
!

REMZI YILDIRIM

REMZI YILDIRIM
TCP/ RENO /RED/AQM/BLUE
SIKIŞIKLIK MODELLERİ

REMZI YILDIRIM
2016-AYBÜ-ANKARA

REMZI YILDIRIM

REMZI YILDIRIM
Prof.Dr. Remzi YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

REMZI YILDIRIM

TCP/ RENO /RED/AQM/BLUE
SIKIŞIKLIK MODELLERİ

Prof.Dr. Remzi YILDIRIM
Ankara Yıldırım Beyazıt Üniversitesi

(DERS NOTU / ÖDEV)

2016-ANKARA

 1

İÇİNDEKİLER

BÖLÜM 1 ... 3
AĞ TEMELLERİ ... 3

1.1 Devre Anahtarlama ve Paket Anahtarlama ... 3
1.2 TCP Taşıması .. 5

BÖLÜM 2 ... 10
TCP SIKIŞIKLIK KONTROLÜ .. 10

2.1 Ağ Sıkışıklığı .. 10
2.2 TCP’nin Gelişim Tarihi .. 12
2.3 TCP Tahoe .. 13

2.3.1 Yavaş Başlama ... 13
2.4 Gidiş – Dönüş Zamanı (RTT) ... 16
2.5 Sıkışıklıkdan Kaçınma .. 17

2.5.1 Yönlendiricilerde Sıkışıklıkdan Kaçınma .. 21
2.5.1.1 Rastgele Erken Düşürme .. 21
2.5.1.2 Rastgele Erken Tespit Etme (Random Early Detection - RED) 22

2.6 Hızlı Tekrar İletim .. 23
2.7 AIMD .. 25
2.8 TCP Reno .. 25

2.8.1 Hızlı Düzeltme (Fast Recovery) .. 26
2.9 Seçici Alındı Bilgileri ... 28
2.10 TCP NewReno .. 29
2.11 TCP Eşleştirmesi ... 29

BÖLÜM 3 ... 31
AKTİF SIRA YÖNETİMİ .. 31

3.1 DROP-TAIL ... 33
3.2 RED .. 34
3.3 BLUE .. 37
3.4 REM .. 38
3.5 GREEN ... 41
3.6 PURPLE .. 43
3.7 ECN .. 43

BÖLÜM 4 ... 46
ADAPTE EDİLMİŞ RED(Adaptive RED) ALGORİTMASI 46

4.1 Metrikler and Senaryolar .. 47
4.2 Adaptive RED’e Alışmak ... 48

4.2.1 Çeşitli Sıra Uzunlukları ile RED’in Gösterilmesi 51
4.3 Adaptive RED Algoritması ... 56

4.3.1 maxp’nin Sınıflandırılması ... 58
4.3.2 α ve β Parametreleri ... 59
4.3.3 RED Parametreleri maxth ve wq’nun Ayarlanması 60

4.4 Benzetmeler .. 61
4.4.1 Salınımların Araştırılması .. 61
4.4.2 Sıra Ağırlığının Etkileri ... 64

 2

4.4.3 Yönlendirme Değişimlerinin Benzetmesi .. 66
4.5 İşlem Hacmi ve Gecikme Arasındaki Değişimler .. 67

BÖLÜM 5 ... 69
RED DİNAMİKLERİ VE KARARLILIK KONTROLÜ .. 69

5.1 TCP/RED Salınımları ... 70
5.2 Dinamik Model ve Kararlılık .. 76

5.2.1 TCP/RED’in Doğrusal Olmayan Modeli ... 76
5.2.2 TCP/RED’in Doğrusal Modeli ... 80
5.2.3 Geçerlilik ve Kararlılık Bölgesi ... 83
5.2.4 Kararlılık : Tek Hatlı Karışık Kaynaklar ... 86

5.3 RED Parametre Ayarları ... 89
5.4 Kararlılık Kontrolü ... 91

5.4.1 Algoritma ... 91
5.4.2 Gerçekleştirim ve Performans ... 93

BÖLÜM 6 ... 96
RED’İN KONTROL TEORİSİ ANALİZİ ... 96

6.1 MODEL .. 96
6.1.1 TCP davranışının bir akıcı-akış modeli ... 97
6.1.2 Doğrusallaştırma .. 98

6.2 AQM KONTROL PROBLEMİ .. 102
6.2.1 Sistem dinamikleri ... 103
6.2.2 AQM Performans Hedefleri ... 105
6.2.3 RED Tasarımı .. 106

BÖLÜM 7 ... 114
REM .. 114

7.1 RED’in Değerlendirilmesi .. 115
7.2 Random Exponential Marking (REM) ... 116

7.2.1 Eşleşme Oranı Temiz Tampon .. 117
7.2.2 Ücretlerin Toplanması ... 119
7.2.3 Modülleştirilmiş Özellikler .. 120
7.2.4 Sıkışma ve Performans Ölçüleri .. 121

7.3 Performans .. 122
7.3.1 Kararlılık ve Araç Fonksiyonu .. 122
7.3.2 Kullanım,Kayıp ve Gecikme ... 123

7.4 Kablosuz TCP ... 124
BÖLÜM 8 ... 127
TCP Reno ile Paket Kayıplarının Kurtarılmasının Analitik Modelleri 127

8.1 TCP Reno ile Kayıpların Kurtarılması ... 128
8.2. Modelleme ... 129

8.2.1 Kabullenmeler ve Tanımlamalar ... 129
8.2.2 Φn’nin Türetilmesi ... 129

8.3 Olasılık Analizleri ... 132
8.3.1 Kayıp Paket Modelleri ... 132
8.3.2 Markov İşlemi .. 132
8.3.3 Tekrar Hızlı İletme Olasılığı .. 133

SONUÇLAR ... 136
KAYNAKLAR ... 137

 3

BÖLÜM 1

AĞ TEMELLERİ

İnternette bilgisayarlar, mesajlarını paket adı verilen birimlere bölerek

birbirleriyle haberleşirler. İnternette her bir bilgisayarda diğer bir bilgisayara bağlanmak

için kablo olmadığından, paketler kaynaktan gidilecek yere yönlendirici adı verilen ara

bilgisayarlar ile taşınırlar. Herbir paket kaynağın ve gidilecek yerin adresini içerir böylece

yönlendiriciler paketin nereye iletileceğini ve kimin gönderdiğini bilirler. Paketler

yönlendiricilere işlem yapılmasından ve gönderilmesinden daha hızlı ulaştığı zaman,

yönlendirici paketleri bir sırada saklar. Ağ sıkışması, bu sıradaki paketlerin sürekli olan bir

periyodda artması sonucunda oluşur. Sıranın daha uzun olması, sıranın sonundaki paketin

transfer edilmesi için daha çok beklemesi demektir, bundan dolayı gecikmeleri artar. Ağ

sıkışması sıranın tamamen dolmasına sebep olur. Bu şekilde sıra dolduğunda, gelen

paketler düşürülür ve asla gidecekleri yere ulaşamazlar. TCP gibi iletişimi kontrol eden

protokoller, bu paket kayıplarını dikkate almalıdırlar.

İnternetteki web sayfalarının transferi bir bağlantı-tabanlı (connection-oriented)

servisdir. Bu paket anahtarlamalı (packet-switched) bir ağ üzerinde çalışır, transfer

protokolü olarak TCP kullanır. Bu bölümün kalanında, paket-anahtarlamalı bir ağı,

bağlantı tabanlı iletişimi ve TCP tanımlanacaktır.

1.1 Devre Anahtarlama ve Paket Anahtarlama

Bir iletişim ağı devre anahtarlamalı (circuit-switching) yada paket anahtarlamalı

(packet-switching) tabanlı olabilir. Devre anahtarlamalı da, veri transferinin

başlayabilmesi için kullanılacak tüm ağın rezerve edilmiş olması gerekmektedir. Buna bir

örnek olarak telefon sistemlerini verebiliriz. Ağda, sınırlı bant genişliği kapasitesi vardır,

aynı anda sabit sayıda bağlantıyı destekleyebilir. (ağın bant genişliğine ve herbir bağlantı

tarafından ayrılan bant genişliği miktarına bağlıdır). Eğer bant genişliği ayrılmışsa ve

 4

bağlantı kurulmuşsa ama veri transferi başlamamışsa, başka bir bağlantı boş da bulunan

bant genişliğini kullanamaz çünkü o başka bir bağlantı tarafından ayrılmıştır. Şekil 1.1 de

bir devre-anahtarlamalının örneği gösterilmiştir. A bilgisayarı, C bilgisayarı için bir

ayırma yapmıştır ve B bilgisayarıda, D bilgisayarı için bir ayırma yapmıştır. Bu devrelerin

her ikiside aynı yönlendirici boyunca gitmektedir. Yol her ikisi tarafından da

kullanılmaktadır. Devre anahtarlamalı ağlarda, çoklama (Multiplexing) ile bant genişliği

zaman bölümlerine (time-division multiple access) yada frekans bölünmelerine

(frequency-division multiple access) ayrılır. Eğer bir bağlantı boşsa ve ayırma etkin iken,

boş bant genişliğini başka kullanan bağlantı yoksa çoklama söz konusu değildir. Bunlara

ilaveten, kaynaklar önce ayrılmıştır ve trafiğin bant genişliği kapasitesini aşmayacağı

garanti edilmiştir, sıra yoktur ve dolayısıyla sıkışmada yoktur.

Şekil 1.1. Devre – Anahtarlamalı örnek.

Paket anahtarlama, internette kullanılan data transfer metodudur. Paket

anahtarlamada ayırma yapılmaz ama verinin dağıtılacağının da garantisi yoktur. Ağ datayı

hızlı bir şekilde transfer etmek için ”en iyi gücünü(best-effort)” ortaya koyar. Datanın

transfer edilebilmesi için paket adı verilen küçük parçalara bölünmesi gerekir. Herbir

paket kaynağın ve gidilecek yerin adresini içerir. Ağdaki ara bilgisayarlar yönlendiriciler

olarak adlandırılır ve ağda paketlerin kaynaktan ulaşılmak istenen yere iletilmesi için

kullanılırlar. Ayırma olmadığından, birçok kaynaktan paketler araya girebilir. Bu işlem

istatiksel çoklama olarak adlandırılır ve istenen sayıdaki bilgisayarın bilgilerini aynı anda

aralarında değiş-tokuş etmesine izin verir. Paket anahtarlamalı bir örnek şekil 1.2 de

gösterilmiştir. Şekil 1.1 deki gibi A bilgisayarı C bilgisayarına veri gönderiyor ve B

 5

bilgisayarıda D bilgisayarına veri gönderiyor. A’dan giden datalar siyah paketler olarak

B’den giden datalarda beyaz paketler olarak gösterilmiştir. Paket anahtarlamalı ağ ile,

çeşitli bağlantılardaki paketler ağın bant genişliği kapasitesini paylaşırlar. Devre

anahtarlamalı ağların aksine, paketler diğer bağlantılardan boşta kalana kapasiteyi

kullanabilirler. Bunun yanında varışların oranı yönlendiricilerdeki gönderme kapasitesini

arttırırlar, bir sıra oluşturulur, sıkışma ve paket kayıpları olabilir.

Şekil 1.2. Paket – Anahtarlamalı örnek.

Bağlantısız sistemlerde, el sıkışma yoktur. Bilgi göndericiden alıcıya doğruluğu

onaylanmadan gönderilir, buda daha çok mektubun yazılıp posta kutusuna koyulması

işlemine benzer. Bağlantısız sistemler posta servisi gibidir, gönderici ne zaman alındığını

veya alınıp alınmadığını bilemez.

İnternet bağlantısız servisleri UDP ile bağlantıya yönelik servisleride TCP ile

sağlar. TCP; email, veri dosyaları ve web sayfaları vb. içeren birçok uygulamayı transfer

için kullanılır. Araştırmam doğrudan TCP ile ilgili olduğundan bağlatıya yönelik servisler

üzerinde odaklanacağım.

1.2 TCP Taşıması

 6

TCP internetin bağlantıya yönelik taşıma servisidir. İnternet paket-anahtarlamalı

olduğundan, TCP bilgiyi gönderilebilmesi için TCP parçalarına (segmentlerine) böler,

bunlar daha sonra kaynak ve gidilecek yerin adreslerinide içeren paketlerde paketlenir.

TCP kaynakdan gidilecek yere güvenli bir şekilde dağıtılacağına söz verir. Güvenli bir

dağıtımından emin olmak için tüm parçalar alıcı tarafından doğrulanır (ACK gönderilir).

Göndericiden gönderilen her parça bir sıra numarası (sequence number) ile gönderilir.

TCP deki ACK’ler, sıra numarasına sahip tüm byte’ların toplu olarak alındığını bildirmek

amacıyla kullanılır (ACK, alıcı tarafından göndericiden beklenen sıra numarasını tanıtır).

Bir TCP göndericisi, bu ACK’leri kabaca, gönderilen fakat daha henüz doğrulanmayan

dataların kayıtlarını tutmak ve gönderilecek pencereyi (send window) hesaplamak için

kullanır. Dağıtımı sağlamak amacıyla, TCP alıcısı alınan her parçayı, hatalı sırada alınan

sıra numaralarındaki boşluklar dolduruluncaya kadar tamponda (buffer) tutmak

zorundadır.

TCP tarafından gönderilen mesajlar keyfi büyüklerde gönderilir, ama alıcının bu

parçaları tutmak için kullandığı tampon sınırlıdır. Herbir ACK’da, alıcının tamponunda

ne kadar boş yer kaldığının bilgisi vardır. Bu alıcının ilan edilen penceresi’dir. Alınan bu

pencere güncelleninceye kadar, gönderici burada bildirilen miktardan daha büyük verinin

gönderilmesine izin vermez (alıcının penceresinde hiç oda yoksa, yeni data gönderilmez).

Bu TCP akış kontrolünü (flow control) nasıl sağlamaktadır ? Akış kontrolünün amacı

göndericinin, alıcının tampon kapasitesinin üzerinde veri göndermemesinden emin

olmasıdır. Akış kontrolü için gönderilen pencere, alıcının penceresinden geniş

olmamalıdır. Eğer bir TCP göndericisi 6 parçaya bölünmüş bir mesaj göndermek istiyor

ve alıcının pencere büyüklüğü 3 parçaysa, gönderici ilk başta 1-3 arasındaki parçaları

gönderir, şekil 1.3. parça 1 için ACK geri döndüğü zaman, 4. parçayı gönderir. Bu işlem 6

parça da gönderilinceye kadar devam eder.

 7

Şekil 1.3. TCP Gönderilecek pencere.

Gönderilen pencerenin büyüklüğü gönderici tarafından transfer edilen dataların

oranını yürütür. Bunu göstermek için önceki örnek farklı bir biçimde şekil 1.4 de

gösterilmiştir. Paralel çizgiler gönderici ve alıcıyı belirtirler, zaman ilerlemesi şeklin

altında gösterilir. Burada da alıcının penceresi 3 parçadır. Bir parçanın gönderilmesi ve

ACK’inin alınması arasındaki zaman gidiş - dönüş zamanı (round-trip time, RTT) olarak

adlandırılır. 3 parçalık başlangıç penceresi ile, TCP ilk 3 parçayı arka arkaya gönderir. Bu

parçalar için ACK’ler yakın boşluklarla alınırlar. RTT1 parça 1 in RTT’sini belirtir, ve

RTT2 parça 4 ün RTT’sini belirtir. Bu transferin gönderme oranı RTT başına 3 parçadır,

bundan dolayı her RTT’de ortalama 3 parça gönderilir. Daha genelleştirirsek, TCP

göndericisinin oranı,

 Oran = w / RTT (1.1)

şeklinde belirtilmiştir. Eşitlik (1.1)’de kullanılan w pencere büyüklüğüdür.

Şekil 1.5’de bir paketin düşmesi ve geri kurtarılmasının örneği gösterilmiştir. Bu

örnek şekil 1.4 gibi 3 parçalık pencereyle başlar. Parça 2 ağ tarafından düşürülür. Parça

3’ün alındısı, alıcının parça 2 isteği için aynı ACK göndermesine sebep olur. Parça 2‘yi

 8

isteyen ilk ACK alındığında parça 2 geri döner (parça 1’in alındısı) ve TCP göndericisi bir

zamanlayıcı ayarlar. Bu örnek de, zamanlayıcının süresi yeni bir veri isteğinden önce biter

(parça 2 den başka bişey), böylece gönderici parça 2’nin kaybolduğunu varsayar. Pencere

ölçüsü 3 parça olduğundan, TCP parça 2’den başlayarak 3 parça gönderir. Bu gösterim

“Go-Back-N” olarak adlandırılan hata kurtarma yaklaşımıdır. Parça 2 alındığında, parça

5’i isteyen ACK gönderilir.

Şekil 1.4. TCP Gönderme Oranı.

Geciken ACK’ler : Esas olarak, TCP alıcıları bir parça alındığı zaman, hemen bir ACK

gönderirler. İki yönlü trafik ile, geciken ACK’lar, göndericiye geri gönderilecek veri

oluncaya kadar beklemesine izin verir ve alıcı ACK’i veri parçalarının sırtında

göndericiye geri iletir. Eğer ACK’ler çok fazla gecikirse, gönderici parçanın

kaybolmasından şüphelenir. Bu gecikmeyi sınırlandırmak için, geciken ACK’ler bir

zamanlayıcı çalıştırır, genellikle 200 ms’ye ayarlanır. Zamanlayıcı dolmadan, eğer

alıcıdan, göndericiye veri parçası gönderilmemişse (ACK üzerinde), doğrulanmamış veri

vardır, hemen bir ACK gönderilir. Ayrıca göze çarpan bir ACK eşiği vardır, genellikle 2

parçaya ayarlanır, böylece, eğer iki doğrulanmamış parça varsa hemen bir ACK

gönderilir.

 9

Şekil 1.5. TCP düşme ve geri kurtarma.

 10

BÖLÜM 2

TCP SIKIŞIKLIK KONTROLÜ

Günlük yaşantımızda hepimiz belli zamanlarda sıkışma yaşarız. Sıkışma sadece

bilgisayar ağlarında değildir. Örneğin araba ile otoyola girişte, alışveriş için faturamızı

ödemekde vb. durumlarda sıkışma yaşayabiliriz. Bu örneklerdeki esas kural aynıdır.

Kapıdan geçmek isteyen varlıkların sayısı kapının kapasitesinden büyüktür. Bilgisayar

ağlarında ise bir yönlendiriciye gelen paketlerin sayısının, yönlendiricinin işlem

yapabileceği sayıdan büyük olmasıdır, yada çıkışın girişden yavaş olmasıdır. Genellikle

yönlendiriciler, gelen paketlerin işlem yapılıncaya kadar saklandığı bir tampon ile

sağlanır. Bir yönlendiricideki sıkışmada, tampon taşması yaşanır, sonuç olarak da paket

kaybolur.

2.1 Ağ Sıkışıklığı

İnterneti kullanan herkes gecikmeleri farketmiştir. Web trafiği için gecikmeler,

web sayfalarının yavaş yüklenmesine sebep olurlar. Ses ve video’ların oynatılmasında,

gecikmeler boşluklara yada oynatılması sırasında düzensizliklere neden olur. Bu

gecikmeler genellikle, yönlendiricilerde, gelen oran giden hat hızını aşarsa, belli bir zaman

periyodunda oluşan ağ sıkışklığı (network congestion) dan kaynaklanır.

Ağ sıkışıklığı, internetin tasarlandığı paket-anahtarlamanın bir yan etkisidir.

Paket anahtarlama, farklı kaynaklardan verinin aynı yol boyunca iletilmesine izin verir.

İnternette yönlendiriciler, paketlerin anlık alım oranı dış-sınır iletim oranından büyükse,

paketleri tampona almak için sıralar kullanırlar. Bu sıralar first-in/first-out (FIFO) yani ilk

giren ilk çıkar prensibine göre çalışır ve sınırlı bir kapasiteleri vardır. Bir paketi

yönlendiricilerde tampona alındığında, ilk önce daha önceden sıralanan paketlerin

iletilmesini beklemek zorundadır. Sıranın uzaması yani sırada daha fazla paket olması,

 11

daha uzun sıra gecikmesi demektir. Sıra sınırlı olduğundan, gelen paketler eğer dolu bir

sıraya ulaşıyorlarsa, sıra tarafından düşürülürler. İnternetteki çoğu sıra “drop-tail” dır.

Yani, eğer sıra doluysa gelen paketler sadece düşürülür.

Ağ sıkışıklığı, yönlendiricilerdeki sonlu sıraların ölçülerinin artmasına, er geç bu

sıraların dolmasına ve gelen paketlerin düşmesine sebep olurlar. Sıradaki gecikmeler,

verinin göndericiden alıcıya dağıtılmasını yavaşça azaltır, uygulamanın performansı

kullanıcının farkedebileceği kadar düşer. Paket düşmeleri, TCP akışları için özellikle

problemdir. TCP sıralı ve güvenli bir dağıtım için söz verir, böylece bir TCP paketi

düşürülürse, düşen paket alıcıya ulaşıncaya kadar sonradan gelen paketler alıcıya

dağıtılmaz. Bir paket düştüğü zaman, TCP düşmeyi tespit etmek ve kaybolan paketi

yeniden göndermek zorundadır. Bunların her ikiside zaman alır. TCP’nin güvenilirlik

özelliğinden dolayı, kayıp paketler son kullanıcı için gecikmeyi arttırır.

Kullanıcının amacı paketlerini mümkün olduğunca çabuk bir şekilde

göndermektir. Bunu yapmak için bağlantı yolunun kendi tarafı ve karşı tarafı arasındaki

en yavaş parçasına göre göndermelidir. TCP protokolü bir iletim penceresi (transmission

window) ile çalışır. Bu önceki gönderilen paketin ACK’i alınmadan gönderilebilecek

paketlerin sayısıdır. Alıcı periyodik olarak kendi ilan ettiği pencereyi (advertised window)

gönderir . Bu alabileceği paketlerin sayısıdır. Sıkışmadan otomatik olarak kaçınmak için

iletim penceresinin seçilmesi ve düzenlenmesi gerekmektedir.

Son nokta gibi, yönlendiriciler de sıkışıklıktan kaçınmanın önemli parçasıdır,

genellikle yönlendiricilerin, gelen paketlerin tutulduğu sınırlı tampon kapasiteleri vardır

ve bu bellek dolduğunda sıkışma oluşur. Tampon dolduğu zaman, yükü azaltmanın tek

yolu paketlerin atılmasıdır. Paketlerin atılması sıkışıklığı düşürmek için bir yoldur fakat

yeterli değildir. Paketlerin atılması devamlı sıkışıklık için etkili değildir ve dahası TCP

protokolü sıkışıklığa ek olarak kaybolan paketleri yeniden gönderir. Bundan dolayı

yönlendiriciler, herhangi bir sıkışıklık durumunda son noktalara sinyal iletmelidir, böylece

iletim penceresi düşer. Bu sistemlerin gerçekleştirilmesinde, bazı görüntüler de dikkate

alınmalıdır. Birincisi patlama ve devamlı sıkışıklık arasında ayrım yapmaktır. Diğer

görüntü ise kaynakların dağıtımında dürüst olmaktır. Sonuç olarak eş zamanlılıktan

 12

kaçınmak için, eğer yönlendirici bir zamanda aniden fazla paketi işaretlerse, tüm

kaynakların oranı ve ağın performansı aynı anda dramatik bir şekilde düşer. Bu bölümde,

ayrıca atılan paketlerin çeşitli ve daha etkili yollarla nasıl atıldığını göreceğiz.

Bir TCP bağlantısının akışı, paketlerin korunmuş bir şekilde iletilmesi ilkesine

dayanır. Sıkışıklık kontrolü, bu kuralı bozan yerleri bulmaya ve düzeltmeye çalışır.

Paketlerin korunmasında yaşanan başarısızlıkların sadece üç nedeni olabilir.

1. Bağlantı dengeli değildir.

2. Gönderici, henüz eski paket ayrılmadan yeni paketi göndermiş olabilir.

3. Bağlantı yolu boyunca kullanılan kaynak limitlerinden, denge sağlanmamış

olabilir.

2.2 TCP’nin Gelişim Tarihi

TCP, ilk tanımlandığı 1974’den beri birçok değişim geçirmiştir. Şekil 2.1

TCP’deki anlamlı gelişmelerin zaman çizgisini göstermektedir.

Şekil 2.1. TCP’nin gelişimi

TCP sıkışıklık kontrolünün gelişimi için yönetim problemi 1980’lerin ortasında

sıkışıklık çökmeleri (congestion collapse) ile ortaya çıkmıştır. Sıkışıklık çökmeleri yeni

veri alınamadığı ve kayıp dataların yeniden iletimi ile ağın çok yüklenmesi durumunu

tanımlar. TCP, bir paket gönderildiği zaman bir zamanlayıcı ayarlayarak kayıp parçaları

tespit eder. Eğer paket alındığına dair ACK alınmadan önce zamanlayıcının süresi dolarsa,

 13

paketin kaybolduğu varsayılır ve bu sıra numarasından başlayarak tüm paketler yeniden

iletilirler (Go-Back-N). Bu sıkışıklık çökmesinden önce, TCP’de sadece akış kontrolü

gerçekleştirilmişti. Ağ da sıkışma oluştuğunda ne yapılabileceği ile ilgili hiç birşey yoktu.

Sıkışıklık çökmelerine cevap olarak, TCP için sıkışıklık kontrolü (congestion control)

algoritması geliştirildi. Sıra taştığı zaman oluşan paket kaybındaki temel düşünce,

sıkışıklığın işaretidir. Paket kayıpları tespit edildiği zaman, göndericiler, gönderme

oranlarını düşürmelidirler.

2.3 TCP Tahoe

Sıkışıklık kontrolü için ilk olarak TCP Tahoe geliştirilmiştir ve esas TCP’den

farklı olarak birçok değişiklik içermektedir. Yavaş başlama (slow-start) fazı, sıkışıklıkdan

kaçınma (congestion avoidance) fazı ve hızlı tekrar iletim (fast retransmit) fazlarını

içermektedir.

2.3.1 Yavaş Başlama

TCP, paketlerin muhafaza edilmesi düşüncesini takip eder. Bir paket ağı terk

edinceye kadar yeni bir paket gönderilmez (ACK geri dönmeden). TCP Thaoe

tanıtılmadan önce, başlangıç dışında paketlerin korunmasına uyulurdu. Başlangıçda, yeni

parça göndermek için doğrulanmış bir paket yoktur, bundan dolayı gönderici dolu bir

pencerenin değerini bir kere gönderir. Gönderici buna rağmen, ağın bir seferde ne kadar

veri taşıyacağını bilemez, bundan dolayı sıklıkla olan patlamalar paketlerin

yönlendiricilerde düşmesine izin verir.

Paket gönderen gönderici, paketlerin muhafaza edilmesi özelliğine bakmak ve

ağa yeni bir paket göndermek için bir saat olarak ACK’leri kullanır. Bundan dolayı alıcı,

paketlerin ağ üzerindeki alınmasından daha hızlı olmayacak şekilde ACK’ler oluşturur.

Bu protokolün kendi kendine saatli denetimidir (Self - clocking) [1].

 14

Kendi kendine saat denetimli sistemler, otomatik olarak bant genişliği ve

gecikme çeşitlerini ayarlarlar ve geniş dinamik bir aralığa sahiptirler. (800 mbps Cray

kanallardan, 1200 bps paket radyo linkine kadar) [1].

Saati (clock) başlatmak için bir “yavaş-başlama” algoritması geliştirilmiştir. Bu

algoritmada iletilen datanın miktarı yavaş yavaş artmaktadır [1].

• Herbir bağlantı durumuna, bir sıkışıklık penceresi (cwnd) eklenir.

• Başladığında yada kayıp sonrası yeniden başladığında cwnd bire ayarlanır.

• Herbir ACK’de cwnd bir paket arttırılır.

• Gönderirken, alıcının bildirilen en küçük pencere ve cwnd’sini gönderilir.

Şekil 2.2. Pencere akış kontrolü “kendi kendine saatli denetim”

Başlangıçda (ve paket düştükten sonra), paketlerin mümkün olduğunca hızlı bir

şekilde gönderilmesi yerine, ACK’in alıcıdan iki kat oranında geri dönmesi için, yavaş

başlama, ağa giren paketlerin oranını sınırlar. TCP Tahoe sıkışıklık penceresi (congestion

window , cwnd) tanıtır. İlk başta bir pakete ayarlanır. Gönderilen pencere cwnd’nin en

küçüğüne ve alıcının duyuru penceresine (advertised window) ayarlanır. Her ACK

alındığında, cwnd bir paket arttırılır. Gönderilen pencerenin büyüklüğü, göndericinin

gönderme oranını kontrol eder. (oran = w / RTT). Bu gönderme oranını arttırmak için,

gönderici, cwnd penceresini arttırarak, gönderilen pencerenin değerini arttırabilir. Sıkışma

 15

penceresinin ilk penceresindeki ilk paket doğrulanmadan önce, ilave dataların ağa transfer

olmasına izin verir. Sıkışma penceresi sadece, alıcıdan datanın başarılı bir biçimde

dağıtıldığını belirten ACK alındığında arttırabilir. Gönderici, ağ sıkışması tespit edilinceye

kadar cwnd’yi arttırır.

Şekil 2.3 yavaş başlama işleminin bir örneğini göstermektedir. x ekseni zaman ve

y eksenide sıra numarasıdır. Kutular paketin iletimini göstermektedir ve sıra numaraları

ile etiketlenmişlerdir. Örneği tutmak için kutuların 1 byte’lık paketler olduğu varsayılır.

Kutuların üstündeki numaralar, paketler gönderildiği zaman cwnd’nin değerini belirtir.

Noktalar gelen ACK’yı belirtir ve en yüksek sıra numarasının y ekseni boyunca

merkezlenir. ACK’lar aynı zamanda x ekseni boyunca, alınan ACK tarafından serbest

bırakılan paketlerle merkezlenir. ACK’nın altındaki sayılar ACK’da taşınan sıra

numarasını belirtir (sonraki paketin sıra numarası alıcı tarafından beklenir), ACK

numarasına tekabül eder. Örneğin ilk nokta paket 1 in doğrulanmasıdır ve alıcı paket 2’yi

almayı bekler. Bundan dolayı nokta y ekseninde konumlanmıştır, noktanın altındaki 2 ile

paket 1 merkezlidir, bu da 2 nin ACK numarasının ACK ile taşındığını gösterir. Şekil

1.8’de cwnd’nin ilk değeri 2 dir, bundan dolayı 0. zamanda paket 1 ve 2 gönderilir. Paket

1 için ACK alındığında, cwnd 3’e arttırılır ve paket 3 ve 4 göndeilir – paket 3 gönderilir

çünkü paket 1 doğrulanmıştır, paket 4 de sıkışma penceresini doldurmak için gönderilir.

Bundan dolayı, yavaş başlama sırasında, herbir ACK alındığında, iki yeni paket

gönderilir.

Yavaş başlamada, göndericinin sıkışma penceresi her bir ACK alındığında bir

parça arttırılır. Eğer bir ACK, iki parçanın alındısını doğrularsa (geciken ACK da),

ACK’nın alındısı tarafından iki parça bırakılır. Bir gönderici, bir alıcı ile iletişim kurar ve

geciken ack’ları kullanmazsa, şekil 2.3 deki gibi herbir ACK alındığı zaman iki parça

gönderilir (bir tanesi doğrulanan parça için ve bir taneside artan cwnd için gönderilir). Bir

gönderici, bir alıcı ile iletişim kurar ve geciken ACK’ları kullanırsa, her bir ACK

alındığında üç parça gönderir (iki tanesi doğrulanan ACK için bir taneside artan cwnd

için). Bu şekil 2.4’de gösterilmiştir.

 16

Şekil 2.3. Yavaş başlama

Şekil 2.4. Geciken ack’larla yavaş başlama

2.4 Gidiş – Dönüş Zamanı (RTT)

Yavaş başlama ile paket kaybetmediğimizi varsayarsak, belli bir zamanda sistem

bir iletim penceresi tarafından belirtilen dengeye ulaşır. Bu noktada, ACK alınmazsa,

sistemde bir başarısızlık olur, gönderici paketi yeniden gönderir. İletim ve ACK’in

alınması arasındaki zamanı göz önüne almamız gerekir ki bu zaman gidiş dönüş

zamanıdır (RTT) . RTT’nin temelinde, iletim ve ACK arasında geçen zamanın kaydını

tutabilmek için gönderici bir zamanlayıcı tanımlar (retransmission timeout, RTO). Eğer

 17

zaman, tanımlanan zamanı geçerse paket yeniden gönderilir. Zamanlayıcı için iyi bir

zaman seçmek çok önemlidir, aksi takdirde eğer seçilen değer çok düşükse, yeniden

gönderme çok fazla olur, ama paketler kaybolmaz. Eğer çok büyük olursa, bağlantının hızı

düşer. TCP de, M RTT’nin tahmini değeridir ve paketin son RTT değeri ve önceki M

değeri ile birlikte hesaplanır.

yeniM = a*eskiM+(1-a)*RTT (2.1)

Eşitlik (2.1)’de belirtilen a için 0.9 iyi bir değerdir. RTO seçilmiş olmalıdır, örneğin β =

2 için β*M değeri. Bir RTO içerisinde bir ACK alınmadığı zaman, paketin kaybedildiği

düşünülür. Eşik değere ulaşıldığında sıkışıklıkdan kaçınma başlar, pencere üstel olarak

artma yerine doğrusal olarak artar [2].

2.5 Sıkışıklıkdan Kaçınma

Paketlerin kaybolmasının iki nedeni vardır, iletişim sırasında zarar görmeleri

veya iletim yolunda bulunan bazı yerlerdeki tampon kapasitesinin yetersizliğinden oluşan

ağ sıkışıklarıdır. Ağ yolunda paketlerin zarara uğramasından dolayı olan kayıplar çok

azdır (<< %1), paketlerin kaybolmasının en büyük nedeni ağdaki sıkışıklıktır [1].

Sıkışıklıktan kaçınma stratijisinin iki bileşeni vardır; ağ sıkışmanın olduğu son

noktaya sinyali iletmek zorundadır ve son noktalarında sinyal alındığı zaman kullanımı

azaltacağı, sinyal alınmadığı zaman kullanımı arttıracağı bir politikası olmalıdır [1].

Eğer paketler her zaman sıkışmadan dolayı kayboluyorsa ve zaman aşımıda

genellikle paketlerin bu şekilde kaybolmasından oluşuyorsa, “sıkışık ağ” sinyali için de iyi

bir adayımız vardır. Özellikle özel bir değişiklik (paket başlığına yeni bir bit eklenmeden)

olmadan, bu sinyal tüm varolan ağlar tarafından otomatik olarak dağıtılır [1].

 18

Diğer bir sıkışıklıkdan kaçınma stratejisi, son düğüm hareketidir. Doğrudan

birinci-derece zaman-serisi ağ modeli tarafından izlenir. Bu model, ağ yükünün, bazı

uygun uzunlukların sınırlandırılmış aralıkları üzerindeki ortalama sıra uzunluğu ile

ölçüldüğünü söyler. i aralığındaki yük Li ise, Li örnek alınan zamanla karşılaştırıldığında

değiştini söyleyen, sıkışık olmayan bir ağ modellenir [1].

 Li =N (2.2)

N sabittir. Eğer ağda sıkışıklık söz konusu olursa, bu sıfırıncı dereceden model çalışmaz.

Ortalama sıra uzunluğu iki terimin toplamı olur, yukarıdaki N esas gecikme ve yeni ağın

ortalama gelişi olarak kabul edilir, yeni terimde son zaman aralığından ayrılan ve bu

trafiğin etkisinin bir bölümü olarak kabul edilir. Örneğin irkilmiş yeni iletim,

Li =N + γLi-1 (2.3)

şeklinde tanımlanır [1]. Bunlar L(t) nin Taylor serisi açılımdaki ilk iki terimidir.

Ağ sıkıştığı zaman, γ genişlemek ve sıra uzunluğu üstel olarak artmaya

başlamalıdır. Eğer trafik kaynakları en az sıranın artması kadar çabuk büyürse sistem

kararlı olabilir. Bir kaynak yükü pencere – tabanlı bir protokolde, pencere büyüklüğünün

(W) ayarlanması ile kontrol eder [1]. Sıkışıklık durumunda,

Wi = dWi-1 (d < 1) (2.4)

şeklinde tanımlanır.

Eğer sıkışma yoksa, γ sıfıra yakın olmak zorundadır ve yük hemen hemen

sabittir. Ağ , talep fazla olduğunda, kaybolan bir paket yoluyla, bu durumu bildirir. Eğer

bağlantı, paylaşımdan daha az kullanıyorsa hiç bir şey söylemez. Bundan dolayı bir

bağlantı o anda ki limiti bulmak için bant genişliğinden daha fazla faydalanmalıdır.

Örneğin, aynı ağ yolunu başka birisi ile paylaşıyorsunuz ve bir noktada birleştiniz ve

 19

varolan bant genişliği yarı yarıya paylaştırıldı. Daha sonra karşı taraftaki kişi bağlantısını

kapattı. Eğer siz pencere büyüklüğünüzü arttırmazsanız bant genişliğinin %50’ si boş yere

kullanılmamış olacaktır. Burada nasıl bir arttırma politikası izlenmelidir ?

En iyi arttırma politikası, pencere ölçüsünde küçük, sabit değişiklikler yapılarak

bulunmuştur. Sıkışıklık yokken ,

Wi = Wi-1 + u (u<< Wmax) (2.5)

şeklinde tanımlanır ve Wmax hattın bant genişliğidir.

Önceki, sıkışma kontrol algoritması sesi müthişdir. Ama bu değildir. Yavaş

başlama gibi, kodun üç satırıdr.

• Herhangi bir zaman aşımında şimdiki cwnd yarıya düşürülür (çarpımsal düşüş).

• Yeni bir veri için gelen her bir ACK’de cwnd, 1/cwnd kadar arttırılır (katkılı artış).

• Gönderirken, alıcının bildirdiği en küçük pencere ve cwnd gönderilir.

Bu algoritma sadece sıkışıklıkdan kaçınma içindir. Daha önceden tanımlanan

yavaş başlamayı içermez. Paket kaybolmasında, sinyal sıkışmasında yeniden başlatılır. Bu

yukarıdakilere ek olarak kesinlikle yavaş başlamaya ihtiyaç vardır. Çünkü sıkışıklıkdan

kaçınma ve yavaş başlama bir zaman aşımı ile tetiklenir ve her ikiside sıkışıklık

penceresini (cwnd) etkiler. Bunlar sıklıkla karıştırılır. Aslında tamamen farklı ve bağımsız

algoritmalardır [1].

TCP’deki sıkışıklık kontrolünün amacı ağ sıkışmasına tepki verirken varolan

tüm kaynakların kullanılmasını sağlamaktır (örneğin yönlendiricilerin sıralarındaki

tampon bellek boşlukları). Varolan bant genişliğinin miktarı bilinen bir miktar değildir,

akışların girip ayrılmasına göre değişir. TCP, varolan ek bant genişliklerini, sıkışma tespit

edilinceye kadar gönderme oranını düzenli olarak arttırmak için araştırır. Ağda oluşan

sıkışmanın tek bildirisi paketlerin kaybedilmesidir. Düşürülen paketler dışardan

 20

bilinemez, yönlendirici gönderir, böylece gönderici paketin kaybolduğu ve hangi paketin

kaybolduğunun sonucunu çıkarır [3].

Sıkışmadan kaçınmada, doğrusal bir şekilde artan iletim oranı ek bant

genişliklerini sıkı bir şekilde arar. TCP Tahoe’de, gönderici yavaş başlama ile başlar ve

sonradan sıkışıklıkdan kaçınmaya geçiş yapar. TCP Tahoe, ssthresh isimli, yavaş

başlamadan sıkışıklıkdan kaçınmaya geçiş için eşik değerini belirten bir değişken ekler.

cwnd >ssthresh olduğunda, yavaş başlama sonlanır ve sıkışıklıkdan kaçınma başlar.

Buradaki düşüncede her bir RTT’de, cwnd büyüklüğündeki bir pencere ile TCP

göndericisi en fazla cwnd alır, bu sonuçlardan bir sıkışma penceresi, her RTT de en fazla

bir paket artar. Bu doğrusal artış, her RTT’de iki katı artan yavaş başlama ile çelişir [3].

Şekil 2.5 sıkışıklıkdan kaçınma işlemini göstermektedir. Tekrar, cwnd’ nin ilk

değeri 2 dir, bundan dolayı iki paket iletişimi başlatmak için gönderilir. Burada

ssthresh‘ın ilk değeri de 2’dir. cwnd >= ssthresh olduğundan, sıkışıklıkdan kaçınma

etkindir. Paket 1 için ACK alındığı zaman, cwnd , 2.5 olur (2+1/2) ve paket 1 ağı

terkettiğinden bir paket gönderilir. paket 2 için ACK alındığında, cwnd 2.9 olur (2,5 + 1

/ 2.5). Tekrar, ağda göze çarpan sadece iki paket tutmak için, bir paket gönderilir. paket 3

için ACK alındığı zaman, cwnd 3’den büyük olur, böylece iki paket gönderilebilir [3].

Şekil 2.5. Sıkışıklıktan kaçınma

 21

Şekil 2.5’la karşılaştırıldığında, şekil 2.6, geciken ACK kullanıldığındaki

sıkışıklıktan kaçınma operasyonunu gösterir [3].

Şekil 2.6. Geciken ack’lar ile sıkışıklıkdan kaçınma.

2.5.1 Yönlendiricilerde Sıkışıklıkdan Kaçınma

Son nokta gibi, yönlendiriciler de sıkışıklıktan kaçınmanın önemli bir parçasıdır.

Genellikle yönlendiricilerin, gelen paketlerin tutulduğu sınırlı tampon kapasiteleri vardır

ve bu tampon dolduğu zaman sıkışma oluşur. Tampon dolduğu zaman, yükü azaltmak için

tek yol paketlerin atılmasıdır. Paketlerin atılması sıkışıklığı düşürmek için bir yoldur fakat

yeterli değildir. Paketlerin atılması devamlı sıkışıklık için etkili değildir ve dahası TCP

protokolü sıkışıklığa ek olarak kaybolan paketleri yeniden gönderir. Bundan dolayı

yönlendiriciler, herhangi bir sıkışıklık durumunda son noktalara sinyal iletmelidir, böylece

iletim penceresi düşer. Bu sistemlerin gerçekleştirilmesinde, bazı görüntüler hesap içine

alınmalıdır. Birincisi patlama ve devamlı sıkışıklık arasında ayrım yapmaktır. Diğer

görüntü ise kaynakların dağıtımında dürüst olmaktır. Sonuç olarak eş zamanlılıktan

kaçınmak için eğer yönlendirici bir zamanda aniden fazla paketi işaretlerse, tüm

kaynakların oranı ve ağın performansı aynı anda dramatik bir şekilde düşer.

2.5.1.1 Rastgele Erken Düşürme

 22

Bu sistemin temeli, sıranın uzunluğu belli bir eşik değerini geçtiği zaman,

paketlerin rastgele atılması temeline dayanır. Bu algoritma patlamış trafikleri ayıramaz.

Basitçe görüldüğü gibi, bu algoritma eş zamanlılığa da liderlik eder, çünkü, aniden sıra

uzunluğu eşik değerine ulaştığı zaman herhangi bir dikkat gözetilmeksizin tüm paketler

düşürülür. Eş zamanlılıkdan kaçınmak için paketlerin atılması işlemi kademeli olarak, az

ile başlanıp sonra arttırarak yapılmalıdır.

2.5.1.2 Rastgele Erken Tespit Etme (Random Early Detection - RED)

Sıkışmadan korunmak için en ilginç algoritmadır. Paketlerin düşürülmesi

yolunda erken düşürmeye benzer, eşik değerinin üzerine çıkıldığı zaman biraz daha

karmaşıklaşır [2].

Tanımlanan bazı değişkenler; avg, sıranın ortalama uzunluğu, minimum ve

maksimum eşik değerleri ve pa, paketlerin düşürülme olasılığıdır. Bu algoritma şu şekilde

çalışır [4],

• Her gelen paket için avg hesaplanır.

• pa hesaplanır

• minimum < avg < maksimum ise paket pa olasılığı ile atılır.

• Eğer avg maksimum dan büyükse paket atılır

Bazı görüntüler bu algoritma ile ilgilidir. Ortalama uzunluk, önceki değerlerin

formülde hesaplanması ile bulunur [4].

yeniAvg= (1-w)eskiAvg+w*q (2.7)

q, o andaki sıra ölçüsü, w de bir ağırlık faktörüdür. w’nın seçimi önemlidir çünkü eğer çok

küçük olursa avg de değişimler çok yavaş olur ve sıkışmalar tespit edilemez. Eğer çok

büyük olursa avg de değişimler çok hızlı olur ve patlayan trafikler (bursty traffic) sıkışma

gibi düşünülür. Ortalama sıra uzunluğunun kullanılmasıyla, patlayan trafiklerin sıkışma

 23

gibi tespit edilmesi önlenmiş olur. avg nin hesaplanmasında periyod da hesaba katılır, bu

periyod da sıra boş olduğu zaman belli sayıda bir paketin iletildiği varsayılır [2].

pa sabit bir değer değildir, avg nin temel hesabında ve daha önceki pa değerleri

kullanılır ve sıra uzunluğu arttıkça yavaş yavaş artar. Bu eş zamanlama dan kaçınmak için

kullanışlı bir yöntemdir, sıkışıklığın düştüğü kadar uzar, az sayıda paket atılır; sıkışıklık

arttığı zaman paketlerin düşme olasılığı daha fazladır. Sonuç olarak sıkışıklık çok

yüksekse tüm paketler atılır [2].

Minimum ve maksimum seçimi tampon uzunluğuna ve elbetteki gelen trafiğin

türüne bağlıdır. Minimum ve maksimum arasındaki fark eş zamanlılıktan kaçınmak için

yeterince büyük seçilmelidir. Çünkü, eğer çok küçükse sistem tüm paketleri, sıkışma

yoğun olmadan, erkenden atmaya başlar. Kural olarak önerilen maksimum = 2*minimum

dır [4]. Ayrıca minimum yeterince geniş seçilmelidir ki bant genişliğinin kullanılması

maksimuma çıkarılabilsin [2].

Sonunda, dikkat edersek RED dahili olarak yüksek yüklü bağlantıları ve düşük

yüklü bağlantıları ayırmaktadır, aslında belli bir olasılıkla paketlerin atılmasıyla ağır yüklü

bağlantılar için paketleri atanların sayısı hafif yüklü bağlantılarınkinden daha geniştir. Bu

da kaynakları daha doğru ayırmamız konusunda yol gösterir [2].

2.6 Hızlı Tekrar İletim

Parçaların kaybolduğu yada yeniden gönderilmesini gerektiren durumların tespiti

için TCP bir zamanlayıcı kullanır. Bu tekrar iletim zaman aşımı (RTO) zamanlayıcısı her

zaman bir veri paketi gönderilecek diye ayarlanmıştır (eğer zamanlayıcı henüz

ayarlanmamışsa). Yeni bir data için ACK alındığında RTO baştan başlar. Eğer yeni bir

kayıt için beklenen ACK’den önce RTO’nun süresi dolarsa, en eski doğrulanmamış

paketin kaybolduğu ve yeniden iletileceği düşünülür. RTO zamanlayıcısı RTT’nin 3-4

katına ayarlanır, böylece geciken paketler gereksiz yeniden iletimlere sebep olmazlar.

 24

TCP Tahoe’de sıkışıklıkdan kaçınma eki ile RTO’nun süresi dolarsa, 1/2 cwnd, sstresh da

saklanır ve cwnd 1 parçaya ayarlanır. Bu noktada cwnd < sstresh, bu bir zaman aşımı ile

yavaş başlamaya dönmektir [3].

TCP Tahoe, paket kayıplarını tespit edebilmek için daha hızlı bir yol ekler ve bu

hızlı tekrar iletim (fast retransmit) olarak adlandırılır. TCP Tahoe’den önce, parça

kayıplarını tespit etmenin tek yolu RTO’nun süresinin dolmasıydı. Bir alıcı sıralı olmayan

bir paket görür görmez, alınan son sıralı paket için bir ACK gönderir. Gönderici, sadece

paketlerin yeniden sıralanacağından çok kayıp paket olduğunu ifade etmek için aynı

ACK’nın üç tane tekrarlanan alındısını kullanır [3].

Şekil 2.7 TCP Tahoe hızlı tekrar iletimi göstermektedir. Bu şekil, şekil 2.3’ün

devamıdır ve paket 9’un kaybolduğundaki durumu göstermektedir. Paket 7 için ACK geri

döndüğünde, paket 15 ve 16 gönderilir ve cwnd 9’a çıkar. Paket 8 için ACK alınırsa, cwnd

10’a çıkar ve paket 17 ve 18 gönderilir. Ama paket 9 ‘un ACK sı alınmazsa, paket 10’un

ACK’sı paket 8 in tekrarlanan ACK’sıdır. Sıkışma penceresi, tekrarlanan ACK’lar

alınınca, değişmez. Tekrarlanan ACK’lar geri dönmeye devam eder. Üçüncü tekrarlanan

alındığında, hızlı tekrar iletim girilir. Paket 9 kaybolduğu varsayılır ve hemen gönderilir.

Bu noktada, cwnd , 1 pakete düşürülür. Tekrarlanan ACK’lar alınmaya devam eder ama

gönderilen data paketi olmadığından cwnd de değişiklik yapılmaz. Kaybolan paketin

başarılı bir şekilde alındığına dair ACK gelirse, cwnd 2’ye çıkarılır ve paket 19 ve 20

gönderilir. Bu noktadan yavaş başlama normal olarak başlar [3].

Hızlı tekrar iletimi kullanmanın avantajı, kaybolan parçanın tespiti için ihtiyaç

duyulan zamanı düşürmesidir. Hızlı tekrar iletim olmadan, kayıpları tespit etmek için

RTO’nun süresinin dolması gerekmektedir. Akışlar için geniş sıkışma pencerelerine sahip

olmak, üç tane tekrarlanan ACK’nın tetiklemesiyle, çoklu ACK’ların bir RTT içerisinde

tipik olarak alınmasıdır. Kayıp bir parçanın tespit edilmesi bir RTT’den daha az sürededir.

Bu yolda, hızlı tekrar iletim, veri gönderilemediği sırada uzun zaman aşımlarından

kaçınmaya izin verir [3].

 25

2.7 AIMD

TCP Tahoe’nin TCP’ye en büyük katkısı AIMD (additive Increase /

Multiplecative Decrease) pencere düzeltme algoritmasıdır. Eklemeli artış w(t+1) = α +

w(t) olarak tanımlanır. w(t), bir RTT zaman biriminde t zamanında parçalarda o andaki

sıkışma penceresinin ölçüsüdür. Sıkışıklıkdan kaçınmada, α = 1 dir. Her ACK

alındığında, sıkışma penceresi 1 / w(t) kadar arttırılır, sonuçda bir RTT’de en fazla bir

paket arttırabilir. Çarpımsal düşüş ise w(t+1) = βw(t) olarak tanımlanır. TCP Tahoe’de, β

= 0.5’dir, ssthresh de geri iletim sırasında ½ cwnd ye ayarlanır [3].

Şekil 2.7. TCP Tahoe hızlı tekrar iletim

2.8 TCP Reno

1990 yılında Van Jacobsen TCP Tahoe’ye hızlı düzeltme (fast recovery) adı

verilen yeni bir özellik ekledi. Hızlı düzeltme ile TCP Tahoe, TCP Reno olarak bilinir. Bu

aslında Internet üzerinde TCP’nin standardı olarak kabul edilir [44].

 26

2.8.1 Hızlı Düzeltme (Fast Recovery)

TCP Tahoe’de olduğu gibi, eğer parçanın tekrarlanan ACK’i üç kez alındıysa, o

parçanın kaybolduğu varsayılır. Parçanın kaybolduğu üç kez tekrarlanan ACK yoluyla

tespit edilirse, yavaş başlama yerine hızlı düzeltme (fast recovery) devreye girer. Hızlı

düzeltmede, ssthresh, 1/2 cwnd ye ayarlanır (AIMD algoritmasına göre), ve cwnd ise,

ssthresh + 3 olur. Her bir ek tekrarlı ACK alındığında, cwnd, yavaş başlamadaki gibi bir

parça arttırılır. Yeni parçalar cwnd izin verdiği sürece gönderilebilir. Geri iletilen parça

için ACK alındığında, cwnd tekrar ssthresh’e ayarlanır. Kayıp parça bir kez

doğrulandığında, TCP hızlı düzeltmeden ayrılır ve sıkışmadan kaçınmaya (congestion

avoidance) geri döner. Eğer cwnd önceden genişse, cwnd yarıya bölünür ve cwnd 1

parçaya düşürülmek yerine sıkışıklıkdan kaçınmaya geçilir ve yavaş başlamaya geri

dönülür, göndericiye varolan bant genişliğini sıkıca araştırması için izin verir ve cwnd nin

önceki değerine yaklaşma şansı ağ sıralarındaki taşmanın şansı, yavaş başlama

kullanmakdan daha azdır.

Şekil 2.8 hızlı tekrar iletim ve hızlı düzeltmeleri göstermektedir. Bu durum şekil

2.7’ye çok benzemektedir. Parça 9 kaybolur, hızlı tekrar iletim de belirtildiği gibi yeniden

iletilir. Hızlı düzeltmeye göre, cwnd 1’e düşürülmüyor ama 8’e değiştiriliyor (cwnd

yarısına yani 5’e düşer ama sonra herbir tekrarlı ACK alındığında , 3 arttırılır). Hızlı tekrar

iletimden sonra iki yada daha fazla tekrarlı ACK alınırsa, bunların herbirisi için, cwnd

arttırılır. Bundan dolayı cwnd 10’dur ama gönderilecek ilave parça yoktur, çünkü TCP

göndericisi, gönderilecek parçayı 10 olarak bilmektedir. Parça 15 alındığında, alındısı

olarak ACK gönderildiğinde, cwnd tekrar arttırılır. Bundan dolayı cwnd şimdi 11’dir,

daha fazla parça göndermek için boş yer yoktur ve parça 19 bırakılır. Bu parça 9’un geri

iletilmesi doğrulanıncaya kadar devam eder. Bu olursa cwnd 5’e geri döner (kayıp tespit

edildiğinde sıkışma penceresinin yarısı) ve sıkışıklıkdan kaçınma girilir ve normal olarak

işletilir.

 27

Şekil 2.8. TCP Reno hızlı tekrar iletim ve hızlı düzeltme

Yukarıdaki örnekte görüldüğü gibi, hızlı düzeltme ayrıca yavaş başlamadan,

sıkışıklıkdan kaçınmaya bir geçis sağlar. Eğer bir gönderici yavaş başlamadaysa ve üç

tekrarlı ACK ile kayıp parça tespit ederse, kayıp yerine koyulduktan sonra, sıkışmadan

kaçınmaya girilir. TCP Tahoe’deki gibi, sıkışmadan kaçınma ayrıca cwnd > ssthresh

olduğunda girilir. Bir çok durumda, ssthresh’in ilk değeri geniş bir değere ayarlanmasına

rağmen parça kaybı genellikle sadece sıkışıklıkdan kaçınmaya geçisi tetikler [45].

TCP Reno, tek bir hızlı iletim ve hızlı düzeltme fazları boyunca sadece bir

parçanın düzeltilmesi ile sınırlıdır. Aynı pencerede ek bir parça kaybı parçalar yeniden

iletilmeden önce RTO’nun zamanının dolmasını gerektirebilir. Bu istisna, girilen hızlı

düzeltme üzerinde cwnd 10 parçadan büyük olduğunda , göndericinin bir zaman aşımı

tecrübesi olmadan düzeltmek için iki parçanın kaybına izin verir. Hızlı düzeltme

sırasında, gönderilmiş olan yeni parçalardan birisi ilk hızlı düzeltme tamamlandıktan

sonra kaybolabilir ve üç tekrarlı ACK ile tespit edilmiş olabilir. Bu durumda TCP Reno,

yerine geçmede (succession) iki kez hızlı düzeltmenin girilmesiyle kayıp iki parçadan

düzeltilebilir. Bu cwnd nin etkin bir şekilde iki RTO’da azaltılmasına sebep olur.

 28

2.9 Seçici Alındı Bilgileri

TCP yürütme standartlarına son eklenenlerden biri seçici alındı bilgileridir

(SACK). SACK, kayıpları kurtarmak ve göndericiye, pencerede çok sayıda kayıpların

olması durumunda kısımların düşürülmesinde yardımcı olmak içindir. SACK opsiyonu,

son zamanlarda alınan verilerin bitişik bloklarının özelleştirilmesini yapan 4’e kadar

çıkabilen (yada RFC 1323 zaman sayacı opsiyonu kullanılırsa 3) SACK blokları içerir.

Her bir SACK bloğu alıcıların tuttuğu verinin dizisini sınırlandıran iki sıra numaradan

oluşmaktadır. Alıcı ACK opsiyonuna SACK opsiyonunu ekleyebilir. O da SACK’i

seçilebilir hale getiren göndericiye tekrar geri gönderir. SACK bloklarındaki bilgiyi

kullanarak gönderici hangi kısımların kaybolduğunu ifade edebilir (kaybolan kısımlardan

3’e kadarından bitişik olmayan blokları). SACK opsiyonu belirli bir işleyiş sırasının

dışındaki kısımlar alındıktan sonra oluşan ACK üzerinde gönderilir. Bir SACK

opsiyonuna 3 SACK bloğuna izin vermek, herbir SACK bloğunun en az 3 ACK içinde

iletilmesini sağlar. Bu da ACK’ın yüzünde dinçliğin kaybolmasına sebep olur. SACK

RFC sadece SACK opsiyonunu özelleştirir ve SACK opsiyonunda verilen bilginin

gönderici tarafından nasıl kullanması gerektiğine karışmaz. Etkili veri kurtarma [42] için

SACK opsiyonunu kullanarak bir metod sunulmuştur. Bu metod Fall ve Floyd [43]

tarafından SACK’in yürütülmesi üzerine kuruludur. SACK kurtarma algoritması sadece 3

çift ACK alıcısından girilerek sadece bir kere hızlı bir şekilde işletir. SACK kullanımı

gönderdiği kısımdan tekrar ilettiğinde TCP’ye bildirileri çözmesi için izin verir. Bunu

yapmak için SACK TCP’ye iki değişken ekler, skor tahtası (göndermesi gereken kısımlar)

ve hat bant genişliği (kısımları göndereceği zaman).

Skor tahtası, SACK tabanlı bilginin hangi kısımlarının kaybedildiğini kayıt eder.

Skor tahtasındaki kısımlar en yüksek toplam değeri geçen bütün sıradaki numaralara

sahiptir. Hızlı kurtarma boyunca, borudaki veri’nin büyük bir çoğunluğu onaylanmamıştır.

Her seferinde kısım gönderilir, boru artırılır. Çift ACK, yeni bir verinin alındığını

söyleyen SACK bloğu ile birlikte yerine ulaşır ulaşmaz borunun değeri azaltılır. cwnd –

boru ≥ 1 olduğu durumda, gönderici hem tekrar ileti gönderir hemde yeni bir veri iletir.

Göndericiye veri göndermesi için verildiği zaman, ilk önce skor tahtasına bakar ve

 29

alıcıdaki boşlukların doldurulmasında gerekli olan kısımları gönderir. Gerekli olan

kısımlar yoksa gönderici yeni veri iletimi yapar. Hızlı kurtarmanın başındaki

onaylanmamış veriler onaylandığı zaman gönderici hızlı kurtarmayı bırakır [3].

2.10 TCP NewReno

Hızlı kurtarma süresince, TCP Reno zaman aşımına uğramadan sadece kaybolan

bir kısımdan kurtarma işlemi yapar. Çift ACK tekrar oluştuğu sürece, gönderici ağ’a yeni

kısımlar gönderir fakat hızlı kurtarma kaybolan kısım için ACK alınana kadar olmaz.

Sadece yeniden ileti herbir kurtarma periyodu boyunca gönderilir. RTO süre ölçerin

süresinin dolmasıyla çok sayıda yeni ileti tetiklenmiş olur. TCP NewReno, göndericinin

bir kısım ACK [46,47] alındıktan sonra hızlı kurtarmaya devam ettiği yerde, non-SACK-

enabled TCP Reno olarak değişir. Bir kısım ACK alındı bilgileri, kısımlar kaybolmadan

tespit edilir. Bir kısım ACK alındısı ile, gönderici alıcının beklediği diğer bir kısmın

kaybolduğunu ifade eder. TCP NewReno tek bir hızlı kurtarma boyunca göndericinin

birden fazla kısmı göndermesine izin verir. Fakat sadece bir kayıp kısım her bir RTT

tarafından yeniden iletilebilir.

 Yakın zamanda yapılmış bir çalışma, TCP NewReno’nun Internet Web sunucuları

[48] örneği için en popüler TCP versiyonun olduğunu belirtmektedir.

2.11 TCP Eşleştirmesi

TCP Reno’daki ağın tıkanıklığında tek gösterge TCP’nin en sık uygulaması olan

kısım kaybıdır. TCP host’larında kayıp kısımlar açıkca yönlendiriciler tarafından

belirtilmezler. Fakat, kayıpları belirtmek için zaman aşımına ve çift alındı bilgisine

güvenmelidir. TCP tıkanıklık kontrolündeki tek problem, kısım kaybı olduktan sonra

gönderme oranını düşürmesidir. Araştırma mekanizması olan cwnd’yi veri kaybı

 30

oluşuncaya kadar artırmakla, TCP ek bant aralığı ararken sıranın taşmasına sebep olabilir.

Ek olarak, TCP’nin sıkışıklık sinyali çift koddur. Hem ACK döner ve TCP cwnd’yi artırır

hemde kısım kaybı tespit edilir ve cwnd büyük ölçüde azaltılır. Böylece TCP tıkanıklık

kontrolü veri kurtarma için kendi mekanizmasına bağlanır. İdeal sıkışıklık kontrol

algoritması sıkışıklığı tespit edebilmelidir ve kısım kaybı olmadan reaksiyon vermelidir.

Yönlendirici tampon bellekleri taşmadan önce tıkanıklığı tespit etmek için iki

ana yaklaşım vardır, uç uca metodu ve yönlendirici tabanlı mekanizmayı kullanmak. Aktif

sıra yönetimi(AQM) gibi yönlendirici tabanlı mekanizmalar, drop-tail yönlendiriciler

problemdir fikriyle ortaya çıkmıştır. Bu mekanizmalar paketler düşürülmeden önce

sıkışıklık olduğunda yönlendiricilere değişiklik yaparlar ve böylece göndericileri uyarırlar.

Uç uca yaklaşımlar drop-tail sıralama mekanizmasından daha çok TCP Reno’da değişiklik

yapmak üzerine yoğunlaşmışlardır. Bu tür bir çok yaklaşım uç uca ölçümleri kullanıp ağ’ı

görüntüleyerek TCP Reno’dan daha önce tıkanıklığı tespit etmeye ve reaksiyon vermeye

çalışır (örneğin, kısım kaybolması olmadan önce). Teorik olarak sıkışık yönlendiriciler,

sıkışıklık olduğu zaman sıkışıklığı anlamak için en iyi pozisyonda olduklarından, AQM en

iyi performansı vermektedir. Karmaşıklık içeren AQM metodları kullanmak ve ağda

yönlendiricileri değiştirmeye ihtiyaç duymak sakıncalardır. Yaklaşımım yönlendirici

tabanlı mekanizmalara performans kolaylığı sağlamaya çalışan uç uca metodlarına

bakmaktır.

Sıkışıklıkları erkenden tespit ederek ve kısım kayıplarından kaçınarak akışın tek-

yol iletim sayısı bilgisi TCP sıkışıklık kontrolünde kullanılabilir. Bağlantının ileri doğru

aldığı yolda OTT göndericiden alıcıya bütün bağlantıları döndüren ve yayılma ve dizi

gecikmesi olan bir zamandır. Diziler taşmadan önce yönlendiriciler de toplanırlar, artan

OTT ile sonuçlanırlar. Bütün göndericiler OTT’lerdeki değişiklikleri doğrudan ölçerlerse

ve OTT sıkışıklığın oluştuğunu belirttiğinde düşerse, tıkanıklık hafifleyebilir.

 31

BÖLÜM 3

AKTİF SIRA YÖNETİMİ

Aktif sıra yönetimi (Active Queue Management - AQM), bir yönlendirici tabanlı

sıkışma kontrol mekanizmasıdır, burada bir yönlendirici sıra uzunluğunu görüntüler ve

paketlerin sıraya nasıl alınacağına karar verir. Geleneksel yönlendiriciler bir drop-tail

politikası kullanırlar, bu mekanizmada eğer sıra dolu değilse paketler sıraya alınırlar.

Bundan dolayı bir drop-tail yönlendirici sadece sıranın dolu olup olmadığına bakar. AQM

yönlendiricileri, sıra dolmadan önce potansiyel olarak paketleri düşürür. Bu aksiyonlar,

paketler düşürüldüğü zaman gönderme oranı azaltılan, TCP Reno gibi, ağ trafiğinin büyük

kısmında kullanılan bir sıkışma kontrol algoritması ile yapılan temel varsayımlara dayanır.

Birçok AQM algoritması nispeten daha küçük sırayı devam ettirmek için tasarlanır ama

paketleri sıraya koymak için paketleri düşürmeden kısa patlamalara izin verir. Sırayı

küçük tutmak amacıyla “erkenden” sıklıkla birçok paket düşürülür, yani sıra dolmadan

önce. Küçük bir sıra, paketlerin düşmeden daha küçük gecikmelerle sonuçlandırır [3].

TCP’nin şimdiki versiyonları sıkışmanın göstergesi olarak kayıplara güvenir.

Açıkca, eğer birisi kayıpların düşük seviyedeki kayıplarda ağı işletmek isterse, bu istenen

bir durum değildir. Diğer taraftan, kayıplar sıkışmanın iyi bir göstergesidir ve az veya hiç

sıkışma olmayacağına, sıkışma kontrol kararı için ağdan başka sinyallere ihtiyaç duyar.

Son zamanlarda, ağdaki sıkışmanın yakın zamanda, kaynaklara erken bildirmek için kesin

sıkışma bildirisi (Explicit Congestion Notification, ECN), önerilmiştir. ECN işaretlemesi,

ağ hakkındaki böyle bilgileri kullanıcılara sağlamak için kullanılan bir mekanizmadır [8].

ECN işaretlerini sağlamak için, yönlendiriciler, ağın şimdiki durumu hakkındaki

bilgiyi kullanıcılara taşıyan paketleri zekice işaretlemelidir. Böyle bilgileri taşımak için

 32

yönlendiricilerde çalıştırılan algoritmalar Aktif Sıra Yönetimi (AQM) şemaları olarak

adlandırılır. Bunlardan bazıları,

• Drop Tail

• RED

• REM

• BLUE

• GREEN

• PURPLE

Genel olarak, AQM şemaları, kontrol akışları ile sıkışmayı kontrol eder. Sıkışma

ölçülür ve ona göre yapılacaklar belirlenir. Sıkışmayı ölçmek için esas olarak iki yaklaşım

vardır.

1. Sıra Tabanlı

2. Akış Tabanlı

Sıra tabanlı AQM’lerin sıkışmaları sıra uzunluğu tarafından elde edilir. Bunun

dezavantajı, kontrol mekanizmasının, sıra pozitif olduğu zaman, sıkışma olarak paketleri

geciktirmesidir. Bu, gereksiz gecikme ve gecikme değişimlerine sebep olur. Diğer taraftan

akış tabanlı AQM’ler, sıkışmaya karar verir ve paketlerin alınma oranına göre

yapılacakları belirler. Böyle şemalar için, ihmal etme ve tüm zıt çıkarımlar kontrol

mekanizması için gereksizdir [6].

Bir aktif sıra yönetim mekanizmasının amacı, aşağıdaki gibi özetlenmiştir [7].

1. Yönlendiricilerde düşürülen paketlerin sayısını azaltmak : Ortalama sıra uzunluğu

küçük tutulur, bundan dolayı patlamalar için yeterli alan ayrılır.

2. Daha düşük etkileşim servisini destekler : Ortalama sıra uzunluğunun küçük

tutulmasıyla, uçtan uca gecikmeler daha kısa olur.

 33

3. Dışarda bırakma davranışından kaçınma : Düşük bant genişliği ve patlak akışlara

karşı eğilimlerden kaçınmak. Tampon belleğe yeni gelen bir paketin hemen hemen

her zaman yer bulabileceğini garanti etmektir.

3.1 DROP-TAIL

Yönlendiricilerdeki sıra uzunluğunu yönetmek için en bilindik ve geleneksel

teknikdir. Bu teknikde her bir sıra için en fazla sıra uzunluğu (paket cinsinden) ayarlanır.

Sıra en fazla uzunluğa ulaştığı zaman, sonra gelen paketleri reddeder yani düşürür, taki

sıra uzunluğu düşünceye kadar. Çünkü, sıradaki bir paket iletilmiş olmalıdır. Bu teknik

“Drop Tail” olarak bilinir, sıra dolu olduğu zaman son alınan paketlerin hemen hemen

hepsi düşürülür. Bu metod internette uzun yıllar iyi bir şekilde kullanıldı, ama bu metodun

iki önemli dezavantajı vardır [7].

1. Dışarda Bırakma : Bazı durumlarda, drop tail tek bir bağlantıya izin verir yada

sıradaki yerleri diğer bağlantılardan korumak için bazı akışlar tekellerine alırlar.

Bu “dışarda bırakma” olayı genellikle eşlemenin yada diğer zamanlama etkilerinin

sonucudur.

2. Dolu Sıralar : Drop tail disiplini, sıralara uzun zaman periyodu için dolu

durumunda kalmasına izin verir, bundan dolayı sıkışma sinyali sadece sıra dolu

olduğu zaman oluşur. Bu kararlı durum sıra uzunluğunu düşürmek için önemlidir

ve bu sıra yönetiminin en önemli amacıdır .

Kısaca, drop tail etkin bir yönetim değildir. Ağdaki talepler arttığı zaman hatlar

boyunca geçen verinin yönetilebilir miktarı daha uzun olamaz. Daha sonra ilk defa

sıkışmayı kontrol etmek için “ Rastgele Erken Tespit” (Random Early Detection, RED)

olarak bilinen gerçek yeni bir AQM algoritması geliştirildi.[8]

 34

3.2 RED

Drop tail sıralarının üzerindeki TCP’nin sıkışıklık kontrol algoritması ile en

büyük problemlerinden birisi, kaynakların iletim oranlarını, sadece sıra taşması yüzünden

oluşan paket düşmesinin ardından düşürmedir. Yönlendiricideki paketin düşmesi ile

bunun kaynaklarda tespit edilmesi arasında büyük bir zaman geçtiğinden dolayı, ağın

desteklemediği oranda devam eden iletim, bir çok paketin düşmesine neden olabilir. RED,

henüz yeni başlayan sıkışmanın tespiti ve sıkışmanın uç noktalara bildirilmesiyle bu

problemi yatıştırmıştır. Böylece sıradaki taşmalar oluşmadan, kaynakların iletim

oranlarını düşürmelerine izin verir.

RED algoritmasını ilk defa 1993 Ağustos’unda Van Jacobson ve Sally Floyed

tanıtmışlardır [4,13]. RED, paket düşmelerini ve sıra gecikmelerini en aza indirmek

amacıyla kaynakların toplu eşlemelerinden kaçınmak, yüksek hat kullanımını sağlamak ve

patlamalı kaynaklara karşı olan ön yargıları silmek için tasarlanmışdır.

Şekil 3.1. RED örneği [16]

 35

Geniş sayıda TCP kaynağının aktif olduğu ve daralan kısımda kullanılan tampon

kapasitesinin küçük olduğunda oluşan sıkışma senaryosu şekil 3.1 ‘de gösterilmiştir.

Şeklin gösterdiği gibi, t = 1 anında TCP yükündeki yeterli değişimler, TCP kaynaklarının

iletim oranının, hattın daralan kısmındaki kapasiteyi aşmasına sebep olmuşlardır. t = 2

anında kapasite ve yük arasındaki eşleşme daralan kısımda bir sıranın oluşmasına sebep

olur. t = 3 anında ortalama sıra uzunluğu minth ‘ı aşar ve sıkışma kontrol

mekanizmalarının tetiklenmesine sebep olurlar. Bu noktada, sıkışma bildirisi, sıra

uzunluğuna ve işaretlenme olasılığı maxp ye bağlı olan oranlarda uç noktalara geri

gönderilir. t = 4 anında TCP alıcıları ya paket kayıplarını tespit eder yada ECN biti

ayarlanmış paketleri elde eder. Cevap olarak, aynı doğrulamayı ve varsa TCP tabanlı ECN

sinyalini kaynaklara geri gönderir. t = 5 anında tekrarlanan doğrulamalar ve varsa ECN

sinyalleri sıkışma sinyali için kaynaklara geri gönderilirler. t = 6 anında, kaynaklar

sonunda sıkışmayı tespit eder ve iletim oranlarını düşürürler. Son olarak t = 7 anında,

daralan kısımda önerilen yükde bir düşüş elde edilir. Toplu TCP kaynaklarının

agresifliğine ve daralan kısımdaki tamponda mevcut olan boşluğun miktarına bağlı olarak,

paket kayıplarının büyük miktarı ve varsa belirleyici ECN işaretlemesi oluşur. Böyle

davranma sonuç olarak daralan hattın kullanım altında olmasını sağlar [16].

Bu problemi çözmenin bir yoluda, RED yönlendiricilerinde geniş miktarda

tampon kullanılmasıdır. Örneğin, RED’in iyi çalışması amacıyla, bir orta yönlendirici, iki

katı miktarda bant genişliği gecikmesi olan tampon alanı gerektirmektedir. Bu yaklaşım,

aslında, sayıları artan yönlendirici satıcıları tarafından alınmıştır. Maalesef, geniş bant

genişliği gecikmesi olan ağ ürünlerinde geniş miktarda tampon kullanımı, uçtan uca

gecikme ve gecikme stresi ekler. Bu uygulamalar arasındaki çalışma yeteneğini şiddetli

bir şekilde azaltır. Buna ek olarak, sınırlı hafıza kaynaklarına sahip hedeflendirilmiş

yönlendiricilerin çokluğu, bu çözümü istenmeyen hale getirir [16].

Şekil 3.2’de ideal bir sıra yönetim algoritmasının nasıl çalıştığı gösterilmiştir. Bu

şekilde, sıkışık yönlendiriciler, sıkışıklık bildirisini TCP’nin toplu iletim oranlarını tutan

yada altında olan bir oranda dağıtır. RED bu ideal işletim noktasını başarabilirken, uygun

 36

miktarda tampon bellek alanına sahip olduğu zaman ve doğru şekilde parametreleri

ayarlandığında yapabilir [16].

Şekil 3.2. İdeal senaryo [16]

RED kapıları, üstel ağırlıklandırılmış taşıma ortalaması ile bir low-pass filtre

kullanarak, ortalama sıra uzunluğunu hesaplar. Ortalama sıra uzunluğu en düşük ve en

yüksek eşik değerleri ile karşılaştırılır [4]. Ortalama sıra uzunluğu en düşük eşik

değerinden düşükse, hiç bir paket işaretlenmez. Ortalama sıra uzunluğu en büyük eşik

değerinden büyükse, her alınan paket işaretlenir. Eğer işaretli paketler düşürülürse yada

tüm kaynaklar işbirliği yaparsa, ortalama sıra uzunluğunun en büyük eşik değerini ciddi

bir şekilde aşmaması sağlanır [4].

Ortalama sıra uzunluğu en düşük ve en yüksek eşik değerleri arasındaysa, her

alınan paket pa olasılığı ile işaretlenir. Buradaki pa , ortalama sıra uzunluğu avg nin bir

fonksiyonudur. Paketin işaretlendiği her zaman, olasılık, belli bir bağlantıdan işaretlenen

paketin kabaca bağlantının kapıdaki bant genişliğinin paylaşımına uygun olmasıdır. Genel

RED algoritması aşağıda verilmiştir [4].

alınan herbir paket için

 ortalama sıra uzunluğu avg’yi hesapla

 eğer min_th<avg<max_th ise

 pa olasılığını hesapla

 37

 pa olasılığı ile:

 alınan paketi işaretle

 eğer max_th<avg

alınan paketi işaretle

RED, TCP ile etkileşir, kaynak oranının artmasıyla sıra uzunluğu büyür, daha

fazla paket işaretlenir, kaynakların oranları düşürülür, devir tekrarlanır. AQM sıkışma

ölçüsünün nasıl güncellendiğini belirtirken, TCP de kaynak oranlarının nasıl ayarlandığını

belirtmektedir. RED için, sıkışma ölçüsü sıra uzunluğudur ve tampon işlemi tarafından

otomatik olarak ayarlanır. Sonraki periyoddaki sıra uzunluğu, şimdiki sıra uzunluğu artı

toplu giriş eksi çıkışdır [17].

bl(t+1)=[bl(t)+xl(t)-cl(t)]+ (3.1)

[z]+ = max{z,0} dır. Burada bl(t) , t periyodu içerisindeki l sırasında toplu sıra

uzunluğudur. xl(t) , t periyodu içerisindeki l sırasına toplu giriş oranıdır ve cl(t) , t periyodu

içerisindeki çıkış oranıdır [17].

3.3 BLUE

BLUE algoritması, RED’in problemlerinin bazılarını, sıkışma ölçü şemasının bir

sıra ölçüsü ile beraber melez akış kontrol şemasının kullanımasıyla çözümler. Sıkışma

bildirim oranını değiştirmek için akış ve sıra olaylarını kullanır. Bu oran iki faktör

tarafından sağlanır, sıra sıkışmasından paket düşmesi ve hat kullanımı. BLUE

algoritmasını RED’den ayıran anahtar farklılık, ortalama sıra uzunluğundan ziyade paket

kayıplarının kullanılmasıdır [13].

BLUE paketleri işaretleme için tek bir olasılık sağlar, Pm. Eğer sıra bellek

taşması yüzünden sürekli paketleri düşürüyorsa, BLUE Pm yi arttırır, bundan dolayı

sıkışma bildirisini yada düşen paketleri geri bildirme oranı artar. Ters olarak, eğer sıra boş

olursa yada hat kullanımda değilse, BLUE işaretleme oranını azaltır. Bu BLUE’ya etkin

 38

olarak geriye gönderdiği sıkışma bildirisi veya düşen paketler için gerekli doğru oranı

bulmasını “öğretir” [16].

BLUE’nın tipik parametreleri d1,d2 ve donma zamanı dır. d1 , sıra taştığı zaman

arttırılan Pm nin miktarını belirtir. d2, hat boş kaldığı zaman düşürülen Pm nin miktarını

belirtir. Donma zamanı ise önemli bir parametredir ve Pm nin iki başarılı güncellenmesi

arasındaki en küçük aralığı belirtir. Bu değer tekrar güncellenmeden önce etkisini almak

için işaretleme olasılığının değişmesine izin verir. Bu parametrelere dayanaran temel blue

algoritması şu şekildedir [16].

Hattın boşta kalmasına bağlı olay
Eğer((şimdi – son güncelleme) > donma zamanı)

 Pm = Pm - d2;

sonGüncelleme = şimdi;

Paket düşmesine bağlı olay:
Eğer((şimdi – son güncelleme) > donma zamanı)

 Pm = Pm + d1;

sonGüncelleme = şimdi;

Burada BLUE ile ilgili bazı problemler vardır [13].

• BLUE, cevaplanmayan akışlar için adresleme fonksiyonu kullanır. Bu

cevaplanmayan akışların sayısının çok büyük olmadığı varsayılır. Bunun doğru

olduğunu biliriz fakat bu varsayımın doğru olmadığı durumlarda olabilir.

• Cevaplanmayan akışların sayısı fazla olduğu zaman kutular kirlenebilir ve TCP

akışları cevap olarak hatalı olabilir, sonuçda onları gereksizce cezalandırır.

• Bunun olabilmesi için bir çözümde, düzenli zaman aralıklarında adresleme

fonksiyonunu değiştirmektir. Bu bazı cevaplayan akışlara kirlenmemiş kutular için

yol gösterir.

• Diğer bir problem de, bir akış bir kere işaretlemişse, o daima kirletilmiştir. Eğer

sonra akış kendi kendine engelliyorsa, BLUE hala paket düşmesi nedeniyle

gönderme oranlarını düşürmeye çalışır.

3.4 REM

 39

REM, basit ve kararlı biçimde hem yüksek kullanım hem de ihmal edilebilir

kayıp ve gecikmeyi gerçekleştirmeyi amaçlar. Bunu başarmak için anahtar düşünce,

sıkışma ölçüsünü, kayıp, sıra uzunluğu yada gecikme gibi performans ölçüsünden

ayırmaktır. Sıkışma ölçüsü bant genişliği için talebi aşmayı belirtir ve kullanıcı sayısının

kaydını tutmak zorundadır, performans ölçüsü ise kullanıcı sayısından bağımsız olarak

hedefleri etrafında kararlı tutulabilmesidir.

REM aşağıdaki anahtar özelliklere sahiptir [17] .

1. Oran eşleştirme temiz bellek : Tampon bellek temizken (küçük bir hedef etrafında

kararlı sıralar), kullanıcı sayısını önemsemeden, kullanıcı oranlarını ağ kapasitesine

eşleştirmeye çalışır.

2. Ücretlerin Toplanması : Uçtan uca işaretleme (yada düşme) olasılığı, basit ve kesin

bir tarzda, kullanıcının yolundaki tüm yönlendiricilerin üzerindeki toplanan hat

ücretlerinin (sıkışma ölçüsü) toplamı tarafından dikkatle incelenir.

‘Oran eşleştirme temiz bellek’ özelliği, alışıldık bilimin aksine, yüksek

kullanımın ağ da geniş geciktirilmiş işlerin tutulmasıyla başarılmadığını, ama kullanıcı

için oranlarını ayarlayarak doğru geri besleme ile başarılabilmesini sağlar. REM’in ilk

düşüncesi, hattı paylaşan kullanıcının sayısını önemsemeden, hem giriş oranı hat

kapasitesi etrafında kararlıdır, hemde sıra küçük hedef etrafında kararlıdır. Herbir sıra

çıkışı, sıkışma ölçüsü olarak REM’in devam ettirdiği ve ‘ücret’ olarak adlandırılan bir

değişken gerçekleştirir. Bu değişken sonraki alt bölümde de açıklanacağı gibi işaretleme

olasılığını elde etmek için kullanılır. Ücret, oran eşlemesine (yani giriş oranı ve hat

kapasitesi arasındaki fark) ve sıra eşleşmesine (yani sıra uzunluğu ve hedef arasındaki

fark) periyodik olarak ya da eş zamanlı olmadan güncellenir. Eğer bu eşleşmeyenlerin

ağırlıklandırılmış toplamı pozitifse, ücret arttırılır aksi takdirde düşürülür. Giriş oranı hat

kapasitesini geçerse yada temizlenmiş olmak için gecikmiş işler varsa ağırlıklandırılmış

toplam pozitifdir, aksi takdirde negatifdir. Kaynakların sayısının artmasıyla, orandaki ve

sıra büyümesindeki uygunsuzluk ücreti arttırır ve bundan dolayı işaretleme olasılığıda

artar. Bu kaynaklara oranlarını düşürmesi için daha güçlü bir sıkışma sinyali gönderir.

 40

Kaynak oranları çok küçük olduğu zaman, eşleşmeyenler negatif olur, ücret ve işaretleme

oranı düşer ve kaynak oranı yükselir taki eşleşmeyenler sıfıra getirilinceye , yüksek

kullanım ve dengedeki ihmal edilebilir kayıp ve gecikme kazanılıncaya kadar. Dengede,

eğer hedef sıra sıfıra ayarlanmışsa, tampon bellek temizlenir [17].

Halbuki RED’de sıkışma ölçüsü (sıra uzunluğu), bellek işlemi tarafından (1)’e

göre otomatik olarak güncellenir, REM açıkca ilk özelliğini getirmek için ücretini

güncellemesini kontrol eder. Tam olarak, l sırası, t periyodundaki pl(t) ücreti için [17] ‘ye

göre güncellenir.

Pl(t+1)=[Pl(t)+γ(αlbl(t)-bl
*)+xl(t)-cl(t))]+ (3.2)

γ >0 ve αl>0 küçük sabitlerdir ve [z]+ = max{z,0}’dır. Burada bl(t) , t periyodunda l

sırasındaki toplu bellek işgalidir ve bl
*

 ≥ 0 hedef sıra uzunluğudur, xl(t) , t periyodunda l

sırasına toplu giriş oranıdır ve cl(t) , t periyodundaki l sırası için mevcut bant genişliğidir.

xl(t) - cl(t) arasındaki fark eşleşmeyen oranı ölçer, bl(t) - bl
* arasındaki fark ise eşleşmeyen

sırayı ölçer. αl sabiti herbir sıra tarafından kişisel olarak ayarlanabilir ve kullanımı ve sıra

gecikmesi iletim sırasında değişebilir. γ sabiti REM’in ağ şartlarında değişimlere cevap

vermesini kontrol eder. Bundan dolayı eşitlik (3.2) den, eğer oranın ve sıra

uygunsuzluklarının ağırlıklı toplamı αl tarafından ağırlıklandırılır, pozitifdir ve ücret

arttırılır, aksi takdirde düşürülür. Dengede ücret kararlı ve ağırlıklı toplam sıfır olmak

zorundadır. Yani, αl (bl - bl
*)+ xl - cl =0. Bu sadece giriş oranı kapasiteye eşitse (xl = cl) ve

gecikme hedefe eşitse tutulabilir (bl=bl
*), bu ilk başta bahsedilen birinci özelliğe yol

gösterir [17].

‘Ücretlerin toplamı’ özelliği kullanıcıların çoklu sıkışmış hat boyunca ilerlediği

ağ içerisinde önemlidir. Kullanıcı tarafından dikkatle izlenen uçtan uca işaretleme (yada

düşme) olasılığı içerisinde gömülü sıkışma bilgisinin anlamını açıklaştırır ve bu yüzden

uyum oranının tasarımında kullanılır.

Sıra çıktısı, henüz işaretlenmemiş alınan herbir paketi, şimdiki ücretinin üstel artan

bir olasılıkla sıranın akışına karşı işaretler, işaretleme olasılığının üstel formu geniş bir ağ

 41

da önemlidir. Burada kaynakdan gidilecek yere çoklu sıkışmanın içinden geçen bir paket

için uçtan uca işaretleme olasılığı yoldaki her hat da, hat işaretleme olasılığına bağlıdır.

Sadece kişisel hat işaretleme olasılığı kendi hat ücreti içerisinde üstel olduğu zaman, bu

uçtan uca işaretleme olasılığı, kendi yolunda tüm sıkışmış hatlarda hat ücretlerinin toplamı

içerisinde üstel olarak artıyor olur. Bu toplam yoldaki sıkışmanın tam ölçüsüdür. Uçtan

uca işaretleme olasılığına gömüldüğünden dolayı, yoldaki her hattadır. Bu kaynaklar

tarafından işaretlenen paketlerinin parçasından kolayca tahmin edilebilir ve oranlarının

ayarlanmasının tasarımı için kullanılır [17].

Bir paketin l=1,2,....,L hatları içinde iletildiğini ve t periyodunda pl(t) ücretlerine

sahip olduğunu varsayalım. Daha sonra işaretleme olasılığı ml(t) , l sırasında t

periyodunda [17].

)(1)(tpl

l tm −−= φ (3.3)

1>φ bir sabittir. Daha sonra paket için uçtan uca işaretleme olasılığı şu şekildedir.

)(

1

1))(1(1 tpl
L

l
l

lt ∑−=−− −

=
∏ φπ (3.4)

Yani, yolun sıkışma ölçüsü, ∑ l pl(t) , geniş olduğu zaman, uçtan uca işaretleme olasılığı

yüksektir.

Hattın işaretleme olasılığı ml(t) küçük olduğu zaman, buna bağlı olarak hat

ücretleri pl(t) küçüktür, eşitlik (3.5) de verilen uçtan uca işaretleme olasılığı aşağı yukarı

yoldaki hat ücretlerinin toplamına uygundur.

Uçtan uca işaretleme olasılığı))((log ∑≅
l

e tplφ (3.5)

3.5 GREEN

 42

GREEN algoritması, cevapda akış tabanlı sıkışma ölçüsü olan xest, tahmin edilen

veri alış oranı olan sıkışma bildirisinin oranını ayarlayan bir geri besleme kontrol

fonksiyonudur. GREEN bir eşik değeri fonksiyonu temellidir. Eğer hattın tahmin edilen

veri alış oranı xest hedef hat kapasitesi cl üzerinde ise, sıkışma bildirisinin oranı P, ∆P

tarafından 1/∆T oranında arttırılır. Tersine eğer xest , cl altındysa P, ∆P tarafından 1/∆T

oranında azaltılır. Bu algoritma gelen paketlerin olasılıklı işaretlerine P oranında, düşen

paketler ya da ECN biti ayarlananlar tarafından uygulanır. Adım fonksiyonu U(x) [6,18]

tarafından tanımlanır.

⎩
⎨
⎧

<−
≥+

=
01
01

)(
x
x

xU (3.6)

Bundan dolayı,

P = P + ∆P.U(xest - cl) (3.7)

Hedef hat kapasitesi ct, gerçek kapasite c olarak aşağıda atanmıştır, tipik olarak

0.97 c dir, böylece sıra büyüklüğü 0’a yaklaşır. Gelen veri oran tahmini, üstel ortalama

kullanılarak gösterilmiştir.

xest = (1-exp(-Del/K))*(B/Del)+exp(Del/K)* xest (3.8)

Del paketler arası gecikmedir, B paket ölçüsü ve K zaman sabitidir. Diğer gelen oran

tahmin teknikleri de başarılı bir şekilde kullanılabilir.

REM ve GREEN arasında bir ilişki vardır. Eğer eşitlik (3.3) doğrusalsa, m = P dir

ve üstel terim dikkate alınmaz. Dahası eğer bellek terimi 0=α ise, ve doğrusal sabit γ

adım fonksiyonu ile yer değiştirirse, GREEN’in sıkışma bildirim oranı P, REM’in ücreti

Pl ye eşit olur [6].

 43

3.6 PURPLE

PURPLE yaklaşımı, diğerlerine karşın, tepki oluşturan protokollerin davranışı

üzerinde kendi aksiyonlarının etkisini tahmin eder. Bundan dolayı kısa-dönem gelecek

trafikdir [19]. PURPLE, ağdaki sıkışma durumu hakkındaki uçtan uca bilgiyi analiz

ederek bunu başarır. PURPLE, ana AQM parametrelerinin, en azından yerel bir en iyiliğe

doğru, daha hızlı birleşmesine izin verir, buna bağlı olarak düzleştirme ve küçültme hem

sıkışma geri beslemesi hemde sıra işgalidir. Tahmini geliştirmek için [19]’da, bu pasif

olarak gösterilen bilgi sıkışmanın miktarı ile ilgilidir. Ağda başka yerde akışlar bu

yönlendiriciden geçiyormuş gibi görünür.

PURPLE paket işaretleme düzeltme ve parametreler ayarlanmadan sıra

gecikmesi sağlar çünkü çevrim içi olarak iyileştirilmiştir. Kendi kendini idare eden

davranış çevrim içi model tabanlı tahminlere güvenir. Bu ayrıca goodput, işlem hacmi ve

ortalama gecikme arasında mükemmel bir denge sağlarsa drop-tail kayıplardan tamamen

kaçınabilir. Bu, çok az güç ve durum bilgisi ve üç yeni mekanizma olan uçtan uca sıkışma

analizi, ECN bilgisinin görüntülenmesi ve TCP model eşitliğinin kullanarak başarılmıştır.

[19]’da çok çeşitli durumlar için simüle edilmiş ve PURPLE’dan çok iyi davranışlar

alınmıştır.

3.7 ECN

Şimdiye kadar sıkışma olduğu zaman kapılardan paketlerin atılması hakkında

konuştuk, bu şekilde son noktanın da sıkışmadan haberi oldu çünkü geri iletim zaman

aşımı tecrübe edildi. Ama, örneğin RED algoritması ile tampon bellek gerçekten

dolmadan önce paketler düşürülmeye başlandı. Bu geliştiricileri, paketlerin basitce nasıl

düşürüldüğünden başka çözümler üzerinde düşündürmeye başladı. Örneğin sıkışmayı son

noktaya sinyal olarak iletmek için paketleri kaybetmeden hala tampon bellek içerisinde

dururken paketlerin bir bayrak ile işaretlenmesi gibi bir yaklaşım geliştirildi ve bunun

 44

ismine erken sıkışma bildirisi anlamına gelen (ECN) Early Congestion Notification adını

verdiler [20].

Bu öneride, QoS tanımlamasında (quaility of service) Diffserv tekniği

kullanıldığında sıkışma başladığı zamanki sinyal için, IPv4 başlığının ToS alanındaki 2

biti kullanıldı. (servis sınıfını belirtmek için 8 bitin sadece 6 sı kullanılıyor, diğer kalan 2

bit kullanılabilir). Bu iki bitten birisi CE (Congestion Experienced) oldu, diğeri ise bir

hostun ECN olabileceğini bilmek için ayarlandı (ECT) [20].

Bu düşünce çok anlaşılırdır, bağlantının başında, gönderici ECT bitini

kapasitesini bildirmek için ayarlar. Eğer alıcınında kapasitesi varsa, TCP başlığındaki bir

bayrakla geri gönderir. Alıcı, işaretli bir paket aldığı zaman, sıkışmayı işaret etmek için

göndericiye bir ACK gönderir ve gönderici kullanılan sıkışıklıkdan kaçınma tarafından

uygun yolla bir karşılık verir [20].

Tüm sistemi tamamlayabilmek için, TCP/IP protokolünde çok küçük

değişikliklere ihtiyaç vardır. IP başlığında bulunan iki bite değer atanması (gönderici

tarafından EC’yi işaret etmek için ve ECN kapasitesini işaret etmek için), TCP

başlığındaki iki bitin atanması. Bu ikisi bir EC paketi için geri göndermeleri tekrarlatır ve

göndericiye, pencerenin düşürüldüğünü ve tekrarlamaları kesmesini alıcıya işaret

edebilmesine izin verir (CWR biti); bu bit ayrıca sinyale bağlantı sağlanırken, alıcı

sinyale, kapasitesini ACK içerisinde bir SYN paketi için ayarlamasına izin verir [20] .

Bu yaklaşımla bazı problemler ortaya çıkabilir, birisi, örneğin kapasitesi yeterli

olmayan bir kullanıcı, kapasitesini ayarlayabilir. Böylelikle EC biti ayarlanmış bir paket

aldığında, sıkışmanın kullanıcısına ilan etmeyecek. Ama, eğer bir host düşen bir paket için

sıkışmadan kaçınma ile cevap vermezse, aynı problemler olabileceğinden, yazarlar

yeniden cevap verirler. Bazı kişilerde düşen paketlerin yüksek yük periyodlarında trafiği

düşürmenin bir yolu olduğunu söylediler, ECN ağ hala paketleri düşürmektedir. Diğer bir

konuda düşen EC paketlerinin olabilmesidir. Bu durumda gönderici sanki bir ECN ağının

içinde değilmiş gibi herhangi bir yolla sıkışıklıkdan kaçınma ile cevap verir. Sonuç olarak

IPsec tüneli ile ilgili problemler, herhangi bir şifreli hesaplamada ECN biti yeterince uzun

 45

bir şekilde içerilemez. IPsec, ECN nin değerini değiştirmeye çalışan bir düşmana karşı

herhangi bir koruma geliştirmemiştir [20].

 46

BÖLÜM 4

ADAPTE EDİLMİŞ RED(Adaptive RED) ALGORİTMASI

İnternette, sıkışıklık çökmelerinden korunmak için genellikle uçtan uca sıkışıklık

kontrolü kullanılır. Bunun yanında, veri trafiğinin doğası gereği patlaklı olmasından

dolayı, yönlendiriciler patlakları içine alabilmesi ve yüksek hattan yararlanmayı

sürdürmek için oldukça büyük tampon bellekler ile tedarik edilir. Bu geniş belleklerin

dezavantajı, eğer bilindik drop-tail yönetimleri kullanılırsa, sıkışık yönlendiricilerde

yüksek sıra geciklemeri olur. Bundan dolayı drop-tail bellek yönetimi ağ yöneticilerini

geniş bellek gerektiren, yüksek kullanım yada küçük bellek gerektiren düşük gecikmeden

birisini seçmeye zorlar.

RED tampon bellek yönetim algoritması, paketleri, ortalama sıra uzunluğunun

artması olarak, artan olasılıkla rastgele düşürerek sıra daha aktif, anlamlı olarak yönetilir;

paketlerin düşme oranı ortalama sıra uzunluğu minimum eşik değerli(minth olarak

gösterilir) RED parametrelerindeyse, ortalama sıra uzunluğu maksimum eşik değere

(maxth) ulaştığında düşme oranı sıfırdan itibaren doğrusal olarak artar. RED’in ana

amaçlarından bir tanesi, sıra uzunluğu algoritması ve erken sıkışma bildirimi

kombinasyonunu kullanarak, düşük ortalama sıra gecikmesi ve yüksek işlem hacmini

birarada başarmakdır. RED’in benzetme denemeleri ve işlemsel deneyler bu konuda

oldukça başarılıdır.

Bunların yanında RED’in esas zayıf noktası, sıkışma seviyesinde ve parametre

ayarlarında ortalama sıra uzunluğu çeşitlidir. Hat biraz sıkıştığında ve/veya maxp

yüksektir, ortalama sıra uzunluğu neredeyse minth dır. Hat ağır bir şekilde sıkıştığı zaman

ve maxp düşükse, ortalama sıra uzunluğu maxth a yakın hatta üzerindedir. Sonuç olarak

ortalama sıra gecikmesi RED de trafik yüküne ve parametrele duyarlıdır, ve bundan

dolayı ilerde tahmin edilebilir değildir. Gecikme, müşterilere dağıtılan servisin kalitesi

için esas bileşendir. Ağ yöneticilerinin doğal olarak, sıkışmış ağlarda kabaca bir ortalama

 47

gecikme tahmini için öncelikleri vardır. RED ile böyle ortalama gecikmeleri önceden

söyleyebilmek için varolan trafik ayarlarının sağlanması için sabit RED parametrelerinde

ayarlamalar yapılması gerekmektedir.

RED’in ikinci bir zayıf noktası, işlem hacminin de trafik yüküne ve RED

parametrelerine duyarlı olmasıdır. Özellikle, ortalama sıra maxth dan büyük olursa, RED

sık sık rolünü yerine getiremez, sonuç olarak da önemli şekilde işlem hacmi düşer ve

düşen paketlerin oranı artar. Bu yönetimden kaçınmak için RED parametrelerinde tekrar

sabit değişiklikler yapmak gerekebilir.

Bu tür problemlerden kaçınmak için aktif sıra yönetimi ile ilgili olarak birçok

öneriler vardır. Revize edilmiş öneri bu bölümde gerçekleştirilmiştir ve NS simülatöründe

simüle edilmiştir. Bu yeni versiyon, senaryolarda geniş değişiklikler yaparak ve RED’in

diğer faydalarından feragat ederek hedeflenen ortalama sıra uzunluğunu başarmıştır. Bu

sadece ortalama sıra gecikmelerini daha tahmin edilebilir yapmakla kalmaz, maxth nında

aşılma olasılığını düşürür; bundan dolayı Adaptive RED, hem paket kaybetme oranını

hemde sıra gecikmelerindeki değişimi düşürür .

4.1 Metrikler and Senaryolar

RED’in yada aktif sıra yönetiminin esas amacı genel olarak, düşük ortalama sıra

gecikmesi ve yüksek işlem hacminin sağlanmasıdır. Bu nedenle biz öncelikle ortalama

sıra gecikmesi ve işlem hacmi metriklerine odaklanıyoruz. RED ‘in ikincil bir amacıda,

drop-tail sıra yönetim algoritmasında verilenlerin doğruluklarını bir dereceye kadar

geliştirmek ve verilen ortalama sıra uzunluğunu, paket düşme ve işaretleme oranını en aza

indirmektir. Biz adaptive RED’in güzel davranışlarını tartışmayacağız, zaten RED’in

güzel davranışlarına benzerdir. Sadece Adaptive RED ve RED’in düşme oranına (drop

rate) kısaca değineceğiz. Çünkü genellikle alçaltılmış düşme oranı davranışını, alçaltılmış

işlem hacmi yansıtır [5].

 48

Öncelikle, tüm metrikler yönlendirici tabanlıdır. Dosya transfer zamanı, paket

gecikmesi gibi son kullanıcı metrikleri, algoritmanın geçerliliği için önemli ölçülerdir.

Adaptive RED ile ilgili son kullanıcı metrikleri yönlendirici tabanlı metriklerde kolayca

elde edilebilir. Ayrıca yönlendirici tabanlı metrikler (AQM) dinamiklerine daha doğrudan

bakış sağlamaktadırlar [5].

İkinci olarak en kötü durumla ilgili metriklerini dikkate almıyoruz, çünkü bu tür

sıra gecikmelerini kontrol etmek AQM’lerin amacı değildir, bu tür en kötü durum sıra

gecikmelerinin genişletilmesi için yönlendiricilerde sıraların bellek ölçülerinin konfigüre

edilmesi ile doğrudan kontrol edilebilir [5].

Üçüncü olarak, sıra uzunluklarının salınım ölçüleriyle ilgili metrikleri doğrudan

dikkate almayacağız [49,25]. Böyle salınımların, ortalama sıra gecikmesini arttırmadığı ve

işlem hacmini düşürmediği sürece zararlı olduğunu düşünmüyoruz [5]. Salınımların

etkisini ana metriklerimiz tarafından ilerleyen bölümlerde tartışacağız.

Adaptive RED’in gelişimi sırasında, Adaptive RED parametrelerinin

hassasiyetini bulabilmek için çok sayıda trafik senaryosu inceledik. Sağlamlığı sağlamak

için, iş yüklerinin sınıflandırılmasında, istatistiksel çoğullamaların seviyesinde ve

sıkışmaların seviyesinde performansı düşündük. İş yükleri, ters yol trafiği boyunca, uzun

yaşamlı akışları içerir. Ters yoldaki veri trafiğinin varlığı, ACK sıkışmasını ve

paketlerinin kaybolduğunu bildirir, o nedenle ileriki yollarda veri trafiğinin patlaması

artar. Ters yol trafiği aynı zamanda, ileriki yollarda paket trafiğinin sıralanmasına

zorlarlar. Buradaki ileriki yol (forward path) veri ve ACK arasında paylaşılan şimdiki

yoldur. Ayrıca simlasyonun sıkışma seviyeleri ve iş yükleri üzerindeki değişim

senaryolarını araştırdık. ECN bildirimiyle (explicit congestion notification) ve ECNsiz

baktık [5]. Son olarak, geniş pencere bildirileri ve farklı veri paket ölçülerini dikkate aldık

[5].

4.2 Adaptive RED’e Alışmak

 49

İlerleyen bölümler de belirtilen, Adaptive RED’in tasarım ve performans

ayrıntılarına girmeden önce, RED’in parametrelerdeki hassasiyetini gösteren bazı

benzetmeleri tekrar ettik [5], ve bu gösterdiki buradaki problem için Adaptive RED gerçek

adres. Bu bölümde, RED’in bilenen karakteristik özellikleri olan ortalama sıra ölçüsü ve

performans çeşitliliği, RED’in maxp ve wq parametrelerinin bir fonksiyonu olarak,

benzetmeleri şekillerle gösterilir. Bu bölüm aynı zamanda, minth ve maxth arasındaki hedef

sıra ölçüsünü yakalamak için maxp nin adapte edilmesini gösteren, Adaptive REM ile

yapılmış benzetme sonuçlarını da gösterir. Benzetme senaryosunda da ayarlanmış bir

maxp değeri ile de aynı sonucu alabilmeniz mümkündür. Bir başka deyişle Adaptive RED,

çeşitli RED parametrelerini güvenli iyi sonuçlarla “otomatik ayarlamışdır”.

Şekil 4.1. RED ile Gecikme – kullanım değişimi, wq=0.002.

Şekil 4.1 deki benzetmede, RED NS’in varsayılan değeri wq =0.002 ve maxp =

0.1 ve minth ve maxth sırasıyla 20 ve 80 paket olarak ayarlanarak kullanılmıştır, tüm bu

benzetmelerde RED yavaş modda çalışmaktadır. Her bir çarpı, x eksenininde, 100-saniye

benzetmesinin ikinci yarısı üzerindeki paketlerdeki ortalama sıra gecikmesini, y eksenide,

benzetmenin ikinsi yarısı üzerindeki hat kullanma sayısını gösteren tek bir benzetmeden

sonuçlardır. Herbir çizgi N akış ile benzetmeden sonuçlar göstermektedir, çizgilerde N

değeri 5 ile 100 arasında sıralanmıştır. Herbir çizgi üzerindeki çarpılar, 0,5 soldan ve 0.02

sağdan maxp ile benzetme sonuçlarını göstermektedir. Benzetmelerdeki düşme oranı,

sıfıra yakınken %8’e kadar çıkmaktadır. Şekil 4.1 de gösterildiği gibi, akışların sayısı ve

maxp ile performans çeşitlilik gösterir, bu benzetmelerde daha düşük işlem hacmi ile daha

 50

geniş sayıda uzun yaşamlı akış vardır. Bu benzetmelerde artan akış sayısı hat kullanımını

düşürür ve artan ve maxp daha düşük sıra uzunluklarına liderlik eder. maxp nin düşük

değerleri için kullanımdaki azalmanın yansımaları zamanın büyük bir bölümünde

ortalama sıra uzunluğu maxth ı geçip gittiği durumlara yansır [5].

Daha sonraki bölümlerde göreceğimiz gibi, 15 mbps bant genişliğinde bir hat

için 0,002 sıra ağırlığı çok geniştir, bu yüzden tipik 100ms RTT’ın bir parçası üzerindeki

sıra uzunluğu ortalanır. Şekil 4.2 deki benzetmede şekil 4.1 dekinden sadece wq , 0.002

yerine 0.0026 ye ayarlanmıştır. Bu sonraki bölümlerde detaylıca tartışılacaktır. RED’in

performansı, ortalama sıra uzunluğu küçük çeşitli RTT’ler üzerinde yapıldığı zaman en

iyidir. Tek bir RTT’nin bir bölümü üzerinde iyi değildir. Şekil 4.1 ve 4.2 RED’in

performansının wq parametresi üzerindeki hassasiytetinin bir kanıtıdır. RED’le iyi bir

işlem hacmi ve kabul edilebilir ortalama sıra uzunluğu elde edebilmek için, wq ve maxp nin

iyi ayarlanması gereklidir. Adaptive RED, bu iyi ayarlanması gereken değerleri otomatik

olarak ayarlamaktadır [5].

Şekil 4.2. RED ile Gecikme – kullanım değişimi, wq=0.00026.

Adaptive RED algoritmasının ayrıntıları anlatılacaktır, yalnız adaptive RED’i

genel olarak basitce wq nun otomatik olarak ayarlanması (hat hızına göre) ve maxp nin

cevapda sıra uzunluğuna göre düzenlenmesi olarak özetlenebilir. Şimdi Adaptive RED’i

gerçekten öneren RED parametrelerini iyi ayarlamak için gerekirse silen bazı benzetmeler

göstereceğiz [5].

 51

Şekil 4.3. RED ile Gecikme – kullanım değişimi, wq=0.00026.

Şekil 4.3 adaptive RED ile aynı benzetmeyi gösterir; bu şekilde çeşitli değerler

maxp nin ilk değerleridir, Adaptive RED, ölçülmüş davranışlarını sağlar. Şekil 4.3 deki x

ve y eksenleri şekil 4.1 ve 4.2 deki ile eşleşmez, şekil 4.1 ve 4.2, şekil 4.3 için alanı

gösteren bir kutu içerir. Şekil 4.1ve 4.2 nin “iyi” performans bölgesinde küçük bir alan

meşgul eden tüm alan şekil 4.3 de resmedilmiştir. Önceki grafiklerde olduğu gibi, 100

saniyedir. Benzetmenin ikinci yarısındaki sonuçları göstermektedir; verilen eğrideki

noktaların bir araya toplanması, esasen maxp nin ilk değerinin bağımsız olduğu sonucunu

göstermektedir [5].

Bu benzetmeler Adaptive RED’in , wq nun otomatik ayarlanması ve maxp nin o

anki şartlara göre cevapta uyarlanması, ortalama sıra uzunluğunu hedeflenen aralıkda

tutmasıyla yüksek işlem hacminin başarılmasında etkin olduğunu göstermektedir. Bu

aralık, bölüm 4.4 de anlatılacağı gibi daha önceden tanımlı bir aralık çevresinde (minth+

maxth)/2 ortalama sıra uzunluğunu sağlanması için gerekli algoritmalara uyumludur. Bu

benzetmeler daha az paket düşürme, daha küçük ortalama sıra ve tam hat kullanımına

sahiptirler [5].

4.2.1 Çeşitli Sıra Uzunlukları ile RED’in Gösterilmesi

 52

Daha önceki benzetmeler RED ve Adaptive RED’in istikrarlı performanslarını

gösterdi. Şimdi RED ve Adaptive RED’in sıkışma seviyesinde hızlı değişim için nasıl

cevap verdiklerini inceleyeceğiz. Sunulan benzetmeler, sıkışıklık seviyesi ile değişen

ortalama sıra uzunluğunun iyi anlaşılmış dinamiklerini sunmaktadır [5]. Sonuçlar RED’in

sabit ortalama sıra uzunluğundan paket düşürme olasılığı tablosundandır. Adaptive RED

için, bu benzetmeler bir sıkışma seviyesinden diğerine iletime odaklanmıştır.

Bu benzetmeler, 1,5 Mbps’lık sıkışmış bir hat ile basit bir halter topolojisini

kullanırlar. Tampon bellek 1500 byte paket için 35 paket yer ayırır. Tüm benzetmelerde

wq 0.0027 ye, minth da 5 pakete ve maxth da 15 pakete ayarlanır.

Şekil 4.4. Sıkışıklıkda artışla RED.

Şekil 4.4 daki benzetmede, ileri giden trafik uzun yaşamlı iki akış içerir, geri

dönen trafikde uzun yaşamlı bir akış içerir. 25 inci zamanda, her 0,1 sn de bir, 20 yeni akış

başlar. Herbiri 20 paketin maksimum penceresi ile oluşur. Bu gerçekci yükü modellemek

için değil de, sıkışma seviyesindeki keskin değişimin etkisini basitçe, daha iyi

gösterebilmek içindir. Şekil 4.4 daki grafik uyarlanmamış olan RED’in ortalama sıra

büyüklüğündeki değişimi, paket düşme oranının bir fonksiyonu olarak gösterir. Koyu

çizgi, RED tarafından tahmin edilen ortalama sıra büyüklüğünü göstermektedir. Kesikli

çizgiler anlık sırayı göstermektedir. Paket düşme oranı, benzetmenin ilk yarısının üzerinde

, %1 den, ikinci yarısının üzerinde %12.6 ya değişir. Buna karşılık gelen ortalama sıra

uzunluğu ile değişir.

 53

Şekil 4.5. Sıkışıklıkda artışla Adaptive RED.

Şekil 4.5 deki grafik aynı benzetmenin Adaptive RED kullanılmışını gösterir.

Uyarlanmış RED’de yine aynı 25. zamanda ortalama sıra uzunluğunda keskin değişim

gösterir. Bunun yanında, kabaca 10 sn sonra, Adaptive RED ortalama sıra uzunluğunu

hedeflenen 9 ile 11 paket arasındaki aralığa geri düşürür. Adaptive RED ile olan

benzetmeler, adaptive olmayan RED’le yapılanlara göre biraz daha fazla işlem hacmine

sahiptir. (% 93.1 yerine % 95.1), ortalama sıra uzunluğunda tamamında biraz daha

düşüktür (13.4 paket yerine 11.5 paket) ve daha küçük bir paket düşürme oranı vardır.

Adaptive RED’le yapılan benzetmelerde, ortalama sıra uzunluğu ve paket düşme olasılığı

arasındaki ilişkinin maxp nin uyarlanmasıyla gösterilmesi mümkündür ve bundan dolayı

trafik dinamiklerinde hazır bulunan ortalama sıra uzunluğununun korunmasını sağlar.

Şekil 4.6, 0. zamanda başlayan ve 25. zamanda biten yirmi yeni akışla ilgili

benzetmeyi gösterir. Şekil 4.6 de uyarlanmamış RED ile yapılmış benzetme, ortalama sıra

uzunluğundaki düşüş 25. zamandaki değişimin sıkışmasının seviyesi olarak gösterilir. Bu

zamanda, paket düşme oranı uyarlanmamış RED’le benzetmenin ilk yarısının üzerinde %

9.7 ve ikinci yarısında % 8 dir.

 54

Şekil 4.6. Sıkışıklıkda azalma ile RED.

Adaptive RED ile yapılan benzetmede ortalama sıra uzunluğundaki benzer

değişim şekil 4.7 da vardır, ama uyarlanmış RED ortalama sıra uzunluğunu hedeflenen

seviyeye 10 sn içinde geri getirir. Adaptive RED le yapılan benzetmede diğer

uyarlanmamış RED’le yapılan benzetmedeki işlem hacmi benzerdir (% 92.7 yerine % 93)

, ortalama sıra uzunluğu da çok az daha küçüktür (12.4 paket yerine 11.1 paket)

Şekil 4.7. Sıkışıklıkda azalma ile Adaptive RED.

Adaptive Red’le tüm benzetmeler, %98’den (100 akış ile) %100’e (5 akış ile)

çıkan yüksek işlem hacmine sahiptir. Her bir akış sayısı, Adaptive RED’le aynı

performansda, Adaptive RED olmayan sabit maxp seçebilir. maxp için bu sabit(static)

ayarlama, benzetme senaryosunun bir fonksiyonu olabilir. Örneğin, 20 akışlı bir benzetme

için Adaptive RED’in performansı, kabaca maxp değeri 0.07 ye ayarlanmış 100 akışlı

Adaptive RED olmayan bir benzetmenin performansına karşılık gelebilir. Adaptive

RED’in performansı, maxp si 0.2 ye ayarlanmış Adaptive olmayan RED’in performansına

karşılık gelebilir [5].

 55

Şekil 4.8. RED ile gecikme – kayıp değişimi, wq=0.00026.

Şekil 4.9. Adaptive RED ile gecikme – kayıp değişimi.

Şekil 4.8 ve 4.9, şekil 4.1 ve 4.2 deki benzetmelerin paket düşme oranlarını

göstermektedir. Belli bir akış kümesi için, kabaca RED ve Adaptive RED, aynı paket

düşürme oranına sahip olduklarını gösterir, Adaptive RED, ortalama sıra uzunluğunu

koruyarak maxth dan uzaklaşır, RED ortalama sıra uzunluğu maxth etrafında olduğu

zaman daha yüksek oranda paket kaybetmekten kaçınır. Benzetmelerde, RED ve Adaptive

RED’in doğruluk özelliklerinin benzer olduklarını gördük [5].

Bu benzetmeleri, belli bir sıradaki hat bant genişliklerini ve karışık web

trafiklerini içeren belli bir sıradaki benzetmelerde , ECN ile ve ECN siz, byte ve paket

birimlerinde ölçülmüş sıralarla, byte modundaki ve paket modundaki RED ile (paketi

düşürüp düşürmeyeceğine karar verirken paketin büyüklüğünü byte olarak dikkate alır)

keşfettik [5]. Tüm bu benzetmelerde Adaptive RED ‘den aynı iyi performansı gördük.

 56

4.3 Adaptive RED Algoritması

Burada gerçekleştirilen Adaptive RED ile ilgili kılavuz esas Adaptive RED ile

aynıdır, ortalama sıra uzunluğunu minth ve maxth arasında korumak için maxp uyarlanır.

Buradaki yaklaşımın esas Adaptive RED den 4 farklılığı vardır.

• maxp nin uyarlanması sadece ortalama sıra uzunluğunu minth ve maxth arasında

korumak için değildir, ortalama sıra uzunluğunu yarım yol belirlenen hedef aralığı

içinde minth ve maxth arasında tutmak içindir.

• maxp, zaman çizelgesi üzerinde tipik bir RTT’dan daha büyüktür ve küçük

adımlarla yavaşça uyum sağlar.

• maxp , [0.01 , 0.5] aralığında kalması için sınırlandırılmıştır.(yada eşiti [% 1 ,%

50])

• çarpansal olarak artan ve azalan maxp yerine AIMD (Addive-Incrase

Multiplecative-Decrese) politikası kullanılır.

Adaptive RED algoritması şu şekildedir.

Her aralıkda

 if (avg > hedef ve maxp ≤ 0.5)

 maxp artar: maxp ← maxp + α;

 elseif (avg < hedef ve maxp ≥ 0.01)

 maxp azalır: maxp ← maxp * β;

 57

Değişkenler :

avg: ortalama sıra uzunluğu

Sabit parametreler :

aralık : zaman ; 0.5 sn.

hedef : avg için hedef;

 [minth + 0.4 * (maxth - minth) , minth + 0.6 * (maxth - minth)].

α : artış ; min(0.01 , maxp / 4)

β : azalma faktörü ; 0.9

maxp nin adapte edilme kılavuzu yavaşça ve nadiren RED’in dinamiklerine izin

verir - ortalama sıra uzunluğundaki değişimler için cevaplamada paket düşme olasılığının

adapte edilmesi – daha küçük zaman çizelgesine hakim olmak için. maxp nin uyarlanması

sadece uzun zaman çizelgelerinde ihtiyaç olduğunda çağrılır.

Adaptive RED’in sağlamlığı yavaş ve nadiren maxp nin ayarlanmasından gelir.

Bu yavaş değişimin bedeli, şekil 4.5 ve 4.7 deki gibi, sıkışma seviyesindeki keskin bir

değişimden sonra, maxp nin yeni değerine değişmesinden önce bazen on yada yirmi saniye

almasıdır. Adaptive RED’in performansının sağlanması için iletim periyodu esnasında

gereğinden fazla alçaltma yapılmayacaktır, üçüncü kılavuzumuz maxp yi sınırlayarak,

[0.01 , 0.5] aralığında kalmasını sağlar.Bunlar, ortalama sıra uzunluğunun hedeflenen

aralıkda olamaması ve ortalama gecikme yada işlem hacmi yavaşça kötüye gitmesi bile,

RED’in tüm performansının, iletim periyodu sırasında hala kabul edilebilir olmasını sağlar

[5].

Adaptive RED algoritması için en iyi veya en ,iyiye yakın demek istemiyoruz,

fakat senaryoların geniş bir aralığında iyi çalışıyor görünüyor, ve bizde internetteki RED

gerçekleştiriminde güvenle deploy edilebileceğine inanıyoruz [5]. maxp nin yavaş

adaptasyonun sonucu olarak, Adaptive RED’in tasarımı, geniş alanlarda güçlü sonuçlar

verir. Yukarıda belirtildiği gibi, iletim periyodunun bu yavaş adaptasyonun bedeli,

 58

ortalama sıra uzunluğu hedeflenen bölgede olmadığı zaman sıkışma seviyesindeki keskin

bir değişim sonrası. Adaptive RED bundan dolayı dikkatli bir şekilde

pozisyonlandırılmıştır, AQM mekanizmasının spektrumunun sonunda sağlam, daha ince

ayarlanmadan kaçınma amacı ile, spektrumun sonunda daha agresif daha kırılgandır [5].

Adaptive RED algoritması maxp yi adapte edebilmek için AIMD kullanır.

MIMD(Multiplicative Increase Multiplicative Decrease) gibi diğer doğrusal kontrollerle

de denedik, ama AIMD yaklaşımının daha daha güçlü olduğunu gördük [5].

Bu genel Adaptive RED algoritmasının tanımını tamamlar. Bu algoritmada

gömülü seçenekler çeşitli parametreler için ayrıntılandırılmıştır. Şimdi bu seçeneklerin

gerekçelerini kısaca anlatacağız.

4.3.1 maxp’nin Sınıflandırılması

maxp nin 0.5 üst sınırı iki taban üzerinde haklı çıkarılabilir. Birincisi, paket

düşme oranını %50 den daha büyük RED’i optimize etmeye çalışmıyoruz. Ayrıca, çünkü

RED’i hafif modda kullanıyoruz, bu ortalama sıra uzunluğunun minth dan maxth a kadar

değiştiğininde, paket düşme oranının 1 den maxp ye kadar değiştiğini, ve ortalama sıra

uzunluğunun maxth dan maxth ın 2 katına kadar değiştiğinde, paket düşme oranının maxp

den 1’e kadar değiştiği anlamına gelmektedir. Bundan dolayı maxp nin 0.5 e ayarlanması

ile ortalama sıra uzunluğunun maxth dan maxth ın 2 katına kadar değiştiğinde, paket düşme

oranı 0 dan 1 ‘e kadar çeşitlenir. Bu, paket düşme oranı % 50 nin üzerinde bile olsa bir

dereceye kadar güçlü performans vermelidir [5].

maxp nin 0.01 alt sınırı, maxp nin arzulanan limit aralığında harekete geçirilir.

Çok küçük paket düşme oranlı senaryolar için, maxp nin 0.01’e ayarlanmasıyla RED’in

dürüstçe kuvvetini göstereceğine ve hiç birinin benzer şekilde ortalama sıra uzunluğunu

hedeflenenden daha küçük nesneleştiremeyeceğine inanıyoruz [5].

 59

4.3.2 α ve β Parametreleri

maxp için 0.01 den 0.50 ye artmaları için minimum 0.49/α aralıklarında aldığını

not ettik; bu α ve aralık varsayılan paremetreleri için 24.5 sn dir. Benzer şekilde 0.50 den

0.01 e düşmeleri için maxp minimum log 0.02/log β aralıklarında alır; bu varsayılan

parametrelemiz ile 20.1 sn dir. Verilen, bir sıkışma seviyesinden diğerine keskin bir

değişim, 25 sn, bundan dolayı, ortalama sıra uzunluğunun hedeflenen aralığın dışında

kalabildiği sırada, aralık üzerindeki üst sınır ve AQM in performansı bir dereceye kadar

düşürülmüş olabilir [5].

α ve β nın önerilen değerlerinde, normal şartlar altında, maxp nin tek değişimi,

ortalama sıra uzunluğunu hedeflenen aralığın üzerinden, altına taşıdığı yada tersi

sonucunu çıkarmaz. Şimdi basitleştirmek için maxp, istikrarlı duruma uyarlandığı zaman,

paket düşme olasılığı aynı kalır ve ortalama sıra uzunluğu avg basitce maxp nin yeni

değerlerini eşleştirmek için kayar. Bundan dolayı, p < maxp olduğunu varsayarsak, maxp

α tarafından arttırıldığı zaman avg’nin minth + p/maxp (maxth - minth) dan minth + p/(maxp+

α) (maxth - minth) a düşmesi beklenir.

)min(max
max)(max thth

pp

p −
+α

α
 (4.1)

Eğer sadece 0.2(maxth - minth) den daha düşükse, ortalama sıra uzunluğu hedef

aralığının üstünden, altına tek bir aralıkda değişmemelidir. Bu 2.0
)(max
<

+α
α
p

 seçimini

önerir yada eşit olarak α < 0.25 maxp .algoritmada gösterilen α nın varsayılan ayarı bu

sınırlamaya uymak zorundadır.

Benzer şekilde, maxp .nin çarpansal düşüşünü (multiplicative decrease), ortalama

sıra uzunluğunu hedeflenen aralığın altından üstüne, maxp.nin tek bir düzeltmesi

sonrasında götürmesine sebep olmamasını kontrol etmeliyiz. Benzer bir analizde α,

 60

)min(max2.0)min(max
)(max
)1(

thththth
p

p −<−
+

−
α
β (4.2)

olduğu sürece ortalama sıra uzunluğu tek bir aralıkda hedeflenen aralığın altından

hedeflenen aralığın üstüne değişmemelidir. Bu (1-β)/p < 0.2 seçmeyi yada eşiti β > 0.83’ü

seçmeyi önerir. Bu sınırlama β için 0.9 varsayılan değerimiz için sağlanır.

4.3.3 RED Parametreleri maxth ve wq’nun Ayarlanması

Yukarıda tanımlandığı gibi Adaptive RED, RED’in maxp parametresi üzerindeki

bağımlılığını kaldırır. RED için ihtiyaç duyulan parametre ayarlamalarını azaltmak için,

maxth and wq parametrelerinin otomatik ayarlanması için prosedürler tanımlar [5].

Otomatik modda, maxth , minth ın üç katı olarak ayarlanır. Bu durumda

hedeflenen ortalama sıra uzunluğu 2 x minth etrafında merkezlenir, ve sadece RED’in

minth parametresi ile elde edilir.

Orjinal RED tanımında [4] verilen wq ayarları için kılavuz, iletim sıra uzunluğu

cinsinden RED tarafından birbirine uygun hale getirilir, ve cevaplamada şimdiki sıra

uzunluğundaki değişme adımında tahmin edici tarafından zamana ihtiyaç vardır. [4] den,

eğer sıra uzunluğu bir değerden diğerine değişirse, ortalama sıra için yeni değerin % 63

üne ulaşmada, -1 < ln(1- wq) paket ulaşır. Bundan dolayı -1 < ln(1- wq), ortalama sıra

uzunluğu için tahmin edicinin “zaman sabiti” olarak atarız, bu zaman sabiti, kendi

kendine değil, paket gelişlerinde tanımlanır.

NS simülatöründe varsayılan wq 0.002 ye ayarlanır edilir; bu 500 paketin

gelişinde bir zaman sabitine tekabül eder. Bunun yanında, 1 Gbps lık bir hat için, 500

byte’lık paketlerle, 500 paketin gelişi RTT’nin çok küçük bir parçasına karşılık gelir (100

ms’nin varsayılan rtt sinin 1/50.). Açıkca yüksek hızdaki hatlar için daha küçük wq

 61

gereklidir, böylece zaman sabiti RTT’nin dışında kalır. Aşağıdaki yaklaşımlarda [50,51]

otomatik modda, wq , hat bant genişliğinin bir fonksiyonu olarak ayarlanır.

Otomatik moddaki RED için, wq verilen bir zaman sabitine bir saniyenin

ortalama sıra uzunluğu tahmin edicisi için ayarlanır; bu on RTT’ye eşittir, RTT 100 ms

olarak varsayılmıştır. Bundan dolayı, wq yu,

)/1exp(1 Cwq −−= (4.3)

olarak ayarlanmıştır. C, paket/saniye olarak hat kapasitesidir, belirtilen varsayılan

ölçünün paketleri olarak hesaplanır.

4.4 Benzetmeler

Bölüm 4.2 deki benzetmeler Adaptive RED’i önerir, çeşitli şartlarda, yüksek

işlem hacmine ve düşük ortalama sıra gecikmesine ulaşmak için maxp nin sürekli

uyarlanması ve wq nun ayarlanması otomatik olarak yapılır. Bu bölümde Adaptive

RED’in davranışındaki üç maddeyi daha yakından ele alacağız, salınımlar (oscillations),

etkiler (effects) ve yönlendirme dinamiklerine cevap (response to routing dynamics).

4.4.1 Salınımların Araştırılması

TCP’nin sıkışıklık kontrolünün geri besleme doğasından dolayı, sıra

uzunluklarındaki salınımlar çok ortakdır. Bazı salınımlar çok zararlıdır, tüm işlem hacmini

azaltır ve sıra gecikmesindeki değişimi arttırır; diğer salınımlar iyi huyludur ve işlem

hacmine ve gecikmeye anlamlı etkileri yoktur. Şekil 11 den 14e kadar, herbiri ortalama

sıra uzunluğunu gösterir, bir benzetme 100 uzun yaşamlı akış ile , her biri 250 ms lik

RTT’lerle ve 15 Mbps’lık sıkışmış bir hat ile gösterilmiştir. Tüm akışlar, ECN ve 1000-

byte data paketi kullanır. RED sıra yönetimi, minth = 20 ve maxth = 80 e sahiptir.

 62

Şekil 4.10. RED,tek yönlü uzun yaşamlı trafik, wq=0.002 [5].

Şekil 4.10 daki benzetme, RED’i kullanır, herbiri sıra uzunluğundaki salınımı

cesaretlendiren üç faktörü vardır, (1) maxp için sabit (aşırı derecede küçük) bir değer;

eşitlik (4.2) wq için yüksek bir değer; ve eşitlik (4.3) uzun yaşamlı akışların tek yönlü

trafiklerinin karışımı için basit bir trafik. Şekil 4.10, ortalama sıra uzunluğunda dramatik

bir salınım gösterir, herbir salınımda, ortalama sıra uzunluğu minth ‘ın altına ve maxth ‘ın

üstüne gider. Bu, yüksek paket düşme oranını periyodu ile hiç paket düşmeyenin periyodu

arasında salınımlara ve sonuç da azalmış işlem hacmi ve sıra gecikmesinde yüksek

değişimlere liderlik eder. maxth nin aşılması, geniş paket düşmenin formunda doğrusal

olmamaya maruz bırakır, kullanımda düşmeye karşılık gelir ve bu durumda minth ın

altında ortalama sıra uzunluğunu keskince düşürür. Ama ortalama sıra uzunluğu minth ‘ın

altına düşerse, ortalama paket düşme olasılığı sıfır olur, ve akışlar yeniden, sonraki az

RTT’leri üzerinde sıkışma pencerelerine yayılır, bu münasebetle salınımları devamlı

tutarlar. Bu durumda RED % 90 hat kullanımına ve sıra gecikmesinde yüksek

değişimlerin üstesinden gelir. Paket düşme oranı ECN kullanılsa bile % 3.5 civarındadır

[5].

Şekil 4.11. RED, zenginleştirilmiş trafik, wq=0.002 [5].

 63

Şekil 4.11, böyle kötü huylu salınımların, ters yol trafiği ve web trafiği içeren

daha gerçekci trafik karışımları ile titreşimi ciddi bir şekilde azaltır; kötü ayarlanmış ve

Adaptive olmayan RED’le bile, salınımların en kötü etkilerinin çoğunluğu, hafifce daha

gerçekci trafik kullanıldığında düşürülür[5].

Şekil 4.12. Adaptive RED,tek yönlü uzun yaşamlı trafik, wq=0.002 [5].

Şimdi Adaptive RED’in daha düşük wq değerleriyle maxp nin otomatik olarak

adaptasyonunu nasıl sağladığını ve bu iki trafik senaryosundaki yolculuk ücretlerini

dikkate alacağız. Şekil 4.12 de tek yönlü ve uzun yaşamlı trafik karışımının basit bir

trafiğidir, Adaptive RED, kötü huylu salınımları ortadan kaldırmaya ve bunları iyi huylu

salınımlara dönüştürmeye çalışır. 250 ms lik sabit RTT olmasına karşın, ne ters trafik nede

web trafiği, Adaptive RED kullanımın % 96.8’e ulaşmasına ve ortalama sıra uzunluğu

salınımını hedeflenen aralık içinde tutmaya çalışır, kayıp oranını ihmal eder (trafik ECN

kullanır). Kötü huylu salınımlar, Adaptive RED ile eğer wq için 0.002 nin daha geniş

değerleri kullanılırsa kalıcıdırlar; maxp nin adapte edilmesi ve wq için iyi bir değer

seçilmesi, bu benzetmede kötü huylu salınımların ortadan kalkması için gereklidir [5].

Şekil 4.13. Adaptive RED, zenginleştirilmiş trafik, wq=0.002 [5].

 64

Şekil 4.13 de, şekil 4.12’nin iyi huylu salınımlarını, web trafik ve ters trafik,

daha gerçekci karışımı ile göstermektedir. Burada önceki şekle göre paketlerin hedef

aralıkları içindeki ortalama sıra uzunluğunun değişimi daha düzensiz olarak gösterilmiştir.

Bu durumda kullanım şekil 4.12’ye göre biraz daha yüksektir.

4.4.2 Sıra Ağırlığının Etkileri

Şekil 4.1, azalan işlem hacmi cinsinden wq nun çok geniş değerleri için

performans değerini gösterirken, bu bölüm wq nun çok küçük değerleri için, artan

ortalama gecikme cinsinden değerini gösterir.

Şekil 15’den 17’ye kadar, iki uzun yaşamlı TCP akışı ile basit bir benzetmenin

sonucunu göstermektedir. Herbirinin RTT’si 45 ms civarındadır, 15 Mbps’lık bir hat

üzerinde rekabet ederler. İkinci TCP akışı, 10 sn lik benzetme içerisinde 2.5 de başlar. İki

TCP akışıyla ortalama sıkışma penceresi 85 paket civarında olmalıdır. Her üç benzetme de

Adaptive olmayan RED kullanmıştır, ve sadece wq değerleri farklıdır. Bu benzetmeler

aynı zamanda wq nun çok küçük değerleri için bedelinin birini gösterir, anlık sıra

içerisinde geniş bir cevap için güçlendirilmiş olarak artış yavaşlamaya başlar.

Şekil 4.14. RED, 0.002’de çok geniş wq, iki akış [5].

 65

Şekil 4.15. RED, 0.00027’de wq için otomatik ayarlar [5].

Şekil 4.14’deki benzetmede, wq ‘nun 0.002 ve geniş değerleri için RED

kullanmıştır. Benzetmeleri tamamında minth ve maxth ‘ı otomatik ayarlar, sonuçta minth 19

pakete maxth da 3 minth a ayarlanır. Şekil 4.14 o andaki ortalama sıra uzunluğunu gösterir.

Ek olarak bu RED tarafından tahmin edilir. Her ne kadar ikinci TCP, yavaş başlaması

istenen sıkışıklık penceresine ulaşmadan yavaşca keser (şekil 4.14), şekil 4.14 ve 4.15, bu

senaryo için kabul edilebilir uygun iyi performansı gösterirler.

Şekil 4.16. RED, 0.0001’de wq çok küçük [5].

Buna karşın, şekil 4.16, wq ‘nun çok küçük değerlere ayarlanmasının bedelini

göstermektedir. Bu benzetmede wq = 0.0001, sonuçda da sıkışmadaki ani artışların

tespitinde RED yavaştır, ve 2.5. zamanda olan sıkışmayı, sırada 350 paket oluncaya kadar

tespit edememektedir. Bu benzetmede, sıradaki keskin artış, tek bir yüksek bant

genişliğinin yavaş başlamasından olmaktadır, ama artış, ani kalabalık yüzünden

olabilmektedir, bir yönlendirme başarızlığı yada bir denial of service saldırısı vb. Bu

benzetme geniş bir tampon bellek size çalışır, ve 350 paketin depolanmasına izin verir.

 66

Eğer tampon bellek size daha küçük olsaydı, benzetme basitce tipik drop-tail sıra

yönetimi davranışına dönebilirdi,(bir verinin penceresinden fazla sayıda paketin

düşebildiği). Bir dizi senaryo keşfettik ve hemen hemen tüm durumları, hatta kararlılık-

durum senaryolarını bile inceledik, wq ‘nun eşitlik (4.1) de önerilenden daha küçük bir

değerini kullandığımızda hat kullanımı zarar görmektedir.

4.4.3 Yönlendirme Değişimlerinin Benzetmesi

Bu bölüm, kısaca Adaptive RED’in iletim davranışını yönlendirme değişimleri

yüzünden, yükünde keskin değişimler olan çevreleri inceler. Şekil 18, benzetmede

ortalama sıra uzunluğunu zamanın bir fonksiyonu olarak gösterir, 50 sn den 60 sn ye çıkış

hattı mevcut olmayabilir. Benzetme topolojisi, daha düşük öncelikli ama sadece yarım hat

kapasitesi içeren alternatif bir yol içerir. Böylece TCP bağlantıları hat kesintisi sırasında

da paket göndermeye devam edebilir. Hat geri geldiği zaman, tüm yük esas hatta geri

kaydırılır. Hat kullanımı 10 sn lik periyodda %88.3 e ulaşır, hemen tamir eder ve sonraki

10 sn içerisinde de % 96.1’e ulaşır. Bundan dolayı, bu senaryo Adaptive RED’in iyi

dinamik özelliğini gösterir [5].

Şekil 4.17. Yönlendirme değişikliği ile ortalama sıra uzunluğu değişimi [5].

 67

4.5 İşlem Hacmi ve Gecikme Arasındaki Değişimler

Verilen Adaptive RED algoritması ve maxth ve wq nun otomatik olarak

ayarlanması bu bölümde daha önce tanımlandı. Geriye sadece tanımlanacak kritik

parametre olarak hedeflenen ortalama sıra uzunluğu kaldı. Adaptive RED ortalama sıra

uzunluğunu minth ‘ın iki katı olarak sürdürür; bundan dolayı verilen bir hedef için

ortalama sıra uzunluğu, minth ‘ın ayarlanması doğrudur. Zor kısmı ise istenen ortalama

sıra uzunluğunun elde edilmesidir [5].

Bir yönlendirici için en iyi ortalama sıra uzunluğu, işlem hacmi ve gecikme

arasındaki takas (trade off) oranın bir fonksiyonudur. Bu takas, politikanın gerekli bir

sorusudur. Bunun yanında, işlem hacmi ve gecikme arasındaki bu takaslar, kümelenmiş

trafiğin karakteristiğinin bir fonksiyonudur. Bundan dolayı tek yönlü trafikli senaryolar,

uzun yaşamlı akışlar, kısa RTT’ler ve istatistiksel çoklamanın yüksek seviyesi, hem çok

yüksek işlem hacmine hemde çok düşük gecikmeye izin verir, senaryolar daha yüksek

patlamalarla iken, sonuçlar iki yönlü trafikden ve web senaryosundan istatistiksel

çoklamanın düşük seviyeleri ile işlem hacmi ve gecikme arasında biraz daha zor takas

gerektirir [5].

En iyi olma sorununun arkasında ayrılırken, sıradaki Jacobsen [50] de ve

benzetme scriptleri [52] de, otomatik modda, minth ı hat bant genişliğinin bir fonksiyonu

olarak ayarlarız. Yavaş ve makul hat hızları için, minth ın beş pakete ayarlanmasının iyi

çalıştığını bulduk, böylece bunu, otomatik modda minth ın alt sınır olarak kullanabiliriz.

Yüksek hızdaki bir hat için, on paketlik ortalama sıra uzunluğu, gecikme bantgenişliği

ürününe oranla çok küçüktür, ve sonuçta işlem hacmi çok şiddetli kaybolmaktadır.

İşlem hacmi ve gecikme arasındaki güvenilir bir takas için yönlendirici sıra

gecikmesi, varsayılan değeri olarak 100 ms kullanılan, uçtan uca RTT’nin sadece küçük

bir parçası olabilir. minth = delaytargetC / 2 ayarlanması hedeflenen ortalama sıra

gecikmesi, delaytarget ı sn cinsinden verir. C paket/sn cinsinden hat kapasitesidir. Otomatik

 68

modda delaytarget ı 5 ms olarak kullanıyoruz, minth ı Max[5, delaytargetC / 2] paket olarak

ayarlıyoruz bu dönüşüm mintreshi 100Mbps bir hat için 12.5 pakete ayarlar.

 69

BÖLÜM 5

RED DİNAMİKLERİ VE KARARLILIK KONTROLÜ

Bilindiği gibi TCP/RED çılgın gibi salınım yapabilir ve bu salınımı RED

parametrelerini ayarlayarak düşürmek oldukça zordur [21,22]. AIMD stratejisi TCP Reno

tarafından çalıştırılır (ve onun değiştirilmiş hali olan NewReno ve SACK) ve gürültü

trafik gibi etkin bir şekilde TCP tarafından kontrol edilemez. Şüphesiz bu salınıma katkısı

vardır. Son çıkan modeller örneğin [10],[49], bunun, protokolün kaçınılmaz bir sonucu

olduğunu belirtmektedirler. Bu bölümde, daha çok kanıtla bu görüş desteklenmiştir.

TCP/RED salınımlarının sadece AIMD araştırmalarından ve trafik gürültüsünden

kaynaklanmadığını ama temel olarak kararsızlığından kaynaklandığını kanıtlamaya

çalışılmıştır. Salınımın AIMD bileşenin dışındaki düzeltmeden sonra ortalama davranışı

küçük rastgele dalgalanmalarla salınmaz olabilir (protokol kararlı olduğu zaman), yada

rastgele dalgalanmalardan daha geniş genliğin sınır devirlerini gösterir (kararsız olduğu

zaman). Dahası bu niteliksel davranış, geniş miktarda gürültülü trafik olduğu zaman bile

ve hatta kaynaklar farklı gecikmelere sahip olduklarında bile kalıcıdır. Sonuç olarak

kararlılığı büyük ölçüde TCP/RED ’in dinamiklerinden elde edilir.

Bu TCP/RED’in kararlılık karakterini motive eder. İlerleyen bölümlerde genel

bir TCP/RED‘in doğrusal olmayan bir modelini geliştirilmiştir. Bu modelin dengeli yapısı

kaynak [25]’de sıkışıklık kontrolünün toplu kaynak özelliklerini en yükseğe çıkarabilmek

için çeşitli TCP/AQM’lerin başlıca ikili algoritmaların internet üzerinde dışarıya

taşınmasıyla analiz edilmiştir. Burada, model etrafında dengeli bir şekilde

doğrusallaştırılmasıyla yerel kararlılığı gösterilmiştir. Bu doğrusal model tek hattı kaynak

[26]’nın kaynak modeli olarak genelleştirir. Bu modelin geçerliliği benzetmelerle ve

TCP/RED’in kararlı bölgeside şekillerle gösterilmiştir. Karışık kaynaklarla tek bir hattın

özel durumu için yeterli kararlılık şartlarını elde ettik. Bu gecikmeler artarsa yada hat

kapasitesindeki artış daha fazla göze batarsa TCP/RED’in kararsız olduğunu gösterir.

 70

TCP tarafından tanıtılan kazanç, tek bir hat durumunda benzer kaynaklar

tarafından paylaşılır, bant genişliği gecikme ürününün karesine orantılıdır ve tersine

kaynakların sayısıyla orantılıdır. Böyle bir yüksek kazanç, gecikme yada kapasite yüksek

olduğu zaman kararsızlığa sebep olur ve oldukça zor RED tarafından yeri doldurulur.

RED parametreleri kararlılığı arttırmak için ayarlanabilir ama dinamik olarak ayarlansa

bile sadece geniş sıra değerinde olmalıdır.

Bu önerilere göre gelecekteki ağlar için kapasite geniş olacağından tam uygun

değildir. Bu bölümde, kaynak [27]’de geliştirilmiş basit bir sıkışıklık kontrol algoritması

sunulmuştur, bu merkezsiz bir şekilde kaynaklar ve hatlar tarafından belirtilmiştir ve

kararlıdır. Bu, rastgele seçilen gecikme, kapasite, yük ve yönlendirme için doğrusal

kararlılığın devamını sağlar. Dahası, ihmal edilebilir sıralarla, dengeli bir şekilde, yüksek

ağ kullanımını başarır. İletim cevabı gibi performans kaybı olmadan başarılan, bunların

yararlarını gösteren temel benzetmeleri sunulmuştur.

5.1 TCP/RED Salınımları

AIMD’nin, trafik gürültüsünün ve gecikmelerin karışık olmasının ortalama

pencere ve anlık sıra üzerindeki etkisi nedir ? Bu bölümde protokol kararsızlıkları ile etki

sınırlarını karşılaştırmalı olarak göstereceğiz.

ns-2 simülatöründe, daralan kısım 9 paket/ms olarak simüle edilmiştir (sabit

paket ölçüsü = 1000byte). Hat ‘byte’ modunda ECN işaretlemeli (örneğin doğrulanan

paketler ihmal edilebilir bir olasılıkla işaretlenir) RED çalıştırır. RED parametreleri, maxp

= 0.1, minth = 50 paket, maxth = 550 paket, ağırlık sıra ortalaması için α = 10-4 dür. Hat 50

devamlı FTP kaynağı tarafından paylaşılmaktadır. Benzetme hem tek yönlü hemde iki

yönlü trafikle çalıştırıldığında, davranışı çok benzerdir. Şekil 5.1 ve 5.2 çift yönlü trafiği

göstermekte, şekil 5.3 ise tek yönlü trafiği göstermektedir. İnternetteki ölçülerin %

85’inde RTT 15-500ms aralığındadır. Benzetmeler gecikmelerle bu aralıkda

gösterilmiştir.

 71

(a)Pencere (Gecikme = 40ms)

(b)Sıra (Gecikme = 40ms)

(c)Pencere (Gecikme = 200ms)

 72

(d)Sıra (Gecikme = 200ms)

Şekil 5.1. Gürültüsüz pencere ve sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite

= 9 paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, iki yönlü trafik.

Şekil 5.1 iki durumun sonucunu vermektedir, bunlar bağlantıların benzer gidiş

dönüş gecikme yayılmasına sahip olduklarını ve her iki yönde de trafik oluşturulmasıdır.

Şekil 5.1(a) kişisel pencere (açık eğri) ve ortalama pencere (koyu eğri) ortalama 50

kaynak üzerinde, her iksinide zamanın fonksiyonu olarak göstermektedir. Gidiş dönüş

gecikme yayılması küçük (bu durumda 40ms) olduğu zaman bunlar tipik izleridir.

Reno’nun AIMD’si yüzünden oluşan salınımlar kişisel pencerede göze çarpar ama

ortalama pencerede görünmez. Beklendiği gibi sıranın kişisel pencereyi ortalamasından,

ayrıca rastgele küçük dalgalanmalarla düzelmiş bir iz görünür, şekil 5.1(b) de görüldüğü

gibi. Protokolün ortalama davranışını düşündüğümüzde, bu durum için kararlıdır

(salınımsız).

Şekil 5.1(c) ve (d), gidiş dönüş gecikme yayılması (round trip propagation delay)

200ms’ye çıkarıldığı zaman ki karşılık gelen pencereleri ve sırayı göstermektedir. Burada

kişisel pencerenin daha geniş bir genlikle salınımından daha önemli ortalaması

deterministik devir sınırlarını göstermektedir. Bu ayrıca sıra izinide göstermektedir.

Protokolün kararsız bir usulde olduğunu söyleyebiliriz.

TCP/RED tarafından etkin bir şekilde kontrol edilemeyen gürültü gibi gecikme

ve kayıplara karşı duyarlı trafiklerinin etkisi nedir ? Niteliksel olarak anlayabilmek için,

iki yönlü 50 devamlı FTP bağlantısına kısa http kaynakları ekleriz. Her bir http kaynağı

 73

gideceği yere tek bir paket isteği gönderir, daha sonra çarpansal olarak dağıtılmış (demek

istediğimiz 12 tane 1KB paket) büyüklükteki yanıtlanır. Kaynak tamamen veriyi aldıktan

sonra rastgele bir süre bekler, 500msec ile çarpansal dağıtılır ve işlemi tekrar eder. İstek

ve cevapda TCP bağlantısı üzerinden taşınmıştır. İki sümülasyon kümesi yürütüldü,

birincisi 60 http kaynağı ile % 10 gürültü oluşturuldu (örneğin devamlı FTP kaynakları

daralan hat kapasitesinin % 90nını kapladı), ikinci küme ile 180 http kaynağı %30 gürültü

oluşturdu. Sıra izleri, yayılma gecikmesi 40ms ise kararlı, 200ms ise kararsızdır, bunlar

%10 luk bir gürültü yoğunluğu ile sırasıyla şekil 5.2(a) ve (b) de gösterilmiştir. Şekil

5.2(c) ve (d) ise gürültü yoğunluğu %30’dur. Sıra ve ortalama pencere’nin davranışları

protokolün kararlılığı ile baskınlaştırılmıştır. Kararlı yönetimde (40 ms gecikme), gürültü

trafiği ortalama sıra uzunluğunu yavaşça arttırır. Bu işaretleme olasılığını arttırır ve FTP

kaynağının ortalama penceresini düşürür.

(a) Sıra (gecikme=40ms, %10 gürültü)

(b) Sıra (gecikme=200ms,%10 gürültü)

 74

(c) Sıra (Gecikme=40ms, %30 gürültü)

(d) Sıra (Gecikme=200ms, %30 gürültü)

Şekil 5.2. Gürültüsüz sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite = 9

paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, iki yönlü trafik.

Önceki tüm benzetmeler, benzer yayılma gecikmeli kaynaklar içindir. Kaynaklar

farklı gecikmelere sahip olduğu zaman, dinamik davranışları çok değişir mi ? Önceki

deneyleri gürültüsüz ve gecikme aralıkları 1ms artışda 40ms’den 64 ms’ye kadar olan, 50

devamlı tek yönlü bağlantılar ile tekrarlayacağız. Tüm gecikmeler geniş bir aralıkda aşağı

veya yukarı ayarlandığı zaman ki dinamik davranışlarını öğreneceğiz. Gecikmelerin

benzemesi durumunda davranışlarda, daha fazla sıra salınımları ile niteliksel olarak

benzer. Şekil 5.3(a) anlık sırayı göstermektedir. Ayarlama(scaling) faktörü 0.3 (gecikme

aralığı 0.3ms’den(40) 0.3ms’ye (64)),ortalama gecikme 15.6ms dir. Şekil 5.3(b) ayarlama

faktörü 4 ve ortalama gecikme 208ms olduğundaki sırayı göstermektedir.

 75

(a) Sıra (gecikme 12’den 19’a kadar)

(b) Sıra (gecikme 160’den 254’e kadar)

Şekil 5.3. Karışık gecikmelerle sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite =

9 paket/ms, RED = (0.1,50,550,10-4) , byte mod ile işaretleme, tek yönlü trafik.

Kararsızlık üç potansiyel probleme sebep olur. Birincisi, kaynak oranında ve

gecikmedeki stresi arttırır ve bazı uygulamalar için zararlı olabilir. İkincisi, kısa süreçli

bağlantıları hükmüne alır, bu bağlantılar tipik olarak gecikme ve kayıp, gereksiz gecikme

ve kayıp için hassasdır. Son olarak eğer sıralar boş ve dolu arasında sıçrama yaparsa,

hatların kullanımına yol gösterir.

 76

Bundan dolayı protokol kararlılığı, TCP/RED’in dinamiklerini büyük ölçüde

belirler. Şimdi TCP/RED kararlı olduğu zamanı karakterize edeceğiz.

5.2 Dinamik Model ve Kararlılık

Bu bölümde kararsızlığın başlangıcını tahmin etmek için geliştirilen

TCP/RED’in bir modeli kullanılmıştır. Doğrusal olmayan bir modelle başladık ve denge

özelliği hakkında bazı görüşler belirttik, sonra denge etrafında modeli doğrusallaştırdık.

Doğrusal modelin ns-2 simülatörü ile doğruluğunu sağladık ve TCP/RED’in kararlı

bölgelerini şekillerle gösterdik. Son olarak karışık kaynaklarla tek bir hattın özel durumu

için kararlılık şartı elde edeceğiz.

5.2.1 TCP/RED’in Doğrusal Olmayan Modeli

Bir ağ L hatlarının (sınırlı kaynaklar) kümesi olarak sınırlı kapasitelerle c = (cl, l Є

L) modellenir. i ile indislenmiş I kümesindeki, N kaynağın kümesi tarafından

paylaştırılmıştır. Her bir kaynak i, Li hatlarının C= L kümesini kullanır. Li kümesi LxN

yönlendirme matrisini belirtir.

⎩
⎨
⎧ ∈

=
deaksitakdir

Ll
R i
li 0

1

Her bir l hattıyla ilişkilendirilmiş olan işaretlenme olasılığıdır pl(t) t zamanında

ve her bir s kaynağı ve penceresi wi(t) t zamanındadır. TCP Reno wi(t) nin nasıl

ayarlacağını ve AQM’de pl(t) nin nasıl güncellendiğini tavsiye eder. Birlikte geciken geri

besleme sisteminin bir formudurlar ve internet üzerinde azami dereceye çıkarma

problemini çözmek için dağıtılmış ikili esas (primal-dual) algoritma dışarı taşınır [26,30].

i kaynağının t zamanında bir RTT tanımlanır.

 77

∑+=
l l

l
liii c

tbRdt)()(τ (5.1)

di gidiş dönüş yayılma gecikmesidir ve bl(t), l linkinde t zamanındaki geciktirmedir.

kaynak i’nin oranı xi(t) t zamanında ,

)(
)(:)(
t
tw

tx
i

i
i τ

= (5.2)

l hattındaki tüm akış oranı

∑ −=
i

f
liili ttxRtyl))(()(τ (5.3)

)(tfliτ kaynak i den l hattına ilerlemiş gecikmedir. Uçtan uca işaretleme olasılığı i

kaynağında)))((1(1)(ttpltq f
liLli τ−−∏−= ∈ olarak gözlemlenir.)(tb

liτ , l hattından i

kaynağına geriye doğru olan gecikmedir. Tüm t ler için pl(t) küçük olarak düşünülür,

böylece uçtan uca olasılık yaklaşık olarak şöyledir.

∑ −=
i

b
lilii ttplRtq))((:)(τ (5.4)

Geciken hat olasılıklarının toplamıdır. İleriye ve geriye doğru olan gecikmeler RTT

boyunca,

)()()(ttt b
li

f
lii τττ += (5.5)

ile ilişkilidir, her l Є Li dir.

 78

Şimdi TCP Reno ve RED modellerine bakacağız. TCP Reno’nun AIMD

algoritmasına odaklanıyoruz. t zamanında, i kaynağının iletim oranı xi(t) paket/sn; bundan

dolayı ACK’leri xi(t – τi(t)) oranında alır, her paketin doğrulandığı varsayılır. Bu

ACK’lerin bir parçası (1 – qi(t)) pozitifdir, her bir artış pencereyi wi(t), 1 / wi(t) kadar

arttırır; bundan dolayı wi(t) penceresi artar, ortalamada,

xi(t – τi(t)) (1 – qi(t))/wi(t)

oranındadır. Benzer şekilde negatif ACK ’ler

xi(t – τi(t)) qi(t)

ortalama oranında alınırlar, herbiri pencereyi yarıya indirir ve bundan dolayı wi(t)

penceresi xi(t – τi(t)) qi(t)wi(t)/2 oranında düşer. Bundan dolayı pencere Reno altında

2
)()())((

)(
1))(1))((()(tw

tqttx
tw

tqttxtw i
iii

i
iiii ττ −−−−=

•
 (5.6)

formülüne göre gelişir. qi(t) eşitlik (5.4) de verilendir.

RED’i modellemek için bl(t) anlık sıra uzunluğunu t zamanında bl(t) > 0 olduğu

zaman gelişir.

lll ctytb −=
•

)()((5.7)

yl(t), eşitlik (5.3) de verilen akış oranıdır ve cl hat kapasitesidir. Ortalama sıra uzunluğu

rl(t) olarak belirtilir. bu şu formüle göre güncellenir,

())()()(tbtrctr lllll −−=
•

α (5.8)

bazı sabitler için 0 < αl < 1 dir. Verilen ortalama sıra uzunluğu rl(t) işaretleme olasılığışu

şekilde verilir,

 79

ll

lll

lll

ll

lll

llll
l

btr
btrtb
btrb

btr

ptr
btr

tp

2)(
2)()(

)(
)(

1
)21()(

)(
0

)(

≥
<≤
<<

≤

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−
−

=
η

ρρ
 (5.9)

lll pvebb ,,, RED parametreleridir, ve

ll

l
l bb

p
−

=:ρ ve
l

l
l b

p−
=
1:η

Özetle, TCP/RED eşitlik (5.6 - 5.9) tarafından modellenmektedir ve ağ boyunca

birbirlerine bağlı olmaları eşitlik (5.3 - 5.4) tarafından modellenmektedir.

Hatırlatmalar :

1. Kaynak [5] ve kaynak [7] den, TCP/RED modelini eşitlik (5.6 - 5.9) yorumladık

ve diğer TCP/AQM modelleri , toplu kaynak özelliğini internet üzerinde en fazla

yapabilmek için dağıtılmış esas-ikili algoritmaları dışarıya taşındılar. Kaynak oranı

xi(t) yi, TCP tarafından tekrarlanan esas değişkenler olarak ele alırsak ve

işaretleme olasılığı pl(t) yi AQM tarafından tekrarlanan ikili değişkenler

(Lagrange multipliers) olarak ele alabiliriz. Farklı protokoller, farklı güncelleme

kurallarına karşılık gelir ve farklı araç fonksiyonu U yu en fazla yapar. TCP Reno

nun araç fonksiyonu şöyle elde edilir.

⎟
⎠
⎞⎜

⎝
⎛= −

2
tan2)(1 ii

i
ii

x
xU

τ
τ

buna karşılık TCP Vegas [31] ise,

iii xxU log)(α=

 80

Verilen ağ topolojjisi R , hat kapasitesi c , ve TCP aracı (utility) Ui, buradan basit

bir konveks programın çözülmesiyle, ilgisi olan her denklik özelliğini elde

edebiliriz. Bunlar işlem hacmi, kayıp, gecikme farklı TCP protokollerinin

etkileşimi ve ayrılmış denge oranının doğruluğudur.

2. Reno’nun birçok gerçekleştirimi yada değişik biçimleri, herbir RTT’de en az bir

kere pencereyi ikiye böler. Bu durumda, eşitlik (5.5) deki çarpımsal azalma

(multiplicative decrease) terimi –qi(t)wi(t) / 2τ(t) ile yer değiştirilir. Buradaki tüm

benzetmelerde, işaretleme olasılığı çok küçüktür , bir RTT’de birden çok

işaretlenme olasılığı ihmal edilmiştir. Bundan dolayı, çarpansal azalmanın iki

modeli arasındaki farklılık ihmal edilebilir.

5.2.2 TCP/RED’in Doğrusal Modeli

TCP/RED’i eşitlik (5.6 -5.9)’da denklik etrafında kararlılığı ile ilgili

çalışabilmek için doğrusallaştırdık. Birçok basitleştirici varsayım yaptık. Birincisi

yönlendirme matrisi R yi tüm satır sıralarını dolu olarak varsaydık böylece tek bir denklik

kaybolma olasılığı vektörü p vardır (Lagrange multiplier). İkinci olarak, denklik

işaretleme olasılığını tam olarak pozitif olan sadece daralan(bottleneck) hatların, modelde

içerildiğini varsaydık. Dahası sistemin bl < rl(t) < bl , bölgesinde işlediği düşünülür,

böylece işaretleme olasılığı ortalama sıra uzunluğunda afine edilmiş olur, pl(t)= pl(rl(t) -

bl). Son olarak , gidiş dönüş gecikmelerindeki değişikliklerde, zamanda anahtar varsayım

yapmıştık.

Gidiş dönüş gecikmeleri iki yerde görülür; birincisi pencere wi(t) ve oran xi(t)

arasındaki ilişkide, eşitlik (5.2) de belirtildiği gibi ve ikinci olarak, akış oranı yl(t) nin

zaman argümanında, eşitlik (5.3) de ifade edildiği gibi ve uçtan uca işaretleme olasılığı

qi(t) de, eşitlik (5.4) de ifade edildiği gibi. ilk üründe anlık sıra gecikmesinin dahil olması,

eğer sıra gecikmesi yok sayılırsa veya sabit varsayılırsa niteliksel olarak farklı bir

 81

modeldir. Anlamı şudur ki, sıra bir toplayıcı değildir ama daha karmaşık dinamikleri

vardır; eşitlik (5.11)’e bakınız. Teorem 2’nin ispatı, bu dinamiğin TCP/RED’in kararlılığı

için kritik olduğunu gösterir. Sonuçdaki doğrusal model benzetmeyle eşleşir, eğer sıra

gecikmesi sabit varsayılırsa, farkedilir bir şekilde daha iyidir. İkincideki zaman değişimli

gecikmeler doğrusallaşmayı zorlaştırır, ve denk değeri(denklik sıra gecikmesini içerir) ile

yer değiştirilir. Bundan dolayı zaman değişimli gecikmeleri eşitlik (5.1) ve eşitlik (5.2) de

kullanırız, ama yaklaşık gecikmeler)(),(),(ttt b
li

f
lii τττ eşitlik (5.3) ve eşitlik (5.4) deki

denk değerleridir.

Bu varsayımlarla, Reno/RED’i tek denklik etrafında doğrusallaştırdık. Eşitlik

(5.5)’den Reno,

∑∑ −
−−−

−
−

⎟
⎠
⎞⎜

⎝
⎛ −−=

•

l ii

iiib
lilli

iii

iib
li

l
llii t

twtwtpR
twt

twtpRtw
)(
)()()(

2
1

)(
1

)(
)()(1)(

ττ
ττ

ττ
ττ

olur. Doğrusallaşma sonrası ürünler,

)()(1)(
**

* twwqtpR
q

tw i
i

iib
li

l
lli

ii
i τ

τ
τ

−−−= ∑
•

burada ∑= l llii pRq ** uçtan uca olasılığın dengesidir, ve iii xw τ** = denge penceresidir.

Denge etrafında, tampon işlemi RED altında gelişir,

l
l

f
lii

f
lii

li c
t
twRtb −
−
−=∑

•

)(
)()(

ττ
τ

l
l k

f
liik kkii

f
lii

li c
ctbRd

twR −
−+

−=∑ ∑ /)(
)(
ττ

τ

 82

∑+=
k kkkiii cbRd /*τ dengeli RTT’dir (sıra gecikmelerini içerir). Doğrusallaşma sonrası,

şunlara sahibiz,

∑∑∑ −−−=
•

k i

f
lik

ki

i
kili

i i

f
lii

li tb
c
wRRtwRtb)()()(2

*

τ
ττ

τ

eğer RTT’de ihmal edilmiş veya sabit varsayılmış sıra gecikmesi varsa yukarıdaki ikinci

terim yok sayılabilir. Çift toplama işareti, her kaynak i ile hat l yi paylaşan tüm k hatları

üzerini toplar. Bu ağdaki hat dinamiklerinin paylaşılan kaynak boyunca birleştiğini

söylemektedir.)(
*

f
lik

ki

i tb
c
w τ
τ

− terimi, kaynak i nin paketleri yüzünden k hattında, FIFO

sırasının altında kabaca gecikmiştir. Bundan dolayı gecikme bl(t), l hattında, diğer k

hattında paylaşılan kaynak i nin gecikmesiyle uygun oranda azaltır. Kaynak i nin

yolundaki gecikme l hattında paket alan kaynak i nin oranını azaltır, bl(t) azalır.

Herşeyi bir araya koyarsak, Reno/RED, Laplace domain’de şu şekilde belirtilir.

)()()()(2

1
1 spsRDDsIsw T

b
−+−=

)()()(4

1
3 sbDDsIsp −+=

)()())(()(1

65 swDsRDRDsRsIsb f
T

f τ
−+=

,
**

1 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

i

ii wqdiagD
τ

 ,1
*2 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

iiq
diagD

τ
),(3 llcdiagD α=),(4 lllcdiagD ρα=

,2

*

5 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

i

iwdiagD
τ

 ,16 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

lc
diagD ,1

7 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

l

diagD
τ

 diagonal matrisleri ve Rf (s) ve Rb(s)

geciken ileri ve geri doğru yönlendirme matrisleridir,şu şekilde tanımlanır.

[]
⎪⎩

⎪
⎨
⎧ ∈=

−

deaksitakdir
LlesR i

s

lif

f
li

0
)(

τ

 (5.10)

 83

[]
⎪⎩

⎪
⎨
⎧ ∈=

−

deaksitakdir
LlesR i

s

lib

b
li

0
)(

τ

 (5.11)

kaynak [25]’in benzer-kaynak modelini tek hattan, birden çok hatta, karışık kaynaklarla

genelleştirir.

5.2.3 Geçerlilik ve Kararlılık Bölgesi

Sistem kararlı olduğunda, doğrusal modelimizin geçerliliğini ve kararlılık

bölgesini sayısal olarak şekillerle, bir seri deneyle sunduk.

Kapasitesi c paket/ms olan tek bir hat ve bu hattın N kaynak tarafından benzer

gidiş dönüş yayılma gecikmesi d ms ile paylaşıldığını düşünelim. N= 20,30,......,60 için

kapasite c=8,9,.....,15 pkt/ms ve yayılma gecikmesi d = 50,55,......,100 ms, geri besleme

sistemi (L(jw)) nin (11)’de, döngüsel kazancının Nyquist planını inceliyoruz. Her bir (N,c)

ikilisi için, gerçek ekseni -1’e en yakın olan ile Nyquist planın en küçük kesintisinde

5ms’lik artışda gecikme dm(N,c) elde edilir. Bu, sistem (N,c) de, doğrusal modele göre

kararlılıkdan kararsızlığa geçiş gecikmesidir. Bu gecikme için, L(jw) ‘nin fazında fm(N, c)

kritik frekansı –Π olarak hesaplanır. L(jw) nin hesaplanmasında, dengeli RTT τ , yayılma

gecikmesinin toplamı dm(N,c) ve dengeli sıra gecikmesi gereklidir. Sıra gecikmesi

[26]’deki duality modelden hesaplanmaktadır. Bundan dolayı, her bir (N,C) ikilisi, 50ms

ve 100ms arasındaki gecikmede ancak kararsız olur, Kritik (yayılma) gecikmesi dm(N,c) ,

ve kritik frekans fm(N,c) analitik modelden elde edilirler. Tüm deneyler için, bazı

parametreler sabit tutulmuştur, α = 10-4 , ρ=0.1 / (540-40)=0.0002, ve β=0.5 .

Bu deneyler ns-2’de devamlı FTP kaynakları ve ECN işaretlemeli RED ile

tekrarlanmıştır. RED parametreleri (0.1 , 40paket , 540 paket , 10-4) olarak α ve ρ

değerlerine tekabül eder. Her bir (N,c) ikilisi için, sistem kararlılıkdan kararsızlığa

geçtiğinde, kritik gecikme dns(N,C)’yi elde etmek için sıra ve pencere eğrilerini inceleriz.

Kritik frekans fns(N,C) yi, sıra eğrisinin sıra salınımının temel frekansı olan FFT’den

 84

ölçeriz. Bundan dolayı, doğrusal modele karşılık gelen, benzetmelerden kritik gecikme

dns(N,C) ve frekans fns(N,c)’yi elde edilir.

Model tahminini benzetme ile karşılaştırırız. Şekil 4.4(a) , doğrusal modelden

hesaplanan dm(N,C) kritik gecikmeye karşın ns-2 simülatöründen dns(N,C) kritik

gecikmesini çizimini göstermektedir. Her bir data noktası özel bir (N,c) ikilisine karşılık

gelmektedir. Şekil 4.4(b) kritik frekans fns(N,c) ye karşılık gelen fm(N,c) çizimini

vermektedir. Model ve benzetme arasındaki arasındaki anlaşma oldukça mantıklı

görünmektedir.

Statik bir hat modeli düşünelim ve işaretleme olasılığı hat akış oranının bir

fonksiyonu olsun,

Pl(t) = fl(yl(t))

Sonra, doğrusallaşan model,

)()()(*1 tyyftp llll =

burada,)(*1
ll yf , fl nin türevidir ve dengeden elde edilir. Ayrıca şekil 4.4(b) de görülen

kritik frekans, bu statik-hat modelinden tahmin edilmiştir. (ρ=)(*1
ll yf ile, bu kritik

frekansı etkilemez), yukarıda tanımlanan aynı Nyquist çizim metodu ile kullanılır. İlgili

zaman skalasında sıra dinamiklerini anlamlı olarak göstermiştir.

 85

 (a) Kritik gecikme (ms)

(b)Kritik Frekans (Hz)

(c)Kararlı bölge

Şekil 5.4. Onaylama ve kararlı bölge. Her bir N için, eğrinin üstündeki bölge

kararsızdır ve altı kararlıdır.

Şekil 4.4(c), doğrusal model tarafından anlatılan kararlılığı göstermektedir. Her

bir N için, kapasite c ye karşılık kritik gecikme dm(N,c) nin grafiğini gösterir. Eğri kararlı

(alt) ve kararsız (üst) bölgeleri ayırmaktadır. Negatif eğim, gecikme veya kapasite çok

büyük olduğunda TCP/RED’in kararsız olduğunu göstermektedir. N artarsa kararlı bölge

genişler, örneğin küçük yük kararsızlığa neden olur. sezgisel olarak, daha geniş bir

gecikme yada kapasite yada daha küçük bir yük, daha geniş dengeli pencerelere liderlik

eder; bu da TCP’nin geniş bir pencere ölçüsünde rahatsız olduğunu doğrular.

 86

5.2.4 Kararlılık : Tek Hatlı Karışık Kaynaklar

Şimdi N karışık kaynakla tek bir hat durumunda kararlı bölgeyi tanımlayacağız.

Son alt bölümün doğrusal modelini bu duruma özelleştirirsek, ileri gecikmeyi RTT nin bir

parçası olarak β Є (0,1) , i
f
i βττ = ve hat düşmesi alt simgesi l , döngü kazancı olarak ,

s

n
ns

n

ni iii

ie
e

x
c

s
cs

c
wpsp

sL τ

βτ

τ
α
ρα

ττ
−

−∑
∑

+++
= .

1
1..

)(
1)(**** (5.12)

elde edilir.

İlk terim, TCP dinamiklerini , ikinci terim RED ortalamalarını üçüncü terim

tampon bellek işlemini ve son terim de ağ gecikmesini tanımlar. Tüm kaynaklar benzer

RTT’lere sahiptir, τi = τ , ve ileri gecikmelerin sıfır, β = 0 , olduğu özel durumda kaynak

[25]’de analiz edilir. Kapalı-döngü durumu için yeterli şartları sağlarlar ve bunları α ve ρ

RED parametrelerini ayarlamak için kullanırlar.

Aşağıda kullandığımız bazı denge özelliklerini toplayan bir yardımcı önerme ile

başlayabiliriz. Eşitlik (5-8)’in sabit noktalarından doğrudan kanıtlanmıştır; yada kaynak

[26]’ya bakınız. iiττ max:= , ii ττ min:= ve
1

1:ˆ
−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
= ∑i

iτ
τ .

Yardımcı Önerme 1 : p* denge düşme olasılığı, wi
* ve xi

* denge penceresi ve oranıdır.

Sonra p* = 2 / (2 + (c^r)2, her kaynak i için wi
* = c^r, xi

*= wi
*/c = 1.

Şimdi

⎟
⎠
⎞⎜

⎝
⎛∈−=
2
,0

2
)1(arctan:0

π
β
βπθ (5.13)

 87

))((
:),(*

1
*

)(

wpjvcjvv
eh

vj

red ++
=

+−

τα
θυ

θ

 , 00 θπθ −≤≤ (5.14)

0θπθ −= da),(θυredh nın Nyquist çiziminin TCP/RED’in kararlılığını elde ettiğni

göstereceğiz. πθπ −=−),(0vhred fazında v0 açı olsun.

Teorem 2: Denge penceresi wi
* >= √2 olsun. Sonra kapalı döngü sistemi eşitlik (5.12)

tarafından tanımlanır ve eğer

αρ
βθπτ −≤− 1),(. 00

33 vhc red

ise kararlıdır. Burada iiττ max:= dir.

İspat(Taslak). Kapalı döngü sistemi kararlıdır eğer ki L(s), karmaşık düzlemde (-1,0)

boyunca geçmiyorsa, burada s sağ yarım düzlemde değer alır. Bunu göstermek için, eşitlik

(5.12)’yi yeniden yazarız.

*

*

*

2)(/)(
i

i

i

ii

w
sz

c
w

p
csL ∑= ταρ

burada

)(

1
))((

)(***

∑ −

−

+++
=

n
s

n

nii

s

i
n

i

e
c
x

s
wpscs

e
sz

βτ

τ

τ
τα

 (5.15)

yardımcı önerme 1 şunu içerir,

 88

)(
ˆ

)(
*

* sz
c
x

p
c

sL i
i

i∑=
τ
αρ (5.16)

L(s), karmaşık düzlemde N ‘in belirttiği zi(s) tarafından conveks gövde içinde tanımlanır.

Bu karmaşık gövdenin (-1,0) dan uzakta sınırlandırıldığını, iki adımda göstereceğiz [21].

Birincisi, büyüklü ve eşitlik (5.15) deki son terimin sınırlandırılmasıdır. Şunu

gösterebiliriz,

}0,0:),({.
ˆ)1(

)(0*

2

θπθθ
τβ

αρτ −≤≤≥
−

∈ vvhco
p

c
jwL red (5.17)

eşitlik (5.15) de tanımlanan conveks gövde eşitlik (5.14) de tanımlanan hred(v,θ) nın daha

geniş karmaşık gövde içerisine yerleştirilmiştir.

Sonra teorem sınırlarının,bu küme (-1,0)’dan uzaktır, hipotezini gösterir. hred(v,θ)

nun yörüngesi eğridir.

))((
:)(*

1
*wpjvcjvv

evC
jv

++
=

−

τα

negatif yönde θ kadar döndürülmüştür. Bundan dolayı |C(v)| büyüklüğü, v’de düşer,

eşitlik (5.17)’da conveks gövdenin sol sınırı θ = Π – θ0 da hred(v,θ) tarafından tanımlanır.

düzlemsel eğri hred(v,Π – θ0) ın eğrileştirilmesinin incelenmesiyle, v, 0 dan +∞‘a

değişiklik gösterir [32], bu kümenin sınırlarının | hred(v,Π – θ0)| da gerçek eksende

kesintiği gösterilebilir. Eğer ki,

1),(.
ˆ)1(00*

2

<−
−

θπ
τβ

αρτ vh
p

c
red

 89

Bu koşul teoremin hipotezinin altında tutulduğu daha sonra gösterilebilir. hred(v,θ)‘nun

conveks gövdede L(jw) Nyquist çizimini sınırlanması düşüncesi, [33]’ün farklı bir

algoritma tarafından ispat edilmesinden esinlenilmiştir.

5.3 RED Parametre Ayarları

Teorem 2 de kararlılık şartının RHS üzerindeki α Є (0,1] ve ρ > 0 parametreleri

RED’in sıra uzunluğunun çarpansal ortalaması ve işaretleme olasılığının eğimidir.

Kararlılık için ürünleri küçük olmalıdır. Küçük α yavaş cevaba neden olur çünkü anlık

sıra uzunluğundaki data geri beslemeye çok yavaşca dahil edilmiştir. Küçük ρ ise geniş

gecikme meydana getirir, dengedeki ortalama sıra uzunluğu r,))ˆ(2(/2 2rcbr l ++= ρ dir.

Doğrusu kaynaklar benzer olduğu zaman Nττττ ˆ=== dir. Kararlılık şartının LHS’si

h
N
c
2

33τ olur. gecikme τ yada kapasite c arttığı zaman, TCP/RED kararsız olur, son alt

bölümdeki benzetme sonuçlarının onaylanmasıdır. Kabaca, c çiftse, denge oranı çifttir ve

bundan dolayı iki katı frekansda iki katı büyüklükle pencere yarıya indirilir, sonuç da

kontrol kazancında ikinci dereceden artış sistemi kararsız yapar.

Kaynak [36] da RED parametresi maxp nin dinamik ayarlanması önerilmiştir,

maxp nin düşürülmesi N azalır ve aksi takdirde yükselir. maxp nin yükseltilmesi yada

maxth nin – minth nin düşürülmesi, teorem 2’de kararlılık şartını içeren yönde arttırmak

için eşittir. ρ (= maxp / (maxth - minth)). Teorem 2, verilen N, c, τ (ve α) ile ρ üzerindeki üst

sınırı ayarlar, bundan dolayı alt sınırıda kararlılığı sağlamak için dengedeki sıra uzunluğu

üzerindedir. RED parametrelerinin ayarlanması kararlılık ve performans arasındaki

kaçınılmaz seçeneği korumaz, sıranın kararlılığı için ya ρ geniş bir değer etrafında küçük

ayarlanır ya da alternatif olarak, şiddetli salınımının harcanmasında,sırayı azaltmak için

geniş ayarlanır.

 90

Aynı kararlılık analizi sanal sıra [37,38,39] ve REM/PI [27,40] gibi diğer

AQM’lere de uygulandı ve AQM’in rolünü aydınlattılar. Kararlılığın ispatı bir takım

formun

)},({. θvhcoK

(-1 ,0) ın sağına sınırlanmasına güvenir. Kazanç K ve yörünge h AQM de olduğu gibi

TCP’ye bağlıdır. Örneğin, c kapasiteli N benzer kaynak tarafından paylaşılan τ gecikmeli,

tek bir hat için TCP ve ağ gecikmesi yörünge h’a bir parça katkı olarak,

*
1

*wpjv
eh

jv

tcp +
=

−

ve kazanç K’ya

N
cKtcp 2

22τ= (5.18)

küçük bir katkıda bulunur. Denge penceresi geniş varsayılır böylece p*= 2/wi
2=2N/cτ olur.

bu yüksek kazanç eşitlik (5.18) , esas olarak yüksek gecikme, yüksek kapasite yada düşük

yükde kararsızlıkdan sorumludur. AQM, bu etkiler için h şekillendirerek ve K yı

düşürerek telafi eder. RED’le, örneğin,

tcp

j

h
v
e

cjv
vh .1),(

θ

τα
θ

−

+
=

tcpKcK .
1 β
ταρ
−

=

h da ilk terim RED ortalaması yüzünden, ikinci terimde sıra dinamikleri yüzünden θ ≤ π

– θ0 sınırlanır. Bundan dolayı sıra ve RED’in her ikiside faz geri kalmasını h ‘a ekler.

Daha önemlisi , RED başka cτ yi kazanç K ‘ya ekler, kararlılık için küçük αρ zorunlu

 91

kılınır ve ağır cevap ve geniş dengeli sıraya sebep olur. K daki τ / (1 - β) parçası sıradan

gelir.

5.4 Kararlılık Kontrolü

Kaynak [29]’daki ölçüler şimdiki internette gecikmenin hala geniş olduğunu

göstermektedir (RTT ölçülerinin %85’i 15-500 ms aralığındadır). Önceki bölümlerin

sonuçları şimdiki protokolün böyle çevreler için kötü düzenlendiğini belirtmektedir.

Dahası, gelecekte ağ kapasitelerinin genişlemesi ile bu durum daha da kötüleşecektir.

TCP tarafından belirtilen yüksek kazancı telafi etmek için AQM’lerin tasarlanması da zor

görünmektedir. Bu bölümde, [28]’de geliştirilen, kaynaklar ve hatlar tarafından dağıtılmış

merkezi olmayan bir yolla gerçekleştirilen ve kararlı olan bir protokol tanımlayacağız, bu

rastgle seçilen gecikme, kapasite, yük ve yönlendirme için doğrusal kararlılığı devam

ettirir. Dahası, küçük sıralar ile yüksek ağ kullanımının dengesini sağlamayı başarır. Bu

gereksinimler doğrusal dinamikler üzerinde bazı sınırlamaları kabul ettirir. Hatlarda

bütünleşme ve kaynaklarda ve hatlarda kazanç şartlarıdır.

5.4.1 Algoritma

Kaynak [28] deki sıkışıklık kontrol algoritmasını özetlersek, bu statik kaynak

algoritmasını ve birinci dereceden dinamik hat algoritmasını içerir. Buradaki ana fikir,

kaynaklardaki gecikmeyi, bireysel RTT’lerle oranlardaki kazançları küçülterek telafi

etmek ve kapasite ve yönlendirme tarafından belirtilen döngü kazançlarını, varolan

oranlarıyla kaynaklarda büyüterek ve kapasiteleriyle kontrol kazancının küçültülmesiyle

telafi etmektir. Diğer bir deyişle, eğer gidiş dönüş gecikmesi genişse yada oranı küçükse

kaynak daha da yavaşlayarak tepki verir; eğer hat daha geniş bir kapasiteye sahipse

sıkışma ölçüsünü (price , ücret) daha yavaş olarak günceller. Ağ gecikmesi sadece açık –

döngü parametresidir, kontrolümüz altında değildir ve sistem cevabının zaman skalasını

ayarlamalıdır.

 92

RED’in doğrusal olmayan modelinde tanımlanan ağ modelini düşünelim, pl(t), t

zamanında l hattında ücret olsun ve cl sanal kapasite (gerçek kapasiteden daha az) olsun.

Her bir l hattı kendi ücretini giriş oranını yl(t)=∑sRlsxs(t) kullanarak ayarlar.

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

>
=

0)(},0max{

0
)(

tp
c
cy

p
c
cy

tp
l

l

ll

l
l

ll

l (5.19)

Bundan dolayı ücretler fazlalık olan kapasiteleri normalleştirilmiş yolla bütünleştirir ve

her zaman negatif olmamaya doyurulur. Dengede, sıfır olmayan ücretlerle dar geçitler

yl
*=cl, sahip olurlar, yüksek kullanım verirler. yl

* < cl ile dar olmayan geçitlerin ücretleri

sıfır olacaktır. cl gerçek kapasiteden küçük olduğundan , dengede sıra ihmal edilebilir.

Eğer cl gerçek kapasiteyse, pl(t) gerçek sıra gecikmesi olur, TCP Vegas’da [30] bir sıkışma

sinyali kullanılır.

xi(t) t zamanında i kaynağının oranı olsun, τi RTT’si ve Mi yolunda sıkışan hat

sayısıdır (yada üst sınır). Verilen toplu ücret qi(t) =∑lRlipl(t) , kaynak i, qi(t) ‘de oranını

çarpansal olarak ayarlar,

ii

ii

M
tq

ii extx τ
α)(

max,)(
−

= (5.20)

burada xmax,i maksimum oran parametresidir, ve α Є (0,1). Araç (utility) fonksiyonu

kaynak kontrolüne karşılık gelir, o da,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

ii

ii
i x

xM
xU

max,

log1)(
α
τ , her x ≤ xmax,i ;

Yönlendirme matrisi R nin tam satır sırasına sahip olduğu varsayılır. sonra tek

bir denge oranı ve ücret vektörü (x*,p*) vardır. Denge etrafında doğrusallaştırılmış sistem

şu şekilde tanımlanır,

 93

 içinlher
c
tytp
l

l
l ,)()(= (5.21)

 içinsher
M
x

tx
ii

ii
i ,)(

*

τ
α−= (5.22)

burada kaynak oranları x(t) ve hat ücretleri p(t) , eşitlik (5.10 – 5.11) de tanımlanan

geciken yönlendirme matrisi tarafından birbirlerine bağlanmıştır.

Aşağıdaki teorem kaynak [28] de ispatlanmıştır, rastgele seçilen bir gecikme,

kapasite ve yükde ağ büyüdüğü zaman algoritmanın kararlılığını garanti eder.

Teorem 3([28]): R de içerilen tüm hatların dar geçit olduğunu varsayalım, Örneğin

dengede c = Rx* ve R tam dolu satır sıralarına sahiptir. Daha sonra eşitlik (20-21)

tarafından tanımlanan kapalı-döngü sistemi ve eşitlik (5.10 – 5.11), rastgele seçilen

gecikmeler τi ve hat kapasiteleri cl için doğrusal olarak kararlıdır.

5.4.2 Gerçekleştirim ve Performans

Eşitlik (5.19) deki hat algoritmasını gerçekleştirmek için basit bir yol, alınan

paketlerle arttırılan ve sanal kapasite oranında azaltılan “sanal sıra” sayacının devamını

sağlamaktır. Sonra ücretler sanal kapasite tarafından sayacın bölünmesiyle elde edilir.

Kaynaklar kendilerinin RTT τi ‘ni ölçerler. Hedef durum boş sıralarla dengede

olduğundan, τi yayılma gecikmesidir; bundan dolayı, kaynak güncellenmesinde (5.20) di

nin bir tahmininin (tipik olarak elde edilen en küçük RTT) kullanılması önerilir, bu

Vegas’da yapılmaktadır. Bu, gerçek sıranın geçici turları RTT aracılığıyla azaltıcı etkiye

sahip olma olasığından kaçınmaktadır. Ayrıca kaynaklar ağdan iki parametre almak

zorundadır, bu parametreler toplu ücret qi , ve dar geçitlerin sayısı Mi ‘dir. İletişim kurmak

için qi, rastgele çarpansal işaretleme tekniği kullanılabilir. Burada bir paket, her bir l

hattında 1,1 >− − φφ lp olasılığı ile işaretlenmiş olur. Bağımsızlığı varsayalım, bir paketin

 94

kaynak i den işatlenmesinin tüm olasılığı lq−−φ1 dir, bundan dolayı qi işaretlenme

istatistiklerinde tahmin edilebilir. Bu, global bir sabiti bir öncelik ayarlayan ’nın öz

bilgisini gerektirir. Mi hakkında ise, en basit gerçekleştirmede basitce bir üst sınırı

kullanabilir. paket seviyesi gerçekleştiriminin hazırlığı paralel simülator Parsec [41],

kullanılarak yapılır. Bu benzetme, pencere yönetimi, hat sırası ve gecikmesini içerir, ama

bu noktada işaretlemeyi içermez ; ücretler, ondalıklı sayılar olarak ifade edilirler. N, c, d

‘nin geniş bir sınıfı için aynı şekil 5.1 deki parametrelerle, tek bir hattı simüle ederiz. Şekil

5.5, kişisel pencere ve sırayı göstermektedir, beklendiği gibi kişisel pencere ve sıra,

gecikme ne olursa olsun yakınlaşırlar. Kapalı döngü davranışı için daha uzun gecikmeler,

daha uzun zaman skalası ayarlar.

(a) Kişisel pencere (gecikme = 40ms)

(b) Sıra (gecikme = 40ms)

 95

(c) Kişisel pencere (gecikme = 200ms)

(d) sıra (gecikme = 200ms)

Şekil 5.5. Kişisel pencere ve sıra izleri. Benzetme parametreleri : 50 kaynak, kapasite

= 9 paket/ms, α=0.8, sanal kapasite = %95.

Bu noktada, performansın harcanmasında elde edilen protokolün kararlılık

durumu ne olursa olsun, bir şaşkınlık olabilir. Örneğin cevap zamanını çok yavaşlatması.

Bununla beraber şekil 5.1 deki karşılaştırma bu durum değildir. Burada Reno ve yeni

protokolün kararlı duruma ulaşabilmesi için yaklaşık 50 RTT’ye ihtiyacı vardır. Mesela

200ms’lik gecikme durumunda, Reno’nun limit sayıya ulaşabilmesi yaklaşık 10 saniye

alır ve bizim protokolümüz içinde boş sıra ile dengeye ulaşabilmesi için aynı miktar

zamana ihtiyaç vardır.

 96

BÖLÜM 6

RED’İN KONTROL TEORİSİ ANALİZİ

Kaynak [7], Ağ topluluğundaki araştırmalara liderlik etmiştir, AQM’ler için IP

yönlendiricilerinde RED’in gerçekleştirimini önerilmiştir. RED’in akışların eş

zamanlılıkları ile ilgili problemleri hafiflettiğine ve ayrıca zeki düşürme tarafından

servisin kalitesinin bazı kavramlarını sağladığına inanılmıştır. RED’in analizi birçok

ilginç yazıdan genelleştirilmiştir. RED parametrelerinin ayarlanması bazı zamanlar için

hatalı olmaktadır, kullanılan RED’e karşı ayarlanmasının zorluğundan dolayı [10,22],

birçok araştırma savunulmuştur. Sayısız RED değişimleri önerilmiştir. Kaynak [12-

14],[36], belkide RED’in dinamiklerini tamamen anlayabilmenin zorluğundan motive

olmuştur [25].

Kaynak [49]’da yazar RED parametrelerinin önerilerinin sorunlarını keşfetti ve

göz atılan kuralları ve seçimleri için bir kılavuz verdi. Bu bölümde kontrol teoriği

bakımından, kaynak [25] tarafından keşfedilen benzer şekilde daha ciddi problemler

incelenmiştir. TCP ve RED dinamiklerinin daha önce geliştirilmiş bir modelini,

analizimizin başlangıç noktasını göstermek için kullandık. Kalıtsal olarak sunulan

doğrusal olmayan model, doğrusallaştırma (linearization) tekniği aracılığıyla doğrusal bir

sisteme dönüştürülmüştür ve klasik doğrusal geri besleme kontrol teorisinde sonradan

gelen iyi geliştirilmiş araçlara uyguladık. Doğrusal kararlı sistemlerin tasarımında, olduğu

gibi doğrusal sistemin kararlılığı ve güçlülüğünü belirten, sağlanan metrikleri veren bir

kılavuz verebiliriz. Analizimiz ayrıca çeşitli parametre seçeneklerinin takası ile ilgilidir.

Bu analizde doğrusal olmayan benzetmeler aracılığıyla iyi bilinen ns-2 simülatörünü

kullanılmıştır [25].

6.1 MODEL

Tartışmamıza AQM’in ilk önce TCP’nin sıkışıklıkdan kaçınma modu için bir

dinamik modelin tanıtılmasıyla başlıyoruz.

 97

6.1.1 TCP davranışının bir akıcı-akış modeli

Kaynak [54]’de, TCP davranışının bir dinamik modeli, akıcı-akış ve tahmini

diferansiyel eşitlik analizleri kullanarak geliştirildi. Benzetme sonuçları gösterilmiştir, bu

model hatasız olarak ele geçirilen TCP’nin dinamikleridir. Bu bölümde, bu modelin TCP

zaman aşımı mekanizması yok sayılarak basitleştirilmiş bir versiyonu kullanılmıştır. Bu

model anahtar ağ değişkenlerinin ortalama değeri ile ilgilidir ve aşağıdaki birleştirilmiş

doğrusal olmayan diferansiyel denklemlerle tanımlanır.

))((
))((2
))(()(

)(
1)(tRtp

tRtR
tRtWtW

tR
tW −

−
−−=

CtN
tR
tWtq −=)(
)(
)()( (6.1)

Burada x , x ‘in zaman türevini belirtmektedir. Ve

W = beklenen TCP pencere ölçüsü (paket);

q = beklenen sıra uzunluğu(paket);

R = gidiş dönüş zamanı (RTT) = q/C + Tp (saniye);

C = hat kapasitesi(paket/sn);

Tp = yayılma gecikmesi (sn);

N = yük faktörü (TCP oturumlarının sayısı);

p = paketlerin işaretlenme/düşme olasılığıdır.

Sıra uzunluğu q ve pencere büyüklüğü W pozitif ve sınırlı büyüklüklerdir; yani,

[]qq ,0∈ ve []WW ,0∈ , burada q ve W tampon bellek kapasitesi ve en büyük pencere

ölçüsüdür. Ayrıca işaretleme olasılığı p de sadece [0,1] aralığında değerler alabilir. Bu

diferansiyel denklemleri blok diyagram olarak TCP pencere-kontrol ve sıra dinamiklerine

dikkat çeken şekil 6.1’de gösterdik. Şimdi bu dinamikler küçük sinyal

 98

doğrusallaşmalarıyla, AQM geri besleme kontrol sistemlerinin önerilerinde iç yüzünü

anlamak için yaklaşık bir işletim noktası civarındadırlar.

6.1.2 Doğrusallaştırma

(W,q) durum olarak ve p giriş olarak alınır, işletim noktası (W0,q0,p0),

00 == qveW  tarafından tanımlanır. Böylece

20 0

2
0 =⇒= pWW

N
CRWq 0

00 =⇒= (6.2)

Burada,

pTC
qR += 0

0 

Şekil 6.1. TCP sıkışıklıkdan kaçınma akış kontrol modunun blok diyagramı [25].

 99

N(t) ≡ N ve R(t) ≡ R0 sabitler olarak varsayalım, işletim noktası etrafında elde

edebilmek için doğrusallaştıralım.

)(
2

))()(()(02

2
0

02
0

Rtp
N
CRRtWtW

CR
NtW −−−+−= δδδδ 

)(1)()(
00

tq
R

tW
R
Ntq δδδ −= (6.3)

Burada

;0WWW −=δ
;0qqq −=δ
.0ppp −=δ

Diferansiyel eşitlikler üzerinde Laplace dönüşümünü yapan, şekil 6.2’de

gösterilen doğrusallaştırılmış dinamiklerdir.

Şekil 6.2. Doğrusallaştırılmış TCP bağlantılarının block diyagramı [25].

Hatırlatmalar 1 [25]:

1. Kaynak [56]’da, TCP’nin pencere kontrol mekanizması için bir model geliştirildi

ve ispat edildi, ve Smith düzenleyici yapısına dahil edildi [57]. Bununla beraber,

bizim modelimiz, eşitlik (6.3) ve şekil 6.2 bu açıklamayı desteklemez. Hakikaten,

 100

TCP pencere kontrolü için şekil 6.2’nin Smith düzenleyici yapısı gibi davranması

için 0
2
0

sRe
CR
N − teriminin 0

0

2

1
1

2
sRe

R
sN

C −

+
− ile yer değiştirmelidir.

2. Kaynak [58]’de TCP’nin pencere kontrol mekanizması için bir model geliştirildi

bu eşitlik (6.3)’dekine benzemektedir. Bunun yanında bu model bir sıra dinamiği

içermez. Dinamik sistem düşünülür bundan dolayı bizimkinden küçük bir farkı

vardır, ve analiz ve sonuçları ile bizim ulaştığımız sonuca katılmaz.

3. Gecikme terimi e-sR
0 ‘ı TCP pencere kontrol dinamiğinde şekil 6.2 de gösterdik ve

aşağıdaki durumda anlamlı değildir.

0
2
0

1
RCR

N <<

bundan dolayı

00
2
0

1
RWCR

N =

bu gecikme terimi eğer W0 >> 1 ise yok sayılabilir. Tipik ağ şartları için, W0 >> 1

kabul edilebilir bir varsayımdır ve bundan dolayı yazının geri kalanı için bu

gecikme terimi yok sayılacak ve basitleştirilmiş dinamik düşünülecektir.

)(
2

)(2)(02

2
0

2
0

Rtp
N
CRtW

CR
NtW −−−= δδδ 

)(1)()(
00

tp
R

tW
R
Ntq δδδ −= (6.4)

blok diyagramı şekil 6.3 de gösterilmiştir.

 101

Şekil 6.3. W0 >> 1 olduğunda doğrusallaştırılmış TCP bağlantılarının block diyagramı

[25].

4 Doğrusallaştırılmış TCP’nin eigen değerleri ve sıra dinamikleri eşitlik (6.4) ‘de
sırasıyla,

000
2
0

1)2(2
R

ve
RW

yada
CR
N −−−

Tüm ağ parametrelerinin pozitif değerler olmasından dolayı, bu negatif Eigen

değerleri doğrusal olmayan dinamiklerin denge durumunu belirtir, yerel olarak

asimptotik olarak kararlıdır. TCP pencere-kontrol zaman sabiti
2
00RW ‘nin yorumu,

aşağıdaki Wδ eşitliğinin doğrusallaşmasının ifade edilmesinden gelir,

)(
2

)()(02

2
0

0 Rtp
N
CRtWtW −−−= δδλδ 

burada λ0, kaynak [54]’da tartışıldığı gibi dengeli paket işaretleme oranıdır.

Bundan dolayı pencere kontrol zaman sabiti eşiti olarak 1/ λ0 ifade edilebilir.

Dengede, 0=W pencere ölçüsündeki çarpansal düşüşü (multiplicative decrease)

00½ λW , eklemeli artışını 1/R0 dengeler. Sonuç olarak
00

0
2
RW

−=λ . TCP

sıkışmadan kaçınma döngüsünün ortalama frekansı olarak gevşekce yorumlanır.

 102

5 Son olarak, sıra dinamiklerinin doğrusallaştırılması sade bir bütüleştirici

kazandırmaması beklenen ve literatürde görülene göre ilginçtir [14], ama R0

zaman sabiti ile sızıntılı bir bütünleştirici üretilir. Bu parçalı olarak, sıra içine

giden akışın sıra uzunluğunun bir fonksiyonu olmasıyla açıklanabilir. Bu akış

NW/R0 dır, burada RTT’nin bir parçası R0 sıra gecikmesi q/C den dolayıdır.

6.2 AQM KONTROL PROBLEMİ

Bu bölümün konusu eşitlik (6.4)’de tanımlanan TCP dinamiklerini, TCP yükü N

, RTT’si R0 ve sıra kapasitesi C gibi ağ parametreleri cinsinden ve AQM’in geri besleme

doğası cinsinden analiz eder. Ayrıca AQM’in performans amaçlarını tartışacağız.

Doğrusallaştırılmış TCP modeli eşitlik (6.4) kullanılarak şekil 6.5’deki blok

diyagramda da görüldüğü gibi bir AQM kontrol sistemi modellenebilir. Bu diyagramda

Ptcp, kaybolma olasılığından δp pencere büyüklüğüne δW ve Psıra bağlıdır δW sıra

uzunluğuna q transfer fonksiyonlarını belirtir. e-sR
0 terimi geciken düşme olasılığındaki

δp(t-R0) zaman gecikmesinin Laplace dönüşümüdür. Kontrol sistem dilinde, “kontrolör”

veya “denkleştirici” olarak, geri kalanını da “sistem” (plant) olarak AQM kontrol yasasını

belirtiriz. Denkleştirici tasarımının amacı “kararlı” kapalı döngü sistemi sağlamaktır.

Bunun yanında, kararlılığın ötesinde kontrol tasarımına etkilerine ilgileri vardır. İlk önce

sistem, kabul edilebilir iletim cevabına sahip olmak zorundadır. İkinci olarak düzenleyici

tasarımı, model hataları ve model parametrelerinin çeşitliliğinde kuvvetli olmalıdır.

Bundan dolayı, kontrol mühendislerinin amacı emniyet payı ile sistem tasarlamaktır. Bu

paylar kararlılık payı olarak adlandırılırlar. Bu göreceli kararlılığı ölçmek için iki klasik

metrik vardır. Bunlardan birincisi kazanç payıdır. Bu, kararlı sistemin, kararsız olmasında

kazanılan açık-döngü kazancının bir parçasıdır. Şekil 6.1’e bakarsak, kazanç payı kabaca

yük seviyesi N de kesin değildir, tasarım bu durumu hoş görebilir. Bu ölçülerin ikincisi faz

payıdır. Faz payının tanımı biraz daha karmaşıkdır, ama bu bağlamda, faz payını RTT

gecikmesindeki belirsizliğin miktarı olarak yorumlayabiliriz, bir tasarım kararsız olmadan

güçlü tutabilir. Sistemin kararlılık payı Bode çizimlerinden okunarak anlaşılabilir. Bir

 103

Bode çizimi, açık döngü sisteminin frekans cevabının çizimidir. Sistemin büyüklüğü ve

faz cevabı çift kayıt skalası üzerinde çizilir. Sistemin kazanç payı faz cevabının -1800

olduğu noktadaki, sistemin cevap büyüklüğüne eşittir. Faz payı mφ , wpm-180 olarak

tanımlanır, burada wpm , cevap büyüklüğünün birleştiği (yada 0dB) yerdeki frekansdaki faz

cevabıdır. Şekil 6.4’de iki miktar gösterilmektedir. Sezgisel olarak eğer pozitif payımız

yoksa, geri besleme kontrol sistemi pozitif bir geri besleme sistemi gibi davranmaya

başlar, yani birisi hata aldığında döngüde güçlendirilir, farklı ve kararsız davranmasını

sağlar [25].

Şekil 6.4. Kararlılık payı.

6.2.1 Sistem dinamikleri

Şekil 6.5’de AQM sisteminin tarif edildiği bir geri besleme kontrol sistemi

verdik. Bir AQM kontrol yasasının hareketi paketleri ölçülen sıra uzunluğu q nun bir

fonksiyonu olarak işaretlemektir. (p olasılığı ile).

 104

Şekil 6.5. Geri besleme kontrolü olarak AQM.

Şekil 6.5’den , sistem transfer fonksiyonu, P(s) = Ptcp(s)Psira(s), ağ parametrelerinin

kazancı cinsinden ifade edilebilir.

;2
2)(

2
0

2

2
0

CR
Ns

N
CR

sPtcp
+

=

0

0

1)(

R
s

R
N

sPSira
+

= (6.5)

iki kutup için -2N/(R0

2C) ve -1/R0 olarak ptcp ve psira sırasıyla gönderilir.

Sistem dinamikleri transfer fonksiyonu P(s) tarafından belirtilir, sonra bu paket

işaretleme olasılığının nasıl dinamik olarak sıra uzunluğunu etkilediğini gösterir. Eşitlik

(6.4)’den ve şekil 6.3 den, şuna sahibiz ,

.
)1)(2(

)
2
(

)(

0
2
0

2
0

R
s

CR
Ns

e
N
C

sP
sR

++
=

−

 (6.6)

Hatırlatmalar 2:

1. Eşitlik (6.6)’da P(s) nin yüksek frekans sistem kazancı C2/2N ‘dir. Bu kazançdaki

değişim TCP yükü N ‘in bir fonksiyonu olarak AQM kontrol şemasının

 105

tasarımıyla ilgisi olmalıdır, bundan dolayı kararlılık, geçici cevap ve sağlam

durum performansı ile doğrudan ilgilidir. Gerçekten küçük bir TCP yükü N yüksek

frekans kazancını arttırır, kararlılık payını düşürmeye ve salınım cevabını

arttırmaya önder olur. Karşıt olarak, daha geniş TCP yükü, kapalı döngü geçici

cevabının gücünü azaltmaya eğimlidir.

2. Zaman gecikmesi R0 ‘ın yüzeyinde kararlı AQM, kapalı-döngü kontrol bant

genişliğinde büyük bir limite yerleştirilir ve sonuç olarak geçici cevabın

başarılabilir hızınındadır. Kararlı davranış için, kapalı-döngü zaman sabitleri aşağı

yukarı R0/2 sn tarafından sınırlandırılır.

6.2.2 AQM Performans Hedefleri

Herhangi bir kontrol sisteminin tasarımında, birinci adım performans hedeflerini

ortaya çıkarmaktır. AQM için, performans hedefleri, etkin sıra kullanımı, düzenlenmiş

sıra gecikmesi ve sağlamlıkdır.

1.Etkin sıra kullanımı : Etkin kullanım için, sıra aşırı yükden yada boşlukdan

kaçınmalıdır. Önceki durum, boş bir tampon hattan faydalanırken kayıp paketler ve

istenmeyen geri iletim sonuçlarını verir. Bu iki durumdan da, geçici ve sağlam durum

işlemlerinde kaçınılmalıdır.

2.Sıra gecikmesi: Veri paketinin, yönlendirme sırası tarafından servis edilmesi için

gereken zaman sıra gecikmesi olarak adlandırılır ve q/C ye eşittir. Bu zaman yayılma

gecikmesi Tp ile birlikte, ağ gecikmesinin hesabını verir ve sıra gecikmesi ve

dönüşümlerini küçük tutmak arzu edilebilir. Bu küçük sıra uzunluklarını düzeltmek için

çağrılır ; bunun yanında, böyle yapmak hatta kullanım altında ve bu sınırlamayla AQM

tasarımında temel bir değişimle sonuçlanabilir.

3.Sağlamlık : AQM şemaları, kapalı-döngü performansını devam ettirmek için ağ

şartlarının görüntüsünde değişikliğe ihtiyaç duyabilir. Bu şartlar, TCP oturumlarının

 106

sayısındaki değişimler N, yayılma gecikmesindeki değişimler Tp ve kısa yaşamlıların

sıraya tanıtılmasıdır.

6.2.3 RED Tasarımı

Bir aktif sıra yönetim sistemi (AQM) şekil 6.6’da gösterildiği gibi bir geri

besleme kontrol sistemi olarak modellenebilir. Burada P(s)e-sR
0 daha önceden türetilen

TCP sıra dinamiklerinin küçük-sinyal doğrusallaşmasını belirtir (sıra uzunluğu q0

civarında doğrusallaştırılır). P(s) daha önceden türetilen Ptcp(s) Psira(s) dır. δp ve δq

kaybolma olasılığı ve sıra uzunluğundaki karışıklığı belirtir. Şekil 6.6’da transfer

fonksiyonu C(s) tail-drop yada RED gibi bir AQM kontrol stratejisini belirtir.

Tail-drop bir açma-kapama kontrol stratejisidir. Şekil 6.6’da ayarlarımız

cinsinden, tail-drop miktarları açık-kapalı hareketi için δp Є {0,1} dir. Kontrol teorisinden

böyle bir açık-kapalı mekanizması salınımlara sebep olur, bu salınımlar karmaşık ve kaos

davranışlarını göstermektedir [56]. Böyle salınımlar sıra yönetiminde istenmeyebilir ve

RED bunları düzeltmek için tanıtılmıştır.

RED için bir transfer fonksiyon modeli ,

,
1/

)()(
+

==
Ks
LsCsC red

red (6.7)

Burada

;
minmax

max

thth
red

pL
−

= ,
)1(log

δ
aK e −=

α > 0 sıra ortalama parametresidir ve δ örnek zamandır [54]. Cred(s) tasarımında AQM

kontrol sistemini düzeltmek için, hem TCP oturumlarının sayısındaki değişim N ve hemde

RTT R0 hesap içine alınmalıdır. R0 daki değişimler yayılma zamanı değişkeni Tp

yüzündendir. Burada

 107

pTC
qR += 0

0

TCP oturumlarının sayısı için bir sınıf varsayalım ve N ≥ N- ve RTT R0 ≤ R+

olduğunu söyleyelim. RED parametreleri Lred ve K ‘yı seçmek için eşitlik (6.7) hedef şekil

6.6 da tüm N ve R0 için doğrusal kontrol sistemini düzeltmektir. Eğer sınırlanmış dış

girişler sadece sınırlanmış çıktılar üretirse, şekil 6.6 daki doğrusal geri besleme kontrol

sistemi kararlıdır. Bu gelmiş olan, ilk şartlara cevapları gerektirir, sınırlandırılabilir ve

çarpansal olarak sıfırda birleştirilebilir. Kararlılığın bu tanımı altında, aşağıdaki iki

önermeyi verebiliriz.

Önerme 6.1: Lred veK aşağıdaki koşulu sağlar,

;1
)2(
)(

2

2

2

3

+≤−

+

K
w

N
CRL qred (6.8)

Burada

}.1,
)(

2min1.0 2 ++

−

⎩
⎨
⎧

=
RCR

Nwq (6.9)

Daha sonra, şekil 6.6 daki geri besleme kontrol sistemi C(s) = Cred(s) kullanarak eşitlik

(6.7) her N ≥ N- ve her R0 ≤ R+ için kararlıdır.

İspat : Telafi edilen transfer fonksiyonu döngüsünün frekans cevabını düşünelim

 0)()()(jwR

red ejwPjwCjwL −=

)11)(12)(1(

)2(
)(

0
2
0

2

3
0 0

+++
=

−

R

jw

CR
N
jw

K
jw

e
N
CRL jwR

red

 108

Bu ve eşitlik (6.9)’dan, şuna sahibiz,

[].,0,
1

)2(
)(

)(

0
2

3
0

q

jwR
red

ww

K
jw

e
N
CRL

jwL ∈∀
+

≈

−

Şimdi verilen her N ≥ N- ve her R0 ≤ R+ için,

1

)2(
)(

)(
2

2

3

+
≤

−

+

K
w
N
CRL

jwL
red

q .

Bundan ve eşitlik (6.8)’den, bu |L(jwq)| ≤ 1 her N ≥ N- ve her R0 ≤ R+ için, takip

eder. Bundan dolayı, birleşen-kazanç frekans ile kesişir üstten wq ile sınırlanır. Kapalı-

döngü kararlılığını ayarlamak için, Nyquist kararlılık kriterini isteriz [12] ve
0180)(−>∠ qjwL ‘i gösteririz. Bu sonda, tekrar eşitlik (6.9)’u aşağıdaki eşitliği elde

etmek için kullanırız,

0
0

0
0

2

3

1801801.090
1

)2(
)(

)(>−−≥−
+

∠≥∠
−

+

π
Rw

p
jw
N
CRK

jwL g

red

q

red

q

 109

Şekil 6.7. Kararlı RED parametreleri Lred ve K.

Hatırlatmalar 3:

1. Bu seçimin parametrelerinin arkasındaki mantık Cred(s) i baskın kapalı-döngü

davranışına zorlar. Bu, TCP zaman sabiti −

+

N
CR

2
)(2

 yada sıra zaman sabiti R+ dan

birinden büyük kapalı-döngü zaman sabiti (≈1/wg) nin işaretlenmesi ile yapılır.

2. (Lred,K) nın farklı seçimleri yukarıdaki şartı sağlar. Örneğin, R+=0.25 sn, N-=40,60

ve 80 akış ve C=3750 paket/sn olduğu zaman kabul edilebilir parametrelerin bir

bölgesi şekil 6.7’de gösterilmiştir.

3. Bu RED tasarımı doğrusal olarak ağ parametre değişimlerine N ≥ N- ve R0 ≤ R+

sağlamdır. Genişletmek için aşağıdaki önerme 6.2 ‘de tanımlanan parametrelerin

değişimine ek olarak bu geri besleme kontrol sistemi kararlıdır.

4. wq nun seçiminde bu 0.1 artan parçası kararlılık payını sağlar. Eğer 0.1’den daha

büyük bir değer seçersek, daha düşük bir kararlılık payıyla bir düzenleyici üretiriz.

 110

Daha agresif olan tasarımın faydası daha hızlı cevap zamanları vermesidir (wq

daki artış yüzünden).

5. N- den büyük tüm yük seviyeleri için sistemin kararlı olması sezgisel sayaç gibi

görünmektedir. Aslında, eğer yük seviyeleri kaybolma profilinin süreksizlik

bölgesinde bulunan işletim noktasının bulunduğu bölgeye sistemi sokarsa, sistem

salınabilir. Bu kaynak [49] da ele alınmıştır. Bunun yanında gentle-mekanizma,

kaynak [60]’da kararsızlıkla alakalı süreksizliği kaldırır.

6. Yüksek yük seviyelerinde, kaybolma olasılığı bazı akışların zaman aşımına

gitmesi için yeterince yüksek olur. Modelimizde ve analizimizde zaman aşımlarını

yok saydık. Zaman aşımları, analizimizde kararlılığı etkilememelidir; hakikaten

sistemi daha az salınıma eğilimlendirirler.

7. Sunulan analizler RTT R+ üzerinde bir üst sınır olarak düşünüldü. Bunun yanında,

eğer bazı akışların RTT’leri bu sınırı aşarsa sistem kararsız olur. Aslında, karışık

RTT’lerin önünde, akışların RTT’lerine ne eşdeğer çağırıyorsak bu sınır

yorumlanmalıdır. Basit durumlar (tek daralan kısım) için, RTT akışların kişisel

RTT’lerinin harmonik ortalamasıdır. N akışlı karışık RTT Ri ‘ye sahip bir senaryo

düşünelim. RTT’nin harmonik ortalaması (Req) şu şekilde verilir ,

∑
=

=
N

i ieq RNR 1

111

Şimdi, daraltılmış kısımdaki routerda, kapasite farklı akışlar tarafından paylaşılır.

Bundan dolayı, dengede, zaman aşımlarını yoksayarak ve işlem hacmi için kaynak

[61,62] basitleştirilmiş 2 formülü kullanılır ve şuna sahip oluruz,

∑
=

=
N

i iRp
C

1 0

2

 111

∑
=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

N

i iRp 10

12

.2

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

eqR
N

p

Bundan dolayı ortalamadaki sistem davranışı N akışlı bir sistem olarak, her biri benzer

RTT eşitliklere sahiptir. Buda Req dur.

Önerme 6.2 : Herhangi bir RED düzenleyicisi Cred(s)’in önerme 6.1 içerisindeki şartları

eşitlik (6.8) ve eşitlik (6.9) sağladığını düşünelim. Daha sonra, şekil 6.6 daki doğrusal

kontrol sisteminin kazanç payı (GM) ve faz payı (PM)’dır.

085;5 ≥≥ PMGM π

Sonuç olarak, eğer R0 < 15R+ yada N>(1/5π)N- olduğunda, bu doğrusal kontrol sistemi

kararlı olarak kalır.

İspat: Önerme 6.1’deki ispatında yapılanların bir faz hesaplamasını kuvvenlendirmesi

şunu verir

0
0

0
0

2

3

951801.090
1

)2(
)(

)(−≈−−≥−
+

∠≥∠
−

+

π
Rw

p
jw

N
CRK

jwL g

red

q

red

q

Bundan dolayı, .85)(180 00 ≥∠+= gjwLPM Fazın yavaşlaması ilave edilen RTT

gecikmesi ∆R den dolayıdır,

.Rwe g
Rjwg Δ−=∠ Δ−

 112

Eşitlik (6.9)’dan, wq ≤ 0.1/R0 dır. Bunu ve)
180
(85 π=ΔRwg kullanılması ∆R≤ 14.8R yi

verir. Kazanç payı hesaplaması için önerme 6.1’in ispatından şunu tekrar çağırırız,

[].,0,
1

)2(
)(

)(
2

3
0

q

red

ww

K
jw
N
CRL

jwP ∈∀
+

≈

Sonuç olarak,

.90)(0−≥∠ gjwP

Bundan dolayı

0900 −=∠ − Rjwge

Sonra .180)
2

(0

0

−≥∠
R

jL π Çünkü 1)(≤gjwL ,
gw
R

R
jL 0

0

2)
2

(1

π
π ≈ kazanç payı için

daha düşük bir sınır verir. wg ≤ 0.1R0 olduğundan GM ≥ 5π dir.

Örnek 1: Ağ parametresi C=3750 paket/sn, N- = 60 ve R+= 0.2 sn durumunu düşünelim.

(6.9) ‘dan,

wq=0.1min{0.5259,4.0541} = 0.053 rad/sn.

K=0.005 için, eşitlik (6.8)’den şöyle hesaplarız,

4
2

2

3

2

)10(86.11
)(
)2(−

+

−

=+∠≤
K
w

CR
NL g

red

 113

Bundan dolayı Cred için bir seçenek şudur,

1
005.0

)10(86.1)(
4

+
=

−

ssCred

Gerçekleşme cinsinden, Cred(s) ye aşağıdaki gibi kırabiliriz.

005.0;)10(86.1 4 == − KLred

Şimdi, 3750 paket/sn’lik bir hat kapasitesi için,δ = 2.66(10-4) , α kazancı, ortalama ağırlık

olarak 1.33(10-6) dır. Lred = pmax / (maxth-minth) dır. Bundan dolayı, eğer pmax’ı 0.1 olarak

seçersek, ortalama sıra uzunluğunun dinamik sınıfı yaklaşık 540 paket olur.

Hatırlatmalar 4:

1. Salınımsız durum düzeltmesi açısından, Lred i mümkün olduğunca büyük seçmek

istenen bir durumdur. Salınımsız durum düzeltmesiyle, δq,nın salınımsız

durumda 0’a düşürülmesi gerektiğini söylemek istiyoruz. Bunun yanında RED

mekanizması altında sıra uzunluğunu kararlı sistem için) salınımsız durum değeri

ağ şartlarına göre değişir. Bundan dolayı doğrusal modelimizdeki δq istenmeyen

bir özellikde olsa asla sıfıra gitmez. Bu salınımsız durum hatasını K yı düşürerek

azaltabiliriz. Eşitlik (6.8)’den, K→0 , Lred→∞ ‘e izin verir. bu sınırlama

durumunda şuna sahip oluruz.

s
KCred =

Bu klasik bütünleştirme telafisine karşılık gelir.

2. Sıra uzunluğunu düzeltmek için RED kullanmanın güçlüğü, düşük bir kontrol

bantgenişliğine sahip olmasıdır wg , sıra yada TCP dinamiklerinden birisinin bant

genişliğinden daha düşük olmak zorundadır. Sonuç olarak, kapalı-döngü cevaplar

 114

yeterli miktarda yavaştır. Bu RED’de telafi kılavuzunun tanıtılmasıyla

geliştirilebilir. Bu sonuç klasik orantılı-bütünleşme (proportional-integral, PI)

telafisidir,

s
zsKC PIPI

)1/(+=

Böyle bir telafi edici kaynak [27]’de tartışılmıştır.

BÖLÜM 7
REM

Bu bölümde aktif sıra yönetim şeması için geliştirilen REM’i inceliyoruz . REM

aşağıdaki anahtar özelliklere sahiptir.

1. Oran eşleştirme temiz tampon : Tampon temizken (küçük bir hedef etrafında kararlı

sıralar), kullanıcı sayısını önemsemeden, kullanıcı oranlarını ağın bant genişliği

kapasitesine eşleştirmeye çalışır.

2. Ücretlerin toplanması : Uçtan uca işaretleme (yada düşme) olasılığı, basit ve kesin bir

tarzda, kullanıcının yolundaki tüm yönlendiricilerin üzerindeki toplanan hat ücretlerinin

(sıkışma ölçüsü) toplamı tarafından dikkatle incelenir.

İlk özellik, alışıldık bilimin aksine, yüksek kullanımın ağ da geniş geciktirilmiş

işlerin tutulmasıyla başarılmadığını, ama kullanıcı için oranlarını ayarlayarak doğru geri

besleme ile başarılabilmesini sağlar. Kullanıcı sayısının artmış olsa bile REM ihmal

edilebilir kayıp yada sıra gecikmesiyle yüksek kullanım sağladığını benzetme sonuçları ile

gösterdik.

İkinci özellik, kullanıcıların çoklu sıkışmış hat boyunca ilerlediği ağ içerisinde

önemlidir. Kullanıcı tarafından dikkatle izlenen uçtan uca işaretleme(yada düşme) olasılığı

içerisinde gömülü sıkışma bilgisinin anlamını açıklaştırır ve bu yüzden uyum oranının

tasarımında kullanılır.

 115

Şimdi, REM’i ve bu iki özelliği nasıl başardığını açıklayacağız. RED’le keskin

bir biçimde farklıdırlar [4]. Bu özellikler birbirinden bağımsız ve diğeri olmadan

gerçekleştirilebildiğinde açık olacaktır. Daha sonra Drop Tail, RED ve REM’in kablolu

ağlardaki performanslarını benzetmelerle karşılaştıracağız. TCP’nin kablosuz ağlarda

performansının kötü olduğu bilinir çünkü tampon taşması yüzünden oluşan kayıplar ve

zayıflama, parazit ve karışma gibi kablosuz etkiler yüzünden oluşanlar birbirinden

ayrılamaz. REM’in bu probleme nasıl yardımcı olduğunu ve performansını benzetme

sonuçlarıyla açıklayacağız.

7.1 RED’in Değerlendirilmesi

AQM’lerin ana amacı, kaynaklar için oranlarını ayarlayarak sıkışma bilgisini

sağlamaktır. AQM algoritmasının tasarımı üç soruya cevap vermek zorundadır.

1. Sıkışma nasıl ölçülür ?

2. Olasılık fonksiyonunda ölçü nasıl gömülür ?

3. Kullanıcıya nasıl geri bildirim yapar ?

RED bu sorulara şöyle cevap verir.

İlk önce, RED sıkışmayı sıra uzunluğu (çarpansal ağırlıklı ortalama) ile ölçer.

Önemle, sıkışma ölçüsünün seçimi sıkışma yansımasının nasıl güncellendiğine karar verir

ve bundan dolayı TCP tarafından dahili olarak en iyi şekilde kullanılıyor olan kullanıcı

araç (utility) fonksiyonunu etkiler [26]. İkincisi, olasılık fonksiyonu bir parça doğrusaldır

ve şekil 7.1(a)’da gösterildiği gibi sıkışma ölçüsünün fonksiyonu artar. Son olarak,

sıkışma bilgisi ya düşme yada paket işaretleme olasılığı tarafından kullanıcıya taşınır.

Aslında RED sadece ilk iki soruya karar verir. Üçüncü soru büyük ölçüde bağımsızdır.

 116

RED, TCP ile etkileşir, kaynak oranı arttıkca, sıra uzunluğu büyür, daha fazla

paket işaretlenir, kaynakların oranlarını ve devir tekrarlarını düşürür. AQM, sıkışma

ölçüsünün nasıl güncellendiğini tanımlarken, TCP kesin kaynak oranlarının nasıl

sağlandığını tanımlar. RED için, sıkışma ölçüsü sıra uzunluğudur ve tampon işlemi

tarafından otomatik olarak güncellenir. Sıra uzunluğu sonraki periyod da şimdiki sıra

uzunluğu artı, toplam giriş eksi çıkışdır.

[]+−+=+)()()()1(tctxtbtb llll (7.1)

burada [z]+ = max{z,0} dır. bl(t), l sırası ve t periyodunda toplam sıra uzunluğudur, xl(t)

sıraya l,t periyodunda toplam giriş oranıdır ve cl(t), t periyodunda çıkış oranıdır.

Şekil 7.1. Sıkışma ölçüsünün bir fonksiyonu olarak işaretleme olasılığı.

REM, sadece ilk iki tasarım sorusuyla RED’den ayrılır, farklı bir sıkışma ölçüsü

tanımı ve farklı bir olasılık fonksiyonu kullanır. Bu farklılıklar son bölümde bahsettiğimiz,

şimdi açıklayacağımız iki anahtar özelliği oluşturmaktadır.

Bu bölümün kalan kısmı için aksi belirtilmedikçe işaretleme demekle, ya bir

paketin düşmesi yada ECN bitinin [20] ayarlanma olasılığını demek istiyoruz.

7.2 Random Exponential Marking (REM)

 117

Şimdi REM’in ilk soruyu nasıl cevapladığını açıklayacağız. Ayrıntılı türeme ve

gerekçeler, bir sözde kod gerçekleştirimi ve daha genişletilmiş benzetmeler [40,64] de

bulunabilir.

7.2.1 Eşleşme Oranı Temiz Tampon

REM’in ilk düşüncesi, hem giriş oranını hat kapasitesi etrafında ve hemde sırayı

küçük bir hedef etrafında, hattı paylaşan kaynakların sayısını önemsemeden kararlı hale

getirmektir.

Herbir çıktı sırası için REM, sıkışma ölçüsü olarak, ‘ücret’ diye çağrılan bir

değişken sağlar. Bu değişken sonraki alt bölümde açıklandığı gibi işaretleme olasılığını

elde etmek için kullanılır. Ücret periyodik olarak yada eş zamanlı olmadan, oran

eşleşmesine (yani giriş oranı ve hat kapasitesi arasındaki fark) ve sıra eşleşmesine (yani

sıra uzunluğu ve hedef arasındaki fark) dayanarak güncellenir. Eğer bu eşleşmelerin

ağırlıklı toplamı pozitifse ücret arttırılır, aksi takdirde düşürülür. Ağırlık toplam, giriş

oranı hat kapasitesini aşarsa yada açıklaştırılmış giriş gecikmesi varsa pozitifdir aksi

takdirde negatifdir. Kaynakların sayısı arttığı zaman, oranlardaki eşleşmeler ve sıradaki

büyüme ücreti yükseltir ve bundan dolayı işaretleme olasılığı yükselir. Kaynaklara, daha

sonra oranlarını düşüren, bir sıkışma sinyali gönderir. Kaynak oranları çok küçük olduğu

zaman eşleşmeler negatif olur, sonunda eşleşmeler sıfıra yöneltilinceye, dengede ihmal

edilebilir kayıp ve gecikme ile yüksek kullanım kazanıncaya kadar, ücret ve işaretleme

olasılığı düşürülür, kaynak oranı yükselir. Eğer hedef sıra, sıfıra ayarlanmışsa denge

durumunda tampon temizlenir.

Oysaki RED’de sıkışma ölçüsü (sıra uzunluğu), tampon işlemi ile eşitlik (7.1)’e

göre otomatik olarak güncellenir, REM açıkca ilk özelliğini yerine getirmek için ücretinin

güncellenmesini kontrol eder. Tam olarak, l sırası için, ücret pl(t) , t periyodunda şuna

göre güncellenir,

 118

[]+−+−+=+))()())((()()1(* tctxbtbtptp lllllll αγ (7.2)

γ > 0 ve αl > 0 küçük sabitler ve [z]+ = max{z,0} dır. Burada bl(t), l sırasında t

periyodunda bulunan toplam tampondur ve bl
* ≥ 0 hedeflenen sıra uzunluğudur, xl(t), t

periyodunda l sırasına toplam giriş oranıdır ve , cl(t), t periyodunda l sırasına mevcut bant

genişliğidir. xl(t) - cl(t) farkı oran eşleşmesini ölçer ve bl(t) - bl
* farkı sıra eşleşmesini

ölçer. αl sabiti kişisel olarak herbir sıra tarafından ayarlanabilir ve iletim sırasında

kullanımı ve sıra gecikmesini değiştirir. γ sabiti ağ şartlarında değisen REM’in yanıt

vermesini kontrol eder. Bundan dolayı, eşitlik (7.2) den, eğer oranın ağırlıklı toplamı ve

sıra eşleştirilirse , αl tarafından ağılıklandırılırsa, ücret arttırılır ve pozitifdir, aksi takdirde

düşürülür. Denge durumunda, ücret kararlılaşır ve ağırlıklı toplam sıfır olmak zorundadır.

Yani, αl (bl - bl
*) + xl + cl = 0 dır. Bu sadece giriş oranı kapasiteye eşitse (xl = cl) elde

edilebilir ve gecikmiş iş hedefe eşittir (bl = bl
*) , bölümün başında bahsedilen birinci

özelliğe kılavuzluk eder.

Gerçekleştirmede iki hatırlatma yapacağız. Birincisi, REM, özellikle herbir akış

bilgisi gerekmiyorsa, sadece yerel ve toplu bilgileri kullanır ve servis disiplinini koruyan

her iş ile çalışabilir. Diğer yönlendiriciler ve sıralardan bağımsız olarak ücretini günceller.

Bundan dolayı karmaşıklığı kaynakların sayısından yada ağın büyüklüğünden ya da

kapasiteden bağımsızdır.

İkincisi, genellikle pratikde, sıra uzunluğunu örneği, orandan daha kolaydır.

Hedeflenen sıra uzunluğu b* sıfır olmadığı zaman, ücret artışında oran eşleşmesinin

ölçüsünü xl(t) - cl(t), eşitlik (7.2)’deki gibi atlayabiliriz. xl(t) - cl(t) sıra uzunluğu

büyürken tampon boş olmadığı zamanki orandır. Bundan dolayı bu terimi gecikmedeki

değişiklikler tarafından yaklaşık olarak tahmin edebiliriz, bl(t+1)-bl(t). Daha sonra

güncelleme kuralı eşitlik (7.2) gibi olur ,

[]+−−−++=+))()1()1(()()1(*
1 btbtbtptp lllll ααγ (7.3)

 119

Yani, ücret sadece şimdiki ve önceki sıra uzunluklarına bağlı olarak güncellenir.

 Eşitlik (7.2) ve eşitlik (7.3)’de ifade edilen güncelleme kuralı RED’le tamamen

çelişir. Kaynakların sayısı artmasıyla işaretleme olasılığı artmalıdır böylece sıkışma

sinyalinin yoğunluğu artar. Bundan dolayı RED, işaretleme olasılığını elde etmek için sıra

uzunluğunu kullanır, yani, kaynakların sayısı artarsa, ortalama sıra uzunluğu kararlı bir

biçimde artmalıdır. Çelişki olarak, güncelleme kuralı eşitlik (7.3)’de, işaretleme olasılığını

elde etmek için kullanılan bir ücreti güncellemek için sıra uzunluğunu kullanır. Bundan

dolayı REM altında, ortalama sıra uzunluğu, hedef bl
* etrafında kararlaştırılmışken ücret

kararlı bir şekilde artar, kaynakların sayısı artar. Bu noktaya aşağıda geri döneceğiz.

7.2.2 Ücretlerin Toplanması

REM’in ikinci düşüncesi bir yol boyunca hat ücretlerinin toplamını, yoldaki

sıkışmaların bir ölçüsü olarak kullanmak ve bunu kaynaklardan elde edilebilen, uçtan uca

işaretleme olasılığının içine gömmektir.

Çıkış sırası, şimdiki ücret de çarpansal olarak artan bir olasılıkla, sıranın yukarı

taraflarında henüz işaretlenmemiş her bir gelen paketi işaretler. Bu işaretleme olasılığı

şekil 7.1(b)’de gösterilir. Eğer bir paket düşme bitinin yerine, ECN biti ayarlanmışsa,

işareti gidilen yere taşınır ve daha sonra ACK yoluyla kaynağa geri taşır. İşaretleme

olasılığının çarpansal formu , bir paketi, çoklu sıkışmış hatları bir uçtan diğerine taşımak

için uçtan uca işaretleme olasılığı, yoldaki her hattaki işaretleme olasılığına bağlı olan

geniş bir ağda kritikdir. Sadece ve sadece kişisel hat işaretleme olasılığı kendi hat ücreti

içinde çarpansal olduğu zaman, bu uçtan uca işaretleme olasılığı, kendi yolunda tüm

sıkışmış hatlardaki hat ücretlerinin toplamında çarpansal olarak artar. Bu toplam yoldaki

sıkışmanın tam ölçüsüdür. Bundan dolayı uçtan uca işaretleme olasılığına gömülüdür.

Kaynaklar tarafından işaretlenen paketlerinin bir parçasından kolaylıkla tahmin edebilir ve

oran uyarlamasını tasarlamak için kullanılabilir.

 120

Bir paketin l=1,2,....,L hatları içinde iletildiğini ve t periyodunda pl(t) ücretlerine

sahip olduğunu varsayalım. Daha sonra işaretleme olasılığı ml(t) , l sırasında t

periyodunda ,

)(1)(tp

l
ltm −−= φ (7.4)

Burada 1>φ bir sabittir. Daha sonra paket için uçtan uca işaretleme olasılığı şöyledir,

∑−=−− −

=
∏ l l tp
L

l
l tm)(

1

1))(1(1 φ (7.5)

Yani, yolun sıkışma ölçüsü, ∑ l pl(t) , geniş olduğu zaman, uçtan uca işaretleme olasılığı

yüksektir.

Hattın işaretleme olasılığı ml(t) küçük olduğu zaman, buna bağlı olarak hat

ücretleri pl(t) küçüktür, eşitlik (7.5) de verilen uçtan uca işaretleme olasılığı aşağı yukarı

yoldaki hat ücretlerinin toplamına uygundur ,

∑≈
l

le tpolasiligiisaretlemeucauçdan)()(log φ

7.2.3 Modülleştirilmiş Özellikler

Eşitlik (7.2) ve eşitlik (7.3) ‘de verilen ücret ayarlama kuralı, sıra uzunluğu

hedeflenen değer, muhtemelen sıfır etrafında, kararlı hale getirilirken, hat kapasitesi ile

kullanıcı oranlarını eşitleme çalışan REM özelliğine kılavuzluk eder. Eşitlik (7.4)’de

verilen üstel işaretleme olasılık fonksiyonu, uçtan uca işaretleme olasılığını, yoldaki

toplanmış tüm yönlendiricilerin, toplanmış ücretlerini kullanıcıya taşır. Bu iki özellik

birbirinden bağımsız olarak gerçekleştirilebilir.

Örneğin, sıkışmayı ölçmek için ücretleri kullanmak seçebilir ama farklı bir

işaretleme olasılık fonksiyonu kullanmaktadır. Yani, RED benzeri yada diğer bazı ücretin

artan fonksiyonu birinciyi gerçekleştirmek için kastedilmiştir ama ikinci özellik değildir.

 121

Alternatif olarak sıkışmayı ölçmek için farklı bir seçim yapılabilir, yani, kayıp, gecikme

yada sıra uzunluğunun kullanılması, ama üstel işaretleme olasılık fonksiyonu ile işaretler.

Bu ikinciyi gerçekleştirmek içindir, birinciyi değil.

7.2.4 Sıkışma ve Performans Ölçüleri

 Reno, tampon taşmaları ile AQM olmadan sıkışmayı ölçer, Vegas sıra

gecikmesi ile ölçer [30], RED ortalama sıra uzunluğu ile ve REM ise ücreti ile ölçer.

Aralarındaki kritik fark, ilk üç şemada olduğu gibi kayıp, gecikme yada sıra uzunluğu gibi

sıkışma ölçüsü ile performans ölçüsünün birleşmiş olmasıdır. Bu birleşme, kullanıcı sayısı

artmasıyla, sıkışıklık büyümesini ve performansın daha kötüleşmesini gerektirir, yani,

‘sıkışıklık’ ın anlamı, geniş kayıp yada gecikme gibi ‘kötü performans’ dır. Eğer bunlar

REM’deki gibi ayrılırsa, ‘sıkışıklık’ (yani yüksek hat ücretleri) ağ kaynaklarını

desteklediği talepleri aşan sinyalleri basitleştirir. Bu engelleme talepdir ama iyi

performans düşük gecikme ve kayıpla devam eder.

Ayırma demekle, sıkışma ölçüsünün denge değerlerini denge kaybı, sıra

uzunluğu yada gecikmeden bağımsız hale getirmek kastedilmişdir. Eşitlik (7.3) de, sıra

uzunluğu REM’de iletim sırasındaki sıkışma ölçüsününün güncellemesine karar verir ama

denge değeri değildir. Kaynakların sayısı büyüdükce REM’deki ücretler büyür ama sıralar

hedefler etrafında kararlıdır. Sıkışma ölçüsünün denge değeri, REM’deki ücret ve

RED’deki ortalama sıra uzunluğu, yalnız ağ topolojisi ve kaynakların sayısından kaynak

[26] elde edilir.

Bundan dolayı, RED altında, kaynakların sayısı ile ortalama sıranın yavaş ve

hızlı büyümesi kaçınılmazdır. Esas RED’le , tüm paketlerin işaretlendiği en büyük sıra

eşiği maxth a kadar büyüyebilir. Eğer maxth çok yüksekse, sıra gecikmesi çok aşırı olabilir;

eğer çok düşükse, tampon salınımının şiddeti yüzünden hat kullanım altında olabilir.

Dahası, eğer sıkışma sinyali işaretlemeden ziyade rastgele düşme boyunca geri beslenirse,

paket kayıpları çok sık olabilir. Bundan dolayı, sıkışma zamanlarında, RED ya yüksek hat

 122

kullanımına ulaşmak için yada düşük gecikme ve kayıp için ayarlanır, ama hepsi için

ayarlanamaz. Karşıt olarak, sıkışma ve performans ölçülerinin ayrılmasıyla, sıra trafik

yükünün bağımsız hedefi etrafında kararlı olabilir, bu dengede yüksek kullanım ve düşük

gecikme ve kayıplara kılavuzluk eder. Bunlara ilişkin benzetme sonuçları sonraki

bölümlerde vardır.

7.3 Performans

7.3.1 Kararlılık ve Araç Fonksiyonu

Son zamanlarda gösterilen esas TCP sıkışma kontrol şemaları, Reno, Reno/RED,

Reno/REM, Vegas, Vegas/RED,Vegas/REM, toplu kaynak yararını en fazla yapabilmek

için hepsi yorumlanarak bir eğim algoritmasına aktarılabilir [26, 30]; ayrıca kaynak

[38,58] basit bir model için. Farklı TCP şemaları, işaretleme ile yada işaretleme olmadan,

sadece kullanıcı araç fonksiyonunun seçiminde farklıdır. Duality modeli bu yüzden,

kararlılığı çalışmak için uygun bir yol sağlar, bu şemaların en iyilik ve doğruluk

özellikleri ve daha önemlisi, birbirlerine etkileşimleri keşfetmek içindir. Özellikle, eğim

algoritmasının eş zamanlı olmayan çevrelerde bile kararlı olduğu matematiksel olarak

kanıtlanmıştır [7,10]. Pencere ölçüleri nispeten küçük olduklarında geniş gerçek yaşam ve

benzetme deneyimi bu TCP şemaları ile doğrulanır. Ayrıca iki anlamı vardır.

Birincisi, kullanıcılar ne tip bir araç fonksiyonu kullanacaklarını bilmeseler bile,

oran ayarlamasının tasarlanması ile belli bir araç fonksiyonu seçmiş olur. Anlaşılır

yaparak, iyileştirme modelleri kaynak [26,30,38,58], şimdiki protokollerin anlaşılmasını

derinleştirir ve araç fonksiyonunun uygulamaya uydurulmasıyla yeni protokoller

tasarlamak için yeni yöntemler önerir.

İkincisi, araç fonksiyonu sadece kullanıcının oran ayarlanmasıyla elde

edilmeyebilir, ama ayrıca işaretleme algoritması ile elde edilebilir. Bu Reno için doğrudur,

yani, Reno, Reno/RED, Reno/REM biraz farklı araç fonksiyonlarına sahiptir. Bu

ihtiyacımızın bir sonucudur, AIMD algoritması tampon taşması yada RED yada REM

 123

yüzünden olup olmadığını önemsemeden, bu şemalarda çok farklı sıkışma ölçülmüş ve

gömülmüş olsa bile paket kayıplarına aynı yolla cevap verir.

Son zamanlarda, bir PI (proportional-plus-integral) kontrolörü kaynak [27]’de

RED’e alternatif bir AQM olarak önerilmiş ve benzetme sonuçları üst dengesini ve iletim

performansını göstermek için sunulmuştur. Eşitlik (7.3) de ifade edilen bu PI kontrolleri

ve REM dengededir, kapatılır.

7.3.2 Kullanım,Kayıp ve Gecikme

REM ve RED’in performanslarını karşılaştırmak için Reno ve NewReno ile, tek

ve çok hat ile kaynakların çeşitli sayısı, hat kapasitesi ve yayılma gecikmeleri ile geniş

benzetmeleri yönettik [40,64]. REM ve RED’in ilgili performansları Reno ve NewReno

ile benzer olması beklenir bundan dolayı bölüm 7.1 ve bölüm 7.2’de tartışılan özellikler

kaynak algoritmalarından bağımsız AQM özellikleridir. Bu alt bölümde,

NewReno/DropTail, NewReno/REM ve NewReno/RED’in performanslarının

karşılaştırılmalarının sonuçlarını sunuyoruz [17].

Bant genişliği 64Mbps ve tampon kapasitesi 120 paket olan tek hat için

benzetme ns-2 simülatöründe idare edilir. Paketlerin hepsi 1KB’dır. Bu hat 80ms’lik aynı

gidiş-dönüş yayılma gecikmesine sahip 160 NewReno kullanıcısı tarafından

paylaşılmaktadır. Başlangıçda 0 zamanında 20 kullanıcı aktifdir ve her 50 sn’den sonra

160 kullanıcıya ulaşıncaya kadar 20 kullanıcı daha aktive edilir. RED için parametrelerin

iki kümesi kullanılır. İlk küme RED(20:80) ‘i belirtir, minimum sıra eşiği minth = 20

paket, maksimum sıra eşiği maxth =80 paket ve maxp = 0.1 dir. İkinci küme RED(10:30)’u

belirtir, minimum sıra eşiği minth =10 paket, maksimum sıra eşiği maxth = 30 paket ve

maxp = 0.1 dir. REM’in parametre değerleri 20,001.0,1.0,001.1 * ==== bγαφ paketdir.

Deneyleri hem işaretleme hemde paket düşmeleri ile sıkışma geri beslemesinin bir yolu

olarak yönetiyoruz. Hat algoritması tarafından elde edilen olasılığa göre paketleri

işaretliyoruz yada düşürüyoruz [17].

 124

x ekseninde zaman arttıkca, kaynakların sayısı 20’den 160’a artar ve ortalama

pencere ölçüsü 32 paketden 4 pakete düşer. y ekseni her bir periyoddaki performansı

gösterir. Goodput, hat kapasitesine tüm varış yerlerinde alınan tekrarlanmamış paketlerin

toplam sayısının oranıdır. Kaybolma oranı ise toplam düşen paketlerin toplam gönderilen

paketlere oranıdır.

REM ile DropTail performansını karşılaştırıldığında, bu deney kümelerinde,

hemen hemen her pencere ölçüsü ya düşme oranı yada ECN ile işaretlendiğinde REM,

DropTail’dan biraz daha yüksek goodput’a ulaşır. Kaynakların sayısı artarsa, REM

ortalama sıra hedeflenen b* = 20 paket

Etrafında, ortalama sıra DropTail altında kararlılığı artarken, kararlıdır. Kayıp

oranı, kaynakların sayısını önemsemeden neredeyse sıfır işaretleme ile REM altında

hemen hemen aynıdır.

RED’in performansı DropTail ile karşılaştırıldığında, DropTail için goodput

RED’in tüm değişikliklerini üst sınırlar, çünkü daha geniş bir ortalama sıra tutar. Ortalama

sıra bu 5 şema altında, bölüm 7.2.4’de tartışıldığı gibi, kaynakların sayısı arttıkça kararlı

bir şekilde artar. Beklendiği gibi tüm pencere ölçülerinde, RED(20:80), RED(10:30)’dan

daha yüksek goodput ve ortalama sıraya sahiptir.

7.4 Kablosuz TCP

TCP (yada daha kesin, AIMD algoritması) esas olarak, tampon taşmaları

yüzünden oluşan paket kayıpları tarafından sıkışma ölçülen ve kullanıcılara taşınan

kablolu ağlar için tasarlanmıştır. Kablosuz ağlarda, bunun yanında, esas olarak bit hataları,

sinyal zayıflaması ve karışma gibi sebeplerden paketler kaybedilir, ayrıca uzaklıkdan

dolayı aralılıklı bağlantı da etkilidir. Paket kayıpları ve sıkışma ölçüsü arasındaki birleşme

ve TCP’deki geri besleme kablosuz hatlar üzerindeki zayıf performansa kılavuzluk eder.

Çünkü TCP kaynağı tampon taşması ve kablosuz etkilerden oluşan kayıpları ayırt edemez

ve herbir kayıp olayında penceresini ikiye böler.

 125

Bu problemi çözmek için üç yaklaşım önerlmiştir [12]. İlk yaklaşım, paket

kayıplarını kablosuz ağ üzerinde saklar böylece kaynak sadece sıkışmanın teşvik ettiği

kayıpları görür. Bu çeşitli karışım tutma teknikleri, hata kontrolü ve yerel geri iletim

algoritmaları ile ilgilidir. İkinci yaklaşım, kablosuz etkilerden kaynaklanan kayıpları TCP

seçenek alanlarını kullanarak kaynağa haber vermektir, böylece kaynak geri iletim

sonrasında oranını yarıya düşürmeyecektir.

Üçüncü yaklaşımın amacı tampon taşmalarından kaynaklanan paket kayıplarını

ortadan kaldırmakdır, böylece kaynak sadece kablosuz kayıpları görür. Bu TCP’nin

varsayımını bozar. Kayıplar artık tampon taşmasını belirtmez. Sıkışma ölçülmeli ve geri

besleme farklı bir mekanizma kullanmak zorundadır. REM’in ilk özelliğinden (oran

eşleşmesi temiz tampon) faydalanarak, bu amaç için REM’i ECN işaretleme ile

kullanmayı önerilmiştir [17]. Daha sonra bir TCP kaynağı sadece bir kayıp tespit

edildiğinde geri iletim yapar ve işaretini gördüğü zaman penceresini ikiye böler.

Şimdi bu yaklaşımın sözünü göstermek için hazırlayıcı benzetme sonuçları

sunacağız. Benzetme ns-2 simülatörü içerisinde bant genişliği 2Mbps ve tampon

kapasitesi 100 paket olan tek bir kablosuz hat için idare edilmektedir. Paketleri Bernoulli

kayıp modeline göre %1 olasılıkla rastgele düşürür (kaynak [40] daki bursty kayıp modeli

ile benzetmeler). Rastgele düşürmenin etkisini azaltmak için küçük bir paket büyülüğü

olarak 382 bit seçilmiştir. Bu kablosuz hat, 100 NewReno kullanıcısı tarafından aynı

gidiş-dönüş yayılma gecikmesi (80ms) ile paylaşılır. 20 kullanıcı 0 zamanında ilk başta

aktifleştirilir ve her 50sn sonra 100 aktif kullanıcıya ulaşıncaya kadar 20 kullanıcı daha

aktifleştirilir.

AQM ile ECN biti ns-2’de 1’e ayarlanır böylece paketler olasılıksal olarak RED

yada REM’e göre işaretlenmiştir. Paketler sadece dolu bir tampona ulaştıklarında

düşürülür. NewReno’yu düzenledik böylece bir işaret aldığında yada zaman aşımından bir

kayıp tespit ettiğinde penceresini ikiye böler, ama tekrarlanan doğrulamadan bir kayıp

tespit ettiğinde pencereyi ikiye bölmeden geri iletir. NewReno’nun (DropTail ile),

(düzenlenmiş) NewReno ile RED ve (düzenlenmiş) NewReno ile REM’in

 126

performanslarını karşılaştırdık [17]. Önceki bölümde RED ve REM parametreleri aynı

değere sahiptiler.

ECN işaretlemenin girişi NewReno’nun goodput’unu geliştirmede çok etkili

olduğunu gösterir, %62 ve %91 arasından %82 ve %96 arasına kadar yükseltir,

kullanıcının sayısına bağlıdır. REM ve RED’in karşılaştırması kablolu ağlardakine benzer

bir sonuçtur. REM ve RED(20:80), RED(10:30)’dan(%82-%95 arası) daha yüksek bir

goodput’u (%90-%96 arası) devam ettirir. Kaynakların sayısı arttıkça ortalama sıra REM

altında, DropTail ve RED altında kararlı bir şekilde artarken kararlıdır.

Bu olağanüstü durum, sadece tampon taşması yüzünden olan kümülatif paket

kayıplarında açıkca gösterir. Kayıp NewReno ile en hafiftir, RED(10:30) ve REM ile

ihmal edilebilir ve RED(20:80) ile ılımlılaştırılmıştır. REM ve RED(10:30) altında

tampon taşmaları sadece izleyen yeni kaynakların tanıtılmasının iletimi sırasında olur, ve

bundan dolayı kümülatif kayıplar herbir periyodun başında zıplar ama zıplamalar arasında

sabit kalır. RED(20:80) ve NewReno altında, diğer taraftan, tampon taşmaları da

dengededir. Bundan dolayı kümülatif kayıplar zıplamalar arasında karalı şekilde artar.

Bu yaklaşımla karşı olarak , bazı ama hepsinde değil karışık (heterojen)

ağlardaki uygulamalarda yönlendiriciler ECN’ye yatkındır. ECN’ye yatkın olmayan

yönlendiriciler düşmede geri besleme sıkışmasına güvenmeye devam eder. Oranlarını

sadece işaretlere dayanarak uyarlayan TCP kaynakları bu yönlendiricilerin aşırı yüklerinin

riskini idare eder. Yönlendiriciler için olası çözüm ECN kapasitelerinin nasıl olduğunu

belirtmek, muhtemelen kaynak [20] de önerilen iki ECN bitinin birisinin kullanımını

sağlar. Bu tüm yönlendiricilerin en azından ECN’den haberdar olmasını gerektirebilir. Bir

kaynak sadece yoldaki tüm kaynakları ECN’den haberdar ederek işaretlemek için tepki

verir ama yoldaki bir yönlendirici ECN’den haberdar değilse, kayıba bilindik TCP

kaynakları gibi tepki verir.

 127

BÖLÜM 8

TCP Reno ile Paket Kayıplarının Kurtarılmasının Analitik
Modelleri

İletim Kontrol Protokolü (TCP) internette geniş ölçüde taşıma katmanı(transport

layer) olarak kullanılır. Çünkü TCP, kablolu bilgisayar ağlarındaki paket kayıp

olasılıklarının ihmal edilebilecek kadar düşük olması kabullenmesi üzerine dizayn

edilmiştir [65]. Ancak TCP, kablosuz ağ sistemleri için yüksek hata ihtimalleri ile birlikte

anılır olmuştur [65,66].

 TCP kullanılan kablosuz bağlantılar için performans düşüşleri tıkanıklık

bulunmayan paket kayıpları ve tekrar hızlı iletim zaman aşımı (RTO) sıklığı sonucu

oluşan gereksiz tıkanıklık kontrolleri ile açıklanabilir. RTO gerçekleştiğinde, özellikle

gönderici sadece bilgi geçersiz olana kadar gönderememekte, ancak iletimi tekrar

başlatmak için yavaş başlama yapmalıdır. Bu yüzden RTO gerçekleşmeden önce tıkanık

pencerenin tekrar düzeltilmesi uzun zaman almaktadır. Sonuç olarak, yüksek RTO sıklığı,

TCP performansını kötü yönde etkilemektedir [9,66,69].

 Tıkanıklık bulunmayan paket kayıp durumlarında TCP performansını analizi için

birçok çalışma yapılmıştır .[24,66]. Bu çalışmalar göstermiştir ki, sonucu TCP Reno

performansı hızlı tekrar iletim olasılığına bağlıdır [67]. Ancak biz daha çok TCP Reno

davranışlarındaki kayıpların kurtarılmasına ve bir pencerede gerçekleşen paket kaybı

sayısı kriterine göre tekrar hızlı iletim olasılığı üzerinde duracağız. Özellikle ilişkili ve

rasgele durumlardaki paket kayıplarının tipik niteliklerini inceleyeceğiz.

Öncelikle TCP tıkanıklık penceresi genel olarak periyodik bir yapı

göstermektedir. Bu Markov zinciri ile analiz edilebilir [66,69]. Böylece durağan bir

dağılım gösteren pencere işlemini sayısal olarak hesaplayabiliriz.

 128

8.1 TCP Reno ile Kayıpların Kurtarılması

 TCP Reno ile kayıp paketlerin kurtarılması için iki yol mevcuttur; birincisi RTO

ile ve diğeri de tekrar hızlı iletim ve hızlı kurtarım iledir. Hızlı tekrar iletimi tetiklemek

için gönderici bir kayıp paket için en azından K tane çift alındı (Acknowledgement, ACK)

almalıdır (tipik olarak üç çift ACK).

t zamanında, göndericinin tıkanık penceresini ve yavaş başlama eşiğini

belirtmeliyiz ssthresh, ile W(t) ve Wth(t). Varsayalım ki, paket kayboldu ve gönderici t =

t0 paketi için K.ncı çift ACK aldı. Kayıp paket tekrar hızlı iletim yöntemi ile vakit

kaybetmeden tekrar iletildi. Tekrar hızlı iletimden sonra, gönderici şunu hazırlar

⎥⎦
⎤

⎢⎣
⎡=+⎥⎦

⎤
⎢⎣
⎡= ++

2
)()(,

2
)()(0

0
0

0
tWtWKtWtW th (8.1)

Tekrar hızlı iletim süresince gönderici her çift ACK alınca pencere boyutlarını

birer birer arttırır. Eğer büyütülmüş pencere yeni bir paket içeriyorsa, göndericinin bu

paketi göndermesine izin verilir. Tekrar gönderilmiş paket başarılı bir şekilde iletildiyse,

normal(çift olmayan) ACK üretilir. Böylece tıkanmış pencere hemen iletilecek pakete

kaydırılmış olur ve hızlı kurtarma işlemi sonlanmış olur. Gönderici tıkanıklığın önlendiği

paketleri ile tıkanık pencereyi (ki bu da eşitlik (8.1) de belirlenmiş Wth ‘ye eşittir)

göndermeye devam eder.

 Eğer bir penceredeki birden fazla paket kaybolduysa, birkaç tekrar hızlı iletim ve

hızlı kurtarma işlemi tekrarlanabilir. Bir pencere için n tane kayıp paket n tane hızlı tekrar

iletim ile kurtarılabilir. Eğer ilk tekrar hızlı iletim hemen önceki zaman t1 ise ve

n.nci kayıp paket t2’de tekrar hızlı transfer yapıldıysa, W(t1) ve W(t2) arasındaki ilişki

aşağıdaki gibi olur [24],

⎥⎦
⎤

⎢⎣
⎡= n

tWtW
2
)()(1

2 (8.2)

 129

8.2. Modelleme

 TCP hareket biçiminde kayıpların kurtarılmasını kaynak [69]’da tanımlanan turlar

(rounds) cinsinden modelleyelim. Pencerenin durağan dağılımını bulmak ve kayıp

kurtarılması olasılıklarını çıkartabilmek için, Markov Zinciri analiz yöntemini

kullanacağız [67].

8.2.1 Kabullenmeler ve Tanımlamalar

 Göndericinin göndereceği sonsuz sayıda paket olduğundan tıkanık pencereler

kesinlikle artarak devam edecektir. Bütün paketlerin aynı boyutlara sahip olduğunu kabul

edelim. Bu durumda başarılı paket iletimlerinin sonucunda gönderici her zaman bir ACK

alacağından, gecikmiş ACK durumunu dikkate almıyoruz [63]. Bilgi paketi boyutlarına

göre ACK paketinin boyutu göz ardı edilebilecek kadar küçük olduğundan ACK

paketlerinden kayıp vermeyeceğimizi kabul edelim. Hızlı tekrar iletim eşiğini K ve

bağlantı esnasında ilan edilmiş maksimum pencere boyutunu Wmax olarak tanımlayalım. li

de penceredeki i.nci kayıp paketi göstersin. Eğer (m-1) paketin bütün normal ACK’leri

alındıysa ve l1 , k.ncı turda iletilecek m.nci paket ise pencere kaybı Ω. Kayıp paket içeren

bir pencerenin ilk paketi daima ilk kayıp paketidir. Kayıplı bir pencerede n kayıp paket

için kaybedilmeyen veya k.ncı kurtarma periyoundaki turda yeni iletilmiş kayıp paket

sayısını Φk olarak ifade edelim. Eğer Ω, u paket sayısına eşitse, Φ1 her zaman (u − n)’e

eşittir. h ≥ 2 ise Φh kayma ve (h − 1).nci paket kaybının tekrar iletimden sonra

kullanılabilir penceredeki kayma ve şişme ile iletilmiş paket sayısını ifade eder [24].

8.2.2 Φn’nin Türetilmesi

Ω = u için Φ1 u paketten düzgün iletilmiş paket sayısı olsun. Bu durumda,

 130

11 −= uφ (8.3)

l1 için tekrar hızlı iletim işleminin yeniden yapılmasından sonra Φ2 artması ile

kullanılabilir pencerenin yeni paketleridir. Son ulaşan çift ACK’yı ele alacak olursak l1

pencereyi [u/2] + (u-2) ve u paket hala yarım kalmışdır; Φ2 şöyle olur [24].

2 [u/2]u- 2)-(u [u/2]2 −=+=φ (7.4)

Eğer Φ2 ≥ K ise, l2 tekrar hızlı iletim ile kurtarılabilir. Şekil 8.1 TCP Reno’nun

kayıpların kurtarılması ile ilgili özelliklerini bir penceredeki üç paket kaybı için

göstermektedir.Herbir tur aşağıdaki gibi açıklanabilir.

Şekil 8.1. TCP Reno’nun üç kayıp paket için kayıpların kurtarılması davranışı [24].

• Kayıpların kurtarılması i turunda başlar.

• l1 için son çift ACK (i+1).nci turda alınır.

• l2 için ilk ACK, (i+15).nci turda l1’in tekrar iletimi ile alınır.

• l2 için son çift ACK (i+2).nci turda alınır.

Eğer ilk kayıp pencereyi Ω(i) ve a’nın sağ sınır değerini de R(a) şeklinde ifade

edersek, herbir sınır değeri L(Ω(i)) = 0, R(Ω(i)) = u, R(l2) = j, R(l3) = k, R(Ω(i + 1)) = x,

R(Ω(i + 1.5)) = y ve R(Ω(i + 2)) = z olur [24].

 131

Bütün j,k değerleri için 2 ≤ j ≤ u−1, j +1 ≤ k ≤ u, x, y ve z aşağıdaki gibi ifade

edilebilir.

 3)-(u [u/2]x +=

 (u/2) 1]-[jy +=

 (u/4) 1]-[jz 2φ++= (8.5)

Eğer (i+1.5).nci turda y ≥ x olursa y − x adet paket iletilmiştir. Çünkü l2 daha

tekrar iletilmemiştir ve l2 için çift ACK üretilebilir. Bu iki durum için, Φ3 şeklinde

verilebilir [24].

),max(3 yxz −=φ

[]
[]⎩

⎨
⎧

−=−
−≤≤−+−

=
.134/
224/)1(

uju
ujuuj

 (8.6)

Φ3, Φ1 ve Φ2’den farklı olarak l2’nin pozisyonu ile olduğu kadar Ω’nin

boyutlarıyla da bağlantılıdır. j maksimum olduğunda, eşitlik (8.5)’e göre z de maksimum

değeri alır. Bu şu nedenledir, pencere en çok j = u − 1 olduğunda kayar. Bu yüzden,

Ω’nun minimum değeri, RTO’suz üçlü paket kayıplarının kurtarılmasında [u / 4] -3 = K

ile elde edilebilir. 2 ≤ j ≤ u − 2 ise l2 için kurtarılma koşulu şöyle olur [24]

[] Kuuj ≥−+− 4/)1((8.7)

Eğer l1 ve l2 arasındaki paket sayısı u-[u/4]+(K-1) ’e eşit veya daha büyükse l3 tekrar hızlı

transfer işlemi ile kurtarılabilir.

 Bir pencere için dörtlü paket kayıpları, tekrar hızlı transfer yöntemi ile hiçbir

şekilde kurtarılamaz [24].

 132

8.3 Olasılık Analizleri

8.3.1 Kayıp Paket Modelleri

Rastgele paket kayıpları için, herbir paket p olasılığınca kaybedilir ve bu

kayıplar bağımsızdır [66,68]. İlişkili paket kayıpları ilk durum Markov Zinciri ile

modellenir [9,15]. Markov zincirinin bağlantı olasılık matrisi Qc;

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

GGGB

BGBB
C pp

pp
Q (8.8)

şeklindedir. Kanal iyi ve kötü durum olmak üzere iki durumda olabilir. Durum kötü iken

bir paketin kaybolma olasılığı 1’dir. Eğer ’ya GBp ve BGpye'β dersek, iyi veya kötü

durumda olma olasılığı (BG ππ ,) aşağıdaki gibidir [24];

,
βα

β
+

=∏G .
βα

α
+

=∏B (8.9)

Hatta ortalama iyi durum süreci α/1 ise ortalama kötü durum süreci β/1 dir.

Sürecin miktarı paketlerin sayısı kadardır. Çünkü her iletim zamanı için durum

değişmekte olduğu kabul ediyoruz [24].

8.3.2 Markov İşlemi

Bir penceredeki TCP değişimi Markov Zincirine adapte edilerek analiz edilebilir.

Markov zincirinin durağan dağılımı, değişim olasılıkları belirlendiği zaman sayısal olarak

elde edilebilir. Tıkanık pencere boyutu kayıp kurtarılmasından sonra her zaman [u / 2]’e

kadar düşmesi hariç, değişim olasılıklarını hesaplamak için [66,68] ‘teki işlemleri takip

 133

edeceğiz. Gelecek göngüdeki kaybolan paket sayısı ve pencere boyutları arasındaki ilişki

eşitlik (8.2) ile tanımlanabilir [24].

Her RTO oluşumunda gelecek döngünün Wth’ı aşağıdaki gibi ifade edilebilir. Ω

=u için, paketlerin arasından iki paketin kaybolacağını ve RTO oluşacağını varsayalım.

Eğer u ≥ K + 2 ise, en azından ilk kayıp paket tekrar hızlı transfer ile belki kurtarılabilir.

Bu durumda ikinci kayıp paketin RTO’ya neden olacağından emin olabiliriz. Bu yüzden

gelecek döngüde Wth’nin değeri [u / 2] olur. Ω’nin değerine ve kayıp paket sayısına bağlı

olarak, gelecek döngüde Wth’nin değeri [u / 2] , [u / 4] ve [u / 8] değerlerinden biri olur

[24].

İlişkili kayıp paket modeline göre, hiç paket gönderilememiş bir kanal için RTO

süresince kanalın durumunu bilmek imkansızdır. Eğer gelecek döngüdeki ilk paket

kaybolmaz, ancak kanalın durumunun iyi olduğu da bir açıktır. Kanal gelecek döngüye

her zaman iyi durumda başlamış olmasına rağmen arka arkaya ne kadar RTO

gerçekleşeceğini bilemeyiz. Bu yüzden {2,3,4.....,Wmax} alanı üzerinde {Ωi} işlemini

hesaba katmalıyız. Birbiri ardına gerçekleşen RTO’ların tıkanık pencere işlemi değişimini

etkilemediğini de vurgulamalıyız [24].

8.3.3 Tekrar Hızlı İletme Olasılığı

Bir penceredeki her paketin tekrar hızlı iletimle kurtarılabilirliği olan RR TCP

Reno’nun tekrar hızlı iletim olasılığı olsun. Öyleyse, elimizde

∑∑
=

=
n

W

u
n

n
RR uuRR

max

1

)()().(π (8.10)

var. Buradaki)(wnπ , n ve)()(uR n
R için kayıp pencerenin durağan durum olasılığı olsun.

)()(uR n
R aşağıdaki gibi [24]

 134

)()(uR n
R = P{(u-1) paket dışında (n-1) paket kaybedilir}

 *P {kayıp düzeltme sırasında paket kaybı yoktur}. (8.11)

olur. Rasgele paket kayıpları için)()(uR n
R cinsinden şöyle yazılabilir [24],

 u
R puR)1()()1(−=

 2)1()1()()2(φ+−−= u
R ppuuR

[]

32)1()
2
4/

()(2)3(φφ ++−
−

= u
R pp

Ku
uR

Sonuçta rasgele paket kayıpları için toplam tekrar hızlı iletim olasılığı [24],

[]
}.)1()

2
4/

()1()1(1{)1()(322 2 φφφ +−+−−+−= pp
u

ppupuR u
R (8.13)

gibidir.

İlişkili paket kayıpları modelinde,)()(uR n
R ’yi hesaplayabilmek için kayıp

paketlerin düzenleri incelenmelidir. n=1 için, bir paketin kaybedilmesinden sonra kanal

iyi duruma geçmelidir ve tekrar iletimler dahil u kadar paketin iletimi tamamlanana kadar

da iyi olarak kalmalıdır. n=2 için)()2(uRR iki kayıp paketin ardarda olma olasılığı olsun ve

nsR uR)()2(iki kayıp paketin ardarda olmama olasılığı olsun. O zaman)()2(uRR değeri

suR uR)()2(ve nsR uR)()2(’nin toplamına eşittir. n=3 için l2 ve l3 ardarda olmayabilir veya

verilen şartlar ve j=u-1 için ger zaman ardarda iken 2min −≤≤ ujj olmayabilir. Sonuç

olarak ilişkili paket kayıpları için)()(uR n
R

1)1()()1(φαβ −=uRR

 135

})2()1)(1{()1()(3)2(2 αββαβ φ −+−−−= −+ uuuR u
R

⎩
⎨
⎧

−≤≤−+−−
−=−−

= −+

−+

2)}1()1({)1(
1)1)(1(

)(
min

32

22
)3(

32

32

ujjNN
uj

uR
nssu

R βαααβ
αβαβ

φφ

φφ

 (8.14)

Burada l2 ve l3 ardarda ise durum sayisi Nsu ve l2 ve l3 ardarda değilse durum sayisi Nns.

Nsu ve Nns’in değerleri aşağıdaki gibidir [24]

 2- 1) -(j -u N minsu =

).1(
2

1)-(j-u
 N min

ns −−⎟⎟⎠

⎞
⎜⎜⎝

⎛
= suN (8.15)

Şekil 8.2. (a) rasgele paketlerin için (b) ilişkili paketler için

 136

SONUÇLAR

Paket anahtarlamalı ağlar, farklı kaynaklardan verinin aynı yol boyunca

iletilmesine izin verir. Bu yol üzerinde paketlerin göndericiden alıcıya iletilebilmesi için

kullanılan yönlendiriciler, paketlerin alınma oranı işlem yapılarak gönderilme oranından

büyük olabileceğinden gelen paketleri tampon adı verilen bir sırada saklar. Bu sıralar ilk

giren ilk çıkar prensibine göre çalışır ve sınırlı bir kapasiteleri vardır. Sınırlı kapasitesi

olan sıralar dolduğu zaman sıkışıklık oluşmakta ve gelen paketler düşürülmeye

başlanmaktadır. Bu araştırma içerisinde sıkışıklığın, oluşmadan önce tespit edilerek

önlenmesi için geliştirilen RED, REM ve RENO modelleri incelenmiştir. Sıkışıklık

seviyesi, RENO’da, tampon taşmaları ile AQM olmadan ölçülürken, RED ortalama sıra

uzunluğu parametresi ile REM’de ise ücret parametresi ile ölçülmektedir

Aktif sıra yönetiminin esas amacı genel olarak, düşük ortalama sıra gecikmesi ve

yüksek işlem hacminin sağlanmasıdır. Burada bunların ayrıntıları ve yapılan

benzetmelere bakılarak, çeşitli yorumlar yapılmıştır. RED’in ana amaçlarından bir tanesi,

sıra uzunluğu algoritması ve erken sıkışma bildirimi kombinasyonunu kullanarak, düşük

ortalama sıra gecikmesi ve yüksek işlem hacmini birarada başarmakdır. RED’in benzetme

denemeleri ve işlemsel deneyler bu konuda oldukça başarılı olduğunu ortaya koymuştur.

Bunun yanında RED’in en zayıf noktası ise, sıkışma seviyesinde ve parametre ayarlarında

ortalama sıra uzunluğunun çeşitli olmasıdır.

REM’in esas amaçlarından birisi sıkışıklık ölçüsünü (ücret) performans

ölçüsünden (kayıp ve sıra) ayırmaktır, böylece sıkışma ölçüsü, kaynakların sayısı ile

çeşitlenmek zorundadır, performans ölçüsü hedef etrafında bağımsız olarak kararlı hale

getirilebilir. Benzetme sonuçlarından, temel RED’in basitlik ve kararlılığından fedakarlık

etmeden bu amacı başarabildiğimiz görünmektedir. Bu özellik kablolu ağlar üzerinde

TCP’nin performansını geliştirmek için kullanılabilir. Bunun yanında bunun bir denge

özelliği olduğunu ve REM’in iletim davranışının daha dikkatli çalışılması gerektiği

 137

vurgulanmaktadır. Diğer bir amacı ise hem giriş oranını hat kapasitesi etrafında ve hemde

sırayı küçük bir hedef etrafında, hattı paylaşan kaynakların sayısını önemsemeden kararlı

hale getirmektir.

AQM’in kararlılığını anlatmak için çok hatlı çok kaynaklı model geliştirilmiştir.

Karışık kaynaklar ve RED’in kararlı bölgesinin gösterilen formu ile tek hatlı durumu için

uygun kararlılık şartı sunulmuştur. Ağın gecikme yada kapasitesindeki büyüme sonucunda

RED kararsız olmaktadır. Analizler de, TCP kararlılığında RED’in zorluğunun rolünü

belirtilmiştir. Ayrıca, kontrol teorisine göre TCP ve AQM modelinin bir birleşimini analiz

edilmiştir. Daha önceden geliştirilmiş sistemin doğrusal olmayan modeli

doğrusallaştırılarak kullanılmış ve AQM sisteminde RED gerçekleştirilerek bu analiz

gösterilmiştir. RED’in doğrusal geri besleme kontrol sisteminin, kararlılık operasyonuna

yol göstermesi açısından, parametrelerin seçimi ile ilgili tasarım rehberi sunulmuştur.

Ayrıca sistemin kararlılığına ilişkin ifadeler türetilerek tasarlanmıştır.

KAYNAKLAR

 138

[1]. Jacobson V., Karels M.J.,”Congestion Avoidance and Control”, Kasım

1988.

[2]. Fabiani M., “TCP Congestion Avoidance”, Internetworking 2G1305,
2003.

[3]. Weigle M.A.C.,”Investigating The Use Of Syncronized Clocks in TCP
Congestion Control ”, Doktora Tezi, 2003.

[4]. Floyd S., Jacobson V., “Random Early Detection Gateways for Congestion
Avoidance“ , IEEE/ACM, Ağustos 2003.

[5]. Floyd S.,Gummadi R.,Shenker S, “Adaptive RED : An Algorithm for
Increasing the Robustness of RED’s Active Queue Management”, Ağustos
2001.

[6]. Wydrowski B., Zukerman M., "GREEN: An Active Queue Management
Algorithm for a Self Managed Internet", ICC 2002, New York, Vol. 4,
2368-2372

[7]. Braden B., Clark D., Crowcroft J., Davie B., Deering S., Estrin D.,
Floyd S., Jacobson, V., Minshall G., Partridge C., Peterson L.,
Ramakrishnan K. K., Shenker S., and Wroclawski J., “Recommendations
on queue management and congestion avoidance in the internet”, Internet
Draft, 1998

[8]. Özekes S., “Evaluation Of Active Queue Management Algorithms”,
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl : 4 Sayı :7 Bahar
2005/1 123-140

[9]. Michele Zorzi and A. Chockalingam: Throughput Analysis of TCP on
Channels with Memory. IEEE Journals on Selected Areas in
Communications, Vol: 18, 2000, 1289–1300

[10]. M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, “Tuning RED for web
traffic”, ACM/SIGCOMM, 2000.

[11]. Alhussein A. Abouzeid, S. Roy, and M. Azizoglu: “Stochastic Modeling of
TCP over Lossy Links”, IEEE INFOCOM, 2000, 1724–1733

[12]. Teunis J. Ott, T. V. Lakshman, and L. H.Wong, “SRED: Stabilized RED”
IEEE/INFOCOM, 1999.

[13]. W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A New Class of Active
Queue Management Algorithms,” Tech. Rep., UM CSE-TR-387-99, 1999.

[14]. Dong Lin and Robert Morris, “Dynamics of random early detection,”
ACM/SIGCOMM, 1997.

 139

[15]. Farooq Anjum and Leandros Tassiulas: “On the Behavior of Different

TCP Algorithms over a Wireless Channel with Correlated Packet Losses”,
ACM SIGMETRICS, 1999, 155–165.

[16]. Feng W., Shin K. G., Kandlur D. D., Saha D., "The BLUE active queue
management algorithms", IEEE/ACM , Vol.10, No:4, 2002, 513-528.

[17]. S.Athuraliya, V.H.Li, S.H.Low, Q.Yin, “REM, Active Queue Management”,
January 2001.

[18]. Feng W., Kapadia A., Thulasidasan S., (2002/a), “GREEN: Proactive
Queue Management over a Best-Effort Network”, IEEE Global
Telekomünikasyon Konferansı (GLOBECOM 2002), Taipei, Taiwan,
Vol.21, No:1, 1784-1788

[19]. Pletka R., Waldvogel M., Mannal S., “PURPLE: Predictive Active Queue
Management Utilizing Congestion Information”, Proceedings of the 28.
Yıllık IEEE Konferansı, Yerel Bilgisayar Ağları, LCN 2003, 21-30

[20]. K. Ramakrishnan, S. Floyd, “A Proposal to add Explicit Congestion
Notification (ECN) to IP”, RFC 2481, Ocak 1999.

[21]. S.H.Low, F.Paganini, J. Wang, S.Adlakha, J.C.Doyle, “Dynamics of
TCP/RED and Scalable Control”, IEEE Infocom, Haziran 2002.

[22]. Martin May, Thomas Bonald, and Jean-Chrysostome Bolot, “Analytic
evaluation of RED performance,” IEEE Infocom, Mart 2000.

[23]. P.P. Mishira, D. Sanghi, and S. K. Tripathi: “TCP Flow Control in Lossy
Networks: Analysis and Enhancements”, IFIP Transactions C-13, S.V.
Raghavan, G.V. Bochman, and G. Pujolle, Eds. Amsterdam, The
Netherlands: Elsevier North-Holland, 1993, 181–193.

[24]. B. J. Kim and J.Y. Lee: “Analytic Models of Loss Recovery of TCP Reno
with Packet Losses”, ICOIN, 2003.

[25]. Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A control
theoretic analysis of RED,” IEEE Infocom, Nisan 2001.

[26]. Steven H. Low, “A duality model of TCP flow controls”, IP Trafiğini
Ölçme, Modelleme ve Yönetme için ITC Semineri, Eylül 2000.

[27]. Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “On
designing improved controllers for AQM routers supporting TCP flows,”
IEEE Infocom, Nisan 2001.

[28]. Fernando Paganini, John C. Doyle, and Steven H. Low, “Scalable
laws for stable network congestion control”, Karar ve Kontrol Semineri,

 140

Aralık 2001.

[29]. Mark Allman, “A web server’s view of the transport layer,” ACM
Computer Communication Review, vol. 30, no. 5, Ekim 2000.

[30]. Steven H. Low, Larry Peterson, and Limin Wang, “Understanding
Vegas: a duality model,” ACM, 2002.

[31]. Lawrence S. Brakmo and Larry L. Peterson, “TCP Vegas: end to end
congestion avoidance on a global Internet,” IEEE, vol. 13, no. 8, pp.
1465–80, Ekim 1995.

[32]. Barrett O’Neill, Elementary Differential Geometry, Academic Press,1966.

[33]. Glenn Vinnicombe, “On the stability of end-to-end congestion control for
the Internet,” Teknik Rapor., Cambridge Univiversity, Aralık 2000.

[34]. R. Johari and D Tan, “End-to-end congestion control for the internet:
Delays and stability”, Teknik Rapor, 2000, Cambridge Univ. İstatistiksel
Labaratuar Araştırma raporu 2000-2.

[35]. L. Massoulie, “Stability of distributed congestion control with
heterogeneous feedback delays”, Teknik Rapor, Microsoft Araştırması,
Cambridge UK, TR 2000-111, 2000.

[36]. W. Feng, D. Kandlur, D. Saha, and K. Shin, “A self–configuring RED
gateway,” IEEE INFOCOM, Mart 1999.

[37]. R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, 1999.

[38]. Srisankar Kunniyur and R. Srikant, “End–to–end congestion control
schemes: utility functions, random losses and ECN marks,” IEEE Infocom,
Mart 2000.

[39]. Srisankar Kunniyur and R. Srikant, “A time–scale decomposition
approach to adaptive ECN marking,” IEEE Infocom, Nisan 2001.

[40]. Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe Yin, “REM:
active queue management,” IEEE Network, Mayıs/Haziran 2001,
ITC17’nin genişletilmiş versiyonu, Salvador, Brezilya, Eylül 2001.

[41]. “Parallel simulation environment for complex systems,”
http://pcl.cs.ucla.edu/projects/parsec/.

[42]. Matthew Mathis, Jamshid Mahdivi, Sally Floyd, and Allyn Romanow,”
TCP selective acknowledgement options”, RFC 2018, Ekim 1996.

 141

[43]. Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe,

Reno, and SACK TCP. ACM Computer Communication Review, Temmuz
1996.

[44]. Mark Allman, Vern Paxson, and W. Richard Stevens. “TCP congestion
control”, RFC 2581, Nisan 1999.

[45]. Janey Hoe. “Improving the start-up behavior of a congestion control
scheme for TCP”, ACM SIGCOMM, 1996.

[46]. Janey Hoe.” Startup dynamics of TCP’s congestion control and avoidance
Schemes”, Master’s thesis, MIT,
http://ana-www.lcs.mit.edu/anaweb/ps-papers/hoe-thesis.ps, 1995.

[47]. Sally Floyd and Tom Henderson. “The NewReno modification to TCP’s
fast recovery algorithm”, RFC 2582, Experimental, Nisan 1999.

[48]. Jitendra Padhye and Sally Floyd, “On inferring TCP behavior”, ACM
SIGCOMM, 287–298, Eylül 2001.

[49]. Victor Firoiu and Marty Borden,” A Study of Active Queue Management
for Congestion Control”, IEEE Infocom, 2000, 1435–1444.

[50]. V. Jacobson, K. Nichols, and K. Poduri, “RED in a Different Light”, Eylül
1999.

[51]. T. Ziegler, S. Fdida, and C. Brandauer “Stability Criteria for RED with
Bulk-data TCP Traffic”, 2001. Teknik Rapor, Ağustos 1999.

[52]. S. Floyd, M. Handley, J. Padhye, and J. Widmer. TFRC Web Page, 2000.

[53]. W. Stevens,“TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms”, RFC2001, 1997.

[54]. Vishal Misra, Wei-Bo Gong, and Don Towsley, “Fluid-based Analysis of
a Network of AQM Routers Supporting TCP Flows with an Application to
RED,” ACM/SIGCOMM, 2000.

[55]. “ns-2 Network Simulator”, http://www.isi.edu/nsnam/ns/.

[56]. S. Mascolo, “Congestion control in high-speed communication networks,”
Automatica, vol. 35, Mart 1999, 1921–1935.

[57]. Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, “Feedback
Control of Dynamic Systems”, Addison-Wesley, 1995.

 142

[58]. F. Kelly, “Mathematical modelling of the Internet,” , 2001.

[59]. Karl J. A., “Oscillations in Systems with Relay Feedback”, IMA Volume
Matematik and Uygulamaları, 1995, vol. 74, 1–25.

[60]. Sally Floyd, “Recommendation on using the ”gentle ” variant of RED,”
http://www.aciri.org/floyd/red/gentle.html, Mart 2000.

[61]. J. Mahdavi and Sally Floyd, “TCP-friendly unicast rate-based flow
control”, Ocak 1997.

[62]. M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,” Computer Communication
Review, vol. 27, no. 3, Temmuz 1997.

[63]. W. Stevens: TCP/IP Illustrated, Vol. 1 The Protocols. Addison-Wesley,
1997

[64]. Sanjeewa Athuraliya and Steven H. Low, “Optimization flow control, II:
Implementation”, http://netlab.caltech.edu, Mayıs 2000.

[65]. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A
Comparison of Mechanisms for Improving TCP Performance over
Wireless Links”, IEEE/ACM, Vol. 5, 1997, 756–769

[66]. T.V. Lakshman and Upamanyu Madhow, “The Performance of TCP/IP for
Networks with High Bandwidth-Delay Products and Random Loss”,
IEEE/ACM, Vol. 5, 1997, 336–350

[67]. Anurag Kumar, “Comparative Performance Analysis of Versions of TCP
in a Local Network with a Lossy Link” IEEE/ACM, Vol. 6, 1998, 485–498

[68]. Anurag Kumar and Jack Holtzman, “Comparative Performance Analysis
of Versions of TCP in a Local Network with a Mobile Radio Link”,
http://ece.iisc.ernet.in/ anurag/

[69]. J. Padhye,V. Firoiu, D.F. Towsley, and J.F.Kurose,” Modeling TCP Reno
Performance: A Simple Model and Its Empirical Validation. IEEE/ACM
, Vol. 8, 2000, 133–145

	K.4
	K.4.TCPRENO

