınan paketi işaretle 

 eğer max_th<avg 

alınan paketi işaretle 

 

RED, TCP ile etkileşir, kaynak oranının artmasıyla sıra uzunluğu büyür, daha 

fazla paket işaretlenir, kaynakların oranları düşürülür, devir tekrarlanır. AQM sıkışma 

ölçüsünün nasıl güncellendiğini belirtirken, TCP de kaynak oranlarının nasıl ayarlandığını 

belirtmektedir. RED için, sıkışma ölçüsü sıra uzunluğudur ve tampon işlemi tarafından 

otomatik olarak ayarlanır. Sonraki periyoddaki sıra uzunluğu, şimdiki sıra uzunluğu artı 

toplu giriş eksi çıkışdır [17]. 

 

bl(t+1)=[bl(t)+xl(t)-cl(t)]+                                             (3.1) 

 

[z]+ = max{z,0} dır. Burada bl(t) , t periyodu içerisindeki l sırasında toplu sıra 

uzunluğudur. xl(t) , t periyodu içerisindeki l sırasına toplu giriş oranıdır ve cl(t) , t periyodu 

içerisindeki çıkış oranıdır [17]. 

 

3.3 BLUE 
 

BLUE algoritması, RED’in problemlerinin bazılarını, sıkışma ölçü şemasının bir 

sıra ölçüsü ile beraber melez akış kontrol şemasının kullanımasıyla çözümler. Sıkışma 

bildirim oranını değiştirmek için akış ve sıra olaylarını kullanır. Bu oran iki faktör 

tarafından sağlanır, sıra sıkışmasından paket düşmesi ve hat kullanımı. BLUE 

algoritmasını RED’den ayıran anahtar farklılık, ortalama sıra uzunluğundan ziyade paket 

kayıplarının kullanılmasıdır [13]. 

 

BLUE paketleri işaretleme için tek bir olasılık sağlar, Pm. Eğer sıra bellek 

taşması yüzünden sürekli paketleri düşürüyorsa,  BLUE  Pm yi arttırır, bundan dolayı 

sıkışma bildirisini yada düşen paketleri geri bildirme oranı artar. Ters olarak, eğer sıra boş 

olursa yada hat kullanımda değilse, BLUE işaretleme oranını azaltır.  Bu BLUE’ya etkin 
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olarak geriye gönderdiği sıkışma bildirisi veya düşen paketler için gerekli doğru oranı 

bulmasını “öğretir” [16]. 

 

BLUE’nın tipik parametreleri d1,d2 ve donma zamanı dır. d1 , sıra taştığı zaman 

arttırılan Pm nin miktarını belirtir. d2, hat boş kaldığı zaman düşürülen Pm nin miktarını 

belirtir. Donma zamanı ise önemli bir parametredir ve  Pm nin iki başarılı güncellenmesi 

arasındaki en küçük aralığı belirtir. Bu değer tekrar güncellenmeden önce etkisini almak 

için işaretleme olasılığının değişmesine izin verir. Bu parametrelere dayanaran temel blue 

algoritması şu şekildedir [16]. 

 

Hattın boşta kalmasına bağlı olay 
Eğer((şimdi – son güncelleme) > donma zamanı) 

       Pm = Pm - d2; 

sonGüncelleme = şimdi; 

Paket düşmesine bağlı olay: 
Eğer((şimdi – son güncelleme) > donma zamanı) 

       Pm = Pm + d1; 

sonGüncelleme = şimdi; 

Burada BLUE ile ilgili bazı problemler vardır [13]. 

 

• BLUE, cevaplanmayan akışlar için adresleme fonksiyonu kullanır. Bu 

cevaplanmayan akışların sayısının çok büyük olmadığı varsayılır. Bunun doğru 

olduğunu biliriz fakat bu varsayımın doğru olmadığı durumlarda olabilir. 

• Cevaplanmayan akışların sayısı fazla olduğu zaman kutular kirlenebilir ve TCP 

akışları cevap olarak hatalı olabilir, sonuçda onları gereksizce cezalandırır. 

• Bunun olabilmesi için bir çözümde, düzenli zaman aralıklarında adresleme 

fonksiyonunu değiştirmektir. Bu bazı cevaplayan akışlara kirlenmemiş kutular için 

yol gösterir. 

• Diğer bir problem de, bir akış bir kere işaretlemişse, o daima kirletilmiştir. Eğer 

sonra akış kendi kendine engelliyorsa,  BLUE hala paket düşmesi nedeniyle 

gönderme oranlarını düşürmeye çalışır. 

 

3.4 REM 
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REM, basit ve kararlı biçimde hem yüksek kullanım hem de ihmal edilebilir 

kayıp ve gecikmeyi gerçekleştirmeyi amaçlar. Bunu başarmak için anahtar düşünce, 

sıkışma ölçüsünü, kayıp, sıra uzunluğu yada gecikme gibi performans ölçüsünden 

ayırmaktır. Sıkışma ölçüsü bant genişliği için talebi aşmayı belirtir ve kullanıcı sayısının 

kaydını tutmak zorundadır, performans ölçüsü  ise kullanıcı sayısından bağımsız olarak 

hedefleri etrafında kararlı tutulabilmesidir. 

 

REM aşağıdaki anahtar özelliklere sahiptir [17] . 

 

1. Oran eşleştirme temiz bellek : Tampon bellek temizken (küçük bir hedef etrafında 

kararlı sıralar), kullanıcı sayısını önemsemeden, kullanıcı oranlarını ağ kapasitesine 

eşleştirmeye çalışır. 

 

2. Ücretlerin Toplanması : Uçtan uca işaretleme (yada düşme) olasılığı, basit ve kesin 

bir tarzda, kullanıcının yolundaki tüm yönlendiricilerin üzerindeki toplanan hat 

ücretlerinin (sıkışma ölçüsü) toplamı tarafından dikkatle incelenir. 

 

‘Oran eşleştirme temiz bellek’ özelliği, alışıldık bilimin aksine, yüksek 

kullanımın ağ da geniş geciktirilmiş işlerin  tutulmasıyla başarılmadığını, ama kullanıcı 

için oranlarını ayarlayarak doğru geri besleme ile başarılabilmesini sağlar. REM’in ilk 

düşüncesi, hattı paylaşan kullanıcının sayısını önemsemeden, hem giriş oranı hat 

kapasitesi etrafında kararlıdır, hemde sıra küçük hedef etrafında kararlıdır. Herbir sıra 

çıkışı, sıkışma ölçüsü olarak REM’in devam ettirdiği ve ‘ücret’ olarak adlandırılan bir 

değişken gerçekleştirir. Bu değişken sonraki alt bölümde de açıklanacağı gibi  işaretleme 

olasılığını elde etmek için kullanılır. Ücret, oran eşlemesine (yani giriş oranı ve hat 

kapasitesi arasındaki fark) ve sıra eşleşmesine (yani sıra uzunluğu ve hedef arasındaki 

fark)  periyodik olarak ya da eş zamanlı olmadan güncellenir. Eğer bu eşleşmeyenlerin 

ağırlıklandırılmış toplamı pozitifse, ücret arttırılır aksi takdirde düşürülür. Giriş oranı hat 

kapasitesini geçerse yada  temizlenmiş olmak için gecikmiş işler varsa ağırlıklandırılmış 

toplam pozitifdir, aksi takdirde negatifdir. Kaynakların sayısının artmasıyla, orandaki ve 

sıra büyümesindeki uygunsuzluk ücreti arttırır ve bundan dolayı  işaretleme olasılığıda 

artar. Bu kaynaklara oranlarını düşürmesi için daha güçlü bir sıkışma sinyali gönderir. 
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Kaynak oranları çok küçük olduğu zaman, eşleşmeyenler negatif olur, ücret ve işaretleme 

oranı düşer ve kaynak oranı yükselir taki eşleşmeyenler sıfıra getirilinceye , yüksek 

kullanım ve dengedeki ihmal edilebilir kayıp ve gecikme kazanılıncaya kadar. Dengede, 

eğer hedef sıra sıfıra ayarlanmışsa, tampon bellek temizlenir [17]. 

 

Halbuki RED’de sıkışma ölçüsü (sıra uzunluğu), bellek işlemi tarafından (1)’e 

göre otomatik olarak güncellenir, REM açıkca ilk özelliğini getirmek için ücretini 

güncellemesini kontrol eder. Tam olarak, l sırası, t periyodundaki pl(t) ücreti için [17] ‘ye 

göre güncellenir. 

 

Pl(t+1)=[ Pl(t)+γ(αlbl(t)-bl
*)+xl(t)-cl(t))]+                                 (3.2) 

 

γ >0 ve αl>0 küçük sabitlerdir ve [z]+ = max{z,0}’dır. Burada bl(t) , t periyodunda l 

sırasındaki toplu bellek işgalidir ve bl
*

 ≥ 0 hedef sıra uzunluğudur, xl(t) , t periyodunda l 

sırasına toplu giriş oranıdır ve cl(t) , t periyodundaki l sırası için mevcut bant genişliğidir. 

xl(t) - cl(t) arasındaki fark eşleşmeyen oranı ölçer, bl(t) - bl
* arasındaki fark ise eşleşmeyen 

sırayı ölçer. αl sabiti herbir sıra tarafından kişisel olarak ayarlanabilir ve kullanımı ve sıra 

gecikmesi iletim sırasında değişebilir. γ sabiti REM’in ağ şartlarında değişimlere cevap 

vermesini kontrol eder. Bundan dolayı eşitlik (3.2) den, eğer  oranın ve sıra 

uygunsuzluklarının ağırlıklı toplamı  αl tarafından ağırlıklandırılır, pozitifdir ve ücret 

arttırılır, aksi takdirde düşürülür. Dengede ücret kararlı ve ağırlıklı toplam sıfır olmak 

zorundadır. Yani, αl (bl - bl
*)+ xl - cl =0.  Bu sadece giriş oranı kapasiteye eşitse (xl = cl) ve 

gecikme hedefe eşitse tutulabilir (bl=bl
*),  bu ilk başta bahsedilen birinci özelliğe yol 

gösterir [17]. 

 

‘Ücretlerin toplamı’ özelliği kullanıcıların çoklu sıkışmış hat boyunca ilerlediği 

ağ içerisinde önemlidir. Kullanıcı tarafından dikkatle izlenen uçtan uca işaretleme (yada 

düşme) olasılığı içerisinde gömülü sıkışma bilgisinin anlamını açıklaştırır ve bu yüzden 

uyum oranının tasarımında kullanılır. 

 

Sıra çıktısı, henüz işaretlenmemiş alınan herbir paketi, şimdiki ücretinin üstel artan 

bir olasılıkla sıranın akışına karşı işaretler, işaretleme olasılığının üstel formu geniş bir ağ 
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da önemlidir. Burada kaynakdan gidilecek yere çoklu sıkışmanın içinden geçen bir paket 

için uçtan uca işaretleme olasılığı yoldaki her hat da, hat işaretleme olasılığına bağlıdır. 

Sadece kişisel hat işaretleme olasılığı kendi hat ücreti içerisinde üstel olduğu zaman, bu 

uçtan uca işaretleme olasılığı, kendi yolunda tüm sıkışmış hatlarda hat ücretlerinin toplamı 

içerisinde üstel olarak artıyor olur. Bu toplam yoldaki sıkışmanın tam ölçüsüdür. Uçtan 

uca işaretleme olasılığına gömüldüğünden dolayı, yoldaki her hattadır. Bu kaynaklar 

tarafından işaretlenen paketlerinin parçasından kolayca tahmin edilebilir ve oranlarının 

ayarlanmasının tasarımı için kullanılır [17]. 

 

Bir paketin l=1,2,....,L hatları içinde iletildiğini ve t periyodunda pl(t)  ücretlerine 

sahip olduğunu varsayalım. Daha sonra işaretleme olasılığı ml(t) , l sırasında t 

periyodunda [17]. 

 
)(1)( tpl

l tm −−= φ                                                           (3.3) 
 

 

1>φ  bir sabittir.  Daha sonra paket için uçtan uca işaretleme olasılığı şu şekildedir. 

 

)(

1

1))(1(1 tpl
L

l
l

lt ∑−=−− −

=
∏ φπ                                            (3.4) 

 

Yani, yolun sıkışma ölçüsü, ∑ l pl(t) , geniş olduğu zaman, uçtan uca işaretleme olasılığı 

yüksektir. 

 

Hattın işaretleme olasılığı ml(t) küçük olduğu zaman, buna bağlı olarak hat 

ücretleri pl(t) küçüktür, eşitlik (3.5) de verilen uçtan uca işaretleme olasılığı aşağı yukarı 

yoldaki hat ücretlerinin toplamına uygundur. 

 

Uçtan uca işaretleme olasılığı ))((log ∑≅
l

e tplφ                          (3.5) 

3.5 GREEN 
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GREEN algoritması, cevapda akış tabanlı sıkışma ölçüsü olan xest, tahmin edilen 

veri alış oranı olan sıkışma bildirisinin oranını ayarlayan bir geri besleme kontrol 

fonksiyonudur. GREEN bir eşik değeri fonksiyonu temellidir. Eğer hattın tahmin edilen 

veri alış oranı xest  hedef hat kapasitesi cl üzerinde ise, sıkışma bildirisinin oranı P,  ∆P 

tarafından 1/∆T oranında arttırılır. Tersine eğer xest , cl altındysa P, ∆P tarafından 1/∆T 

oranında azaltılır. Bu algoritma gelen paketlerin olasılıklı işaretlerine P oranında, düşen 

paketler ya da ECN biti ayarlananlar tarafından uygulanır. Adım fonksiyonu U(x) [6,18] 

tarafından tanımlanır. 

 

⎩
⎨
⎧

<−
≥+

=
01
01

)(
x
x

xU                                                          (3.6) 

 

Bundan dolayı, 

 

P = P + ∆P.U(xest - cl)                                                    (3.7) 

 

Hedef hat kapasitesi ct, gerçek kapasite c olarak aşağıda atanmıştır, tipik olarak 

0.97 c dir, böylece sıra büyüklüğü 0’a yaklaşır. Gelen veri oran tahmini, üstel ortalama 

kullanılarak gösterilmiştir. 

 

xest  = (1-exp(-Del/K))*(B/Del)+exp(Del/K)* xest                                   (3.8) 

 

Del paketler arası gecikmedir, B paket ölçüsü ve K zaman sabitidir. Diğer gelen oran 

tahmin teknikleri de başarılı bir şekilde kullanılabilir. 

 

REM ve GREEN arasında bir ilişki vardır. Eğer eşitlik (3.3) doğrusalsa, m = P dir 

ve üstel terim dikkate alınmaz. Dahası eğer bellek terimi 0=α  ise, ve doğrusal sabit γ 

adım fonksiyonu ile yer değiştirirse, GREEN’in sıkışma bildirim oranı P, REM’in ücreti 

Pl ye eşit olur [6].  
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3.6 PURPLE 
 

PURPLE yaklaşımı, diğerlerine karşın, tepki oluşturan protokollerin davranışı 

üzerinde kendi aksiyonlarının etkisini tahmin eder. Bundan dolayı kısa-dönem gelecek 

trafikdir [19]. PURPLE, ağdaki sıkışma durumu hakkındaki uçtan uca bilgiyi  analiz 

ederek bunu başarır. PURPLE, ana AQM parametrelerinin, en azından yerel bir en iyiliğe 

doğru, daha hızlı birleşmesine izin verir, buna bağlı olarak düzleştirme ve küçültme hem 

sıkışma geri beslemesi hemde sıra işgalidir. Tahmini geliştirmek için [19]’da, bu pasif 

olarak gösterilen bilgi sıkışmanın miktarı ile ilgilidir. Ağda başka yerde akışlar bu 

yönlendiriciden geçiyormuş gibi görünür. 

 

PURPLE paket işaretleme düzeltme ve parametreler ayarlanmadan sıra 

gecikmesi sağlar çünkü çevrim içi olarak iyileştirilmiştir. Kendi kendini idare eden 

davranış çevrim içi model tabanlı tahminlere güvenir. Bu ayrıca goodput, işlem hacmi ve 

ortalama gecikme arasında mükemmel bir denge sağlarsa drop-tail kayıplardan tamamen 

kaçınabilir. Bu, çok az güç ve durum bilgisi ve üç yeni mekanizma olan uçtan uca sıkışma 

analizi, ECN bilgisinin görüntülenmesi ve TCP model eşitliğinin kullanarak başarılmıştır. 

[19]’da çok çeşitli durumlar için simüle edilmiş ve PURPLE’dan çok iyi davranışlar 

alınmıştır. 

 

3.7 ECN 

 
 

Şimdiye kadar sıkışma olduğu zaman kapılardan paketlerin atılması hakkında 

konuştuk, bu şekilde son noktanın da sıkışmadan haberi oldu çünkü geri iletim zaman 

aşımı tecrübe edildi. Ama, örneğin RED algoritması ile tampon bellek gerçekten 

dolmadan önce paketler düşürülmeye başlandı. Bu geliştiricileri, paketlerin basitce nasıl 

düşürüldüğünden başka çözümler üzerinde düşündürmeye başladı. Örneğin sıkışmayı son 

noktaya sinyal olarak iletmek için paketleri kaybetmeden hala tampon bellek içerisinde 

dururken paketlerin bir bayrak ile işaretlenmesi gibi bir yaklaşım geliştirildi ve bunun 
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ismine erken sıkışma bildirisi anlamına gelen (ECN) Early Congestion Notification adını 

verdiler [20]. 

 

Bu öneride, QoS tanımlamasında (quaility of service) Diffserv tekniği 

kullanıldığında sıkışma başladığı zamanki sinyal için, IPv4 başlığının ToS alanındaki 2 

biti kullanıldı. (servis sınıfını belirtmek için 8 bitin sadece 6 sı kullanılıyor, diğer kalan 2 

bit kullanılabilir). Bu iki bitten birisi CE (Congestion Experienced) oldu, diğeri ise bir 

hostun ECN olabileceğini bilmek için ayarlandı (ECT) [20]. 

 

Bu düşünce çok anlaşılırdır, bağlantının başında, gönderici ECT bitini 

kapasitesini bildirmek için ayarlar.  Eğer alıcınında kapasitesi varsa, TCP başlığındaki bir 

bayrakla geri gönderir. Alıcı, işaretli bir paket aldığı zaman, sıkışmayı işaret etmek için 

göndericiye bir ACK gönderir ve gönderici kullanılan sıkışıklıkdan kaçınma tarafından 

uygun yolla bir karşılık verir [20]. 

 

Tüm sistemi tamamlayabilmek için, TCP/IP protokolünde çok küçük 

değişikliklere ihtiyaç vardır.  IP başlığında bulunan iki bite değer atanması (gönderici 

tarafından EC’yi işaret etmek için ve ECN kapasitesini işaret etmek için), TCP 

başlığındaki iki bitin atanması. Bu ikisi bir EC paketi için geri göndermeleri tekrarlatır ve 

göndericiye, pencerenin düşürüldüğünü ve tekrarlamaları kesmesini alıcıya işaret 

edebilmesine izin verir (CWR biti); bu bit ayrıca sinyale bağlantı sağlanırken,  alıcı 

sinyale, kapasitesini ACK içerisinde bir SYN paketi için ayarlamasına izin verir [20] . 

 

Bu yaklaşımla bazı problemler ortaya çıkabilir, birisi, örneğin kapasitesi yeterli 

olmayan bir kullanıcı, kapasitesini ayarlayabilir. Böylelikle EC biti ayarlanmış bir paket 

aldığında, sıkışmanın kullanıcısına ilan etmeyecek. Ama, eğer bir host düşen bir paket için 

sıkışmadan kaçınma ile cevap vermezse, aynı problemler olabileceğinden, yazarlar 

yeniden cevap verirler. Bazı kişilerde düşen paketlerin yüksek yük periyodlarında trafiği 

düşürmenin bir yolu olduğunu söylediler, ECN ağ hala paketleri düşürmektedir. Diğer bir 

konuda düşen EC paketlerinin olabilmesidir. Bu durumda gönderici sanki bir ECN ağının 

içinde değilmiş gibi herhangi bir yolla sıkışıklıkdan kaçınma ile cevap verir. Sonuç olarak 

IPsec  tüneli ile ilgili problemler, herhangi bir şifreli hesaplamada ECN biti yeterince uzun 
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bir şekilde içerilemez.  IPsec, ECN nin değerini değiştirmeye çalışan bir düşmana karşı 

herhangi bir koruma geliştirmemiştir [20]. 
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BÖLÜM 4 

ADAPTE EDİLMİŞ RED(Adaptive RED) ALGORİTMASI 
 
 

İnternette, sıkışıklık çökmelerinden korunmak için genellikle uçtan uca sıkışıklık 

kontrolü kullanılır. Bunun yanında, veri trafiğinin doğası gereği patlaklı olmasından 

dolayı, yönlendiriciler patlakları içine alabilmesi ve yüksek hattan yararlanmayı 

sürdürmek için oldukça büyük tampon bellekler ile tedarik edilir. Bu geniş belleklerin 

dezavantajı, eğer bilindik drop-tail yönetimleri kullanılırsa, sıkışık yönlendiricilerde 

yüksek sıra geciklemeri olur.  Bundan dolayı drop-tail bellek yönetimi ağ yöneticilerini 

geniş bellek gerektiren, yüksek kullanım yada küçük bellek gerektiren düşük gecikmeden 

birisini seçmeye zorlar. 

 

RED tampon bellek yönetim algoritması, paketleri, ortalama sıra uzunluğunun 

artması olarak, artan olasılıkla rastgele düşürerek sıra daha aktif, anlamlı olarak yönetilir; 

paketlerin düşme oranı ortalama sıra uzunluğu minimum eşik değerli(minth olarak 

gösterilir) RED parametrelerindeyse, ortalama sıra uzunluğu maksimum eşik değere 

(maxth) ulaştığında düşme oranı sıfırdan itibaren doğrusal olarak artar. RED’in ana 

amaçlarından bir tanesi, sıra uzunluğu algoritması ve erken sıkışma bildirimi 

kombinasyonunu kullanarak, düşük ortalama sıra gecikmesi ve yüksek işlem hacmini 

birarada başarmakdır. RED’in benzetme denemeleri ve işlemsel deneyler bu konuda 

oldukça başarılıdır. 

 

Bunların yanında RED’in esas zayıf noktası, sıkışma seviyesinde ve parametre 

ayarlarında ortalama sıra uzunluğu çeşitlidir. Hat biraz sıkıştığında ve/veya maxp 

yüksektir, ortalama sıra uzunluğu neredeyse minth dır. Hat ağır bir şekilde sıkıştığı zaman 

ve maxp düşükse, ortalama sıra uzunluğu maxth a yakın hatta üzerindedir. Sonuç olarak 

ortalama sıra gecikmesi RED de  trafik yüküne ve parametrele duyarlıdır, ve bundan 

dolayı ilerde tahmin edilebilir değildir. Gecikme, müşterilere dağıtılan servisin kalitesi 

için esas bileşendir. Ağ yöneticilerinin doğal olarak, sıkışmış ağlarda kabaca bir ortalama 
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gecikme tahmini için öncelikleri vardır. RED ile böyle ortalama gecikmeleri önceden 

söyleyebilmek için varolan trafik ayarlarının sağlanması için sabit RED parametrelerinde 

ayarlamalar yapılması gerekmektedir. 

 

RED’in ikinci bir zayıf noktası, işlem hacminin de trafik yüküne ve RED 

parametrelerine duyarlı olmasıdır. Özellikle, ortalama sıra maxth dan büyük olursa, RED 

sık sık rolünü yerine getiremez, sonuç olarak da önemli şekilde işlem hacmi düşer ve 

düşen paketlerin oranı artar. Bu yönetimden kaçınmak için RED parametrelerinde tekrar 

sabit değişiklikler yapmak gerekebilir. 

 

Bu tür problemlerden kaçınmak için aktif sıra yönetimi ile ilgili olarak birçok 

öneriler vardır. Revize edilmiş öneri bu bölümde gerçekleştirilmiştir ve NS simülatöründe 

simüle edilmiştir. Bu yeni versiyon, senaryolarda geniş değişiklikler yaparak ve RED’in 

diğer faydalarından feragat ederek hedeflenen ortalama sıra uzunluğunu başarmıştır. Bu 

sadece ortalama sıra gecikmelerini daha tahmin edilebilir yapmakla kalmaz, maxth nında 

aşılma olasılığını düşürür; bundan dolayı Adaptive RED, hem paket kaybetme oranını 

hemde sıra gecikmelerindeki değişimi düşürür . 

 

4.1 Metrikler and Senaryolar 
 
 
 

RED’in yada aktif sıra yönetiminin esas amacı genel olarak, düşük ortalama sıra 

gecikmesi ve yüksek işlem hacminin sağlanmasıdır. Bu nedenle biz öncelikle ortalama 

sıra gecikmesi ve işlem hacmi metriklerine odaklanıyoruz. RED ‘in ikincil bir amacıda, 

drop-tail sıra yönetim algoritmasında verilenlerin doğruluklarını bir dereceye kadar 

geliştirmek ve verilen ortalama sıra uzunluğunu, paket düşme ve işaretleme oranını en aza 

indirmektir. Biz adaptive RED’in güzel davranışlarını tartışmayacağız, zaten RED’in  

güzel davranışlarına benzerdir.  Sadece Adaptive RED ve RED’in düşme oranına (drop 

rate) kısaca değineceğiz. Çünkü genellikle alçaltılmış düşme oranı davranışını, alçaltılmış 

işlem hacmi yansıtır [5]. 
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Öncelikle, tüm metrikler yönlendirici tabanlıdır. Dosya transfer zamanı, paket 

gecikmesi gibi son kullanıcı metrikleri, algoritmanın geçerliliği için önemli ölçülerdir. 

Adaptive RED ile ilgili son kullanıcı metrikleri yönlendirici tabanlı metriklerde kolayca 

elde edilebilir. Ayrıca yönlendirici tabanlı metrikler (AQM) dinamiklerine daha doğrudan 

bakış sağlamaktadırlar [5]. 

 

İkinci olarak en kötü durumla ilgili metriklerini dikkate almıyoruz, çünkü bu tür 

sıra gecikmelerini kontrol etmek AQM’lerin amacı değildir, bu tür en kötü durum sıra 

gecikmelerinin genişletilmesi için yönlendiricilerde sıraların bellek ölçülerinin konfigüre 

edilmesi ile doğrudan kontrol edilebilir [5].  

 

Üçüncü olarak, sıra uzunluklarının salınım ölçüleriyle ilgili metrikleri doğrudan 

dikkate almayacağız [49,25]. Böyle salınımların, ortalama sıra gecikmesini arttırmadığı ve 

işlem hacmini düşürmediği sürece zararlı olduğunu düşünmüyoruz [5]. Salınımların 

etkisini ana metriklerimiz tarafından ilerleyen bölümlerde tartışacağız. 

 

Adaptive RED’in gelişimi sırasında, Adaptive RED parametrelerinin 

hassasiyetini bulabilmek için çok sayıda trafik senaryosu inceledik. Sağlamlığı sağlamak 

için, iş yüklerinin sınıflandırılmasında, istatistiksel çoğullamaların seviyesinde ve 

sıkışmaların seviyesinde performansı düşündük. İş yükleri, ters yol trafiği boyunca, uzun 

yaşamlı akışları içerir. Ters yoldaki veri trafiğinin varlığı, ACK sıkışmasını ve 

paketlerinin kaybolduğunu bildirir, o nedenle ileriki yollarda veri trafiğinin patlaması 

artar. Ters yol trafiği aynı zamanda, ileriki yollarda paket trafiğinin sıralanmasına 

zorlarlar. Buradaki ileriki yol (forward path) veri ve ACK arasında paylaşılan  şimdiki 

yoldur. Ayrıca simlasyonun sıkışma seviyeleri ve iş yükleri üzerindeki değişim 

senaryolarını araştırdık. ECN bildirimiyle (explicit congestion notification) ve ECNsiz 

baktık [5]. Son olarak, geniş pencere bildirileri ve farklı veri paket ölçülerini dikkate aldık 

[5]. 

 

4.2 Adaptive RED’e Alışmak 
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İlerleyen bölümler de belirtilen, Adaptive RED’in tasarım ve performans 

ayrıntılarına girmeden önce, RED’in parametrelerdeki hassasiyetini gösteren bazı 

benzetmeleri tekrar ettik [5], ve bu gösterdiki buradaki problem için Adaptive RED gerçek 

adres. Bu bölümde, RED’in bilenen karakteristik özellikleri olan ortalama sıra ölçüsü ve 

performans çeşitliliği, RED’in maxp ve wq parametrelerinin bir fonksiyonu olarak, 

benzetmeleri şekillerle gösterilir. Bu bölüm aynı zamanda, minth ve maxth arasındaki hedef 

sıra ölçüsünü yakalamak için maxp nin adapte edilmesini gösteren, Adaptive REM ile 

yapılmış benzetme sonuçlarını da gösterir. Benzetme senaryosunda da ayarlanmış bir 

maxp değeri ile de aynı sonucu alabilmeniz mümkündür. Bir başka deyişle Adaptive RED, 

çeşitli RED parametrelerini güvenli iyi sonuçlarla “otomatik ayarlamışdır”. 

 

 
Şekil 4.1. RED ile Gecikme – kullanım değişimi, wq=0.002. 

 

Şekil 4.1 deki benzetmede, RED  NS’in varsayılan değeri wq =0.002 ve maxp = 

0.1 ve  minth ve maxth   sırasıyla 20 ve 80 paket olarak ayarlanarak kullanılmıştır, tüm bu 

benzetmelerde RED yavaş modda çalışmaktadır. Her bir çarpı, x eksenininde, 100-saniye 

benzetmesinin ikinci yarısı üzerindeki paketlerdeki ortalama sıra gecikmesini, y eksenide, 

benzetmenin ikinsi yarısı üzerindeki hat kullanma sayısını gösteren tek bir benzetmeden 

sonuçlardır. Herbir çizgi N akış ile benzetmeden sonuçlar göstermektedir, çizgilerde N 

değeri 5 ile 100 arasında sıralanmıştır. Herbir çizgi üzerindeki çarpılar, 0,5 soldan  ve 0.02 

sağdan maxp  ile benzetme sonuçlarını göstermektedir. Benzetmelerdeki düşme oranı, 

sıfıra yakınken %8’e kadar çıkmaktadır. Şekil 4.1 de gösterildiği gibi, akışların sayısı ve 

maxp ile performans çeşitlilik gösterir, bu benzetmelerde daha düşük işlem hacmi ile daha 
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geniş sayıda uzun yaşamlı akış vardır. Bu benzetmelerde artan akış sayısı hat kullanımını 

düşürür ve  artan ve maxp daha düşük sıra uzunluklarına liderlik eder. maxp nin düşük 

değerleri için kullanımdaki azalmanın yansımaları zamanın büyük bir bölümünde 

ortalama sıra uzunluğu maxth ı geçip gittiği durumlara yansır [5]. 

 

Daha sonraki bölümlerde göreceğimiz gibi, 15 mbps bant genişliğinde bir hat 

için 0,002 sıra ağırlığı çok geniştir, bu yüzden tipik 100ms RTT’ın bir parçası üzerindeki 

sıra uzunluğu ortalanır. Şekil 4.2 deki benzetmede şekil 4.1 dekinden sadece wq , 0.002 

yerine 0.0026 ye ayarlanmıştır. Bu sonraki bölümlerde detaylıca tartışılacaktır. RED’in 

performansı, ortalama sıra uzunluğu küçük çeşitli RTT’ler üzerinde yapıldığı zaman en 

iyidir. Tek bir RTT’nin bir bölümü üzerinde iyi değildir. Şekil 4.1 ve 4.2 RED’in 

performansının wq parametresi üzerindeki hassasiytetinin bir kanıtıdır. RED’le iyi bir 

işlem hacmi ve kabul edilebilir ortalama sıra uzunluğu elde edebilmek için, wq ve maxp nin 

iyi ayarlanması gereklidir. Adaptive RED, bu iyi ayarlanması gereken değerleri otomatik 

olarak ayarlamaktadır [5]. 

 
Şekil 4.2. RED ile Gecikme – kullanım değişimi, wq=0.00026. 

 

 

Adaptive RED algoritmasının ayrıntıları  anlatılacaktır, yalnız adaptive RED’i 

genel olarak basitce wq nun otomatik olarak ayarlanması (hat hızına göre) ve maxp nin 

cevapda sıra uzunluğuna göre düzenlenmesi olarak özetlenebilir. Şimdi Adaptive RED’i 

gerçekten öneren RED parametrelerini iyi ayarlamak için gerekirse silen bazı benzetmeler 

göstereceğiz [5]. 
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Şekil 4.3. RED ile Gecikme – kullanım değişimi, wq=0.00026. 

 

Şekil 4.3 adaptive RED ile aynı benzetmeyi gösterir; bu şekilde çeşitli değerler 

maxp nin ilk değerleridir, Adaptive RED, ölçülmüş davranışlarını sağlar. Şekil 4.3 deki x 

ve y eksenleri şekil 4.1 ve 4.2 deki ile eşleşmez, şekil 4.1 ve 4.2, şekil 4.3 için alanı 

gösteren bir kutu içerir. Şekil 4.1ve 4.2 nin “iyi” performans bölgesinde küçük bir alan 

meşgul eden tüm alan şekil 4.3 de resmedilmiştir. Önceki grafiklerde olduğu gibi,  100 

saniyedir. Benzetmenin ikinci yarısındaki sonuçları göstermektedir; verilen eğrideki 

noktaların bir araya toplanması, esasen maxp nin ilk değerinin bağımsız olduğu sonucunu 

göstermektedir [5]. 

 

Bu benzetmeler Adaptive RED’in ,  wq nun otomatik ayarlanması ve maxp nin o 

anki şartlara göre cevapta uyarlanması, ortalama sıra uzunluğunu hedeflenen aralıkda 

tutmasıyla yüksek işlem hacminin başarılmasında etkin olduğunu göstermektedir. Bu 

aralık, bölüm 4.4 de anlatılacağı gibi daha önceden tanımlı bir aralık çevresinde (minth+ 

maxth)/2 ortalama sıra uzunluğunu sağlanması için gerekli algoritmalara uyumludur. Bu 

benzetmeler daha az paket düşürme, daha küçük ortalama sıra ve tam hat kullanımına 

sahiptirler [5].  

 

4.2.1 Çeşitli Sıra Uzunlukları ile RED’in Gösterilmesi 
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Daha önceki benzetmeler RED ve Adaptive RED’in istikrarlı performanslarını 

gösterdi. Şimdi RED ve Adaptive RED’in sıkışma seviyesinde hızlı değişim için nasıl 

cevap verdiklerini inceleyeceğiz. Sunulan benzetmeler, sıkışıklık seviyesi ile değişen 

ortalama sıra uzunluğunun iyi anlaşılmış dinamiklerini sunmaktadır [5]. Sonuçlar RED’in 

sabit ortalama sıra uzunluğundan paket düşürme olasılığı tablosundandır. Adaptive RED 

için, bu benzetmeler bir sıkışma seviyesinden diğerine iletime odaklanmıştır. 

 

Bu benzetmeler, 1,5 Mbps’lık sıkışmış bir hat ile basit bir halter topolojisini 

kullanırlar. Tampon bellek 1500 byte paket için 35 paket yer ayırır. Tüm benzetmelerde 

wq  0.0027 ye, minth da 5 pakete ve maxth da 15 pakete ayarlanır. 

 

 
Şekil 4.4. Sıkışıklıkda artışla RED. 

 

Şekil 4.4 daki benzetmede, ileri giden  trafik uzun yaşamlı iki akış içerir, geri 

dönen trafikde uzun yaşamlı bir akış içerir. 25 inci zamanda, her 0,1 sn de bir, 20 yeni akış 

başlar. Herbiri 20 paketin maksimum penceresi ile oluşur.  Bu gerçekci yükü modellemek 

için değil de, sıkışma seviyesindeki keskin değişimin etkisini basitçe, daha iyi 

gösterebilmek içindir. Şekil 4.4 daki grafik uyarlanmamış olan RED’in ortalama sıra 

büyüklüğündeki değişimi, paket düşme oranının bir fonksiyonu olarak gösterir. Koyu 

çizgi, RED tarafından tahmin edilen ortalama sıra büyüklüğünü göstermektedir. Kesikli 

çizgiler anlık sırayı göstermektedir. Paket düşme oranı, benzetmenin ilk yarısının üzerinde 

, %1 den, ikinci yarısının üzerinde %12.6 ya değişir. Buna karşılık gelen ortalama sıra 

uzunluğu ile değişir. 
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Şekil 4.5. Sıkışıklıkda artışla Adaptive RED. 

 

Şekil 4.5 deki grafik aynı benzetmenin Adaptive RED kullanılmışını gösterir. 

Uyarlanmış RED’de yine aynı 25. zamanda ortalama sıra uzunluğunda keskin değişim 

gösterir. Bunun yanında, kabaca 10 sn sonra, Adaptive RED ortalama sıra uzunluğunu 

hedeflenen 9 ile 11 paket arasındaki aralığa geri düşürür. Adaptive RED ile olan 

benzetmeler, adaptive olmayan RED’le yapılanlara göre biraz daha fazla işlem hacmine 

sahiptir. (% 93.1 yerine % 95.1), ortalama sıra uzunluğunda tamamında biraz daha 

düşüktür (13.4 paket yerine 11.5 paket) ve daha küçük bir paket düşürme oranı vardır. 

Adaptive RED’le yapılan benzetmelerde, ortalama sıra uzunluğu ve paket düşme olasılığı 

arasındaki ilişkinin maxp nin uyarlanmasıyla gösterilmesi mümkündür ve bundan dolayı 

trafik dinamiklerinde hazır bulunan ortalama sıra uzunluğununun korunmasını sağlar. 

 

Şekil 4.6, 0. zamanda başlayan ve 25. zamanda biten  yirmi yeni akışla ilgili 

benzetmeyi gösterir. Şekil 4.6 de uyarlanmamış RED ile yapılmış benzetme, ortalama sıra 

uzunluğundaki düşüş 25. zamandaki değişimin sıkışmasının seviyesi olarak gösterilir. Bu 

zamanda, paket düşme oranı uyarlanmamış RED’le benzetmenin ilk yarısının üzerinde % 

9.7 ve ikinci yarısında % 8 dir. 
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Şekil 4.6. Sıkışıklıkda azalma ile RED. 

 

Adaptive RED ile yapılan benzetmede ortalama sıra uzunluğundaki benzer 

değişim şekil 4.7 da vardır, ama uyarlanmış RED ortalama sıra uzunluğunu hedeflenen 

seviyeye 10 sn içinde geri getirir. Adaptive RED le yapılan benzetmede diğer 

uyarlanmamış RED’le yapılan benzetmedeki işlem hacmi benzerdir (% 92.7 yerine % 93) 

, ortalama sıra uzunluğu da çok az daha küçüktür (12.4 paket yerine 11.1 paket) 

 

 
Şekil 4.7. Sıkışıklıkda azalma ile Adaptive RED. 

 
Adaptive Red’le tüm benzetmeler, %98’den (100 akış ile) %100’e (5 akış ile) 

çıkan yüksek işlem hacmine  sahiptir. Her bir akış sayısı, Adaptive RED’le aynı 

performansda, Adaptive RED olmayan sabit maxp seçebilir. maxp için bu sabit(static) 

ayarlama, benzetme senaryosunun bir fonksiyonu olabilir. Örneğin, 20 akışlı bir benzetme 

için Adaptive RED’in performansı, kabaca maxp değeri 0.07 ye ayarlanmış 100 akışlı 

Adaptive RED olmayan bir  benzetmenin performansına karşılık gelebilir.  Adaptive 

RED’in performansı, maxp si 0.2 ye ayarlanmış Adaptive olmayan RED’in performansına 

karşılık gelebilir [5]. 
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Şekil 4.8. RED ile gecikme – kayıp değişimi, wq=0.00026. 

 

 
Şekil 4.9. Adaptive RED ile gecikme – kayıp değişimi. 

 

Şekil 4.8 ve 4.9, şekil 4.1 ve 4.2 deki benzetmelerin paket düşme oranlarını 

göstermektedir. Belli bir akış kümesi için, kabaca  RED ve Adaptive RED, aynı paket 

düşürme oranına sahip olduklarını gösterir, Adaptive RED,  ortalama sıra uzunluğunu 

koruyarak maxth dan uzaklaşır, RED  ortalama sıra uzunluğu maxth etrafında olduğu 

zaman daha yüksek oranda paket kaybetmekten kaçınır. Benzetmelerde, RED ve Adaptive 

RED’in doğruluk özelliklerinin benzer olduklarını gördük [5].  

Bu benzetmeleri, belli bir sıradaki hat bant genişliklerini ve karışık web 

trafiklerini içeren belli bir sıradaki benzetmelerde , ECN ile ve ECN siz, byte ve paket 

birimlerinde ölçülmüş sıralarla, byte modundaki ve paket modundaki RED ile (paketi 

düşürüp düşürmeyeceğine karar verirken paketin büyüklüğünü byte olarak dikkate alır) 

keşfettik [5]. Tüm bu benzetmelerde Adaptive RED ‘den aynı iyi performansı gördük. 
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4.3 Adaptive RED Algoritması 

 

 

Burada gerçekleştirilen Adaptive RED ile ilgili kılavuz esas Adaptive RED ile 

aynıdır, ortalama sıra uzunluğunu minth  ve maxth arasında korumak için maxp uyarlanır. 

Buradaki yaklaşımın esas Adaptive RED den 4 farklılığı vardır. 

 

• maxp nin uyarlanması sadece ortalama sıra uzunluğunu minth  ve maxth arasında 

korumak için değildir, ortalama sıra uzunluğunu yarım yol belirlenen hedef aralığı 

içinde minth  ve maxth arasında tutmak içindir. 

• maxp, zaman çizelgesi üzerinde tipik bir RTT’dan daha büyüktür ve küçük 

adımlarla yavaşça uyum sağlar. 

• maxp , [0.01 , 0.5] aralığında kalması için sınırlandırılmıştır.(yada eşiti [% 1 ,% 

50]) 

• çarpansal olarak artan ve azalan maxp yerine AIMD (Addive-Incrase 

Multiplecative-Decrese) politikası kullanılır. 

 

Adaptive RED algoritması şu şekildedir. 

 

 

 

 

 

 

Her aralıkda 

     if (avg > hedef ve maxp ≤ 0.5) 

              maxp   artar: maxp ← maxp + α; 

   elseif (avg < hedef ve maxp ≥ 0.01) 

             maxp   azalır: maxp ← maxp * β; 
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Değişkenler :  

avg: ortalama sıra uzunluğu 

 

Sabit parametreler :  

aralık : zaman ; 0.5 sn. 

hedef  : avg için hedef; 

      [minth  + 0.4 * (maxth - minth ) ,  minth  + 0.6 * (maxth - minth )]. 

α :  artış ; min(0.01 , maxp / 4) 

β : azalma faktörü ; 0.9 

 

 

maxp nin adapte edilme kılavuzu yavaşça ve nadiren RED’in dinamiklerine izin 

verir - ortalama sıra uzunluğundaki değişimler için cevaplamada paket düşme olasılığının 

adapte edilmesi – daha küçük zaman çizelgesine hakim olmak için. maxp nin uyarlanması 

sadece uzun zaman çizelgelerinde ihtiyaç olduğunda çağrılır. 

 

Adaptive RED’in sağlamlığı yavaş ve nadiren maxp nin ayarlanmasından gelir. 

Bu yavaş değişimin bedeli, şekil 4.5 ve 4.7 deki gibi, sıkışma seviyesindeki keskin bir 

değişimden sonra, maxp nin yeni değerine değişmesinden önce bazen on yada yirmi saniye 

almasıdır. Adaptive RED’in performansının sağlanması için iletim periyodu esnasında 

gereğinden fazla alçaltma yapılmayacaktır, üçüncü kılavuzumuz maxp yi sınırlayarak, 

[0.01 , 0.5] aralığında kalmasını sağlar.Bunlar, ortalama sıra uzunluğunun hedeflenen 

aralıkda olamaması ve ortalama gecikme yada işlem hacmi yavaşça   kötüye gitmesi bile, 

RED’in tüm performansının, iletim periyodu sırasında hala kabul edilebilir olmasını sağlar 

[5]. 

 

Adaptive RED algoritması için en iyi veya en ,iyiye yakın  demek istemiyoruz, 

fakat senaryoların geniş bir aralığında iyi çalışıyor görünüyor, ve bizde internetteki RED 

gerçekleştiriminde güvenle deploy edilebileceğine inanıyoruz [5]. maxp nin yavaş 

adaptasyonun sonucu olarak, Adaptive RED’in tasarımı, geniş alanlarda güçlü sonuçlar 

verir. Yukarıda belirtildiği gibi, iletim periyodunun bu yavaş adaptasyonun bedeli, 
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ortalama sıra uzunluğu hedeflenen bölgede olmadığı zaman sıkışma seviyesindeki keskin 

bir değişim sonrası. Adaptive RED bundan dolayı dikkatli bir şekilde 

pozisyonlandırılmıştır, AQM mekanizmasının spektrumunun sonunda sağlam, daha ince 

ayarlanmadan kaçınma amacı ile, spektrumun sonunda daha agresif daha kırılgandır [5]. 

 

Adaptive RED algoritması maxp yi adapte edebilmek için AIMD kullanır. 

MIMD(Multiplicative Increase Multiplicative Decrease) gibi diğer doğrusal kontrollerle 

de denedik, ama AIMD yaklaşımının daha daha güçlü olduğunu gördük [5]. 

 

Bu genel Adaptive RED algoritmasının tanımını tamamlar. Bu algoritmada 

gömülü seçenekler çeşitli parametreler için ayrıntılandırılmıştır. Şimdi bu seçeneklerin 

gerekçelerini kısaca anlatacağız. 

 

4.3.1 maxp’nin Sınıflandırılması 

 
maxp nin 0.5 üst sınırı iki taban üzerinde haklı çıkarılabilir. Birincisi, paket 

düşme oranını %50 den daha büyük RED’i optimize etmeye çalışmıyoruz. Ayrıca, çünkü 

RED’i hafif modda  kullanıyoruz, bu ortalama sıra uzunluğunun minth dan maxth a kadar 

değiştiğininde, paket düşme oranının 1 den maxp ye kadar değiştiğini, ve ortalama sıra 

uzunluğunun maxth dan maxth ın 2 katına kadar değiştiğinde, paket düşme oranının maxp 

den 1’e kadar değiştiği anlamına gelmektedir. Bundan dolayı maxp nin 0.5 e ayarlanması 

ile ortalama sıra uzunluğunun maxth dan maxth ın 2 katına kadar değiştiğinde, paket düşme 

oranı 0 dan 1 ‘e kadar çeşitlenir. Bu, paket düşme oranı % 50 nin üzerinde bile olsa bir 

dereceye kadar güçlü performans vermelidir [5].  
 

maxp nin 0.01 alt sınırı, maxp nin arzulanan limit aralığında harekete geçirilir. 

Çok küçük paket düşme oranlı senaryolar için, maxp nin 0.01’e ayarlanmasıyla RED’in 

dürüstçe kuvvetini göstereceğine ve hiç birinin benzer şekilde ortalama sıra uzunluğunu 

hedeflenenden daha küçük nesneleştiremeyeceğine inanıyoruz [5]. 
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4.3.2 α ve β Parametreleri 

  
maxp için 0.01 den 0.50 ye artmaları için minimum 0.49/α aralıklarında  aldığını 

not ettik; bu α ve aralık varsayılan paremetreleri için 24.5 sn dir.  Benzer şekilde 0.50 den 

0.01 e düşmeleri için maxp minimum log 0.02/log β aralıklarında alır; bu varsayılan 

parametrelemiz ile 20.1 sn dir. Verilen, bir sıkışma seviyesinden diğerine keskin bir 

değişim, 25 sn, bundan dolayı, ortalama sıra uzunluğunun hedeflenen aralığın dışında 

kalabildiği sırada, aralık üzerindeki üst sınır ve AQM in performansı bir dereceye kadar 

düşürülmüş olabilir [5]. 

 

α ve β nın önerilen değerlerinde, normal şartlar altında, maxp nin tek değişimi, 

ortalama sıra uzunluğunu hedeflenen aralığın üzerinden, altına taşıdığı yada tersi 

sonucunu çıkarmaz. Şimdi basitleştirmek için  maxp, istikrarlı duruma uyarlandığı zaman, 

paket düşme olasılığı aynı kalır ve ortalama sıra uzunluğu avg basitce maxp nin yeni 

değerlerini eşleştirmek için kayar. Bundan dolayı, p < maxp  olduğunu varsayarsak, maxp 

α tarafından arttırıldığı zaman avg’nin minth + p/maxp (maxth - minth) dan minth + p/(maxp+ 

α) (maxth - minth) a düşmesi beklenir. 

 

)min(max
max)(max thth

pp

p −
+α

α
                                                   (4.1) 

  

Eğer sadece 0.2(maxth - minth) den daha düşükse, ortalama sıra uzunluğu hedef 

aralığının üstünden, altına  tek bir aralıkda değişmemelidir. Bu 2.0
)(max
<

+α
α
p

 seçimini 

önerir yada eşit olarak α < 0.25 maxp .algoritmada gösterilen α nın varsayılan ayarı bu 

sınırlamaya uymak zorundadır. 

  

Benzer şekilde, maxp .nin çarpansal düşüşünü (multiplicative decrease), ortalama 

sıra uzunluğunu hedeflenen aralığın altından üstüne, maxp.nin tek bir düzeltmesi 

sonrasında götürmesine sebep olmamasını kontrol etmeliyiz. Benzer bir analizde α, 
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)(max
)1(
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p
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+

−
α
β                               (4.2) 

 

olduğu sürece ortalama sıra uzunluğu tek bir aralıkda hedeflenen aralığın altından 

hedeflenen aralığın üstüne değişmemelidir. Bu (1-β)/p < 0.2 seçmeyi yada eşiti β > 0.83’ü 

seçmeyi önerir. Bu sınırlama β için 0.9 varsayılan değerimiz için sağlanır. 

 

4.3.3 RED Parametreleri maxth ve wq’nun Ayarlanması 

 
 

Yukarıda tanımlandığı gibi Adaptive RED, RED’in maxp parametresi üzerindeki 

bağımlılığını kaldırır. RED için ihtiyaç duyulan parametre ayarlamalarını azaltmak için, 

maxth and wq parametrelerinin otomatik ayarlanması için prosedürler tanımlar [5]. 

 

Otomatik modda, maxth ,  minth  ın üç katı olarak ayarlanır.  Bu durumda 

hedeflenen ortalama sıra uzunluğu  2 x minth etrafında merkezlenir, ve sadece RED’in 

minth parametresi ile elde edilir.  

 

Orjinal RED tanımında [4] verilen wq ayarları için kılavuz, iletim sıra uzunluğu 

cinsinden RED tarafından birbirine uygun hale getirilir, ve cevaplamada şimdiki sıra 

uzunluğundaki değişme adımında tahmin edici tarafından zamana ihtiyaç vardır. [4] den, 

eğer sıra uzunluğu bir değerden diğerine değişirse, ortalama sıra için yeni değerin % 63 

üne  ulaşmada, -1 < ln(1- wq) paket ulaşır. Bundan dolayı -1 < ln(1- wq),  ortalama sıra 

uzunluğu için tahmin edicinin “zaman sabiti” olarak atarız,  bu zaman sabiti, kendi 

kendine değil, paket gelişlerinde tanımlanır. 

 

NS simülatöründe varsayılan wq 0.002 ye ayarlanır edilir; bu 500 paketin 

gelişinde bir zaman sabitine tekabül eder. Bunun yanında, 1 Gbps lık bir hat için, 500 

byte’lık paketlerle, 500 paketin gelişi RTT’nin çok küçük bir parçasına karşılık gelir (100 

ms’nin varsayılan rtt sinin 1/50.).  Açıkca yüksek hızdaki hatlar için daha küçük wq 
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gereklidir, böylece zaman sabiti RTT’nin dışında kalır. Aşağıdaki yaklaşımlarda [50,51] 

otomatik modda, wq , hat bant genişliğinin bir fonksiyonu olarak ayarlanır. 

 

Otomatik moddaki RED için, wq  verilen bir zaman sabitine  bir saniyenin 

ortalama sıra uzunluğu tahmin edicisi için ayarlanır; bu on RTT’ye eşittir, RTT 100 ms 

olarak varsayılmıştır. Bundan dolayı, wq yu, 

 

)/1exp(1 Cwq −−=                                                          (4.3) 

 
 

olarak ayarlanmıştır. C, paket/saniye olarak  hat kapasitesidir, belirtilen varsayılan 

ölçünün paketleri olarak hesaplanır. 

 

4.4 Benzetmeler 
 

Bölüm 4.2 deki benzetmeler Adaptive RED’i önerir, çeşitli şartlarda, yüksek 

işlem hacmine ve düşük ortalama sıra gecikmesine ulaşmak için maxp nin sürekli 

uyarlanması ve wq  nun ayarlanması otomatik olarak yapılır. Bu bölümde Adaptive 

RED’in davranışındaki üç maddeyi daha yakından ele alacağız, salınımlar (oscillations), 

etkiler (effects) ve yönlendirme dinamiklerine cevap (response to routing dynamics). 

 

4.4.1 Salınımların Araştırılması 

 
 

TCP’nin sıkışıklık kontrolünün geri besleme doğasından dolayı, sıra 

uzunluklarındaki salınımlar çok ortakdır. Bazı salınımlar çok zararlıdır, tüm işlem hacmini 

azaltır ve sıra gecikmesindeki değişimi arttırır; diğer salınımlar iyi huyludur ve işlem 

hacmine ve gecikmeye anlamlı etkileri yoktur. Şekil 11 den 14e kadar, herbiri ortalama 

sıra uzunluğunu gösterir, bir benzetme 100 uzun yaşamlı akış ile , her biri 250 ms lik 

RTT’lerle ve 15 Mbps’lık sıkışmış bir hat ile gösterilmiştir. Tüm akışlar, ECN ve 1000-

byte data paketi kullanır. RED sıra yönetimi, minth  = 20 ve maxth = 80  e sahiptir. 
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Şekil 4.10. RED,tek yönlü uzun yaşamlı trafik, wq=0.002 [5]. 

 

Şekil 4.10 daki benzetme, RED’i kullanır, herbiri sıra uzunluğundaki salınımı 

cesaretlendiren üç faktörü vardır, (1) maxp için sabit (aşırı derecede küçük) bir değer; 

eşitlik (4.2) wq  için yüksek bir değer; ve eşitlik (4.3) uzun yaşamlı akışların tek yönlü 

trafiklerinin karışımı için basit bir trafik. Şekil 4.10, ortalama sıra uzunluğunda dramatik 

bir salınım gösterir, herbir salınımda, ortalama sıra uzunluğu minth ‘ın altına ve maxth ‘ın 

üstüne gider. Bu, yüksek paket düşme oranını periyodu ile hiç paket düşmeyenin periyodu 

arasında salınımlara ve sonuç da azalmış işlem hacmi ve sıra gecikmesinde yüksek 

değişimlere liderlik eder.  maxth  nin aşılması, geniş paket düşmenin formunda doğrusal 

olmamaya maruz bırakır, kullanımda düşmeye karşılık gelir ve bu durumda minth  ın 

altında ortalama sıra uzunluğunu keskince düşürür. Ama ortalama sıra uzunluğu minth ‘ın 

altına düşerse, ortalama paket düşme olasılığı sıfır olur, ve akışlar yeniden, sonraki az 

RTT’leri üzerinde sıkışma pencerelerine yayılır, bu münasebetle salınımları devamlı 

tutarlar. Bu durumda RED % 90 hat kullanımına ve sıra gecikmesinde yüksek 

değişimlerin üstesinden gelir. Paket düşme oranı  ECN kullanılsa bile % 3.5 civarındadır 

[5]. 

 

 
Şekil 4.11. RED, zenginleştirilmiş trafik, wq=0.002 [5]. 
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Şekil 4.11, böyle kötü huylu salınımların, ters yol trafiği ve web trafiği içeren 

daha gerçekci trafik karışımları ile titreşimi ciddi bir şekilde azaltır;  kötü ayarlanmış ve 

Adaptive olmayan RED’le bile, salınımların en kötü etkilerinin çoğunluğu, hafifce daha 

gerçekci trafik kullanıldığında düşürülür[5].  

 

 
Şekil 4.12.  Adaptive RED,tek yönlü uzun yaşamlı trafik, wq=0.002 [5]. 

 

Şimdi Adaptive RED’in daha düşük wq  değerleriyle maxp  nin otomatik olarak 

adaptasyonunu nasıl sağladığını ve bu iki trafik senaryosundaki yolculuk ücretlerini 

dikkate alacağız. Şekil 4.12 de tek yönlü ve uzun yaşamlı trafik karışımının basit bir 

trafiğidir, Adaptive RED, kötü huylu salınımları ortadan kaldırmaya ve bunları iyi huylu 

salınımlara dönüştürmeye çalışır. 250 ms lik sabit RTT olmasına karşın, ne ters trafik nede 

web trafiği, Adaptive RED kullanımın % 96.8’e ulaşmasına ve ortalama sıra uzunluğu 

salınımını hedeflenen aralık içinde tutmaya çalışır, kayıp oranını ihmal eder (trafik ECN 

kullanır).  Kötü huylu salınımlar, Adaptive RED ile eğer  wq  için 0.002 nin daha geniş 

değerleri kullanılırsa kalıcıdırlar; maxp  nin adapte edilmesi ve wq  için iyi bir değer 

seçilmesi, bu benzetmede kötü huylu salınımların ortadan kalkması için gereklidir [5]. 

 

 
Şekil 4.13.  Adaptive RED, zenginleştirilmiş trafik, wq=0.002 [5]. 
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Şekil 4.13 de, şekil 4.12’nin iyi huylu salınımlarını, web trafik ve ters trafik, 

daha gerçekci karışımı ile göstermektedir. Burada önceki şekle göre paketlerin hedef 

aralıkları içindeki ortalama sıra uzunluğunun değişimi daha düzensiz olarak gösterilmiştir. 

Bu durumda kullanım şekil 4.12’ye göre biraz daha yüksektir. 

 

4.4.2 Sıra Ağırlığının Etkileri 
 
 

Şekil 4.1, azalan işlem hacmi cinsinden wq  nun çok geniş değerleri için 

performans değerini gösterirken, bu bölüm wq  nun çok küçük değerleri için, artan 

ortalama gecikme cinsinden değerini gösterir. 

 

Şekil 15’den 17’ye kadar, iki uzun yaşamlı TCP akışı ile basit bir benzetmenin 

sonucunu göstermektedir. Herbirinin RTT’si 45 ms civarındadır, 15 Mbps’lık bir hat 

üzerinde rekabet ederler. İkinci TCP akışı, 10 sn lik benzetme içerisinde 2.5 de başlar. İki 

TCP akışıyla ortalama sıkışma penceresi 85 paket civarında olmalıdır. Her üç benzetme de 

Adaptive olmayan RED kullanmıştır, ve sadece wq  değerleri farklıdır. Bu benzetmeler 

aynı zamanda wq  nun çok küçük değerleri için bedelinin birini gösterir, anlık sıra 

içerisinde geniş bir cevap için güçlendirilmiş olarak artış yavaşlamaya başlar. 

 

 
Şekil 4.14. RED, 0.002’de çok geniş wq, iki akış [5]. 
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Şekil 4.15. RED, 0.00027’de wq için otomatik ayarlar [5]. 

 

Şekil 4.14’deki benzetmede, wq  ‘nun 0.002 ve geniş değerleri için RED 

kullanmıştır. Benzetmeleri tamamında minth ve maxth ‘ı otomatik ayarlar, sonuçta minth 19 

pakete  maxth da 3 minth a ayarlanır. Şekil 4.14 o andaki ortalama sıra uzunluğunu gösterir. 

Ek olarak bu RED tarafından tahmin edilir. Her ne kadar ikinci TCP, yavaş başlaması 

istenen sıkışıklık penceresine ulaşmadan yavaşca keser (şekil 4.14), şekil 4.14 ve 4.15, bu 

senaryo için kabul edilebilir  uygun iyi performansı gösterirler. 

 

 
Şekil 4.16. RED, 0.0001’de wq çok küçük [5]. 

 

Buna karşın, şekil 4.16,  wq  ‘nun çok küçük değerlere ayarlanmasının bedelini 

göstermektedir. Bu benzetmede wq  = 0.0001, sonuçda da sıkışmadaki ani artışların 

tespitinde RED yavaştır, ve 2.5. zamanda olan sıkışmayı, sırada 350 paket oluncaya kadar 

tespit edememektedir. Bu benzetmede, sıradaki keskin artış, tek bir yüksek bant 

genişliğinin yavaş başlamasından olmaktadır, ama artış, ani kalabalık yüzünden 

olabilmektedir, bir yönlendirme başarızlığı yada bir denial of service saldırısı vb. Bu 

benzetme geniş bir tampon bellek size çalışır, ve 350 paketin depolanmasına izin verir. 
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Eğer tampon bellek size daha küçük olsaydı,  benzetme basitce tipik drop-tail sıra 

yönetimi davranışına dönebilirdi,( bir verinin penceresinden fazla sayıda paketin 

düşebildiği). Bir dizi senaryo keşfettik ve hemen hemen tüm durumları, hatta kararlılık-

durum senaryolarını bile inceledik, wq  ‘nun eşitlik (4.1) de önerilenden daha küçük bir 

değerini kullandığımızda hat kullanımı zarar görmektedir. 

 

4.4.3 Yönlendirme Değişimlerinin Benzetmesi 

 

 

Bu bölüm, kısaca Adaptive RED’in iletim davranışını yönlendirme değişimleri 

yüzünden, yükünde keskin değişimler olan çevreleri inceler. Şekil 18, benzetmede 

ortalama sıra uzunluğunu zamanın bir fonksiyonu olarak gösterir, 50 sn den 60 sn ye çıkış 

hattı mevcut olmayabilir. Benzetme topolojisi, daha düşük öncelikli ama sadece yarım hat 

kapasitesi içeren alternatif bir yol içerir. Böylece TCP bağlantıları hat kesintisi sırasında 

da paket göndermeye devam edebilir. Hat geri geldiği zaman, tüm yük esas hatta geri 

kaydırılır. Hat kullanımı 10 sn lik periyodda %88.3 e ulaşır, hemen tamir eder ve sonraki 

10 sn içerisinde de % 96.1’e ulaşır. Bundan dolayı, bu senaryo Adaptive RED’in iyi 

dinamik özelliğini gösterir [5].  

 
Şekil 4.17. Yönlendirme değişikliği ile ortalama sıra uzunluğu değişimi [5]. 

 



 67 

4.5 İşlem Hacmi ve Gecikme Arasındaki Değişimler 
 
 

Verilen Adaptive RED algoritması ve maxth ve wq nun otomatik olarak 

ayarlanması bu bölümde daha önce tanımlandı. Geriye sadece tanımlanacak kritik 

parametre olarak hedeflenen ortalama sıra uzunluğu kaldı. Adaptive RED ortalama sıra 

uzunluğunu minth ‘ın iki katı olarak sürdürür; bundan dolayı verilen bir hedef için 

ortalama sıra uzunluğu, minth ‘ın ayarlanması doğrudur. Zor kısmı ise istenen ortalama 

sıra uzunluğunun elde edilmesidir [5].  

 

Bir yönlendirici için en iyi ortalama sıra uzunluğu, işlem hacmi ve gecikme 

arasındaki takas (trade off) oranın bir fonksiyonudur. Bu takas, politikanın gerekli bir 

sorusudur. Bunun yanında, işlem hacmi ve gecikme arasındaki bu takaslar, kümelenmiş 

trafiğin karakteristiğinin bir fonksiyonudur. Bundan dolayı tek yönlü trafikli senaryolar, 

uzun yaşamlı akışlar, kısa RTT’ler ve istatistiksel çoklamanın yüksek seviyesi, hem çok 

yüksek işlem hacmine hemde çok düşük gecikmeye izin verir, senaryolar daha yüksek 

patlamalarla iken, sonuçlar iki yönlü trafikden ve web senaryosundan  istatistiksel 

çoklamanın düşük seviyeleri ile işlem hacmi ve gecikme arasında biraz daha zor takas 

gerektirir [5]. 

 

En iyi olma sorununun arkasında ayrılırken, sıradaki Jacobsen [50] de ve 

benzetme scriptleri [52] de, otomatik modda, minth ı hat bant genişliğinin bir fonksiyonu 

olarak ayarlarız. Yavaş ve makul hat hızları için, minth ın beş pakete ayarlanmasının iyi 

çalıştığını bulduk, böylece bunu, otomatik modda minth ın alt sınır olarak kullanabiliriz. 

Yüksek hızdaki bir hat için, on paketlik ortalama sıra uzunluğu, gecikme bantgenişliği 

ürününe oranla çok küçüktür,  ve sonuçta işlem hacmi çok şiddetli kaybolmaktadır. 

 

İşlem hacmi ve gecikme arasındaki güvenilir bir takas için yönlendirici sıra 

gecikmesi, varsayılan değeri olarak 100 ms kullanılan, uçtan uca RTT’nin sadece küçük 

bir parçası olabilir. minth = delaytargetC / 2 ayarlanması hedeflenen ortalama sıra 

gecikmesi, delaytarget ı sn cinsinden verir. C paket/sn cinsinden hat kapasitesidir. Otomatik 
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modda delaytarget ı 5 ms olarak kullanıyoruz, minth ı Max[5, delaytargetC / 2] paket olarak 

ayarlıyoruz bu dönüşüm mintreshi 100Mbps bir hat için 12.5 pakete ayarlar. 
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BÖLÜM 5 

RED DİNAMİKLERİ VE KARARLILIK KONTROLÜ 
 

 

Bilindiği gibi TCP/RED çılgın gibi salınım yapabilir ve bu salınımı RED 

parametrelerini ayarlayarak düşürmek oldukça zordur [21,22]. AIMD stratejisi TCP Reno 

tarafından çalıştırılır (ve onun değiştirilmiş hali olan NewReno ve SACK) ve gürültü 

trafik gibi etkin bir şekilde TCP tarafından kontrol edilemez. Şüphesiz bu salınıma katkısı 

vardır. Son çıkan modeller örneğin [10],[49], bunun, protokolün kaçınılmaz bir sonucu 

olduğunu belirtmektedirler. Bu bölümde, daha çok kanıtla bu görüş desteklenmiştir. 

TCP/RED salınımlarının sadece AIMD araştırmalarından ve trafik gürültüsünden 

kaynaklanmadığını ama temel olarak kararsızlığından kaynaklandığını kanıtlamaya 

çalışılmıştır. Salınımın AIMD bileşenin dışındaki düzeltmeden sonra ortalama davranışı 

küçük rastgele dalgalanmalarla salınmaz olabilir (protokol kararlı olduğu zaman), yada 

rastgele dalgalanmalardan daha geniş genliğin sınır devirlerini gösterir (kararsız olduğu 

zaman). Dahası bu niteliksel davranış, geniş miktarda gürültülü trafik olduğu zaman bile 

ve hatta kaynaklar farklı gecikmelere sahip olduklarında bile  kalıcıdır. Sonuç olarak 

kararlılığı büyük ölçüde TCP/RED ’in dinamiklerinden elde edilir. 

  

Bu TCP/RED’in kararlılık karakterini motive eder. İlerleyen bölümlerde genel 

bir TCP/RED‘in doğrusal olmayan bir modelini geliştirilmiştir. Bu modelin dengeli yapısı 

kaynak [25]’de sıkışıklık kontrolünün toplu kaynak özelliklerini en yükseğe çıkarabilmek 

için  çeşitli TCP/AQM’lerin başlıca ikili algoritmaların internet üzerinde dışarıya 

taşınmasıyla analiz edilmiştir. Burada, model etrafında dengeli bir şekilde 

doğrusallaştırılmasıyla yerel kararlılığı gösterilmiştir. Bu doğrusal model  tek hattı kaynak 

[26]’nın kaynak modeli olarak genelleştirir. Bu modelin geçerliliği benzetmelerle ve 

TCP/RED’in kararlı bölgeside şekillerle gösterilmiştir. Karışık kaynaklarla tek bir hattın 

özel durumu için yeterli kararlılık şartlarını elde ettik. Bu gecikmeler artarsa yada hat 

kapasitesindeki artış daha fazla göze batarsa TCP/RED’in kararsız olduğunu gösterir. 
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TCP tarafından tanıtılan kazanç, tek bir hat durumunda benzer kaynaklar 

tarafından paylaşılır, bant genişliği gecikme ürününün karesine orantılıdır ve tersine 

kaynakların sayısıyla orantılıdır. Böyle bir yüksek kazanç, gecikme yada kapasite yüksek 

olduğu zaman kararsızlığa sebep olur ve oldukça zor RED tarafından yeri doldurulur. 

RED parametreleri kararlılığı arttırmak için ayarlanabilir ama dinamik olarak ayarlansa 

bile sadece geniş sıra değerinde olmalıdır. 

 

Bu önerilere göre gelecekteki ağlar için kapasite geniş olacağından tam uygun 

değildir. Bu bölümde, kaynak [27]’de geliştirilmiş basit bir sıkışıklık kontrol algoritması 

sunulmuştur, bu merkezsiz bir şekilde kaynaklar ve hatlar tarafından belirtilmiştir ve 

kararlıdır. Bu, rastgele seçilen gecikme, kapasite, yük ve yönlendirme için doğrusal 

kararlılığın devamını sağlar. Dahası, ihmal edilebilir sıralarla, dengeli bir şekilde, yüksek 

ağ kullanımını başarır. İletim cevabı gibi performans kaybı olmadan başarılan, bunların 

yararlarını gösteren temel benzetmeleri sunulmuştur. 

 

5.1 TCP/RED Salınımları 
 

AIMD’nin, trafik gürültüsünün ve gecikmelerin karışık olmasının ortalama 

pencere ve anlık sıra üzerindeki etkisi nedir ? Bu bölümde protokol kararsızlıkları ile etki 

sınırlarını karşılaştırmalı olarak göstereceğiz. 

 

ns-2 simülatöründe, daralan kısım 9 paket/ms olarak simüle edilmiştir (sabit 

paket ölçüsü = 1000byte). Hat ‘byte’ modunda ECN işaretlemeli (örneğin doğrulanan 

paketler ihmal edilebilir bir olasılıkla işaretlenir) RED  çalıştırır. RED parametreleri, maxp 

= 0.1, minth = 50 paket, maxth = 550 paket, ağırlık sıra ortalaması için α = 10-4 dür. Hat 50 

devamlı FTP kaynağı tarafından paylaşılmaktadır. Benzetme hem tek yönlü hemde iki 

yönlü trafikle çalıştırıldığında, davranışı çok benzerdir. Şekil 5.1 ve 5.2 çift yönlü trafiği 

göstermekte, şekil 5.3 ise tek yönlü  trafiği göstermektedir. İnternetteki ölçülerin % 

85’inde RTT 15-500ms aralığındadır. Benzetmeler gecikmelerle bu aralıkda  

gösterilmiştir.  
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(a)Pencere (Gecikme = 40ms) 

 

 
(b)Sıra (Gecikme = 40ms) 

 

 
(c)Pencere (Gecikme = 200ms) 
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(d)Sıra (Gecikme = 200ms) 

Şekil 5.1. Gürültüsüz pencere ve sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite 

= 9 paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, iki yönlü trafik. 

 

Şekil 5.1 iki durumun sonucunu vermektedir, bunlar bağlantıların benzer gidiş 

dönüş gecikme yayılmasına sahip olduklarını ve her iki yönde de trafik oluşturulmasıdır. 

Şekil 5.1(a) kişisel pencere (açık eğri)  ve ortalama pencere (koyu eğri) ortalama 50 

kaynak üzerinde, her iksinide zamanın fonksiyonu olarak göstermektedir. Gidiş dönüş 

gecikme yayılması küçük (bu durumda 40ms) olduğu zaman bunlar tipik izleridir. 

Reno’nun AIMD’si yüzünden oluşan salınımlar kişisel pencerede göze çarpar ama 

ortalama pencerede görünmez. Beklendiği gibi sıranın kişisel pencereyi ortalamasından,  

ayrıca rastgele küçük dalgalanmalarla düzelmiş bir iz görünür, şekil 5.1(b) de görüldüğü 

gibi. Protokolün ortalama davranışını düşündüğümüzde, bu durum için kararlıdır 

(salınımsız). 

 

Şekil 5.1(c) ve (d), gidiş dönüş gecikme yayılması (round trip propagation delay) 

200ms’ye çıkarıldığı zaman ki karşılık gelen pencereleri ve sırayı göstermektedir. Burada 

kişisel pencerenin daha geniş bir genlikle salınımından daha önemli ortalaması 

deterministik devir sınırlarını göstermektedir. Bu ayrıca sıra izinide göstermektedir. 

Protokolün kararsız bir usulde olduğunu söyleyebiliriz. 

 

TCP/RED tarafından etkin bir şekilde kontrol edilemeyen gürültü gibi gecikme 

ve kayıplara karşı duyarlı trafiklerinin etkisi nedir ?  Niteliksel olarak anlayabilmek için, 

iki yönlü 50 devamlı FTP bağlantısına kısa http kaynakları ekleriz. Her bir http kaynağı 
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gideceği yere tek bir paket isteği gönderir, daha sonra çarpansal olarak dağıtılmış (demek 

istediğimiz 12 tane 1KB paket) büyüklükteki yanıtlanır. Kaynak tamamen veriyi aldıktan 

sonra  rastgele bir süre bekler, 500msec ile çarpansal dağıtılır ve işlemi tekrar eder. İstek 

ve cevapda TCP bağlantısı üzerinden taşınmıştır. İki sümülasyon kümesi yürütüldü, 

birincisi 60 http kaynağı ile % 10 gürültü oluşturuldu (örneğin devamlı FTP kaynakları 

daralan hat kapasitesinin % 90nını kapladı), ikinci küme ile 180 http kaynağı %30 gürültü 

oluşturdu. Sıra izleri, yayılma gecikmesi 40ms ise kararlı, 200ms ise kararsızdır, bunlar 

%10 luk bir gürültü yoğunluğu ile sırasıyla şekil 5.2(a) ve (b) de gösterilmiştir. Şekil 

5.2(c) ve (d) ise gürültü yoğunluğu %30’dur. Sıra ve ortalama pencere’nin davranışları 

protokolün kararlılığı ile baskınlaştırılmıştır. Kararlı yönetimde (40 ms gecikme), gürültü 

trafiği ortalama sıra uzunluğunu yavaşça arttırır. Bu işaretleme olasılığını arttırır ve FTP 

kaynağının ortalama penceresini düşürür.  

 

 
(a) Sıra (gecikme=40ms, %10 gürültü) 

 

 
(b) Sıra (gecikme=200ms,%10 gürültü) 
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(c) Sıra (Gecikme=40ms, %30 gürültü) 

 
(d) Sıra (Gecikme=200ms, %30 gürültü) 

 

Şekil 5.2. Gürültüsüz sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite = 9 

paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, iki yönlü trafik. 

 

Önceki tüm benzetmeler, benzer yayılma gecikmeli kaynaklar içindir. Kaynaklar 

farklı gecikmelere sahip olduğu zaman, dinamik davranışları çok değişir mi ? Önceki 

deneyleri gürültüsüz ve gecikme aralıkları 1ms artışda 40ms’den 64 ms’ye kadar olan, 50 

devamlı tek yönlü bağlantılar ile tekrarlayacağız. Tüm gecikmeler geniş bir aralıkda aşağı 

veya yukarı ayarlandığı zaman ki dinamik davranışlarını öğreneceğiz. Gecikmelerin 

benzemesi durumunda davranışlarda, daha fazla sıra salınımları ile niteliksel olarak 

benzer. Şekil 5.3(a) anlık sırayı göstermektedir. Ayarlama(scaling) faktörü 0.3 (gecikme 

aralığı 0.3ms’den(40) 0.3ms’ye (64) ),ortalama gecikme 15.6ms dir. Şekil 5.3(b) ayarlama 

faktörü 4 ve ortalama gecikme 208ms olduğundaki sırayı göstermektedir. 
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(a) Sıra (gecikme 12’den 19’a kadar) 

 

 
(b) Sıra (gecikme 160’den 254’e kadar) 

 

Şekil 5.3. Karışık gecikmelerle sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite = 

9 paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, tek yönlü trafik. 

 

Kararsızlık üç potansiyel probleme sebep olur. Birincisi, kaynak oranında ve 

gecikmedeki stresi arttırır ve bazı uygulamalar için zararlı olabilir. İkincisi, kısa süreçli 

bağlantıları hükmüne alır, bu bağlantılar tipik olarak gecikme ve kayıp, gereksiz gecikme 

ve kayıp için hassasdır. Son olarak  eğer sıralar boş ve dolu arasında sıçrama yaparsa, 

hatların kullanımına yol gösterir. 
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Bundan dolayı protokol kararlılığı, TCP/RED’in dinamiklerini büyük ölçüde 

belirler. Şimdi TCP/RED kararlı olduğu zamanı karakterize edeceğiz. 

 

5.2 Dinamik Model ve Kararlılık 

 

Bu bölümde kararsızlığın başlangıcını tahmin etmek için geliştirilen 

TCP/RED’in bir modeli kullanılmıştır. Doğrusal olmayan bir modelle başladık ve denge 

özelliği hakkında bazı görüşler belirttik, sonra denge etrafında modeli doğrusallaştırdık. 

Doğrusal modelin ns-2 simülatörü ile  doğruluğunu sağladık ve TCP/RED’in kararlı 

bölgelerini şekillerle gösterdik. Son olarak karışık kaynaklarla tek bir hattın özel durumu 

için kararlılık şartı elde edeceğiz. 

 

5.2.1 TCP/RED’in Doğrusal Olmayan Modeli 

 

 

Bir ağ L hatlarının (sınırlı kaynaklar) kümesi olarak sınırlı kapasitelerle c = (cl, l Є 

L) modellenir. i ile indislenmiş I  kümesindeki, N kaynağın kümesi tarafından 

paylaştırılmıştır. Her bir kaynak i, Li  hatlarının C= L kümesini kullanır. Li  kümesi LxN 

yönlendirme matrisini belirtir. 

 

⎩
⎨
⎧ ∈

=
deaksitakdir

Ll
R i
li 0

1
 

 
 

Her bir l hattıyla ilişkilendirilmiş olan işaretlenme olasılığıdır pl(t) t zamanında 

ve her bir s kaynağı ve penceresi wi(t) t zamanındadır. TCP Reno wi(t) nin nasıl 

ayarlacağını ve AQM’de pl(t) nin nasıl güncellendiğini tavsiye eder. Birlikte geciken geri 

besleme sisteminin bir formudurlar ve internet üzerinde azami dereceye çıkarma 

problemini çözmek için dağıtılmış ikili esas (primal-dual) algoritma dışarı taşınır [26,30]. 

 

i kaynağının t zamanında bir RTT tanımlanır. 
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l
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tbRdt )()(τ                                                     (5.1) 

 

 

di gidiş dönüş yayılma gecikmesidir ve bl(t), l  linkinde t zamanındaki geciktirmedir. 

kaynak  i’nin  oranı xi(t) t zamanında , 
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t
tw
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i

i
i τ

=                                                         (5.2) 

 

l hattındaki tüm akış oranı 

 

∑ −=
i

f
liili ttxRtyl ))(()( τ                                             (5.3) 

 

)(tfliτ  kaynak i den l hattına ilerlemiş gecikmedir. Uçtan uca işaretleme olasılığı i 

kaynağında  )))((1(1)( ttpltq f
liLli τ−−∏−= ∈  olarak gözlemlenir. )(tb

liτ ,  l hattından i 

kaynağına geriye doğru olan gecikmedir. Tüm t ler için pl(t) küçük olarak düşünülür, 

böylece uçtan uca olasılık yaklaşık olarak  şöyledir. 

 

∑ −=
i

b
lilii ttplRtq ))((:)( τ                                            (5.4) 

 

Geciken hat olasılıklarının toplamıdır. İleriye ve geriye doğru olan gecikmeler RTT 

boyunca, 

 

)()()( ttt b
li

f
lii τττ +=                                            (5.5) 

 

ile ilişkilidir, her l Є Li dir. 
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Şimdi TCP Reno ve RED modellerine bakacağız. TCP Reno’nun AIMD 

algoritmasına odaklanıyoruz.  t zamanında, i kaynağının iletim oranı xi(t) paket/sn; bundan 

dolayı ACK’leri xi(t – τi(t)) oranında alır, her paketin doğrulandığı varsayılır. Bu 

ACK’lerin  bir parçası (1 – qi(t)) pozitifdir, her bir artış pencereyi wi(t), 1 /  wi(t) kadar 

arttırır; bundan dolayı wi(t) penceresi artar, ortalamada,  

 

xi(t – τi(t)) (1 – qi(t))/wi(t) 

 

oranındadır. Benzer şekilde negatif ACK ’ler   

 

xi(t – τi(t)) qi(t) 

 

ortalama oranında alınırlar, herbiri pencereyi yarıya indirir ve bundan dolayı wi(t) 

penceresi  xi(t – τi(t)) qi(t)wi(t)/2 oranında düşer. Bundan dolayı pencere Reno altında  

 

2
)()())((

)(
1))(1))((()( tw

tqttx
tw

tqttxtw i
iii

i
iiii ττ −−−−=

•
                 (5.6)         

 

formülüne göre gelişir. qi(t) eşitlik (5.4) de verilendir. 

 

RED’i modellemek için bl(t) anlık sıra uzunluğunu t zamanında bl(t) > 0 olduğu 

zaman gelişir. 

 

lll ctytb −=
•

)()(                                                (5.7) 

 

yl(t), eşitlik (5.3) de verilen akış oranıdır ve cl hat kapasitesidir. Ortalama sıra uzunluğu  

rl(t) olarak belirtilir. bu şu formüle göre güncellenir, 

( ))()()( tbtrctr lllll −−=
•

α                                                 (5.8)                   

 

bazı sabitler için 0 < αl < 1 dir. Verilen ortalama sıra uzunluğu  rl(t) işaretleme olasılığışu 

şekilde verilir, 



 79 

 

ll

lll

lll

ll

lll

llll
l

btr
btrtb
btrb

btr

ptr
btr

tp

2)(
2)()(

)(
)(

1
)21()(

)(
0

)(

≥
<≤
<<

≤

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−
−

=
η

ρρ
                           (5.9) 

 

lll pvebb ,,,  RED parametreleridir, ve  
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Özetle, TCP/RED eşitlik (5.6 - 5.9) tarafından modellenmektedir ve ağ boyunca 

birbirlerine bağlı olmaları eşitlik (5.3 - 5.4) tarafından modellenmektedir. 

 

Hatırlatmalar : 

 

1. Kaynak [5] ve kaynak [7] den, TCP/RED modelini eşitlik (5.6 - 5.9) yorumladık 

ve diğer TCP/AQM modelleri , toplu kaynak özelliğini internet üzerinde en fazla 

yapabilmek için dağıtılmış esas-ikili algoritmaları dışarıya taşındılar. Kaynak oranı 

xi(t) yi, TCP tarafından tekrarlanan esas değişkenler olarak ele alırsak ve 

işaretleme olasılığı pl(t) yi  AQM tarafından tekrarlanan ikili değişkenler 

(Lagrange multipliers) olarak ele alabiliriz. Farklı protokoller, farklı güncelleme 

kurallarına karşılık gelir ve farklı araç  fonksiyonu U yu en fazla yapar. TCP Reno 

nun araç fonksiyonu şöyle elde edilir.  
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buna karşılık TCP Vegas [31] ise, 

 

iii xxU log)( α=  
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Verilen ağ topolojjisi R , hat kapasitesi c , ve TCP aracı (utility) Ui, buradan basit 

bir konveks programın çözülmesiyle, ilgisi olan her denklik özelliğini elde 

edebiliriz. Bunlar işlem hacmi, kayıp, gecikme farklı TCP protokollerinin 

etkileşimi ve ayrılmış denge oranının doğruluğudur. 

 

2. Reno’nun birçok gerçekleştirimi yada değişik biçimleri, herbir RTT’de en az bir 

kere pencereyi ikiye böler. Bu durumda,  eşitlik (5.5) deki çarpımsal azalma 

(multiplicative decrease) terimi –qi(t)wi(t) / 2τ(t) ile yer değiştirilir. Buradaki tüm 

benzetmelerde, işaretleme olasılığı çok küçüktür , bir RTT’de birden çok 

işaretlenme olasılığı ihmal edilmiştir. Bundan dolayı, çarpansal azalmanın iki 

modeli arasındaki farklılık ihmal edilebilir. 

 

5.2.2 TCP/RED’in Doğrusal  Modeli 

 

 

TCP/RED’i eşitlik (5.6 -5.9)’da denklik etrafında kararlılığı ile ilgili 

çalışabilmek için doğrusallaştırdık. Birçok basitleştirici varsayım yaptık. Birincisi 

yönlendirme matrisi R yi tüm satır sıralarını dolu olarak varsaydık böylece tek bir denklik 

kaybolma olasılığı vektörü p  vardır (Lagrange multiplier). İkinci olarak, denklik 

işaretleme olasılığını tam olarak pozitif  olan sadece daralan(bottleneck) hatların, modelde 

içerildiğini varsaydık. Dahası sistemin bl < rl(t) < bl , bölgesinde işlediği düşünülür, 

böylece işaretleme olasılığı ortalama sıra uzunluğunda afine edilmiş olur, pl(t)= pl(rl(t) - 

bl). Son olarak , gidiş dönüş gecikmelerindeki değişikliklerde, zamanda anahtar varsayım 

yapmıştık. 

 

Gidiş dönüş gecikmeleri iki yerde görülür; birincisi pencere wi(t)  ve oran xi(t) 

arasındaki ilişkide, eşitlik (5.2) de belirtildiği gibi ve ikinci olarak, akış oranı yl(t) nin 

zaman argümanında, eşitlik (5.3) de ifade edildiği gibi ve uçtan uca işaretleme olasılığı 

qi(t) de, eşitlik (5.4) de ifade edildiği gibi. ilk üründe anlık sıra gecikmesinin dahil olması, 

eğer sıra gecikmesi yok sayılırsa veya sabit varsayılırsa niteliksel olarak  farklı bir 
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modeldir. Anlamı şudur ki, sıra bir toplayıcı değildir ama daha karmaşık dinamikleri 

vardır; eşitlik (5.11)’e bakınız. Teorem 2’nin ispatı, bu dinamiğin TCP/RED’in kararlılığı 

için kritik olduğunu gösterir. Sonuçdaki doğrusal model benzetmeyle eşleşir, eğer sıra 

gecikmesi sabit varsayılırsa, farkedilir bir şekilde daha iyidir. İkincideki zaman değişimli 

gecikmeler doğrusallaşmayı zorlaştırır, ve denk değeri(denklik sıra gecikmesini içerir ) ile 

yer değiştirilir. Bundan dolayı zaman değişimli gecikmeleri eşitlik (5.1) ve eşitlik (5.2) de 

kullanırız, ama yaklaşık gecikmeler )(),(),( ttt b
li

f
lii τττ   eşitlik (5.3) ve eşitlik (5.4) deki 

denk değerleridir. 

 

Bu varsayımlarla, Reno/RED’i tek denklik etrafında doğrusallaştırdık. Eşitlik 

(5.5)’den Reno, 

 

∑∑ −
−−−

−
−

⎟
⎠
⎞⎜

⎝
⎛ −−=

•

l ii

iiib
lilli

iii

iib
li

l
llii t

twtwtpR
twt

twtpRtw
)(
)()()(

2
1

)(
1

)(
)()(1)(

ττ
ττ

ττ
ττ  

 

olur. Doğrusallaşma sonrası ürünler, 
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burada ∑= l llii pRq **  uçtan uca olasılığın dengesidir, ve iii xw τ** =  denge penceresidir. 

 

Denge etrafında, tampon işlemi RED altında gelişir, 

 

l
l

f
lii

f
lii

li c
t
twRtb −
−
−=∑

•

)(
)()(

ττ
τ  

l
l k

f
liik kkii

f
lii

li c
ctbRd

twR −
−+

−=∑ ∑ /)(
)(
ττ

τ  

 



 82 

∑+=
k kkkiii cbRd /*τ  dengeli RTT’dir (sıra gecikmelerini içerir). Doğrusallaşma sonrası, 

şunlara sahibiz, 
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eğer RTT’de ihmal edilmiş veya sabit varsayılmış sıra gecikmesi varsa yukarıdaki ikinci 

terim yok sayılabilir. Çift toplama işareti, her kaynak i ile hat l yi paylaşan tüm k hatları 

üzerini toplar. Bu ağdaki hat dinamiklerinin paylaşılan kaynak boyunca birleştiğini 

söylemektedir. )(
*

f
lik

ki

i tb
c
w τ
τ

−  terimi, kaynak i  nin paketleri yüzünden k hattında, FIFO 

sırasının altında kabaca gecikmiştir. Bundan dolayı gecikme bl(t), l  hattında, diğer k 

hattında  paylaşılan kaynak i nin gecikmesiyle uygun oranda azaltır. Kaynak i nin 

yolundaki gecikme  l hattında paket alan kaynak i nin oranını azaltır, bl(t) azalır. 

 

Herşeyi bir araya koyarsak, Reno/RED, Laplace domain’de şu şekilde belirtilir. 
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 diagonal matrisleri ve Rf (s) ve Rb(s) 

geciken ileri ve geri doğru yönlendirme matrisleridir,şu şekilde tanımlanır. 
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kaynak [25]’in benzer-kaynak modelini tek hattan, birden çok hatta, karışık kaynaklarla  

genelleştirir. 

 
 

5.2.3 Geçerlilik ve Kararlılık Bölgesi 
 
 

Sistem kararlı olduğunda, doğrusal modelimizin geçerliliğini ve kararlılık 

bölgesini sayısal olarak şekillerle, bir seri deneyle sunduk. 

 

Kapasitesi c paket/ms olan tek bir hat ve bu hattın N kaynak tarafından benzer 

gidiş dönüş yayılma gecikmesi d ms ile paylaşıldığını düşünelim. N= 20,30,......,60 için 

kapasite c=8,9,.....,15 pkt/ms ve yayılma gecikmesi d = 50,55,......,100 ms, geri besleme 

sistemi (L(jw)) nin (11)’de, döngüsel kazancının Nyquist planını inceliyoruz. Her bir (N,c) 

ikilisi için, gerçek ekseni -1’e en yakın olan ile Nyquist planın en küçük kesintisinde 

5ms’lik artışda gecikme dm(N,c) elde edilir. Bu, sistem (N,c) de, doğrusal modele göre 

kararlılıkdan kararsızlığa geçiş gecikmesidir. Bu gecikme için, L(jw) ‘nin fazında fm(N, c)  

kritik frekansı –Π olarak hesaplanır. L(jw) nin hesaplanmasında, dengeli RTT τ , yayılma 

gecikmesinin toplamı dm(N,c) ve dengeli sıra gecikmesi gereklidir. Sıra gecikmesi 

[26]’deki duality modelden hesaplanmaktadır. Bundan dolayı, her bir (N,C) ikilisi, 50ms 

ve 100ms arasındaki gecikmede ancak kararsız olur, Kritik (yayılma) gecikmesi dm(N,c) , 

ve kritik frekans fm(N,c) analitik modelden elde edilirler. Tüm deneyler için, bazı 

parametreler sabit tutulmuştur, α = 10-4 , ρ=0.1 / (540-40)=0.0002, ve β=0.5 .  

 

Bu deneyler ns-2’de devamlı FTP kaynakları ve ECN işaretlemeli RED ile 

tekrarlanmıştır. RED parametreleri (0.1 , 40paket , 540 paket , 10-4 ) olarak α  ve ρ 

değerlerine tekabül eder.  Her bir (N,c) ikilisi için, sistem kararlılıkdan kararsızlığa 

geçtiğinde, kritik gecikme dns(N,C)’yi elde etmek için sıra ve pencere eğrilerini inceleriz. 

Kritik frekans fns(N,C) yi, sıra eğrisinin sıra salınımının temel frekansı olan FFT’den 
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ölçeriz. Bundan dolayı, doğrusal modele karşılık gelen,  benzetmelerden  kritik gecikme 

dns(N,C) ve frekans fns(N,c)’yi elde edilir. 

 

Model tahminini benzetme ile karşılaştırırız. Şekil 4.4(a) , doğrusal modelden 

hesaplanan dm(N,C) kritik gecikmeye karşın ns-2 simülatöründen  dns(N,C) kritik 

gecikmesini  çizimini göstermektedir. Her bir data noktası özel bir (N,c) ikilisine karşılık 

gelmektedir. Şekil 4.4(b) kritik frekans fns(N,c) ye karşılık gelen  fm(N,c) çizimini 

vermektedir. Model ve benzetme arasındaki arasındaki anlaşma oldukça mantıklı 

görünmektedir. 

 

Statik bir hat modeli düşünelim ve işaretleme olasılığı hat akış oranının bir 

fonksiyonu olsun, 

 

Pl(t) = fl(yl(t))      

 

Sonra, doğrusallaşan model, 

 

)()()( *1 tyyftp llll =  

 

burada, )( *1
ll yf ,  fl  nin türevidir ve dengeden elde edilir. Ayrıca şekil 4.4(b) de görülen 

kritik frekans, bu statik-hat modelinden tahmin edilmiştir. ( ρ=)( *1
ll yf ile, bu kritik 

frekansı etkilemez), yukarıda tanımlanan aynı Nyquist çizim metodu ile kullanılır. İlgili 

zaman skalasında sıra dinamiklerini anlamlı olarak göstermiştir. 

 



 85 

 (a) Kritik gecikme (ms) 

 
(b)Kritik Frekans (Hz) 

 
(c)Kararlı bölge 

 

Şekil 5.4. Onaylama ve kararlı bölge. Her bir N için, eğrinin üstündeki bölge 

kararsızdır ve altı kararlıdır. 

 

 

 

Şekil 4.4(c), doğrusal model tarafından anlatılan kararlılığı göstermektedir. Her 

bir N için, kapasite c  ye karşılık kritik gecikme dm(N,c) nin grafiğini gösterir. Eğri kararlı 

(alt) ve kararsız (üst) bölgeleri ayırmaktadır. Negatif eğim, gecikme veya kapasite çok 

büyük olduğunda TCP/RED’in kararsız olduğunu göstermektedir. N artarsa kararlı bölge 

genişler, örneğin küçük yük kararsızlığa neden olur. sezgisel olarak, daha geniş bir 

gecikme yada kapasite yada daha küçük bir yük, daha geniş dengeli pencerelere liderlik 

eder; bu da  TCP’nin geniş bir pencere ölçüsünde rahatsız olduğunu doğrular. 
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5.2.4 Kararlılık : Tek Hatlı Karışık Kaynaklar 

 

 

Şimdi N karışık kaynakla tek bir hat durumunda kararlı bölgeyi tanımlayacağız. 

Son alt bölümün doğrusal modelini bu duruma özelleştirirsek, ileri gecikmeyi RTT nin bir 

parçası olarak β Є (0,1) , i
f
i βττ =  ve hat düşmesi alt simgesi l , döngü kazancı olarak , 
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elde edilir. 

 

İlk terim, TCP dinamiklerini , ikinci terim RED ortalamalarını üçüncü terim 

tampon bellek işlemini ve son terim de ağ gecikmesini tanımlar. Tüm kaynaklar benzer 

RTT’lere sahiptir, τi = τ , ve ileri gecikmelerin sıfır, β = 0 , olduğu özel durumda kaynak 

[25]’de analiz edilir. Kapalı-döngü durumu için yeterli şartları sağlarlar ve bunları α ve ρ 

RED parametrelerini ayarlamak için kullanırlar. 

 

Aşağıda kullandığımız bazı denge özelliklerini toplayan bir yardımcı önerme ile 

başlayabiliriz. Eşitlik (5-8)’in sabit noktalarından doğrudan kanıtlanmıştır; yada kaynak 

[26]’ya bakınız. iiττ max:=  , ii ττ min:=   ve   
1

1:ˆ
−
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iτ
τ .  

 

Yardımcı Önerme 1 : p* denge düşme olasılığı, wi
* ve xi

* denge penceresi ve oranıdır.  

Sonra  p* = 2 / (2 + (c^r)2, her kaynak i için wi
* = c^r,  xi

*= wi
*/c = 1.  

Şimdi 
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0θπθ −=  da  ),( θυredh  nın Nyquist çiziminin TCP/RED’in kararlılığını elde ettiğni 

göstereceğiz. πθπ −=− ),( 0vhred  fazında v0 açı olsun.  

 

Teorem 2: Denge penceresi wi
* >= √2 olsun. Sonra kapalı döngü sistemi eşitlik (5.12) 

tarafından tanımlanır ve eğer  

 

αρ
βθπτ −≤− 1),(. 00

33 vhc red  

 

ise kararlıdır. Burada iiττ max:=  dir. 

 

İspat(Taslak). Kapalı döngü sistemi kararlıdır eğer ki L(s), karmaşık düzlemde (-1,0) 

boyunca geçmiyorsa, burada s sağ yarım düzlemde değer alır. Bunu göstermek için, eşitlik 

(5.12)’yi yeniden yazarız. 
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yardımcı önerme 1 şunu içerir, 
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L(s), karmaşık düzlemde N ‘in belirttiği zi(s) tarafından conveks gövde içinde tanımlanır.  

Bu karmaşık gövdenin (-1,0) dan uzakta sınırlandırıldığını, iki adımda göstereceğiz [21]. 

 

Birincisi, büyüklü ve eşitlik (5.15) deki son terimin sınırlandırılmasıdır. Şunu 

gösterebiliriz, 
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eşitlik (5.15) de tanımlanan conveks gövde eşitlik (5.14) de tanımlanan hred(v,θ) nın daha 

geniş karmaşık gövde içerisine yerleştirilmiştir. 

 

Sonra teorem sınırlarının,bu küme (-1,0)’dan uzaktır, hipotezini gösterir. hred(v,θ) 

nun yörüngesi eğridir. 
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negatif yönde θ kadar döndürülmüştür. Bundan dolayı |C(v)|  büyüklüğü, v’de düşer, 

eşitlik (5.17)’da conveks gövdenin sol sınırı θ = Π – θ0  da hred(v,θ) tarafından  tanımlanır. 

düzlemsel eğri hred(v,Π – θ0) ın eğrileştirilmesinin incelenmesiyle, v, 0 dan  +∞‘a  

değişiklik gösterir [32],  bu kümenin sınırlarının | hred(v,Π – θ0)| da gerçek eksende 

kesintiği gösterilebilir. Eğer ki, 
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Bu koşul teoremin hipotezinin altında tutulduğu daha sonra gösterilebilir. hred(v,θ)‘nun 

conveks gövdede L(jw)  Nyquist çizimini sınırlanması düşüncesi, [33]’ün farklı bir 

algoritma tarafından ispat edilmesinden esinlenilmiştir. 

 

5.3 RED Parametre Ayarları 
 
 

Teorem 2 de kararlılık şartının RHS üzerindeki α Є (0,1] ve ρ > 0 parametreleri 

RED’in sıra uzunluğunun çarpansal ortalaması ve işaretleme olasılığının eğimidir. 

Kararlılık için ürünleri küçük olmalıdır. Küçük α yavaş cevaba neden olur çünkü anlık 

sıra uzunluğundaki data geri beslemeye çok yavaşca dahil edilmiştir. Küçük ρ ise geniş 

gecikme meydana getirir, dengedeki ortalama sıra uzunluğu r, ))ˆ(2(/2 2rcbr l ++= ρ  dir.  

Doğrusu kaynaklar benzer olduğu zaman Nττττ ˆ===  dir. Kararlılık şartının LHS’si 

h
N
c
2

33τ  olur. gecikme τ  yada kapasite c arttığı zaman,  TCP/RED kararsız olur, son alt 

bölümdeki benzetme sonuçlarının onaylanmasıdır. Kabaca, c çiftse, denge oranı çifttir ve 

bundan dolayı iki katı frekansda iki katı büyüklükle pencere yarıya indirilir, sonuç da 

kontrol kazancında ikinci dereceden artış sistemi kararsız yapar.  

 

Kaynak [36] da RED parametresi maxp nin dinamik ayarlanması önerilmiştir,  

maxp nin düşürülmesi  N azalır ve aksi takdirde yükselir.  maxp nin yükseltilmesi yada 

maxth nin – minth nin düşürülmesi, teorem 2’de kararlılık şartını içeren yönde arttırmak 

için eşittir. ρ ( = maxp / (maxth - minth)). Teorem 2, verilen N, c, τ (ve α) ile ρ üzerindeki üst 

sınırı ayarlar, bundan dolayı alt sınırıda kararlılığı sağlamak için dengedeki sıra uzunluğu 

üzerindedir. RED parametrelerinin ayarlanması kararlılık ve performans arasındaki 

kaçınılmaz seçeneği korumaz,  sıranın kararlılığı için ya ρ  geniş bir değer etrafında küçük 

ayarlanır ya da  alternatif olarak, şiddetli salınımının harcanmasında,sırayı azaltmak için 

geniş ayarlanır. 
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Aynı kararlılık analizi sanal sıra [37,38,39] ve REM/PI [27,40] gibi diğer 

AQM’lere de uygulandı ve AQM’in rolünü aydınlattılar. Kararlılığın ispatı bir takım 

formun  

 

)},({. θvhcoK  

 

(-1 ,0) ın sağına sınırlanmasına güvenir. Kazanç K ve yörünge h AQM de olduğu gibi 

TCP’ye bağlıdır. Örneğin, c kapasiteli N benzer kaynak tarafından paylaşılan τ gecikmeli,  

tek bir hat için TCP ve ağ gecikmesi yörünge h’a bir parça katkı olarak, 

 

*
1

*wpjv
eh

jv

tcp +
=

−

 

 

ve kazanç K’ya 
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22τ=                                                   (5.18) 

 

küçük bir katkıda bulunur. Denge penceresi geniş varsayılır böylece p*= 2/wi
2=2N/cτ olur. 

bu yüksek kazanç eşitlik (5.18) , esas olarak yüksek gecikme, yüksek kapasite yada düşük 

yükde kararsızlıkdan sorumludur.  AQM, bu etkiler için h şekillendirerek ve K yı 

düşürerek telafi eder. RED’le, örneğin, 
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h da ilk terim RED ortalaması yüzünden, ikinci terimde sıra dinamikleri yüzünden  θ ≤  π 

– θ0 sınırlanır. Bundan dolayı sıra ve RED’in her ikiside faz geri kalmasını h ‘a ekler. 

Daha önemlisi , RED başka cτ yi kazanç K ‘ya ekler, kararlılık için küçük αρ zorunlu 
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kılınır ve ağır cevap ve geniş dengeli sıraya sebep olur. K daki τ / (1 - β) parçası sıradan 

gelir. 

 

5.4 Kararlılık Kontrolü 
 

Kaynak [29]’daki ölçüler şimdiki internette gecikmenin hala geniş olduğunu 

göstermektedir (RTT ölçülerinin %85’i 15-500 ms aralığındadır). Önceki bölümlerin 

sonuçları şimdiki protokolün böyle çevreler için kötü düzenlendiğini belirtmektedir. 

Dahası, gelecekte ağ kapasitelerinin genişlemesi  ile bu durum daha da kötüleşecektir. 

TCP tarafından belirtilen yüksek kazancı telafi etmek için AQM’lerin tasarlanması da zor 

görünmektedir. Bu bölümde, [28]’de geliştirilen, kaynaklar ve hatlar tarafından dağıtılmış 

merkezi olmayan bir yolla gerçekleştirilen ve kararlı olan bir protokol tanımlayacağız, bu 

rastgle seçilen gecikme, kapasite, yük ve yönlendirme için doğrusal kararlılığı devam 

ettirir. Dahası, küçük sıralar ile yüksek ağ kullanımının dengesini sağlamayı başarır. Bu 

gereksinimler doğrusal dinamikler üzerinde bazı sınırlamaları kabul ettirir. Hatlarda 

bütünleşme ve kaynaklarda ve hatlarda kazanç şartlarıdır. 

 

5.4.1 Algoritma 

 
Kaynak [28] deki sıkışıklık kontrol algoritmasını özetlersek, bu statik kaynak 

algoritmasını ve birinci dereceden dinamik hat algoritmasını içerir. Buradaki ana fikir, 

kaynaklardaki gecikmeyi, bireysel RTT’lerle oranlardaki kazançları küçülterek telafi 

etmek ve kapasite ve yönlendirme tarafından belirtilen döngü kazançlarını, varolan 

oranlarıyla kaynaklarda büyüterek ve kapasiteleriyle kontrol kazancının küçültülmesiyle 

telafi etmektir. Diğer bir deyişle, eğer gidiş dönüş gecikmesi genişse yada oranı küçükse 

kaynak daha da yavaşlayarak tepki verir;  eğer hat daha geniş bir kapasiteye sahipse 

sıkışma ölçüsünü (price , ücret) daha yavaş olarak günceller. Ağ gecikmesi sadece açık – 

döngü parametresidir, kontrolümüz altında değildir ve sistem cevabının zaman skalasını  

ayarlamalıdır. 
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RED’in doğrusal olmayan modelinde tanımlanan ağ modelini düşünelim, pl(t), t 

zamanında l hattında ücret olsun ve cl sanal kapasite (gerçek kapasiteden daha az ) olsun. 

Her bir l hattı kendi ücretini giriş oranını yl(t)=∑sRlsxs(t)  kullanarak ayarlar. 
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Bundan dolayı ücretler fazlalık olan kapasiteleri normalleştirilmiş yolla bütünleştirir ve 

her zaman negatif olmamaya doyurulur. Dengede, sıfır olmayan ücretlerle dar geçitler 

yl
*=cl, sahip olurlar, yüksek kullanım verirler. yl

* < cl ile dar olmayan geçitlerin ücretleri 

sıfır olacaktır. cl gerçek kapasiteden küçük olduğundan , dengede sıra ihmal edilebilir. 

Eğer cl gerçek kapasiteyse, pl(t) gerçek sıra gecikmesi olur, TCP Vegas’da [30] bir sıkışma 

sinyali kullanılır. 

 

xi(t) t zamanında i kaynağının oranı olsun, τi RTT’si ve Mi yolunda sıkışan hat 

sayısıdır (yada üst sınır). Verilen toplu ücret qi(t) =∑lRlipl(t)   , kaynak i, qi(t) ‘de oranını 

çarpansal olarak ayarlar, 
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burada xmax,i maksimum oran parametresidir, ve α Є (0,1). Araç (utility) fonksiyonu 

kaynak kontrolüne karşılık gelir, o da,  
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τ ,   her x ≤ xmax,i ; 

 

Yönlendirme matrisi R nin tam satır sırasına sahip olduğu varsayılır. sonra tek 

bir denge oranı ve ücret vektörü (x*,p*) vardır. Denge etrafında doğrusallaştırılmış sistem 

şu şekilde tanımlanır, 
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burada kaynak oranları x(t) ve hat ücretleri p(t) , eşitlik (5.10 – 5.11) de tanımlanan 

geciken yönlendirme matrisi tarafından birbirlerine bağlanmıştır. 

 

Aşağıdaki teorem kaynak [28] de ispatlanmıştır, rastgele seçilen bir gecikme, 

kapasite ve yükde ağ büyüdüğü zaman algoritmanın kararlılığını garanti eder. 

 

Teorem 3([28]):  R de içerilen tüm hatların dar geçit olduğunu varsayalım, Örneğin  

dengede c = Rx* ve R tam dolu satır sıralarına sahiptir. Daha sonra eşitlik (20-21) 

tarafından tanımlanan kapalı-döngü sistemi ve eşitlik (5.10 – 5.11), rastgele seçilen 

gecikmeler τi ve hat kapasiteleri cl için  doğrusal olarak kararlıdır. 

 

5.4.2 Gerçekleştirim ve Performans 
 

Eşitlik (5.19) deki hat algoritmasını gerçekleştirmek için basit bir yol, alınan 

paketlerle arttırılan ve sanal kapasite oranında azaltılan “sanal sıra” sayacının devamını 

sağlamaktır. Sonra ücretler sanal kapasite tarafından sayacın bölünmesiyle elde edilir. 

 

Kaynaklar kendilerinin RTT τi ‘ni ölçerler. Hedef durum boş sıralarla dengede 

olduğundan, τi yayılma gecikmesidir; bundan dolayı, kaynak güncellenmesinde (5.20) di 

nin bir tahmininin (tipik olarak elde edilen en küçük RTT) kullanılması önerilir, bu 

Vegas’da yapılmaktadır. Bu, gerçek sıranın geçici turları RTT aracılığıyla azaltıcı etkiye 

sahip olma olasığından kaçınmaktadır. Ayrıca kaynaklar ağdan iki parametre almak 

zorundadır, bu parametreler toplu ücret qi , ve dar geçitlerin sayısı Mi ‘dir. İletişim kurmak 

için qi, rastgele çarpansal işaretleme tekniği kullanılabilir. Burada bir paket, her bir l 

hattında 1,1 >− − φφ lp    olasılığı ile işaretlenmiş olur. Bağımsızlığı varsayalım, bir paketin 
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kaynak i den  işatlenmesinin tüm olasılığı lq−−φ1  dir, bundan dolayı qi işaretlenme 

istatistiklerinde tahmin edilebilir. Bu, global bir sabiti bir öncelik ayarlayan ’nın öz 

bilgisini gerektirir. Mi hakkında ise, en basit gerçekleştirmede basitce bir üst sınırı 

kullanabilir. paket seviyesi gerçekleştiriminin hazırlığı paralel simülator Parsec [41], 

kullanılarak yapılır. Bu benzetme, pencere yönetimi, hat sırası ve gecikmesini içerir, ama 

bu noktada işaretlemeyi içermez ; ücretler, ondalıklı sayılar olarak ifade edilirler. N, c, d 

‘nin geniş bir sınıfı için aynı şekil 5.1 deki parametrelerle, tek bir hattı simüle ederiz. Şekil 

5.5, kişisel pencere ve sırayı göstermektedir, beklendiği gibi kişisel pencere ve sıra, 

gecikme ne olursa olsun yakınlaşırlar. Kapalı döngü davranışı için daha uzun gecikmeler, 

daha uzun zaman skalası ayarlar. 

 

 
(a) Kişisel pencere (gecikme = 40ms) 

 

 
(b) Sıra (gecikme = 40ms) 
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(c) Kişisel pencere (gecikme = 200ms) 

 
(d) sıra (gecikme = 200ms) 

 

Şekil 5.5. Kişisel pencere ve sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite 

= 9 paket/ms, α=0.8, sanal kapasite = %95. 

 

Bu noktada, performansın harcanmasında elde edilen protokolün kararlılık 

durumu ne olursa olsun, bir şaşkınlık olabilir. Örneğin cevap zamanını çok yavaşlatması. 

Bununla beraber şekil 5.1 deki karşılaştırma bu durum değildir. Burada Reno ve yeni 

protokolün kararlı duruma ulaşabilmesi için yaklaşık 50 RTT’ye ihtiyacı vardır. Mesela 

200ms’lik gecikme durumunda, Reno’nun limit sayıya ulaşabilmesi yaklaşık 10 saniye 

alır ve bizim protokolümüz içinde boş sıra ile dengeye ulaşabilmesi için aynı miktar  

zamana ihtiyaç vardır. 
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BÖLÜM 6 
 

RED’İN KONTROL TEORİSİ ANALİZİ 
 
 

Kaynak [7], Ağ topluluğundaki araştırmalara liderlik etmiştir, AQM’ler için IP 

yönlendiricilerinde RED’in gerçekleştirimini önerilmiştir. RED’in akışların eş 

zamanlılıkları ile ilgili problemleri hafiflettiğine ve ayrıca zeki düşürme tarafından 

servisin kalitesinin bazı kavramlarını sağladığına inanılmıştır. RED’in analizi birçok 

ilginç yazıdan genelleştirilmiştir. RED parametrelerinin ayarlanması bazı zamanlar için 

hatalı olmaktadır, kullanılan RED’e karşı ayarlanmasının zorluğundan dolayı [10,22],  

birçok araştırma savunulmuştur. Sayısız RED değişimleri önerilmiştir. Kaynak [12-

14],[36], belkide RED’in dinamiklerini tamamen anlayabilmenin zorluğundan motive 

olmuştur [25]. 

 

Kaynak [49]’da yazar RED parametrelerinin önerilerinin sorunlarını keşfetti ve 

göz atılan kuralları ve seçimleri için bir kılavuz verdi. Bu bölümde kontrol teoriği 

bakımından, kaynak [25] tarafından keşfedilen benzer şekilde daha ciddi problemler 

incelenmiştir. TCP ve RED dinamiklerinin daha önce geliştirilmiş bir modelini, 

analizimizin başlangıç noktasını göstermek için kullandık. Kalıtsal olarak sunulan 

doğrusal olmayan model, doğrusallaştırma (linearization) tekniği aracılığıyla doğrusal bir 

sisteme dönüştürülmüştür ve klasik doğrusal geri besleme kontrol teorisinde sonradan 

gelen iyi geliştirilmiş araçlara uyguladık. Doğrusal kararlı sistemlerin tasarımında, olduğu 

gibi doğrusal sistemin kararlılığı ve güçlülüğünü belirten, sağlanan metrikleri veren bir 

kılavuz verebiliriz. Analizimiz ayrıca çeşitli parametre seçeneklerinin takası ile ilgilidir. 

Bu analizde doğrusal olmayan benzetmeler aracılığıyla iyi bilinen ns-2 simülatörünü 

kullanılmıştır [25]. 

6.1 MODEL 

 
Tartışmamıza AQM’in ilk önce TCP’nin sıkışıklıkdan kaçınma modu için bir 

dinamik modelin tanıtılmasıyla başlıyoruz. 
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6.1.1 TCP davranışının bir akıcı-akış modeli 

 
Kaynak [54]’de, TCP davranışının bir dinamik modeli, akıcı-akış ve tahmini 

diferansiyel eşitlik analizleri kullanarak geliştirildi. Benzetme sonuçları gösterilmiştir, bu 

model hatasız olarak ele geçirilen TCP’nin dinamikleridir. Bu bölümde, bu modelin TCP 

zaman aşımı mekanizması yok sayılarak basitleştirilmiş bir versiyonu kullanılmıştır. Bu 

model anahtar ağ değişkenlerinin ortalama değeri ile ilgilidir ve aşağıdaki birleştirilmiş 

doğrusal olmayan diferansiyel denklemlerle tanımlanır. 

 

))((
))((2
))(()(

)(
1)( tRtp

tRtR
tRtWtW

tR
tW −

−
−−=  

 

CtN
tR
tWtq −= )(
)(
)()(                                                         (6.1) 

 
 
Burada x  , x ‘in zaman türevini belirtmektedir. Ve 

 

W = beklenen TCP pencere ölçüsü (paket); 

q = beklenen sıra uzunluğu(paket); 

R = gidiş dönüş zamanı (RTT) = q/C + Tp (saniye); 

C = hat kapasitesi(paket/sn); 

Tp = yayılma gecikmesi (sn); 

N = yük faktörü (TCP oturumlarının sayısı); 

p = paketlerin işaretlenme/düşme olasılığıdır.  

 

Sıra uzunluğu q ve pencere büyüklüğü W pozitif ve sınırlı büyüklüklerdir; yani, 

[ ]qq ,0∈  ve [ ]WW ,0∈  , burada q  ve W  tampon bellek kapasitesi ve en büyük pencere 

ölçüsüdür. Ayrıca işaretleme olasılığı p de sadece [0,1] aralığında değerler alabilir. Bu 

diferansiyel denklemleri blok diyagram olarak TCP pencere-kontrol ve sıra dinamiklerine 

dikkat çeken şekil 6.1’de gösterdik. Şimdi bu dinamikler küçük sinyal 
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doğrusallaşmalarıyla, AQM geri besleme kontrol sistemlerinin önerilerinde iç yüzünü 

anlamak için yaklaşık bir işletim noktası civarındadırlar. 

 

6.1.2 Doğrusallaştırma   

 
 

(W,q) durum olarak ve p giriş olarak alınır, işletim noktası (W0,q0,p0), 

00 == qveW   tarafından tanımlanır. Böylece  

 
20 0

2
0 =⇒= pWW  

 

N
CRWq 0

00 =⇒=                                           (6.2) 

 
 

Burada,  

 

pTC
qR += 0

0   

 

 
Şekil 6.1. TCP sıkışıklıkdan kaçınma akış kontrol modunun blok diyagramı [25]. 
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N(t) ≡ N ve R(t) ≡ R0 sabitler olarak varsayalım, işletim noktası etrafında elde 

edebilmek için doğrusallaştıralım. 

 

)(
2

))()(()( 02

2
0

02
0

Rtp
N
CRRtWtW

CR
NtW −−−+−= δδδδ   

 

)(1)()(
00

tq
R

tW
R
Ntq δδδ −=                                                          (6.3) 

 
 

Burada   
 

;0WWW −=δ  
;0qqq −=δ  
.0ppp −=δ  

 
 

Diferansiyel eşitlikler üzerinde Laplace dönüşümünü yapan, şekil 6.2’de 

gösterilen doğrusallaştırılmış dinamiklerdir.  

 

 
Şekil 6.2. Doğrusallaştırılmış TCP bağlantılarının block diyagramı [25]. 

 

Hatırlatmalar 1 [25]: 
 

1. Kaynak [56]’da, TCP’nin pencere kontrol mekanizması için bir model geliştirildi 

ve ispat edildi,  ve Smith düzenleyici yapısına dahil edildi [57]. Bununla beraber, 

bizim modelimiz, eşitlik (6.3) ve şekil 6.2 bu açıklamayı desteklemez. Hakikaten, 
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TCP pencere kontrolü için şekil 6.2’nin Smith düzenleyici yapısı gibi davranması 

için 0
2
0

sRe
CR
N −  teriminin 0

0

2

1
1

2
sRe

R
sN

C −

+
−  ile yer değiştirmelidir. 

 

2. Kaynak [58]’de TCP’nin pencere kontrol mekanizması için bir model geliştirildi 

bu eşitlik (6.3)’dekine benzemektedir. Bunun yanında bu model bir sıra dinamiği 

içermez. Dinamik sistem düşünülür bundan dolayı bizimkinden küçük bir farkı 

vardır, ve analiz ve sonuçları ile bizim ulaştığımız sonuca katılmaz. 

 

 

3. Gecikme terimi e-sR
0 ‘ı TCP pencere kontrol dinamiğinde şekil 6.2 de gösterdik ve 

aşağıdaki durumda anlamlı değildir. 

 

0
2
0

1
RCR

N <<  

 

bundan dolayı 

 

00
2
0

1
RWCR

N =  

 

bu gecikme terimi eğer W0 >> 1 ise yok sayılabilir. Tipik ağ şartları için, W0 >> 1 

kabul edilebilir bir varsayımdır ve bundan dolayı yazının geri kalanı için bu 

gecikme terimi yok sayılacak ve basitleştirilmiş dinamik düşünülecektir. 

 

)(
2

)(2)( 02

2
0

2
0

Rtp
N
CRtW

CR
NtW −−−= δδδ   

 

)(1)()(
00

tp
R

tW
R
Ntq δδδ −=                                           (6.4) 

 
 

blok diyagramı şekil 6.3 de gösterilmiştir. 
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Şekil 6.3. W0 >> 1 olduğunda doğrusallaştırılmış TCP bağlantılarının block diyagramı 

[25]. 

 
 

4 Doğrusallaştırılmış TCP’nin eigen değerleri ve sıra dinamikleri eşitlik (6.4) ‘de 
sırasıyla,  

 

000
2
0

1)2(2
R

ve
RW

yada
CR
N −−−  

 

Tüm ağ parametrelerinin pozitif değerler olmasından dolayı, bu negatif Eigen 

değerleri doğrusal olmayan dinamiklerin denge durumunu belirtir, yerel olarak 

asimptotik olarak kararlıdır. TCP pencere-kontrol zaman sabiti 
2
00RW ‘nin yorumu, 

aşağıdaki Wδ eşitliğinin doğrusallaşmasının ifade edilmesinden gelir, 

 

)(
2

)()( 02

2
0

0 Rtp
N
CRtWtW −−−= δδλδ   

 
 

burada λ0,  kaynak [54]’da tartışıldığı gibi dengeli paket işaretleme oranıdır. 

Bundan dolayı  pencere kontrol zaman sabiti eşiti olarak 1/ λ0  ifade edilebilir. 

Dengede, 0=W  pencere ölçüsündeki çarpansal düşüşü (multiplicative decrease) 

00½ λW , eklemeli artışını 1/R0 dengeler. Sonuç olarak  
00

0
2
RW

−=λ  . TCP 

sıkışmadan kaçınma döngüsünün ortalama frekansı olarak gevşekce yorumlanır. 
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5 Son olarak, sıra dinamiklerinin doğrusallaştırılması sade bir bütüleştirici 

kazandırmaması beklenen ve literatürde görülene göre ilginçtir [14], ama  R0 

zaman sabiti ile sızıntılı bir bütünleştirici üretilir. Bu parçalı olarak, sıra içine 

giden akışın sıra uzunluğunun bir fonksiyonu olmasıyla açıklanabilir. Bu akış 

NW/R0 dır, burada RTT’nin bir parçası R0  sıra gecikmesi q/C den dolayıdır. 

 

6.2 AQM KONTROL PROBLEMİ 

 

 
 

Bu bölümün konusu eşitlik (6.4)’de tanımlanan TCP dinamiklerini, TCP yükü N 

, RTT’si R0 ve sıra kapasitesi C gibi ağ parametreleri cinsinden ve AQM’in geri besleme 

doğası cinsinden analiz eder. Ayrıca AQM’in performans amaçlarını tartışacağız. 

 
Doğrusallaştırılmış TCP modeli eşitlik (6.4) kullanılarak şekil 6.5’deki blok 

diyagramda da görüldüğü gibi bir AQM kontrol sistemi modellenebilir. Bu diyagramda 

Ptcp, kaybolma olasılığından δp  pencere büyüklüğüne δW ve Psıra bağlıdır δW sıra 

uzunluğuna q transfer fonksiyonlarını belirtir. e-sR
0 terimi geciken düşme olasılığındaki 

δp(t-R0) zaman gecikmesinin Laplace dönüşümüdür. Kontrol sistem dilinde, “kontrolör” 

veya “denkleştirici” olarak, geri kalanını da “sistem” (plant) olarak  AQM kontrol yasasını 

belirtiriz. Denkleştirici tasarımının amacı “kararlı” kapalı döngü sistemi sağlamaktır. 

Bunun yanında, kararlılığın ötesinde kontrol tasarımına etkilerine ilgileri vardır. İlk önce 

sistem, kabul edilebilir iletim cevabına sahip olmak zorundadır. İkinci olarak düzenleyici 

tasarımı, model hataları ve model parametrelerinin çeşitliliğinde kuvvetli olmalıdır. 

Bundan dolayı, kontrol mühendislerinin amacı emniyet payı ile sistem tasarlamaktır. Bu 

paylar kararlılık payı olarak adlandırılırlar. Bu göreceli kararlılığı ölçmek için iki klasik 

metrik vardır. Bunlardan birincisi kazanç payıdır. Bu, kararlı sistemin, kararsız olmasında 

kazanılan açık-döngü kazancının bir parçasıdır. Şekil 6.1’e bakarsak, kazanç payı kabaca 

yük seviyesi N de kesin değildir, tasarım bu durumu hoş görebilir. Bu ölçülerin ikincisi faz 

payıdır. Faz payının tanımı biraz daha karmaşıkdır, ama bu bağlamda, faz payını RTT 

gecikmesindeki belirsizliğin miktarı olarak yorumlayabiliriz, bir tasarım kararsız olmadan 

güçlü tutabilir. Sistemin kararlılık payı  Bode çizimlerinden okunarak anlaşılabilir. Bir 
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Bode çizimi, açık döngü sisteminin frekans cevabının çizimidir. Sistemin büyüklüğü ve 

faz cevabı çift kayıt skalası üzerinde çizilir. Sistemin kazanç payı faz cevabının -1800 

olduğu noktadaki, sistemin cevap büyüklüğüne eşittir. Faz payı mφ  , wpm-180 olarak 

tanımlanır, burada wpm , cevap büyüklüğünün birleştiği (yada 0dB) yerdeki frekansdaki faz 

cevabıdır. Şekil 6.4’de iki miktar gösterilmektedir. Sezgisel olarak eğer pozitif payımız 

yoksa, geri besleme kontrol sistemi pozitif bir geri besleme sistemi gibi davranmaya 

başlar, yani birisi hata aldığında döngüde güçlendirilir, farklı ve kararsız davranmasını 

sağlar [25]. 

 

 
Şekil 6.4. Kararlılık payı. 

6.2.1 Sistem dinamikleri 
 

Şekil 6.5’de AQM sisteminin tarif edildiği bir geri besleme kontrol sistemi 

verdik. Bir AQM kontrol yasasının hareketi paketleri ölçülen sıra uzunluğu q nun bir 

fonksiyonu olarak işaretlemektir. (p olasılığı ile). 
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Şekil 6.5. Geri besleme kontrolü olarak AQM. 

 
 
 

Şekil 6.5’den , sistem transfer fonksiyonu, P(s) = Ptcp(s)Psira(s), ağ parametrelerinin 

kazancı cinsinden ifade edilebilir. 
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sPtcp
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0
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sPSira
+

=                                                (6.5) 

 
iki kutup için -2N/(R0

2C) ve -1/R0  olarak ptcp ve psira sırasıyla gönderilir. 

 

Sistem dinamikleri transfer fonksiyonu P(s) tarafından belirtilir, sonra bu paket 

işaretleme olasılığının nasıl dinamik olarak sıra uzunluğunu etkilediğini gösterir. Eşitlik 

(6.4)’den ve şekil 6.3 den, şuna sahibiz , 

 

.
)1)(2(

)
2
(
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0
2
0

2
0

R
s

CR
Ns

e
N
C

sP
sR

++
=

−

                                           (6.6) 

 
 

Hatırlatmalar 2: 
 

1. Eşitlik (6.6)’da  P(s) nin yüksek frekans sistem kazancı C2/2N ‘dir. Bu kazançdaki 

değişim TCP yükü N ‘in bir fonksiyonu olarak  AQM kontrol şemasının 
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tasarımıyla ilgisi olmalıdır, bundan dolayı kararlılık, geçici cevap ve sağlam 

durum performansı ile doğrudan ilgilidir. Gerçekten küçük bir TCP yükü N yüksek 

frekans kazancını arttırır, kararlılık payını düşürmeye ve salınım cevabını 

arttırmaya önder olur. Karşıt olarak, daha geniş TCP yükü, kapalı döngü geçici 

cevabının gücünü azaltmaya eğimlidir. 

 

2. Zaman gecikmesi R0 ‘ın yüzeyinde kararlı AQM, kapalı-döngü kontrol bant 

genişliğinde büyük bir limite yerleştirilir ve sonuç olarak geçici cevabın 

başarılabilir hızınındadır. Kararlı davranış için, kapalı-döngü zaman sabitleri aşağı 

yukarı R0/2 sn tarafından sınırlandırılır. 

 

6.2.2 AQM Performans Hedefleri 
 
 

Herhangi bir kontrol sisteminin tasarımında, birinci adım performans hedeflerini 

ortaya çıkarmaktır. AQM için, performans hedefleri, etkin sıra kullanımı, düzenlenmiş 

sıra gecikmesi ve sağlamlıkdır. 

 

1.Etkin sıra kullanımı : Etkin kullanım için, sıra aşırı yükden yada boşlukdan 

kaçınmalıdır. Önceki durum, boş bir tampon hattan faydalanırken  kayıp paketler ve 

istenmeyen geri iletim sonuçlarını verir. Bu iki durumdan da, geçici ve sağlam durum 

işlemlerinde kaçınılmalıdır. 

 

2.Sıra gecikmesi: Veri paketinin, yönlendirme sırası tarafından servis edilmesi için 

gereken zaman sıra gecikmesi olarak adlandırılır ve q/C ye eşittir. Bu zaman yayılma 

gecikmesi Tp ile birlikte, ağ gecikmesinin hesabını verir ve sıra gecikmesi ve 

dönüşümlerini küçük tutmak arzu edilebilir. Bu küçük sıra uzunluklarını düzeltmek için 

çağrılır ; bunun yanında, böyle yapmak hatta kullanım altında ve bu sınırlamayla AQM 

tasarımında temel bir değişimle sonuçlanabilir. 

 

3.Sağlamlık : AQM şemaları, kapalı-döngü performansını devam ettirmek için ağ 

şartlarının görüntüsünde değişikliğe ihtiyaç duyabilir. Bu şartlar, TCP oturumlarının 
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sayısındaki değişimler N, yayılma gecikmesindeki değişimler Tp ve kısa yaşamlıların 

sıraya tanıtılmasıdır. 

6.2.3 RED Tasarımı 
 
 

Bir aktif sıra yönetim sistemi (AQM) şekil 6.6’da gösterildiği gibi bir geri 

besleme kontrol sistemi olarak modellenebilir. Burada P(s)e-sR
0 daha önceden türetilen 

TCP sıra dinamiklerinin küçük-sinyal doğrusallaşmasını belirtir (sıra uzunluğu q0 

civarında doğrusallaştırılır). P(s) daha önceden türetilen Ptcp(s) Psira(s) dır. δp ve δq 

kaybolma olasılığı ve sıra uzunluğundaki karışıklığı belirtir. Şekil 6.6’da transfer 

fonksiyonu C(s) tail-drop yada RED gibi bir AQM kontrol stratejisini belirtir. 

 

Tail-drop bir açma-kapama kontrol stratejisidir. Şekil 6.6’da ayarlarımız 

cinsinden, tail-drop miktarları açık-kapalı hareketi için δp Є {0,1} dir. Kontrol teorisinden 

böyle bir açık-kapalı mekanizması salınımlara sebep olur, bu salınımlar karmaşık ve kaos 

davranışlarını göstermektedir [56]. Böyle salınımlar sıra yönetiminde istenmeyebilir ve 

RED bunları düzeltmek için tanıtılmıştır. 

 
RED için bir transfer fonksiyon modeli , 
 

,
1/

)()(
+

==
Ks
LsCsC red

red                                               (6.7) 

 

 
Burada 
 
 

;
minmax

max

thth
red

pL
−

=      ,
)1(log

δ
aK e −=  

 

 

α  > 0 sıra ortalama parametresidir ve δ örnek zamandır [54].  Cred(s) tasarımında AQM 

kontrol sistemini düzeltmek için, hem TCP oturumlarının sayısındaki değişim N ve hemde 

RTT R0 hesap içine alınmalıdır. R0 daki değişimler yayılma zamanı değişkeni Tp 

yüzündendir. Burada 
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pTC
qR += 0

0  

 

TCP oturumlarının sayısı için bir sınıf varsayalım ve N ≥ N-  ve RTT R0 ≤ R+ 

olduğunu söyleyelim. RED parametreleri Lred ve K ‘yı seçmek için eşitlik (6.7) hedef  şekil 

6.6 da tüm N ve R0 için doğrusal kontrol sistemini düzeltmektir. Eğer sınırlanmış dış 

girişler sadece sınırlanmış çıktılar üretirse, şekil 6.6 daki doğrusal geri besleme kontrol 

sistemi kararlıdır. Bu gelmiş olan, ilk şartlara cevapları gerektirir, sınırlandırılabilir ve 

çarpansal olarak sıfırda birleştirilebilir. Kararlılığın bu tanımı altında, aşağıdaki iki 

önermeyi verebiliriz.  

 
Önerme 6.1: Lred  veK aşağıdaki koşulu sağlar, 
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Burada 
 

}.1,
)(

2min1.0 2 ++

−

⎩
⎨
⎧

=
RCR

Nwq                                                    (6.9) 

 
 

Daha sonra, şekil 6.6 daki geri besleme kontrol sistemi C(s) = Cred(s) kullanarak eşitlik 

(6.7) her N ≥ N- ve her R0 ≤ R+ için kararlıdır. 

 

İspat : Telafi edilen transfer fonksiyonu döngüsünün frekans cevabını düşünelim 
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Bu ve eşitlik (6.9)’dan, şuna sahibiz, 
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Şimdi verilen her N ≥ N- ve her R0 ≤ R+ için,  
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Bundan ve eşitlik (6.8)’den, bu |L(jwq)| ≤ 1 her N ≥ N- ve her R0 ≤ R+ için, takip 

eder. Bundan dolayı, birleşen-kazanç frekans ile kesişir üstten wq ile sınırlanır. Kapalı-

döngü kararlılığını ayarlamak için, Nyquist kararlılık kriterini isteriz [12] ve 
0180)( −>∠ qjwL ‘i gösteririz. Bu sonda, tekrar eşitlik (6.9)’u aşağıdaki eşitliği elde 

etmek için kullanırız, 
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Şekil 6.7. Kararlı RED parametreleri Lred ve K. 

 
 
 

Hatırlatmalar 3: 
 

1. Bu seçimin parametrelerinin arkasındaki mantık Cred(s) i baskın kapalı-döngü 

davranışına zorlar.  Bu, TCP zaman sabiti −

+

N
CR

2
)( 2

 yada sıra zaman sabiti R+ dan 

birinden büyük kapalı-döngü zaman sabiti (≈1/wg) nin işaretlenmesi ile yapılır. 

 

2. (Lred,K) nın farklı seçimleri yukarıdaki şartı sağlar. Örneğin, R+=0.25 sn, N-=40,60 

ve 80 akış ve C=3750 paket/sn olduğu zaman kabul edilebilir parametrelerin bir 

bölgesi şekil 6.7’de gösterilmiştir. 

 

 

3. Bu RED tasarımı doğrusal olarak ağ parametre değişimlerine N ≥ N- ve  R0 ≤ R+ 

sağlamdır. Genişletmek için aşağıdaki önerme 6.2 ‘de tanımlanan parametrelerin 

değişimine ek olarak bu geri besleme kontrol sistemi kararlıdır. 

 

4. wq nun seçiminde bu 0.1 artan parçası kararlılık payını sağlar. Eğer 0.1’den daha 

büyük bir değer seçersek, daha düşük bir kararlılık payıyla bir düzenleyici üretiriz. 



 110 

Daha agresif  olan tasarımın faydası daha hızlı cevap zamanları vermesidir (wq 

daki artış yüzünden). 

 

5. N- den büyük tüm yük seviyeleri için sistemin kararlı olması sezgisel sayaç gibi 

görünmektedir. Aslında, eğer yük seviyeleri kaybolma profilinin süreksizlik 

bölgesinde bulunan işletim noktasının bulunduğu bölgeye sistemi sokarsa, sistem 

salınabilir. Bu kaynak [49] da ele alınmıştır. Bunun yanında gentle-mekanizma, 

kaynak [60]’da kararsızlıkla alakalı süreksizliği kaldırır. 

 

6. Yüksek yük seviyelerinde, kaybolma olasılığı bazı akışların zaman aşımına 

gitmesi için yeterince yüksek olur. Modelimizde ve analizimizde zaman aşımlarını 

yok saydık. Zaman aşımları, analizimizde kararlılığı  etkilememelidir; hakikaten 

sistemi daha az salınıma eğilimlendirirler. 

 

7. Sunulan analizler RTT R+ üzerinde bir üst sınır olarak düşünüldü. Bunun yanında, 

eğer bazı akışların RTT’leri bu sınırı aşarsa sistem kararsız olur. Aslında, karışık 

RTT’lerin önünde, akışların RTT’lerine ne eşdeğer çağırıyorsak bu sınır 

yorumlanmalıdır. Basit durumlar (tek daralan kısım) için, RTT akışların kişisel 

RTT’lerinin harmonik ortalamasıdır. N akışlı karışık RTT Ri ‘ye sahip bir senaryo 

düşünelim. RTT’nin harmonik ortalaması (Req) şu şekilde verilir , 
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Şimdi, daraltılmış kısımdaki routerda, kapasite farklı akışlar tarafından paylaşılır. 

Bundan dolayı, dengede, zaman aşımlarını yoksayarak ve işlem hacmi için kaynak 

[61,62] basitleştirilmiş 2  formülü kullanılır ve  şuna sahip oluruz, 
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Bundan dolayı ortalamadaki sistem davranışı N akışlı bir sistem olarak, her biri benzer 

RTT eşitliklere sahiptir. Buda Req dur. 

 

Önerme 6.2 : Herhangi bir RED düzenleyicisi Cred(s)’in  önerme 6.1 içerisindeki şartları 

eşitlik (6.8) ve eşitlik (6.9) sağladığını düşünelim. Daha sonra, şekil 6.6 daki doğrusal 

kontrol sisteminin kazanç payı (GM) ve faz payı (PM)’dır. 

 
085;5 ≥≥ PMGM π  

 

Sonuç olarak, eğer R0 < 15R+ yada N>(1/5π)N- olduğunda, bu doğrusal kontrol sistemi  

kararlı olarak kalır. 

 

İspat: Önerme 6.1’deki ispatında yapılanların bir faz hesaplamasını kuvvenlendirmesi 

şunu verir 
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Bundan dolayı, .85)(180 00 ≥∠+= gjwLPM  Fazın yavaşlaması ilave edilen RTT 

gecikmesi ∆R den dolayıdır, 

 

.Rwe g
Rjwg Δ−=∠ Δ−  
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Eşitlik (6.9)’dan, wq ≤ 0.1/R0 dır. Bunu ve )
180
(85 π=ΔRwg  kullanılması ∆R≤ 14.8R yi 

verir. Kazanç payı hesaplaması için önerme 6.1’in ispatından şunu tekrar çağırırız, 
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Sonuç olarak,  
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Bundan dolayı 
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daha düşük bir sınır verir. wg ≤ 0.1R0 olduğundan GM ≥ 5π dir. 

 

Örnek 1: Ağ parametresi C=3750 paket/sn, N- = 60 ve R+= 0.2 sn durumunu düşünelim. 

(6.9) ‘dan, 

 

wq=0.1min{0.5259,4.0541} = 0.053 rad/sn. 

 

K=0.005 için, eşitlik (6.8)’den  şöyle hesaplarız, 
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Bundan dolayı Cred  için bir seçenek şudur, 

 

1
005.0

)10(86.1)(
4

+
=

−

ssCred  

 

Gerçekleşme cinsinden, Cred(s) ye aşağıdaki gibi kırabiliriz. 

005.0;)10(86.1 4 == − KLred  

 

Şimdi, 3750 paket/sn’lik bir hat kapasitesi için,δ = 2.66(10-4) , α kazancı, ortalama ağırlık 

olarak 1.33(10-6) dır. Lred = pmax / (maxth-minth) dır. Bundan dolayı, eğer pmax’ı 0.1 olarak 

seçersek, ortalama sıra uzunluğunun dinamik sınıfı yaklaşık 540 paket olur. 

 

Hatırlatmalar 4: 
 

1. Salınımsız durum düzeltmesi açısından, Lred i mümkün olduğunca büyük seçmek 

istenen bir durumdur.  Salınımsız durum düzeltmesiyle, δq,nın  salınımsız 

durumda 0’a düşürülmesi gerektiğini söylemek istiyoruz. Bunun yanında RED 

mekanizması altında sıra uzunluğunu kararlı sistem için) salınımsız durum değeri 

ağ şartlarına göre değişir. Bundan dolayı doğrusal modelimizdeki  δq istenmeyen 

bir özellikde olsa asla sıfıra gitmez. Bu salınımsız durum hatasını K yı düşürerek 

azaltabiliriz. Eşitlik (6.8)’den, K→0 , Lred→∞ ‘e izin verir. bu sınırlama 

durumunda şuna sahip oluruz. 

 

s
KCred =  

 
 

Bu klasik bütünleştirme telafisine karşılık gelir. 

 

2. Sıra uzunluğunu düzeltmek için RED kullanmanın güçlüğü, düşük bir kontrol 

bantgenişliğine sahip olmasıdır wg , sıra yada TCP dinamiklerinden birisinin bant 

genişliğinden daha düşük olmak zorundadır. Sonuç olarak, kapalı-döngü cevaplar 
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yeterli miktarda yavaştır. Bu RED’de telafi kılavuzunun tanıtılmasıyla 

geliştirilebilir. Bu sonuç klasik orantılı-bütünleşme (proportional-integral, PI) 

telafisidir, 

 

s
zsKC PIPI

)1/( +=  

Böyle bir telafi edici kaynak [27]’de tartışılmıştır. 

BÖLÜM 7 
REM 
 

 
Bu bölümde aktif sıra yönetim şeması için geliştirilen REM’i inceliyoruz . REM 

aşağıdaki anahtar özelliklere sahiptir. 

 
1. Oran eşleştirme temiz tampon : Tampon temizken (küçük bir hedef etrafında kararlı 

sıralar), kullanıcı sayısını önemsemeden, kullanıcı oranlarını ağın bant genişliği 

kapasitesine eşleştirmeye çalışır. 

 

2. Ücretlerin toplanması : Uçtan uca işaretleme (yada düşme) olasılığı, basit ve kesin bir 

tarzda, kullanıcının yolundaki tüm yönlendiricilerin üzerindeki toplanan hat ücretlerinin 

(sıkışma ölçüsü) toplamı tarafından dikkatle incelenir. 

 

İlk özellik, alışıldık bilimin aksine, yüksek kullanımın ağ da geniş geciktirilmiş 

işlerin  tutulmasıyla başarılmadığını, ama kullanıcı için oranlarını ayarlayarak doğru geri 

besleme ile başarılabilmesini sağlar.  Kullanıcı sayısının artmış olsa bile REM ihmal 

edilebilir kayıp yada sıra gecikmesiyle yüksek kullanım sağladığını benzetme sonuçları ile 

gösterdik. 

 

İkinci özellik, kullanıcıların çoklu sıkışmış hat boyunca ilerlediği ağ içerisinde 

önemlidir. Kullanıcı tarafından dikkatle izlenen uçtan uca işaretleme(yada düşme) olasılığı 

içerisinde gömülü sıkışma bilgisinin anlamını açıklaştırır ve bu yüzden uyum oranının 

tasarımında kullanılır. 
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Şimdi, REM’i ve bu iki özelliği nasıl başardığını açıklayacağız. RED’le keskin 

bir biçimde farklıdırlar [4]. Bu özellikler birbirinden bağımsız ve diğeri olmadan 

gerçekleştirilebildiğinde açık olacaktır. Daha sonra Drop Tail, RED ve REM’in kablolu 

ağlardaki performanslarını benzetmelerle karşılaştıracağız. TCP’nin kablosuz ağlarda 

performansının kötü olduğu bilinir çünkü tampon taşması yüzünden oluşan kayıplar ve 

zayıflama, parazit ve karışma gibi kablosuz etkiler yüzünden oluşanlar birbirinden 

ayrılamaz. REM’in bu probleme nasıl yardımcı olduğunu  ve performansını benzetme 

sonuçlarıyla açıklayacağız.  

 

7.1 RED’in Değerlendirilmesi 

 
 

AQM’lerin ana amacı, kaynaklar için oranlarını ayarlayarak sıkışma bilgisini 

sağlamaktır. AQM algoritmasının tasarımı üç soruya cevap vermek zorundadır. 

 

1. Sıkışma nasıl ölçülür ? 

2. Olasılık fonksiyonunda ölçü nasıl gömülür ? 

3. Kullanıcıya nasıl geri bildirim yapar ? 

 

RED bu sorulara şöyle cevap verir. 

 

İlk önce, RED sıkışmayı sıra uzunluğu (çarpansal ağırlıklı ortalama) ile ölçer. 

Önemle, sıkışma ölçüsünün seçimi sıkışma yansımasının nasıl güncellendiğine karar verir 

ve bundan dolayı TCP tarafından dahili olarak en iyi şekilde kullanılıyor olan kullanıcı 

araç (utility) fonksiyonunu etkiler [26]. İkincisi, olasılık fonksiyonu bir parça doğrusaldır 

ve şekil 7.1(a)’da gösterildiği gibi sıkışma ölçüsünün fonksiyonu artar. Son olarak, 

sıkışma bilgisi ya düşme yada paket işaretleme olasılığı tarafından kullanıcıya taşınır. 

Aslında RED sadece ilk iki soruya karar verir. Üçüncü soru büyük ölçüde bağımsızdır. 
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RED, TCP ile etkileşir, kaynak oranı arttıkca, sıra uzunluğu büyür, daha fazla 

paket işaretlenir, kaynakların oranlarını ve devir tekrarlarını düşürür. AQM, sıkışma 

ölçüsünün nasıl güncellendiğini tanımlarken, TCP kesin kaynak oranlarının nasıl 

sağlandığını tanımlar. RED için, sıkışma ölçüsü sıra uzunluğudur ve tampon işlemi 

tarafından otomatik olarak güncellenir. Sıra uzunluğu sonraki periyod da şimdiki sıra 

uzunluğu artı, toplam giriş eksi çıkışdır. 

[ ]+−+=+ )()()()1( tctxtbtb llll                                              (7.1) 

 

burada [z]+ = max{z,0} dır. bl(t), l sırası ve t periyodunda toplam sıra uzunluğudur, xl(t) 

sıraya l,t periyodunda toplam giriş oranıdır ve cl(t), t periyodunda çıkış oranıdır.   

 

 
Şekil 7.1. Sıkışma ölçüsünün bir fonksiyonu olarak işaretleme olasılığı. 

 
 

REM, sadece ilk iki tasarım sorusuyla RED’den ayrılır, farklı bir sıkışma ölçüsü 

tanımı ve farklı bir olasılık fonksiyonu kullanır. Bu farklılıklar son bölümde bahsettiğimiz, 

şimdi açıklayacağımız iki anahtar özelliği oluşturmaktadır. 

 

Bu bölümün kalan kısmı için aksi belirtilmedikçe işaretleme demekle, ya bir 

paketin düşmesi yada ECN bitinin [20] ayarlanma olasılığını demek istiyoruz. 

 

7.2 Random Exponential Marking (REM) 
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Şimdi REM’in ilk soruyu nasıl cevapladığını açıklayacağız. Ayrıntılı türeme ve 

gerekçeler, bir sözde kod gerçekleştirimi ve daha genişletilmiş benzetmeler [40,64] de 

bulunabilir.  

 

 

7.2.1 Eşleşme Oranı Temiz Tampon 

 

REM’in ilk düşüncesi, hem giriş oranını hat kapasitesi etrafında ve hemde sırayı 

küçük bir hedef etrafında, hattı paylaşan kaynakların sayısını önemsemeden  kararlı hale 

getirmektir. 

 

Herbir çıktı sırası için REM, sıkışma ölçüsü olarak, ‘ücret’ diye çağrılan bir 

değişken sağlar. Bu değişken sonraki alt bölümde açıklandığı gibi işaretleme olasılığını 

elde etmek için kullanılır. Ücret periyodik olarak yada eş zamanlı olmadan, oran 

eşleşmesine (yani giriş oranı ve hat kapasitesi arasındaki fark) ve sıra eşleşmesine (yani 

sıra uzunluğu ve hedef arasındaki fark) dayanarak güncellenir. Eğer bu eşleşmelerin 

ağırlıklı toplamı pozitifse ücret arttırılır, aksi takdirde düşürülür. Ağırlık toplam, giriş 

oranı hat kapasitesini aşarsa yada açıklaştırılmış giriş gecikmesi varsa pozitifdir aksi 

takdirde negatifdir. Kaynakların sayısı arttığı zaman, oranlardaki eşleşmeler ve sıradaki 

büyüme ücreti yükseltir ve bundan dolayı işaretleme olasılığı yükselir. Kaynaklara, daha 

sonra oranlarını düşüren, bir sıkışma sinyali gönderir.  Kaynak oranları çok küçük olduğu 

zaman eşleşmeler negatif olur, sonunda eşleşmeler sıfıra yöneltilinceye, dengede ihmal 

edilebilir kayıp ve gecikme ile yüksek kullanım kazanıncaya kadar, ücret ve işaretleme 

olasılığı düşürülür, kaynak oranı yükselir. Eğer hedef sıra, sıfıra ayarlanmışsa denge 

durumunda tampon temizlenir. 

 

Oysaki RED’de sıkışma ölçüsü (sıra uzunluğu), tampon işlemi ile eşitlik (7.1)’e 

göre  otomatik olarak güncellenir, REM açıkca ilk özelliğini yerine getirmek için ücretinin 

güncellenmesini kontrol eder. Tam olarak, l sırası için, ücret pl(t) , t periyodunda şuna 

göre güncellenir, 
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[ ]+−+−+=+ ))()())((()()1( * tctxbtbtptp lllllll αγ                                   (7.2) 

 

 

γ > 0 ve αl > 0 küçük sabitler ve [z]+ = max{z,0} dır. Burada   bl(t), l  sırasında t 

periyodunda bulunan toplam tampondur ve bl
*  ≥ 0 hedeflenen sıra uzunluğudur, xl(t), t 

periyodunda l sırasına toplam giriş oranıdır ve , cl(t), t periyodunda l sırasına mevcut bant 

genişliğidir. xl(t) - cl(t) farkı oran eşleşmesini ölçer ve bl(t) - bl
*  farkı sıra eşleşmesini 

ölçer. αl sabiti kişisel olarak herbir sıra tarafından ayarlanabilir ve iletim sırasında 

kullanımı ve sıra gecikmesini değiştirir. γ sabiti ağ şartlarında değisen REM’in yanıt 

vermesini kontrol eder. Bundan dolayı, eşitlik (7.2) den,  eğer oranın ağırlıklı toplamı ve 

sıra eşleştirilirse , αl tarafından ağılıklandırılırsa, ücret arttırılır ve pozitifdir, aksi takdirde 

düşürülür. Denge durumunda, ücret kararlılaşır ve ağırlıklı toplam sıfır olmak zorundadır. 

Yani, αl (bl - bl
*  ) + xl + cl  = 0 dır. Bu sadece giriş oranı kapasiteye eşitse (xl = cl) elde 

edilebilir ve gecikmiş iş hedefe eşittir (bl = bl
* ) , bölümün başında bahsedilen birinci 

özelliğe kılavuzluk eder.  

 

Gerçekleştirmede iki hatırlatma yapacağız. Birincisi, REM, özellikle herbir akış 

bilgisi gerekmiyorsa, sadece yerel ve toplu bilgileri kullanır ve servis disiplinini koruyan 

her iş ile çalışabilir. Diğer yönlendiriciler ve sıralardan bağımsız olarak ücretini günceller. 

Bundan dolayı karmaşıklığı kaynakların sayısından yada ağın büyüklüğünden ya da 

kapasiteden bağımsızdır.  

 

İkincisi, genellikle pratikde, sıra uzunluğunu örneği, orandan  daha kolaydır. 

Hedeflenen sıra uzunluğu b* sıfır olmadığı zaman,  ücret artışında oran eşleşmesinin 

ölçüsünü  xl(t) - cl(t), eşitlik (7.2)’deki gibi  atlayabiliriz.  xl(t) - cl(t) sıra uzunluğu 

büyürken tampon boş olmadığı zamanki orandır. Bundan dolayı bu terimi gecikmedeki 

değişiklikler tarafından yaklaşık olarak tahmin edebiliriz, bl(t+1)-bl(t). Daha sonra 

güncelleme kuralı eşitlik (7.2) gibi olur ,  

 

[ ]+−−−++=+ ))()1()1(()()1( *
1 btbtbtptp lllll ααγ                                        (7.3) 
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Yani, ücret sadece şimdiki ve önceki sıra uzunluklarına bağlı olarak güncellenir. 

 

 Eşitlik (7.2) ve eşitlik (7.3)’de ifade edilen güncelleme kuralı RED’le tamamen 

çelişir. Kaynakların sayısı artmasıyla işaretleme olasılığı artmalıdır böylece sıkışma 

sinyalinin yoğunluğu artar. Bundan dolayı RED, işaretleme olasılığını elde etmek için sıra 

uzunluğunu kullanır,  yani, kaynakların sayısı artarsa, ortalama sıra uzunluğu kararlı bir 

biçimde artmalıdır. Çelişki olarak, güncelleme kuralı eşitlik (7.3)’de, işaretleme olasılığını 

elde etmek için kullanılan bir ücreti güncellemek için sıra uzunluğunu kullanır. Bundan 

dolayı REM altında, ortalama sıra uzunluğu, hedef   bl
* etrafında kararlaştırılmışken ücret  

kararlı bir şekilde artar, kaynakların sayısı artar. Bu noktaya aşağıda geri döneceğiz. 

 

7.2.2 Ücretlerin Toplanması 

 

REM’in ikinci düşüncesi bir yol boyunca hat ücretlerinin toplamını, yoldaki 

sıkışmaların bir ölçüsü olarak kullanmak ve bunu kaynaklardan elde edilebilen, uçtan uca 

işaretleme olasılığının içine gömmektir. 

 

Çıkış sırası, şimdiki ücret de çarpansal olarak artan bir olasılıkla, sıranın yukarı 

taraflarında henüz işaretlenmemiş her bir gelen paketi işaretler. Bu işaretleme olasılığı 

şekil 7.1(b)’de gösterilir. Eğer bir paket düşme bitinin yerine, ECN biti ayarlanmışsa, 

işareti gidilen yere taşınır ve daha sonra ACK yoluyla kaynağa geri taşır. İşaretleme 

olasılığının çarpansal formu , bir paketi, çoklu sıkışmış hatları bir uçtan diğerine taşımak 

için uçtan uca işaretleme olasılığı, yoldaki her hattaki işaretleme olasılığına bağlı olan 

geniş bir ağda kritikdir. Sadece ve sadece kişisel hat işaretleme olasılığı kendi hat ücreti 

içinde çarpansal olduğu zaman, bu uçtan uca işaretleme olasılığı, kendi yolunda tüm 

sıkışmış hatlardaki hat ücretlerinin toplamında çarpansal olarak artar. Bu toplam yoldaki 

sıkışmanın tam ölçüsüdür. Bundan dolayı uçtan uca işaretleme olasılığına gömülüdür. 

Kaynaklar tarafından işaretlenen paketlerinin bir parçasından kolaylıkla tahmin edebilir ve 

oran uyarlamasını tasarlamak için kullanılabilir. 
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Bir paketin l=1,2,....,L hatları içinde iletildiğini ve t periyodunda pl(t)  ücretlerine 

sahip olduğunu varsayalım. Daha sonra işaretleme olasılığı ml(t) , l sırasında t 

periyodunda , 

 
)(1)( tp

l
ltm −−= φ                                                        (7.4) 

 
 
Burada 1>φ  bir sabittir.  Daha sonra paket için uçtan uca işaretleme olasılığı şöyledir,  

∑−=−− −

=
∏ l l tp
L

l
l tm )(

1

1))(1(1 φ                                               (7.5) 

 

Yani, yolun sıkışma ölçüsü, ∑ l pl(t) , geniş olduğu zaman, uçtan uca işaretleme olasılığı 

yüksektir. 

 

Hattın işaretleme olasılığı ml(t) küçük olduğu zaman, buna bağlı olarak hat 

ücretleri pl(t) küçüktür, eşitlik (7.5) de verilen uçtan uca işaretleme olasılığı aşağı yukarı 

yoldaki hat ücretlerinin toplamına uygundur ,  

∑≈
l

le tpolasiligiisaretlemeucauçdan )()(log φ  

7.2.3 Modülleştirilmiş Özellikler 
 
 

Eşitlik (7.2) ve eşitlik (7.3) ‘de verilen ücret ayarlama kuralı, sıra uzunluğu 

hedeflenen değer, muhtemelen sıfır etrafında, kararlı hale getirilirken, hat kapasitesi ile 

kullanıcı oranlarını eşitleme çalışan REM özelliğine kılavuzluk eder. Eşitlik (7.4)’de 

verilen üstel işaretleme olasılık fonksiyonu, uçtan uca işaretleme olasılığını, yoldaki 

toplanmış tüm yönlendiricilerin, toplanmış ücretlerini kullanıcıya taşır. Bu iki özellik 

birbirinden bağımsız olarak gerçekleştirilebilir. 

 

Örneğin, sıkışmayı ölçmek için ücretleri kullanmak seçebilir ama farklı bir 

işaretleme olasılık fonksiyonu kullanmaktadır. Yani, RED benzeri yada diğer bazı ücretin 

artan fonksiyonu birinciyi gerçekleştirmek için kastedilmiştir ama ikinci özellik değildir. 
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Alternatif olarak sıkışmayı ölçmek için farklı bir seçim yapılabilir, yani, kayıp, gecikme 

yada sıra uzunluğunun kullanılması, ama üstel işaretleme olasılık fonksiyonu ile işaretler. 

Bu ikinciyi gerçekleştirmek içindir, birinciyi değil. 

 

7.2.4 Sıkışma ve Performans Ölçüleri 

 

 

 Reno, tampon taşmaları ile AQM olmadan sıkışmayı ölçer, Vegas sıra 

gecikmesi ile ölçer [30], RED ortalama sıra uzunluğu ile ve REM ise ücreti ile ölçer. 

Aralarındaki kritik fark, ilk üç şemada olduğu gibi kayıp, gecikme yada sıra uzunluğu gibi 

sıkışma ölçüsü ile performans ölçüsünün birleşmiş olmasıdır. Bu birleşme, kullanıcı sayısı 

artmasıyla, sıkışıklık büyümesini ve performansın daha kötüleşmesini gerektirir, yani, 

‘sıkışıklık’ ın anlamı, geniş kayıp yada gecikme gibi ‘kötü performans’ dır. Eğer bunlar 

REM’deki gibi ayrılırsa,  ‘sıkışıklık’ (yani yüksek hat ücretleri) ağ kaynaklarını 

desteklediği talepleri aşan sinyalleri basitleştirir. Bu engelleme talepdir ama iyi 

performans düşük gecikme ve kayıpla devam eder. 

 

Ayırma demekle, sıkışma ölçüsünün denge değerlerini denge kaybı, sıra 

uzunluğu yada gecikmeden bağımsız hale getirmek kastedilmişdir. Eşitlik (7.3) de, sıra 

uzunluğu REM’de iletim sırasındaki sıkışma ölçüsününün güncellemesine karar verir ama 

denge değeri değildir. Kaynakların sayısı büyüdükce REM’deki ücretler büyür ama sıralar 

hedefler etrafında kararlıdır. Sıkışma ölçüsünün denge değeri, REM’deki ücret ve 

RED’deki ortalama sıra uzunluğu, yalnız ağ topolojisi ve kaynakların sayısından kaynak 

[26] elde edilir. 

 

Bundan dolayı, RED altında, kaynakların sayısı ile ortalama sıranın yavaş ve 

hızlı büyümesi kaçınılmazdır. Esas RED’le , tüm paketlerin işaretlendiği en büyük sıra 

eşiği maxth a kadar büyüyebilir. Eğer maxth çok yüksekse, sıra gecikmesi çok aşırı olabilir; 

eğer çok düşükse, tampon salınımının şiddeti yüzünden hat kullanım altında olabilir. 

Dahası, eğer sıkışma sinyali işaretlemeden ziyade rastgele düşme boyunca geri beslenirse, 

paket kayıpları çok sık olabilir. Bundan dolayı, sıkışma zamanlarında, RED ya yüksek hat 
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kullanımına ulaşmak için yada düşük gecikme ve kayıp için ayarlanır, ama hepsi için 

ayarlanamaz. Karşıt olarak, sıkışma ve performans ölçülerinin ayrılmasıyla, sıra trafik 

yükünün bağımsız hedefi etrafında kararlı olabilir, bu dengede yüksek kullanım ve düşük 

gecikme ve kayıplara kılavuzluk eder. Bunlara ilişkin benzetme sonuçları sonraki 

bölümlerde vardır. 

 

7.3 Performans 
 

7.3.1 Kararlılık ve Araç Fonksiyonu 

 

Son zamanlarda gösterilen esas TCP sıkışma kontrol şemaları, Reno, Reno/RED, 

Reno/REM, Vegas, Vegas/RED,Vegas/REM, toplu kaynak yararını en fazla yapabilmek 

için hepsi yorumlanarak bir eğim algoritmasına aktarılabilir [26, 30]; ayrıca kaynak 

[38,58] basit bir model için. Farklı TCP şemaları, işaretleme ile yada işaretleme olmadan, 

sadece kullanıcı araç fonksiyonunun seçiminde farklıdır. Duality modeli bu yüzden, 

kararlılığı çalışmak için uygun bir yol sağlar, bu şemaların en iyilik ve doğruluk 

özellikleri ve daha önemlisi, birbirlerine etkileşimleri keşfetmek içindir. Özellikle, eğim 

algoritmasının eş zamanlı olmayan çevrelerde bile kararlı olduğu matematiksel olarak 

kanıtlanmıştır [7,10]. Pencere ölçüleri nispeten küçük olduklarında geniş gerçek yaşam ve 

benzetme deneyimi bu TCP şemaları ile doğrulanır. Ayrıca iki anlamı vardır. 

 

Birincisi,  kullanıcılar ne tip bir araç fonksiyonu kullanacaklarını bilmeseler bile, 

oran ayarlamasının tasarlanması ile belli bir araç fonksiyonu seçmiş olur. Anlaşılır 

yaparak, iyileştirme modelleri kaynak [26,30,38,58], şimdiki protokollerin anlaşılmasını 

derinleştirir ve araç fonksiyonunun uygulamaya uydurulmasıyla yeni protokoller 

tasarlamak için yeni yöntemler önerir. 

 

İkincisi, araç fonksiyonu sadece kullanıcının oran ayarlanmasıyla elde 

edilmeyebilir, ama ayrıca işaretleme algoritması ile elde edilebilir. Bu Reno için doğrudur, 

yani, Reno, Reno/RED, Reno/REM biraz farklı araç fonksiyonlarına sahiptir. Bu 

ihtiyacımızın bir sonucudur, AIMD algoritması tampon taşması yada RED yada REM 
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yüzünden olup olmadığını önemsemeden, bu şemalarda çok farklı sıkışma ölçülmüş ve 

gömülmüş olsa bile paket kayıplarına aynı yolla cevap verir. 

 

Son zamanlarda, bir PI (proportional-plus-integral) kontrolörü kaynak [27]’de 

RED’e alternatif bir AQM olarak önerilmiş ve benzetme sonuçları üst dengesini ve iletim 

performansını göstermek için sunulmuştur. Eşitlik (7.3) de ifade edilen bu PI kontrolleri 

ve REM dengededir, kapatılır. 

7.3.2 Kullanım,Kayıp ve Gecikme 

 
 

REM ve RED’in performanslarını karşılaştırmak için Reno ve NewReno ile, tek 

ve çok hat ile  kaynakların çeşitli sayısı, hat kapasitesi ve yayılma gecikmeleri ile geniş 

benzetmeleri yönettik [40,64]. REM ve RED’in ilgili performansları Reno ve NewReno 

ile benzer olması beklenir bundan dolayı bölüm 7.1 ve bölüm 7.2’de tartışılan özellikler 

kaynak algoritmalarından bağımsız AQM özellikleridir. Bu alt bölümde, 

NewReno/DropTail, NewReno/REM ve NewReno/RED’in performanslarının 

karşılaştırılmalarının sonuçlarını sunuyoruz [17]. 

 

Bant genişliği 64Mbps ve tampon kapasitesi 120 paket olan tek hat için 

benzetme ns-2 simülatöründe idare edilir. Paketlerin hepsi 1KB’dır. Bu hat 80ms’lik aynı 

gidiş-dönüş yayılma gecikmesine sahip 160 NewReno kullanıcısı tarafından 

paylaşılmaktadır. Başlangıçda 0 zamanında 20 kullanıcı aktifdir ve her 50 sn’den sonra 

160 kullanıcıya ulaşıncaya kadar 20 kullanıcı daha aktive edilir. RED için parametrelerin 

iki kümesi kullanılır. İlk küme RED(20:80) ‘i belirtir, minimum sıra eşiği minth = 20 

paket, maksimum sıra eşiği maxth =80 paket  ve maxp = 0.1 dir. İkinci küme RED(10:30)’u 

belirtir, minimum sıra eşiği minth =10 paket, maksimum sıra eşiği maxth = 30 paket ve 

maxp = 0.1 dir. REM’in parametre değerleri 20,001.0,1.0,001.1 * ==== bγαφ  paketdir. 

Deneyleri hem işaretleme hemde paket düşmeleri ile  sıkışma geri beslemesinin bir yolu 

olarak yönetiyoruz. Hat algoritması tarafından elde edilen olasılığa göre paketleri 

işaretliyoruz yada düşürüyoruz [17]. 
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x ekseninde zaman arttıkca, kaynakların sayısı 20’den 160’a artar ve ortalama 

pencere ölçüsü 32 paketden 4 pakete düşer. y ekseni her bir periyoddaki performansı 

gösterir. Goodput, hat kapasitesine tüm varış yerlerinde alınan tekrarlanmamış paketlerin 

toplam sayısının oranıdır. Kaybolma oranı ise toplam düşen paketlerin toplam gönderilen 

paketlere oranıdır. 

 

REM ile DropTail performansını karşılaştırıldığında, bu deney kümelerinde, 

hemen hemen her pencere ölçüsü ya düşme oranı yada ECN ile işaretlendiğinde REM, 

DropTail’dan  biraz daha yüksek  goodput’a ulaşır. Kaynakların sayısı artarsa, REM 

ortalama sıra hedeflenen b* = 20 paket  

 
Etrafında, ortalama sıra DropTail altında kararlılığı artarken, kararlıdır. Kayıp 

oranı, kaynakların sayısını önemsemeden neredeyse sıfır işaretleme ile REM altında 

hemen hemen aynıdır. 

 

RED’in performansı DropTail ile karşılaştırıldığında, DropTail için goodput 

RED’in tüm değişikliklerini üst sınırlar, çünkü daha geniş bir ortalama sıra tutar. Ortalama 

sıra bu 5 şema altında, bölüm 7.2.4’de tartışıldığı gibi, kaynakların sayısı arttıkça kararlı 

bir şekilde artar. Beklendiği gibi tüm pencere ölçülerinde, RED(20:80), RED(10:30)’dan 

daha yüksek goodput ve ortalama sıraya sahiptir. 

7.4 Kablosuz TCP 

 

TCP (yada daha kesin, AIMD algoritması) esas olarak, tampon taşmaları 

yüzünden oluşan paket kayıpları tarafından sıkışma ölçülen ve kullanıcılara taşınan 

kablolu ağlar için tasarlanmıştır. Kablosuz ağlarda, bunun yanında, esas olarak bit hataları, 

sinyal zayıflaması ve karışma gibi sebeplerden paketler kaybedilir, ayrıca uzaklıkdan 

dolayı aralılıklı bağlantı da etkilidir. Paket kayıpları ve sıkışma ölçüsü arasındaki birleşme 

ve TCP’deki geri besleme kablosuz hatlar üzerindeki zayıf performansa kılavuzluk eder. 

Çünkü TCP kaynağı tampon taşması ve kablosuz etkilerden oluşan kayıpları ayırt edemez 

ve herbir kayıp olayında penceresini ikiye böler. 
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Bu problemi çözmek için üç yaklaşım önerlmiştir [12]. İlk yaklaşım, paket 

kayıplarını kablosuz ağ üzerinde saklar böylece kaynak sadece sıkışmanın teşvik ettiği 

kayıpları görür. Bu çeşitli karışım tutma teknikleri, hata kontrolü ve yerel geri iletim 

algoritmaları ile ilgilidir. İkinci yaklaşım, kablosuz etkilerden kaynaklanan kayıpları TCP 

seçenek alanlarını kullanarak kaynağa haber vermektir, böylece kaynak geri iletim 

sonrasında oranını yarıya düşürmeyecektir. 

 

Üçüncü yaklaşımın amacı tampon taşmalarından kaynaklanan paket kayıplarını 

ortadan kaldırmakdır, böylece kaynak sadece kablosuz kayıpları görür. Bu TCP’nin 

varsayımını bozar. Kayıplar artık tampon taşmasını belirtmez. Sıkışma ölçülmeli ve geri 

besleme farklı bir mekanizma kullanmak zorundadır. REM’in ilk özelliğinden (oran 

eşleşmesi temiz tampon) faydalanarak, bu amaç için REM’i  ECN işaretleme ile 

kullanmayı önerilmiştir [17]. Daha sonra bir TCP kaynağı sadece bir kayıp tespit 

edildiğinde geri iletim yapar ve işaretini gördüğü zaman penceresini ikiye böler. 

 

Şimdi bu yaklaşımın sözünü göstermek için hazırlayıcı benzetme sonuçları 

sunacağız. Benzetme ns-2 simülatörü içerisinde bant genişliği 2Mbps ve tampon 

kapasitesi 100 paket olan tek bir kablosuz hat için idare edilmektedir. Paketleri Bernoulli 

kayıp modeline göre %1 olasılıkla rastgele düşürür ( kaynak [40] daki bursty kayıp modeli 

ile benzetmeler). Rastgele düşürmenin  etkisini azaltmak için küçük bir paket büyülüğü 

olarak 382 bit seçilmiştir. Bu kablosuz hat, 100 NewReno kullanıcısı tarafından aynı 

gidiş-dönüş yayılma gecikmesi (80ms) ile paylaşılır. 20 kullanıcı 0 zamanında ilk başta 

aktifleştirilir ve her 50sn sonra 100 aktif kullanıcıya ulaşıncaya kadar 20 kullanıcı daha 

aktifleştirilir. 

 

AQM ile ECN biti ns-2’de 1’e ayarlanır böylece paketler olasılıksal olarak RED 

yada REM’e göre işaretlenmiştir. Paketler sadece dolu bir tampona ulaştıklarında 

düşürülür. NewReno’yu düzenledik böylece bir işaret aldığında yada zaman aşımından bir 

kayıp tespit ettiğinde penceresini ikiye böler, ama tekrarlanan doğrulamadan bir kayıp 

tespit ettiğinde pencereyi ikiye bölmeden geri iletir. NewReno’nun (DropTail ile), 

(düzenlenmiş) NewReno ile RED ve (düzenlenmiş) NewReno ile REM’in 
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performanslarını karşılaştırdık [17]. Önceki bölümde RED ve REM parametreleri aynı 

değere sahiptiler. 

 

ECN işaretlemenin girişi NewReno’nun goodput’unu geliştirmede çok etkili 

olduğunu gösterir, %62 ve %91 arasından %82 ve %96 arasına kadar yükseltir, 

kullanıcının sayısına bağlıdır. REM ve RED’in karşılaştırması kablolu ağlardakine benzer 

bir sonuçtur. REM ve RED(20:80), RED(10:30)’dan(%82-%95 arası) daha yüksek bir 

goodput’u (%90-%96 arası) devam ettirir. Kaynakların sayısı arttıkça ortalama sıra REM 

altında, DropTail ve RED altında kararlı bir şekilde artarken kararlıdır. 

 
Bu olağanüstü durum, sadece tampon taşması yüzünden olan kümülatif paket 

kayıplarında açıkca gösterir. Kayıp NewReno ile en hafiftir, RED(10:30) ve REM ile 

ihmal edilebilir ve RED(20:80) ile ılımlılaştırılmıştır. REM ve RED(10:30) altında 

tampon taşmaları sadece izleyen yeni kaynakların tanıtılmasının iletimi sırasında olur, ve 

bundan dolayı kümülatif kayıplar herbir periyodun başında zıplar ama zıplamalar arasında 

sabit kalır. RED(20:80) ve NewReno altında, diğer taraftan, tampon taşmaları da 

dengededir. Bundan dolayı kümülatif kayıplar zıplamalar arasında karalı şekilde artar. 

 

Bu yaklaşımla  karşı olarak , bazı ama hepsinde değil karışık (heterojen) 

ağlardaki uygulamalarda yönlendiriciler ECN’ye yatkındır. ECN’ye yatkın olmayan 

yönlendiriciler düşmede geri besleme sıkışmasına güvenmeye devam eder. Oranlarını 

sadece işaretlere dayanarak uyarlayan TCP kaynakları bu yönlendiricilerin aşırı yüklerinin 

riskini idare eder. Yönlendiriciler için olası çözüm ECN kapasitelerinin nasıl olduğunu 

belirtmek, muhtemelen kaynak [20] de önerilen iki  ECN bitinin birisinin kullanımını 

sağlar. Bu tüm yönlendiricilerin en azından ECN’den haberdar olmasını gerektirebilir. Bir 

kaynak sadece yoldaki tüm kaynakları ECN’den haberdar ederek işaretlemek için tepki 

verir ama yoldaki bir yönlendirici ECN’den haberdar değilse, kayıba bilindik TCP 

kaynakları gibi tepki verir. 
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BÖLÜM 8 
 

TCP Reno ile Paket Kayıplarının Kurtarılmasının Analitik 
Modelleri 
 

 

İletim Kontrol Protokolü (TCP) internette geniş ölçüde taşıma katmanı(transport 

layer) olarak kullanılır. Çünkü TCP, kablolu bilgisayar ağlarındaki paket kayıp 

olasılıklarının ihmal edilebilecek kadar düşük olması kabullenmesi üzerine dizayn 

edilmiştir [65]. Ancak TCP, kablosuz ağ sistemleri için yüksek hata ihtimalleri ile birlikte 

anılır olmuştur [65,66]. 

 

 TCP kullanılan kablosuz bağlantılar için performans düşüşleri tıkanıklık 

bulunmayan paket kayıpları ve tekrar hızlı iletim zaman aşımı (RTO) sıklığı sonucu 

oluşan gereksiz tıkanıklık kontrolleri ile açıklanabilir. RTO gerçekleştiğinde, özellikle 

gönderici sadece bilgi geçersiz olana kadar gönderememekte, ancak iletimi tekrar 

başlatmak için yavaş başlama yapmalıdır. Bu yüzden RTO gerçekleşmeden önce tıkanık 

pencerenin tekrar düzeltilmesi uzun zaman almaktadır. Sonuç olarak, yüksek RTO sıklığı, 

TCP performansını kötü yönde etkilemektedir [9,66,69]. 

  

 Tıkanıklık bulunmayan paket kayıp durumlarında TCP performansını analizi için 

birçok çalışma yapılmıştır .[24,66]. Bu çalışmalar göstermiştir ki, sonucu TCP Reno 

performansı hızlı tekrar iletim olasılığına bağlıdır [67]. Ancak biz daha çok TCP Reno 

davranışlarındaki kayıpların kurtarılmasına ve bir pencerede gerçekleşen paket kaybı 

sayısı kriterine göre tekrar hızlı iletim olasılığı üzerinde duracağız. Özellikle ilişkili ve 

rasgele durumlardaki paket kayıplarının tipik niteliklerini inceleyeceğiz.  

 

Öncelikle TCP tıkanıklık penceresi genel olarak periyodik bir yapı 

göstermektedir. Bu Markov zinciri ile analiz edilebilir [66,69]. Böylece durağan bir 

dağılım gösteren pencere işlemini sayısal olarak hesaplayabiliriz.  
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8.1 TCP Reno ile Kayıpların Kurtarılması 
 
 
 TCP Reno ile kayıp paketlerin kurtarılması için iki yol mevcuttur; birincisi RTO 

ile ve diğeri de tekrar hızlı iletim ve hızlı kurtarım iledir. Hızlı tekrar iletimi tetiklemek 

için gönderici bir kayıp paket için en azından K tane çift alındı (Acknowledgement, ACK) 

almalıdır (tipik olarak üç çift ACK). 

  

t zamanında, göndericinin tıkanık penceresini ve yavaş başlama eşiğini 

belirtmeliyiz ssthresh, ile W(t) ve  Wth(t). Varsayalım ki, paket kayboldu ve gönderici  t = 

t0  paketi  için K.ncı çift ACK aldı. Kayıp paket tekrar hızlı iletim yöntemi ile vakit 

kaybetmeden tekrar iletildi. Tekrar hızlı iletimden sonra, gönderici şunu hazırlar 
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Tekrar hızlı iletim süresince gönderici her çift ACK alınca pencere boyutlarını 

birer birer arttırır. Eğer büyütülmüş pencere yeni bir paket içeriyorsa, göndericinin bu 

paketi göndermesine izin verilir. Tekrar gönderilmiş paket başarılı bir şekilde iletildiyse, 

normal(çift olmayan) ACK üretilir. Böylece tıkanmış pencere hemen iletilecek pakete 

kaydırılmış olur ve hızlı kurtarma işlemi sonlanmış olur. Gönderici tıkanıklığın önlendiği 

paketleri ile tıkanık pencereyi (ki bu da eşitlik (8.1) de belirlenmiş Wth ‘ye eşittir) 

göndermeye devam eder. 

 

 Eğer bir penceredeki birden fazla paket kaybolduysa, birkaç tekrar hızlı iletim ve 

hızlı kurtarma işlemi tekrarlanabilir. Bir pencere için n tane kayıp paket n tane hızlı tekrar 

iletim ile kurtarılabilir. Eğer ilk tekrar hızlı iletim hemen önceki zaman t1  ise ve 

n.nci kayıp paket t2’de  tekrar hızlı transfer yapıldıysa, W(t1) ve W(t2) arasındaki ilişki 

aşağıdaki gibi olur [24], 
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8.2. Modelleme  
 
 
 TCP hareket biçiminde kayıpların kurtarılmasını kaynak [69]’da tanımlanan turlar 

(rounds) cinsinden modelleyelim. Pencerenin durağan dağılımını bulmak ve kayıp 

kurtarılması olasılıklarını çıkartabilmek için, Markov Zinciri analiz yöntemini 

kullanacağız [67]. 

8.2.1 Kabullenmeler ve Tanımlamalar 

 

 Göndericinin göndereceği sonsuz sayıda paket olduğundan tıkanık pencereler 

kesinlikle artarak devam edecektir. Bütün paketlerin aynı boyutlara sahip olduğunu kabul 

edelim. Bu durumda başarılı paket iletimlerinin sonucunda gönderici her zaman bir ACK 

alacağından, gecikmiş ACK durumunu dikkate almıyoruz [63]. Bilgi paketi boyutlarına 

göre ACK paketinin boyutu göz ardı edilebilecek kadar küçük olduğundan ACK 

paketlerinden kayıp vermeyeceğimizi kabul edelim. Hızlı tekrar iletim eşiğini K  ve 

bağlantı esnasında ilan edilmiş maksimum pencere boyutunu Wmax olarak tanımlayalım. li  

de penceredeki i.nci kayıp paketi göstersin. Eğer (m-1) paketin bütün normal ACK’leri 

alındıysa ve  l1 , k.ncı  turda iletilecek m.nci paket ise pencere kaybı Ω. Kayıp paket içeren 

bir pencerenin ilk paketi daima ilk kayıp paketidir. Kayıplı bir pencerede n kayıp paket 

için kaybedilmeyen veya k.ncı kurtarma periyoundaki turda yeni iletilmiş kayıp paket 

sayısını Φk  olarak ifade edelim. Eğer Ω, u paket sayısına eşitse, Φ1 her zaman (u − n)’e 

eşittir. h ≥ 2 ise Φh kayma ve (h − 1).nci paket kaybının tekrar iletimden sonra 

kullanılabilir penceredeki kayma ve şişme ile iletilmiş paket sayısını ifade eder [24]. 

 

 

8.2.2 Φn’nin Türetilmesi 

 
 

Ω = u için Φ1  u paketten düzgün iletilmiş paket sayısı olsun. Bu durumda, 
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11 −= uφ                                                          (8.3) 

 

l1 için tekrar hızlı iletim işleminin yeniden yapılmasından sonra Φ2  artması ile 

kullanılabilir pencerenin yeni paketleridir. Son ulaşan çift ACK’yı ele alacak olursak l1 

pencereyi [u/2] + (u-2) ve  u  paket hala yarım kalmışdır; Φ2 şöyle olur [24]. 

 

2 [u/2]u- 2)-(u  [u/2]2 −=+=φ                                                (7.4) 

 

 

Eğer Φ2 ≥ K ise, l2 tekrar hızlı iletim ile kurtarılabilir. Şekil 8.1 TCP Reno’nun 

kayıpların kurtarılması ile ilgili özelliklerini bir penceredeki üç paket kaybı için 

göstermektedir.Herbir tur aşağıdaki gibi açıklanabilir. 

 

 
Şekil 8.1. TCP Reno’nun üç kayıp paket için kayıpların kurtarılması davranışı [24]. 
 
 

• Kayıpların kurtarılması i turunda başlar. 

• l1 için son çift ACK (i+1).nci turda alınır. 

• l2 için ilk ACK, (i+15).nci turda l1’in tekrar iletimi ile alınır. 

• l2 için son çift ACK (i+2).nci turda alınır. 

 

Eğer ilk kayıp pencereyi Ω(i) ve a’nın sağ  sınır değerini de R(a) şeklinde ifade 

edersek, herbir sınır değeri L(Ω(i)) = 0, R(Ω(i)) = u, R(l2) = j, R(l3) = k,   R(Ω(i + 1)) = x, 

R(Ω(i + 1.5)) = y ve R(Ω(i + 2)) = z olur [24]. 
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Bütün j,k değerleri için  2 ≤ j ≤ u−1,  j +1 ≤ k ≤ u,  x, y ve z  aşağıdaki gibi ifade 

edilebilir. 

 

                            3)-(u  [u/2]x +=  

                            (u/2)  1]-[jy +=  

 (u/4)  1]-[jz 2φ++=                                                     (8.5) 

 

Eğer (i+1.5).nci turda  y ≥ x olursa y − x adet paket iletilmiştir. Çünkü l2 daha 

tekrar iletilmemiştir ve l2 için çift ACK üretilebilir. Bu iki durum için, Φ3 şeklinde 

verilebilir [24]. 

 

        ),max(3 yxz −=φ  

[ ]
[ ]⎩

⎨
⎧

−=−
−≤≤−+−

=
.134/
224/)1(

uju
ujuuj

                                                               (8.6) 

 

Φ3, Φ1 ve Φ2’den farklı olarak l2’nin pozisyonu ile olduğu kadar Ω’nin 

boyutlarıyla da bağlantılıdır. j maksimum olduğunda, eşitlik (8.5)’e göre z de maksimum 

değeri alır. Bu şu nedenledir, pencere en çok  j = u − 1 olduğunda kayar. Bu yüzden, 

Ω’nun minimum değeri, RTO’suz üçlü paket kayıplarının kurtarılmasında  [u / 4] -3 = K 

ile elde edilebilir. 2 ≤ j ≤ u − 2 ise l2 için kurtarılma koşulu şöyle olur [24] 

 

[ ] Kuuj ≥−+− 4/)1(                                                     (8.7) 

 

Eğer l1 ve l2 arasındaki paket sayısı u-[u/4]+(K-1) ’e eşit veya daha büyükse l3  tekrar hızlı 

transfer işlemi ile kurtarılabilir. 

  

 Bir pencere için dörtlü paket kayıpları, tekrar hızlı transfer yöntemi ile hiçbir 

şekilde kurtarılamaz [24].  
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8.3 Olasılık Analizleri 

 

8.3.1 Kayıp Paket Modelleri 

 
Rastgele paket kayıpları için, herbir paket p olasılığınca kaybedilir ve bu 

kayıplar bağımsızdır [66,68]. İlişkili paket kayıpları ilk durum Markov Zinciri ile 

modellenir [9,15]. Markov zincirinin bağlantı olasılık matrisi Qc; 

 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

GGGB

BGBB
C pp

pp
Q                                                             (8.8) 

 
 
şeklindedir. Kanal iyi ve kötü durum olmak üzere iki durumda olabilir. Durum kötü iken 

bir paketin kaybolma olasılığı 1’dir. Eğer ’ya GBp  ve BGpye'β  dersek, iyi veya kötü 

durumda olma olasılığı ( BG ππ , ) aşağıdaki gibidir [24]; 

 

,
βα

β
+

=∏G    .
βα

α
+

=∏B                                                 (8.9) 

 
Hatta ortalama iyi durum süreci α/1  ise ortalama kötü durum süreci β/1  dir. 

Sürecin miktarı paketlerin sayısı kadardır. Çünkü her iletim zamanı için durum 

değişmekte olduğu kabul ediyoruz [24]. 

 
 
 
 

8.3.2 Markov İşlemi 
 

Bir penceredeki TCP değişimi Markov Zincirine adapte edilerek analiz edilebilir. 

Markov zincirinin durağan dağılımı, değişim olasılıkları belirlendiği zaman sayısal olarak 

elde edilebilir. Tıkanık pencere boyutu kayıp kurtarılmasından sonra her zaman  [u / 2]’e 

kadar düşmesi hariç, değişim olasılıklarını hesaplamak için [66,68] ‘teki işlemleri takip 
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edeceğiz. Gelecek göngüdeki kaybolan paket sayısı ve pencere boyutları arasındaki ilişki 

eşitlik (8.2) ile tanımlanabilir [24]. 

 

Her RTO oluşumunda gelecek döngünün Wth’ı aşağıdaki gibi ifade edilebilir. Ω 

=u için, paketlerin arasından  iki paketin kaybolacağını ve RTO oluşacağını varsayalım. 

Eğer u ≥ K + 2 ise, en azından ilk kayıp paket tekrar hızlı transfer ile belki kurtarılabilir. 

Bu durumda ikinci kayıp paketin RTO’ya neden olacağından emin olabiliriz. Bu yüzden 

gelecek döngüde Wth’nin değeri [u / 2] olur. Ω’nin değerine ve kayıp paket sayısına bağlı 

olarak, gelecek döngüde Wth’nin değeri [u / 2] , [u / 4]  ve [u / 8]  değerlerinden biri olur 

[24].  

 

İlişkili kayıp paket modeline göre, hiç paket gönderilememiş bir kanal için RTO 

süresince kanalın durumunu bilmek imkansızdır. Eğer gelecek döngüdeki ilk paket 

kaybolmaz, ancak kanalın durumunun iyi olduğu da bir açıktır. Kanal gelecek döngüye 

her zaman iyi durumda başlamış olmasına  rağmen arka arkaya ne kadar RTO 

gerçekleşeceğini bilemeyiz. Bu yüzden {2,3,4.....,Wmax}  alanı üzerinde {Ωi} işlemini 

hesaba katmalıyız. Birbiri ardına gerçekleşen RTO’ların tıkanık pencere işlemi değişimini 

etkilemediğini de vurgulamalıyız [24]. 

 

8.3.3 Tekrar Hızlı İletme Olasılığı 

 

 

Bir penceredeki her paketin tekrar hızlı iletimle kurtarılabilirliği olan RR   TCP 

Reno’nun tekrar hızlı iletim olasılığı olsun. Öyleyse, elimizde  

 

∑∑
=

=
n

W

u
n

n
RR uuRR

max

1

)( )().( π                                             (8.10) 

 

var. Buradaki )(wnπ , n  ve )()( uR n
R  için kayıp pencerenin durağan durum olasılığı olsun. 

)()( uR n
R  aşağıdaki gibi [24] 
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)()( uR n
R  = P{(u-1) paket dışında (n-1) paket kaybedilir} 

                  *P {kayıp düzeltme sırasında paket kaybı yoktur}.                          (8.11) 

 

 

olur. Rasgele paket kayıpları için )()( uR n
R    cinsinden şöyle yazılabilir [24], 

 

                                            u
R puR )1()()1( −=          

                                            2)1()1()()2( φ+−−= u
R ppuuR  

                                            
[ ]

32)1()
2
4/

()( 2)3( φφ ++−
−

= u
R pp

Ku
uR  

 

Sonuçta rasgele paket kayıpları için toplam  tekrar hızlı iletim olasılığı [24], 

 

[ ]
}.)1()

2
4/

()1()1(1{)1()( 322 2 φφφ +−+−−+−= pp
u

ppupuR u
R                    (8.13)         

 

gibidir. 

 

İlişkili paket kayıpları modelinde, )()( uR n
R ’yi hesaplayabilmek için kayıp 

paketlerin düzenleri incelenmelidir. n=1 için, bir paketin kaybedilmesinden sonra kanal 

iyi duruma geçmelidir ve tekrar iletimler dahil u kadar paketin iletimi tamamlanana kadar 

da iyi olarak kalmalıdır. n=2 için )()2( uRR  iki kayıp paketin ardarda olma olasılığı olsun ve 

nsR uR )()2(  iki kayıp paketin ardarda olmama olasılığı olsun. O zaman )()2( uRR   değeri 

suR uR )()2(  ve nsR uR )()2( ’nin toplamına eşittir. n=3  için l2 ve l3 ardarda olmayabilir veya 

verilen şartlar ve j=u-1 için ger zaman ardarda iken 2min −≤≤ ujj  olmayabilir. Sonuç 

olarak ilişkili paket kayıpları için )()( uR n
R   

1)1()()1( φαβ −=uRR          
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})2()1)(1{()1()( 3)2( 2 αββαβ φ −+−−−= −+ uuuR u
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            (8.14) 

 

Burada  l2  ve l3  ardarda ise durum sayisi Nsu ve l2  ve l3  ardarda değilse durum sayisi Nns. 

Nsu ve Nns’in değerleri aşağıdaki gibidir [24] 

 

                                    2- 1)  -(j -u   N minsu =   

 

).1(
2

1)-(j-u
  N min

ns −−⎟⎟⎠

⎞
⎜⎜⎝

⎛
= suN                                       (8.15) 

 

 
Şekil 8.2.       (a) rasgele paketlerin için   (b) ilişkili paketler için 
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SONUÇLAR 
 

 

Paket anahtarlamalı ağlar, farklı kaynaklardan verinin aynı yol boyunca 

iletilmesine izin verir. Bu yol üzerinde paketlerin göndericiden alıcıya iletilebilmesi için 

kullanılan yönlendiriciler, paketlerin alınma oranı işlem yapılarak gönderilme oranından 

büyük olabileceğinden gelen paketleri tampon adı verilen bir sırada saklar. Bu sıralar ilk 

giren ilk çıkar prensibine göre çalışır ve sınırlı bir kapasiteleri vardır.  Sınırlı kapasitesi 

olan sıralar dolduğu zaman sıkışıklık oluşmakta ve gelen paketler düşürülmeye 

başlanmaktadır. Bu araştırma içerisinde sıkışıklığın, oluşmadan önce tespit edilerek 

önlenmesi için geliştirilen RED, REM ve RENO modelleri incelenmiştir. Sıkışıklık 

seviyesi, RENO’da, tampon taşmaları ile AQM olmadan ölçülürken, RED ortalama sıra 

uzunluğu parametresi ile REM’de ise ücret parametresi ile ölçülmektedir 

 
 

Aktif sıra yönetiminin esas amacı genel olarak, düşük ortalama sıra gecikmesi ve 

yüksek işlem hacminin sağlanmasıdır.  Burada bunların ayrıntıları ve yapılan 

benzetmelere bakılarak, çeşitli yorumlar yapılmıştır. RED’in ana amaçlarından bir tanesi, 

sıra uzunluğu algoritması ve erken sıkışma bildirimi kombinasyonunu kullanarak, düşük 

ortalama sıra gecikmesi ve yüksek işlem hacmini birarada başarmakdır. RED’in benzetme 

denemeleri ve işlemsel deneyler bu konuda oldukça başarılı olduğunu ortaya koymuştur. 

Bunun yanında RED’in en zayıf noktası ise, sıkışma seviyesinde ve parametre ayarlarında 

ortalama sıra uzunluğunun çeşitli olmasıdır. 

 

REM’in esas amaçlarından birisi sıkışıklık ölçüsünü (ücret) performans 

ölçüsünden (kayıp ve sıra) ayırmaktır, böylece sıkışma ölçüsü, kaynakların sayısı ile 

çeşitlenmek zorundadır, performans ölçüsü hedef etrafında bağımsız olarak kararlı hale 

getirilebilir. Benzetme sonuçlarından, temel RED’in basitlik ve kararlılığından fedakarlık 

etmeden bu amacı başarabildiğimiz görünmektedir. Bu özellik kablolu ağlar üzerinde 

TCP’nin performansını geliştirmek için kullanılabilir. Bunun yanında bunun bir denge 

özelliği olduğunu ve REM’in iletim davranışının daha dikkatli çalışılması gerektiği 
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vurgulanmaktadır. Diğer bir amacı ise hem giriş oranını hat kapasitesi etrafında ve hemde 

sırayı küçük bir hedef etrafında, hattı paylaşan kaynakların sayısını önemsemeden  kararlı 

hale getirmektir. 

 

AQM’in kararlılığını anlatmak için çok hatlı çok kaynaklı model geliştirilmiştir. 

Karışık kaynaklar ve RED’in kararlı bölgesinin gösterilen formu ile tek hatlı durumu için 

uygun kararlılık şartı sunulmuştur. Ağın gecikme yada kapasitesindeki büyüme sonucunda 

RED kararsız olmaktadır. Analizler de, TCP kararlılığında RED’in zorluğunun rolünü 

belirtilmiştir. Ayrıca, kontrol teorisine göre TCP ve AQM modelinin bir birleşimini analiz 

edilmiştir. Daha önceden geliştirilmiş sistemin doğrusal olmayan modeli 

doğrusallaştırılarak kullanılmış ve AQM sisteminde RED gerçekleştirilerek bu analiz 

gösterilmiştir. RED’in doğrusal geri besleme kontrol sisteminin, kararlılık operasyonuna 

yol göstermesi açısından, parametrelerin seçimi ile ilgili tasarım rehberi sunulmuştur. 

Ayrıca sistemin kararlılığına ilişkin ifadeler türetilerek  tasarlanmıştır. 
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