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1.GIRIS

Bu analiz teknigi dogrusal olmayan sistemlerin analitik analizinde kullanilir. Bunlar
arasinda daha ¢ok haberlesme  sistemlerinde kullanilan alici, verici, diger arag¢ ve
gereclerin tasarim  analizinin yapilmasinda sikca kullanilir. Haberlesme sistemlerinde
olusan frekans karisimlari, distorsiyon ve giiriiltii olusturan kaynaklar sistemlere de
uygulanabilir. Dogrusal olmayan sistemlerin veya devrelerin ¢ikis cevaplarimin analizinde
analitik yontemler biiyiik zorluklar olusturur. Bu durum sistem analizinde ciddi sorun
yaratmaktadir. Ancak gercek Diinyada ¢ogu sistemler insanoglunun ugrastigr sistemlerden
cok daha biiyiiktiir veya daha kiiciik hacim ve alana sahip olabilen dogrusal olmayan
sistemler de mevcuttur.

Bu ¢alismada sunulan yaklasim ozellikle tabiatin insanogluna sundugu faydali ve
insan oglunun kendi capindaki sistemlere uygulanabilir olmasidir. Ciinkii evren bir makro
sistemdir. Ancak bu biiyiik sistemi meydana getiren pek cok alt sistemde mevcuttur. Buna
karsilik hiicre ve DNA da kendi boyutunda karmasik bir sistemdir. Burada Volterra
fonksiyonlarimi kullanarak detayli bir frekans diizleminde analiz yapunmustir [1]. Volterra
fonksiyonlarmmin  dogrusal olmayan sistemlere ve devrelerler icin ilk uygulanmasini
N.Wiener yapnustir [2]. Wiener’in MIT’ de ogrencileri olan Lee, Schetzen ve Sanberg
tarafindan Volterra serileri gelistirildi. 1950’lerin sonunda Volterra serileri gelistirilerek
dogrusal olmayan sistemlere uygulanmast icin siirekli bir caba vardir. Bu ¢calismalarin biiyiik
cogunlugu iiniversitelerde yapilmistir — ve genellikle etkilesimli olmayan sistemlerin
problemlerine odaklidir [3]-[8]. Bu yaklasimin uygulamalari vardir ancak siirpriz bicimde
son zamanlarda stkca kullanilmaktadir. Narayanan 1967’ de bu teknigi bir dogrusal olmayan
junction transistoriiniin T-modeli ve transistorlii yiikselticilerin kayiplarimi ve distortion
analizinde kullandi [9]. Daha sonra Maurer’la birlikte Gauss girigleriyle dogrusal olmayan
reaktif sistemlerin tepkimesinin analizini genislettiler [10]. Narayanan transistorlii kaskat
viikselteclerin analizinde ve geri besleme yiikselteclerindeki kayplar: analiz etmistir [11-12].
Poon iiciincii derece yiikselte¢ distortion c¢aligmalart icin sarj kontrol transistorlerinin
Volterra analizlerini  kullandi [13]. Kuo ve Witkowski, Volterra tekniklerini kullanarak
liciincii derece distortion hesaplamak icin bir bilgisayar programi gelistirdi [14].Meyer ve
ekibi [15] yiikselteclerin deneysel capraz-modiilasyon tanmimlamasimin da Volterra analizleri
kullanildi. Bedrosian ve Rice tarafindan yazilan, siniis dalgalarimin ve Gauss giiriiltiisiiniin ve
sunulan cesitli onemli ornekler tarafindan isletilen sistemlere Volterra serilerinin bir
uygulamasimn tammlandigr ¢ok onemli  bir raporu MIT de tamamladi. Sonra Schetzen
dogrusal olmayan sistemlerin sorunlart ile ilgili 1962 MIT bir rapor hazirladh.

Elektromanyetik girisimler — ve uyumlu bagdagsabilirlik  alanlarinda Volterra
analizinin bir¢ok uygulamasi vardir. Gii¢ serilerinin analizinde vurgulanmak istenen, sanki
alicilar hafizasiz dogrusal olmayan sistemlerdir. Ilk analizde hafiza, davranislarimin dogrusal
olmayan iglemlerle etkilesimli olmayan giris, cikis filtrelerini icerir[17].

Bu c¢alisma, Volterra fonksiyonlarmmin dogrusal olmayan devre analizi ve ilgili
elektromanyetik etkisi iizerine odaklannuistir. Bu ¢alismamin  sonuglart  profesyonel
toplantilarda rapor edilmistir [18] — [22] ve hava kuvvetleri tarafindan bir kitap olarak
yvaywmmlanmistir[23]. Bu makale dogrusal olmayan devrelerin ¢ok giiclii yanlarint kapsamaz,
[21] de Ozetlenmistir ve detayli olarak [23] de tartisilmuistir.



Analizlerde metot olarak, tamamen dogrusal olmayan aletlerin modellenmesi ve
dogrusal olmayan devrelerin frekans diizleminde analizi yapilmistir. Volterra teorisinin
genislemesi, yiiksek dereceden biiyiik boyutta dogrusal olmayan sistemler gelistirilmis ve
uygulannustir. Ayrica iletisimde alici-verici modelindeki problemlere uygulanarak bir
biitiinlesik sistem elde edilmesi iizerine insa edilmistir.

Dogrusal olmayan devre elemanlart direng, kondiiktor, bobin, transistor, vakum
tiipleri ve diyotlart iceren sistem tasariminda siradan devrelerin transfer fonksiyonlarinin
elde edilmesinde tiim sayisal sonuglarin hesaplanmasinda kullanilmaktadir. Son yillarda ise
tiimlesik devre tasaruminda sikca kullanilmaktadur.

Bu calisma dogrusal olmayan devrelerin Volterra-Wiener analizi ile baglar ve
dogrusal olmayan devrelerin karsiliklarint dogrusal olmayan giic serisi ile hesaplayan gecerli
olan metotlart agiklar. Bu metot da bir dogrusal olmayan diferansiyel denklemin ¢oziimiiniin
probleminde ayni dogrusal denklemin tekrarlayan ¢oziimii fakat her seferinde farklt bir
dogrusal olmayan etkiyle yaklasilnustir. Karmasik dogrusal olmayan sistemlerin dogrusal
olmayan transfer fonksiyonlarimin hesaplanmasi aciklanmistir. Bu metotlarla biitiin bir
iletisim alict sistemi gibi biiyiik bir dogrusal olmayan sistemi analitik modellemek miimkiin
olabilmektedir. Aynmi ¢oziim  dogrusal olmayan aletlerin analitik  modellenmesi de
yvapilmaktadtr.

Sozii edilen genel metodun genel sekli verilerek sade bir uygulama ile
orneklenmistir. Analizde coklu giris isaretinin dogrusal olmayan bir sistemle nasil etkilegim
yvaptigint gostermektedir. Analitik model temelli hesaplanabilir sonuclar olciilebilir fiziksek
biiyiikliiklerle karsilastirilir. Giris isareti modiile edilmis veya edilmemis bilesenleri olabilir.
Modiile edilmis giris bilesenleri icin, dogrusal olmayan transfer fonksiyonlart genisletilir ve
kanonik model olarak isimlendirilirler, Bunlar sistemin bazi parametrelerle kullanisli bir
frekans araligiyla tanimlanir.

IL. SISTEM CIRISININ VOLTERRA ACINIMI

Buradaki analitik yaklagimin temeli olan fonksiyonel acimim Volterra serileri olarak
bilinir. Bu boliim ilgili olan matematiksel iliskileri dzetler.
Volterra acimuimi, herhangi bir fonksiyonun operator fonksiyonel sekli G[x],
seklinde temsil etmektedir ve fonksiyon alani icerisinde siireklidir ve agcinimi

Glxl= ¥ Fy,lx] e

n=0

seklinde temsil ve ifade edilir. I n [x] diizenli homojen fonksiyonel formudur.Aginim ise

(2.2)

seklinde olup K, sabitleri ve n indisi fonksiyonun dereceni temsil eder.

Esitlik (2.1)’de verilen seri “Volterra fonksiyonel serisi” olarak adlandirilir. Eger
fonksiyonun  her x(t) degerine karsilik gelen deger tamimli ise seri “yakinsak* olarak
adlandirilir.



Norbert Wiener fonksiyonel seri acimimi  dogrusal olmayan sistem analizine
uyguladi [2]. Wiener dogrusal olmayan sistemin ¢ikigini y(t) girigini x(t) olarak tanimlayarak,
giris-ctkis arasinda  fonksiyonel bir iliskinin  oldugunu  gostermis ve her ikisini de
fonksiyonel seriyle iliskilendirmistir. Bu benzerlik, gii¢ seri acinimina uygulandiginda, serinin
ilk birkac fonksiyonel terimleri esitlik (2.3) deki gibi elde edilir.

y(t)= [hy(t)x(t=7)dT+] [hy (7, .7,)x(t =7 )x(1—T,)dT,T, +

[ [[hy (7175 73 x(1=7) ) x(1=7) ) x(1=73)dT Ty T3 +.....

(2.3)

Bu gosterim y(t)’nin dogrusal olmayan ¢oziimii icin ¢ok zor degildir. Daha ayrintili bir analiz
icin terim sayist yeterli degildir. Esitlik (2.3) seri acinumu kiiciik-isaret dogrusal olmayan
durumlar icin yeterlidir. Ancak terim sayisi ¢ok oldugu zaman pratik olarak uygulanabilirligi
zorlasir. Bu durumda biiyiik-isaret dogrusal olmayan durumuna karsilik gelir. Bu durumda
coziim icin daha degisik ve karmasik metotlar aranmalidir. Bu durumda ¢oziimii zorlastirir.

Esitlik (2.3) serisinin n. dereceden Volterra ¢ekirdegi, h, (T;,T, ,......,T, ), n.dereceden

dogrusal olmayan diirtii (impulse) cevabt (nonlinear impulse response) olarak adlandirilir.
Bunun frekans diizlemindeki Fourier doniisiimii n.dereceden dogrusal olmayan transfer
fonksiyonu olarak adlandirilir.Bu fonksiyon

H, (fiofyvef)= [ o [hy (7,75 0T,)

expbEj272(fi7) + [>T+t [T, ))dTdT, ... dT,
(2.4)

seklinde tamimlanmigtir. Bunun tersi ise, n.dereceden dogrusal olmayan diirtii transfer
fonksiyonu verir ve ters Fourier doniigiimii uygulanir; Bu ise,

hy (20, Ts @y )= [ [Hy (f) oS e )

expl—j2 (1T + foTy +ot £, 7,)]dfdf 5 oondf ,
(2.5)

tamimlidir. Esitlik (2.3) deki girig-cikis iliskisi ise
y(@)=2 v, (1) (2.6)
n=l1

seklinde tanimlanir. Asagidaki esitlik de



Vo ()= [ [hy (2) et ) x(t=T))ex(t =7, )dTy ..., @.7)

ctkis bileseni n. derecededir.
Esitlik (2.6) esitlik (2.7)’de yerine kondugunda  ve integralt,,....,T, lizerinden
vapildiginda esitlik (2.8) elde edilir..

Yu (= [ e [Hy iy PO TLX (fexpC 20 0df; - 28)

X(f) giris tayfimin (spectrum) bir fonksiyonu olarak ¢ikisin acinimi n.dereceden ifade
edilmesidir. Bu ¢alismada, alisilageldik zaman fonksiyonun Fourier doniisiimii biiyiik
harflerle ve kiiciik harflerle de zaman fonksiyonunu temsil edecektir.

Burada “derece” terimini dogrusal olmayan cikis bileseni y,(t) ile kullantyoruz.
Giris harmonik tonlarin toplani oldugu zaman boyle bilesenlerin derecesi katkida bulunan
giris isaretlerinin sayist kadar olacaktir. Ayrica bu derece kavramui ilerleyen boliimlerde daha
acik olacaktir. Ornegin ikinci dereceden karsilik, bir frekans da iki ayr frekans toplami da
olabilir, yada her giris isaretinin bir ikinci harmonigi de olabilir. Dogrusal olmayan
sistemlerin analizinde bircok durum vardir. Bu sistemlerde farkli derecelerdeki dogrusal
olmama durumunda ayni frekans da karsiliklarinda sonuglanabilir. Bir karsiligin frekansi
olmayabilir. Bundan dolay: karsiligin derecesi tamamuyla belirticidir.

Esitlik (2.8)’in her iki yammi da Fourier doniigiimiinii  uygularsak kazang
n.dereceden cikis tayfi,

[o e} [ee] n
Va ()= [ [Hy (fy s £, = f1 == Fu DIIX (F)df ;- 29)
burada 8( .) delta fonksiyonudur. Giris—¢ikis tayflarimin iliskisi esitlik (2.6) da gosterilmistir
ve sonra da
Y(£)= )Y, (1) (2.10)

n=l1

seklinde tamimlidir. Eger girisler esit genlikli iki siniis isareti  f, ve f, nin toplamiysa ve

Jp>f, ise
X(f)=0(f+f,)+0(f=f )+0(f+f)+0(f~fp) (2.11)
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Sekil 1. Dogrusal olmayan Volterra-Wiener sistem modeli

ikinci dereceden ¢ikis tayfi Y(f), fa +fb,fb —fa,Zfa,Zfb ve sifir olmak iizere

intermodiilasyon frekansbilesenleri dikkate alindiginda, bes tiir frekans bilesenine
sahiptir.Bunlar;

Yof), [, + [} frekansin da su formda gosterilir.

(Hy (fp . f=fa)+Hy (foq . f=IpNo(f=fa—Fp) (2.12)

burada dogrusal olmayan transfer fonksiyonlarinin bilesenleri simetrik fonksiyon olarak
varsayilirlar. Degiskenlerin derecelerinin yerleri degistirilebilir. H ,, ( f1 ,...., f,, ). Impuls

karsihgt H , (7q,....,T, ) bilesenlerinin bir simetrik fonksiyonu olmadik¢ca bu genellikle

dogru degildir. Simdi H, (7y,....,T, ) ve bundan dolay Hn( fl,....,fn )degillerdir.
Aslinda simetrik olabilirler.Ayni ise esitlik (2.7) deki gibi olabilir. v, (1) ckst

degiskenlerinin her durumu icin ayni olabilir.
;Z [ Jh, (P (z)exp(—j2aP, (7).f)d7, ...dT, =;ZHH(PI(f)) (2.13)
=l T FI=1

Burada f vektordiir [fi, f5,...., f] ve 7 bir vektordir [7},75,...,7,, |. Her P(7) ve
P (f), t ve f  vektorlerinin n bilesenlerinin n! permiitasyonu ile ilgili bir vektordiir.
P; (7).f carpimi vektor carpimidir. Burada formiilii biraz basitlestirmek igin simetrik

fonksiyonu argiimanlarin permiitasyonlari ile S sembolii ile gdsteriyoruz.

SIH, (fy s f, )JE#ZH,1 (P, (). 2.14)
=1

esitlik (2.4) den ,

Hy (fienfn)=H, (= fy = f)) (2.15)



burada fonksiyonun karmasik eslenigini (conjugate, *) gosterir.
Bu analizden sonuc olarak dogrusal olmayan sistemin modeli Sekil.1 de gosterilmistir. Bu

sekilde ¢ikis diisiik dereceden paralel kollarin toplanu olarak temsil edilir. Esitlik (2.8)‘i ¢ok
boyutlu zaman fonksiyonun tammindan genellestirilmistir Cok tayfli yogunlugu ise

¥, (1] senst )=j._:an (f s [y ).InYX(fi yexp(j27f;t; )df; (2.16)

seklinde olup esitligin n-katli Fourier doniisiimii, yada ¢ok tayfli yogunlugu

Y, (f1 s f ):j._o.o Sy 1yt )eexpl—=j27 ity +. fr1,))dt dt, (2.17)

boylece

Y, (] st ):[._o.o JY, (Fr e ) expLj 27 (f11) + .ot f 1, )1dS ) df ), (2.18)

Bunu esitlik (2.6) ve esitlik (2.11) in karsilastirilmast takip eder.

Y, (fiorfy )=H, (fi s [ )X (F1)n X () (2.19)

Yn(f)zj._:jyn(fl v 1 )0 = 1 =sewer=f VA sodf, (220

III. PROBING METODU ILE DOGRUSAL OLMAYAN TRANSFER FOKSIYONUN
ELDE EDILMESI

Dogrusal olmayan transfer fonksiyonunu elde etmek icin uygun analiz metotlar
“probing” yada “harmonik giris” olarak adlandirilirlar. Harmonik girig metodundan [16]
bahsedilecektir. Bu metodu dogrusal olmayan transfer fonksiyonu elde ederek ve tek dongiilii
basit bir devrede orneklendirerek anlatacagz.

Varsayalim ki dogrusal olmayan bir sistemin girisi ve c¢ikist R iligkisi ile y(t) nin tiim
degerlerinde karakterize edilsin. Boylece

y(1)=R[x(1)] (3.1)

x(t) giris ve y(t) c¢ikisidir. Biraz ayrintili diisiiniildiigiinde bu esitligin yalnizca bir sabit-
durum ¢oziimii vardir. Bu ¢oziim Volterra acinimi tarafindan ifade edilebilir;



y(1)= ij. B JH, (& .&5...8, )._1”71)((51 Yexp(j27&;t)dE, (3.2)
n=l —%° 1=

Esitlik (3.2) deki dogrusal olmayan sistemin ciktisi, dogrusal olmayan transfer fonksiyonu
olarak adlandirilan Volterra ¢ekirdeklerinin H n (fl ,...,fn ), bulunmasini gerektirir.

Simdi sistemin girisi x(t) iislerin toplami olmalidrr.
x(t)=exp(jw t)+exp(jw,t)+...+exp(jw,t) (3.3)

:

1

=27f; i=12.,nve @ oranl degildir. Esitlik (3.3) deki girisin Fourier doniisiimii delta
fonksiyonunun bir toplanudir.

X(H=6(5—f1)+0(S—fr)+..+6(5—f,) (3.4)

Bu tiir girisler “gercek girisi” (probing input) yada “harmonik girisli” olarak adlandirilir.
Bu girisle ¢iktimin Volterra aciminu  egitlik (2.3) ve (2.8) su sekilde olur.

YO =] [H, (& ek, VITLS(E; = f1) ot 885 = f)lexp(j27, 1) dE; (3-3)

n=1 ~%

Delta fonksiyonlarimin toplamwmin carpumi, farkli tiim terimlerin toplamini genellestirir.
Formu :

0(< —fk1 )0 (&5 —fk2 )..0(&, _fkn ) (3.6)

tamimlidir. Her bir k; indisi birden n’ e kadardir. Eger her bir fi; bir carpimda olursa esitlik
(3.6) gibi m; kere , daha sonra

n!

'E(n;ml, ..... ,m, ) (3.7)

my !m2 !...mn !

seklindedir. Benzer terimler vardir ama faktorlerin permiitasyonu icindir. Eyitlik (3.7), coklu

katsayilart (n;my,.....,m,) ile gostermistir. Simdi esitlik (3.5) de benzer terimler toplanarak
veniden yazildiginda,
— n! .
y(t)= ZzﬁHn (fki yeeens ,fkn ).exp(]27z(fk1 +-"+fkn )t (3.8)
n=lm My - m, .

Toplam isaretinin altindaki m ayrit {m;} kiimelerinin tamaminin toplama dahil edilecegini
gosterir, yani:m; <n;, ve

D> m; =n. (3.9)



burada; m; <m;, esitsizligi {fmi,;} deki frekanslari siralar. Burada dikkat edilmesi

gereken husus, egsitlik (3.4) den esitlik (3.8) deki giris ile, y(t)’nin n.derece bir terimi soyle
verilir:

RISTH , (fy s F XL 27 () + ot £, )11, (3.10)

T 5 + dv
K,v § Kyv ¢ :=CE

i(t)

Sekil.2. Basit bir dogrusal olmayan devre

Bunlar  simetrilestirilmis n. dereceden dogrusal olmayan transfer fonksiyonu
SIH , (f{ .- [, )] analitik olarak, sistem girisi esitlik (3.3) de verilen n iislerinin

toplami oldugunda, sistem ¢iktisindaki n\expl j27z( fy +....+ f, )t] in katsayisi olarak

elde edilebilir. Bu bir analitik metodudur. Bundan dolay: esitlik (3.3) deki orantisiz iislerin
toplami gercek degildir. Boyle bir toplam analitik bir arastirma isareti olarak kullanilabilir.
Ama gercek bir olciimiin temelleri olarak degil. Esitlik (2.14) simetrik transfer fonksiyonu
oldugu her zaman varsay!nustir hatta harici olarak belirtilmistir.

Bu gozlemde, giris esitlik (3.3) oldugunda sistemin davranmiglari tamimlayan
esitliklerden tiim dogrusal olmayan transfer fonksiyonlarinin elde edilmesi icin yinelemeli bir

oneri ile expl j27(f +...... + f, )t1’in katsayist n![H , (f} ,...., f,, )] lidir. Boyle
bir esitlikten verilen bir sistem tek bir iislii heyecan ile ilk arastirilmistir. Bu H | ( f) nin
elde edilmesine izin verir. Daha sonra iki iissiin toplami uygulamir.  Bu kazang
H, (fy,f>2), Hy (f) cinsindendir. Bu prosediir, n. aduma kadar her bir adimda girise
ek bir iis eklenmesi ile devam eder, giris (fi...... f,)) de n iislerinin toplamini icerir. Daha

sonra daha diisiik dereceden dogrusal olmayan transfer fonksiyonlarindan n. dereceden
dogrusal olmayan transfer fonksiyonunun elde edilmesi ile devam edilir.

Bunun gosterimi icin, sekil 2 deki gibi bu metoda uygulanabilir basit bir devreyi
diisiinelim. Sekil 2 bir kondansator, bir dogrusal direng ve bir dogrusal olmayan direng
paralel olarak akim kaynagi i(t) icermektedir. Dogrusal olmayan diferansiyel denklem
kondansator boyunca, akim i(t) ve voltaj v(t) ile ilgilidir. Bu su sekilde verilir :

i(t)=C%v(t)+K1v(t)+K2v2(t) (3.11)

10



Burada K| =1/R’dir. Biz i(t) yi x(t) ve v(t) ile tamiriz. Egitlik (3.8) den v(t) igin yer
degistirirsek, basarili bir girig isareti kullanarak bu devrenin dogrusal olmayan transfer
fonksiyonunu basarili bir sekilde elde ederiz.

i(t)=exp(j2at) (3.12)

Bundan dolayt esitlik (3.11) her t ve her f icin memnun edici olmalidir. Her bir harmonik
bilesende ayrica kisisel olarak esitligi tatmin  edici olmalidir. Esitlik (3.8)in yer
degistirmesinden sonra esitlik (3.11)in her iki yanindaki exp(j2zaft) 'nin katsayilarini v(t) icin
esitleriz. Burada

1=(j2afC+K ) H{(f) (3.13)

aliriz. Bundan dolayt belirtilen devrenin birinci dereceden Volterra cekirdegi basitce esitlik
(3.11) in ¢oziimiidiir.
1

Hy (f)=— (3.14)
(j2AC+K,)
Benzer sekilde iki iissiin toplami ile
i(t)=exp(j2aft)+exp(j2af,t) (3.15)

Egsitlik (3.11) in her iki tarafindaki 2\expl j27 ( f{ + f5 )t] nin katsayilar, esitlik (3.8)

deki v(t) nin degisimini uyguladiktan sonra, esitlersek,
0=[j272(f1 +f)C+K | 1H, (f1,f2)+ K H (f1)H{(f,) (3.16)
H,( f, f, ) veesitlik (3.13) ii alirsak esitlik (3.16) daki kazang :

H,(fi,f,)=—K,H\(fi)H (f, ) H\( fi+],) (3.17)

ve ii¢ tissiin toplamiyla devam eder.

[(1)=exp(j27f t)+exp(j2af,t)+exp(j2af5t) (3.18)

Esitlik (3.11) in her iki tarafindaki 3'expl j27z(f; + fo + f3)t] nin katsayilar,

degistirerek uyguladiktan sonra, esitlersek,

H 4 (f1af2’f3):—%Kz[Hl(ﬁ)Hz(fz’f3)+H1(f2)H2 (f1.f3)+ (3.19)
Hy(f3)H, (fi +f)IH (f1+f2+f3)

Daha sonra esitlik (3.17) deki ikinci dereceden ¢ekirdek i¢in degistirirsek,

11



Hy Uy fa o f3)==3 K3 (GO ) H DU i+ £+ )
Hy(fy +f3)+H (f3+f)IH (fi +fy+f3)

Bu kural her adimda daha yiiksek derecede dogrusal olmayan transfer fonksiyonlarint daha
diisiik derecedeki dogrusal olmayan transfer fonksiyonu cinsinden yazarak sonsuz sayida
esitlik (3.19) da oldugu gibi bulabiliriz.

|H oy (Fr o £)| < IT | Hy (F1)] (3.21)
i=1

Volterra ¢ekirdeklerinin kesin degerlerinin ne oldugunda daha kiiciik dereceleri ile
yakinsamast beklenebilir.

Esitlik (3.11) in tek bir ikinci derece v () terimi ile analizi, su formda her dogrusal olmayan
diferansiyel denkleme genellestirebiliriz.

[o0)

2= 38,y ()+ YK, " (1) (3.22)
r=0 dt’ n=2

Y(t) deki dogrusal olmayan terimler bir gii¢ serisidir. Tek iislii bir girise uygularsak,

_ 1
H1(f)——L(j2ﬂf) (3.23)

burada L(2xf) f ‘de bir polinomdur.

LQ2A)=3 B, (j2a)" (3.24)
r=0

Esitlik (3.24) ve (3.22) ile belirtilen dogrusal bir devre gosterimidir ve bu birlestirilmis
dogrusal devre olarak adlandirilir.

IV. DOGRUSAL OLMAYAN AKIM METODUNDAN
DOGRUSAL OLMAYAN TEPKININ TANIMLANMASI

Bu boliimde, dogrusal olmayan bir sistemin karsiligini, dogrusal olmayan bir gii¢ serisi tiirii
ile elde edilmesiyle “dogrusal olmayan akim” metodu sunulacaktir. Bu yaklasim dogrusal
olmayan karsiliklarin, gozden gecirilmesinden tiiretilmistir, burada esitlik (3.22) deki
dogrusal olmayan diferansiyel denklemle artan derecelerinin basarili bir uygulamasidir.
Dogrusal olmayan akim kavramin derece ile tanmnir.

Bu iddiayr gostermek icin esitlik (3.22) su formda varsayulir.
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x(t)=zi(t) (4.1)

z degiskeni farkli terimlerin hangi derecesinin oldugunu saklamanmizi saglar,
Volterra tamimindan esitlik (3.2) den

v ()=z"]. . JH () s [T (F Y exp( 2 1) df (4.2)
- i=1

burada alisageldik simgesel gosterimde Il ( f ), i(t)nin Fourier doniigiimiidiir. Simdi v(t) "yi
girdi i(t)devreye uygulandiginda, ¢ikti olarak tamimlayalim.

i(1)=3B, L v1)+ T KV (1) (43)
r=0 dt n=2

Daha sonra n-katli integrale esit olan v, (t) ye esitlik (4.2) deki gibi aym gekirdekle sahibiz.

v, (t):j. °.° .an (fy s £ T CFi ) exp(G 278 df (4.4)
e i=l
Boylece
v, (t)=27"v (1) (4.5)
ve
yt)=Yy,(t)=>z"v,(t) (4.6)
n=1 n=1

Bu on hazirlikla, i(t) ve v(t) iki diferansiyel esitlikle ilgilidir: esitlik (4.3), yada esitlik (4.1)
ve (4.5) in esitlik (3.22) de degisiminden elde edilir.

zi(t)=iz”[i,b’,i—’;vn (t)]+ iKn{iszs(t)} (4.7)

n=l r=0 n=2 s=1

Bundan dolayi, eger v, (t) olarak gosterilen v(t) nin kisisel dogrusal olmayan bilesenleri
icin esitlik (4.7) yi coziimlersek, esitlik (4.3) tin ¢oziimii asagidaki esitlik olur.

v(t)=ivn(t) (4.8)
n=l1

Rasgele bir degisken olan z nin tanimi, bagarii bir v,(t) nin ¢oziimiine yardimcidir. Bunu
gormek icin esitlik (4.5)’i en diisiik dereceden v{(t), v,(t),v5(¢t) nin 3 dogrusal olmayan
karsiliklary icin ¢ozeriz.
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v (t) yi ¢ozmek icin esitlik (4.5) her iki tarafini z’ye gore aywririz ve cevapta z = 0 olarak
diizenleriz. Bu prosediiriin kazammunmin diferansiyel denklemi, esitlik (4.5) in dogrusal
pargasini basitlestirmesi gereken v (t) icin, su sekildedir :

v(t) (4.9)

i(1)=38,°
r=0 t

d r

Bundan dolayt birinci dereceden karsilik bileseni olan v,(t) esitlik (4.7) nin dogrusal kism

icin yeterlidir. Sanki v"(t)de gii¢c serisi tarafindan belirtilen dogrusal olmayan element

devreden cikartilmig ve akim kaynagi i(t) sadece devrenin dogrusal kismina uygulanmis
gibidir.

Ikinci dereceden dogrusal olmayan karsilik v, (t)yi ¢ozmek icin, esitlik (4.5)’in her iki
tarafint 7 ye gore ayirmak icin iglemi tekrarlariz ve daha sonra z = 0 yapariz. Bu yapildig
zaman, v, (t) tarafindan yeterli olan diferansiyel denklemi aliriz.

Oziﬁr%vz(tHszf(t) (4.10)
r=0 t

Bu esitligi esitlik (4.7) ile karsilagtirilmast bize, V2( t ) dogrusal olmayan terminallerine

2 . o
K V1 ( t )olarak uygulanan akim tarafindan Yyiiriitiilen devrenin dogrusal parcasinin

karsiligt olarak elde edilebilecegini onermistir. Biz bu akini 2.derecenin dogrusal olmayan
akiminda ¢agiririz:

i(t)=K,wi(t) (4.11)

Eger bu islemi 7’ye gore ii¢ defa tekrarlarsak, v;(t) tarafindan diferansiyel denklem elde
edilir.

o] dr
O:Zﬂrcﬁ—rv3(t)+K2v1(t)v2(t)+K3vl3 (1) (4.12)
r=0

Burada tekrar dogrusal olmayan bilesen v5(t), devre asagidaki akim tarafindan Yyiiriitiildiigii
zaman dogrusal devrenin karsiligidur.

. 3

i(t)=2K,v,(t)v,(t)+ Ky (t) (4.13)
Bu akim dogrusal olmayan elementin terminallerindedir.
Bu prosediiriin istenilen dogrusal olmayan karsilik derecesine ulasincaya kadar
tekrarlandiginda basarili oldugu goriilebilir.

Genel olarak n.derecenin akumint  dogrusal olmayan element boyunca soyle
tamimlayabiliyoruz.
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i (=Y K, Lﬂ{izsvs (I)} (4.14)
s=1

s=0

m > 1 oldugunda, i,t) n den daha Yyiiksek olmayan derecelerin dogrusal olmayan
karsiliklarina bagl degildir, ve sadece ve sadece daha heniiz hesaplanan n-1 v(t) ,...,

v, (t) karsiliklarina baghdr.

: L m! m
i (=YK, z'—’vlpl (t).vPm (1) (4.15)
m=2 p P P

Toplam isaretinin altindaki p isareti, pq,...,P,, e kadar olan tim kiimelerin toplamim

belirtir. Buda su sekilde saglanir
p1t2py+,.,+mp, =n m=23,.n-1, (4.16)

Burada iis p; 0 dan n’e kadar uzamir. Bundan dolayi, vi(t) ve i(t)’ye baghdir, v,(t)
Vl(l‘)’ye, V3(l‘), Vl(l‘)’ye ve Vz(l‘)’ye vs. ama sonunda tim dogrusal olmayan

akimlar 1( t )’ye baghdir. Ornegin, V,f g kpk ‘mn I(t )’de derecesidir. Bundan dolay
esitlik (4.16) i( t ) iizerinde in (t ) nin derecesinin bagimliigini verir.

Dogrusal olmayan bir devrenin karsiligimin giic serisi ile elde edilmesinde kullanilan
dogrusal olmayan akim metodunda, dogrusal olmamak soyle ozetlenebilir.

Adim 1 : Vl( t )nin birince dereceden karsiigi ¢ozmek icin, sanki dogrusal olmayan

elementler devreden silinmis gibi (1), basitce devrenin dogrusal olan
parcalarimin karsiliklart ¢oziiliir.

Adim 2 : Birinci derecen voltaj Vl( t ) hesaplandiktan sonra , dogrusal olmayan akim
i2( t ) hesaplamir. Genel olarak dogrusal olmayan in( t ) akimi hesaplanirken(

bkz. Esitlik (4.15)) vn_l( t ) bulunur.
Adim 3 : Dogrusal diferansiyel denklemden * yi ¢cozmek icin

Llv, (t)]+i, (1)=0, n=23.. (4.17)
L sembolik olarak dogrusal diferansiyel denklem islemlerini gosterir ve in (t) 2
adimda hesaplanan dogrusal olmayan akim kaynagidir.
Bu metot acikca tekrarlamalidir, sonraki daha yiiksek dereceden bilesen bulunmadan once

daha diisiik olan tiim derecelerin bilesenlerini gerektirir. Sonu¢ olarak toplam karsilik tiim
bilesenlerin toplanudir.
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W)= (1) (4.18)
n=1

Ama toplam siklikla uyumlu dogrusal olmayanlar icin yuvarlanir.

Sonug olarak, toplam karsilik icin dogrusal olmayan diferansiyel denklemin yerinde,
dogrusal olmayan karsiliklarin bilesenleri icin, belirtilen bir dogrusal diferansiyel denklem
hizlica ¢oziiliir, her seferinde de uygun bir esitlik kullanilir. Uygun egitlik bu islemin n.
asamasinda daha onceki asamalarda elde edilmis daha diisiik dereceden bilesenlerin
dogrusal olmayan karsiliklarin ¢oziimiiniin bir fonksiyonudur. Toplam karsilik icin seri
esitliklerinde tiim bilesenlerinki toplanir.

V. HARMONIK GIRISLER ICIN DOGRUSAL OLMAYAN AKIM KAYNAKLARI

Bundan onceki boliimlerde, dogrusal olmayan bir diferansiyel denklemin ¢oziimiinde, paralel
olarak baglanmis dogrusal olan ve olmayan elementlerle bir akim kaynagi tarafindan
yiiriitiilen terminallerdeki voltaj icin alisageldik, azar azar ilerlemeli metot sunuldu. Dogrusal
olmayan elementlerin tipi, voltajdaki giic serisine baghdir. n. derecen dogrusal olmayan
karsiligt daha kiiciik dereceden dogrusal olmayan karsiliklarin bulunarak bir sonraki
seviyeye gecilerek gosterildi. Simdi birinci adim, tekrarlamanin her bir alt seviyesinde n.
derecenin akimi , dogrusal olmayan element sanki dogrusal bir devrenin kaynagi gibi
davranmir. Bu metot dogrusal olmama gii¢ serisi tipini genellestirir.

Bu boliimde, bircok ornekleri tarafindan gosterilen dogrusal olmayan elementlerin genel
girisler icin ve ozellikle dogrusal olmayan transfer fonksiyonunun elde edilmesinde ortaya
ctkan harmonik girigler icin n.dereceden akimlart elde edecegiz.

Bu metotda bahsedilen dogrusal olmayan elementler giic seri bagimliliginin agagidaki
durumunu icerir.

Dogrusal olmayan kondiiktans

i(t)= K v'(t)=k(v) (5.1)
n=l
Dogrusal olmayan indiiktans
i)=Y, [vi(Hdi=I(v) (5.2)
n=l1 —oo

Dogrusal olmayan kapasitans

d d
i(t)=—22yv"(t)=—Yv) (5.3)
drno " dt
“Bagimli dogrusal olmama” (genellikle aktif dogrusal olmayan elementlerde karsilagilir).

i(t)= i icmnum(t)v” (t)y=I'(u,v) (5.4)

m=1n=1

Burada u ve v devredeki farkli noktalardaki voltaji gosterir ve toplam isareti dogrusal terim
icermez. Genellestirilmis dogrusal olmayan kabul,
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i(1)= ij T by gyt vt =7 )dT; = H (v) (5.5)
n=1 i=1

Bunlarn iigii anliktir, Dogrusal olmayan hafizaya karsilasiimaz, ornegin bir hafifce dogrusal
olmayan devre elemani DC igletim noktasi hakkinda serinin ilk birkac terimi tarafindan
belirtilebildigi zamandir. Hafifce dogrusal olmama teriminin anlami devreyi etkin bir sekilde
karakterize etmek icin giic serisinin sadece ilk bazi terimleridir. Dogrusal olmama d) bir
bagimli dogrusal olmama olarak adlandirilir. Bununla element aktif ve devrede bagka bir
vere kaynak olarak yerlestirildiginde ve iki diigiim arasinda yerlestirilmediginde
karsiasilir.Akim ve gerilim asagidaki esitlik ile ilgilidir,

Vioplam (t)=vy+v(1) ve itoplam (t)=iy +i(z)

vy ve iy hareketsiz kosullarim yada dogrusal olmayan elementlerin isletim noktalarin
gostermektedir.

Ik olarak, son iki boliimde belirtilen v(t) de bir gii¢ serisi olan iy () akimini
genellestiren dogrusal olmamayt gozden gecirir.

I (t)=>Y. K v'(t) (5.6)
n=2

Toplam isareti ile ¢ceyrek terimleri baslayalim. Burada dogrusal terimler dogrusal devreleri
icerir. Gerilim v(t) su sekilde bir formiilii vardtr,

v(t)=ivn (1) (5.7)
n=l1

v, (t) kendiside giris akum i(t) boyunca bir fonksiyondur.

v, (t)=j'._;o.jhn (T yorer Ty Vit =T )yoernni (t =7, )dTy ....dT, (5.8)

Esitlik (5.6)’min toplanumi, uygulanan i(t) akimumin giiciine bagimhiligina gore iyy (t) nin

bilesenlerini gruplayarak yeniden diizenleme imkanumiz var. Bu diizenleme sonucta toplami
verir.

Iy (1)= éin(t) (5.9)

i,(t), i(t) de n.derecen dogrusal olmayan bilesenin dogrusal olmayan akimidir. Ornegin
esitlik (5.7) yi esitlik (5.6) da yer degistirirsek ve uygun terimleri toplarsak, sunu buluruz :
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i (1)=K,v? (1)
i3 (=K (1)+2K,v  (1)v, (1)
iy (=K, () +3K3v2 (10)vy (D +K, [v2 (1) +2v, (Dvs (D |vs. (5.10)

Bu usul asagidaki tekrarlamali olacak sekilde simetrilestirebilir. Ispati EK-A’dadur.

n
i(t)=> K, v ,n (5.11)
m=2
Burada,
n—m+1
Vi = 2 Vil E Vi (5.12)
i=1
ve
Vi1 =V (1) (5.13)
TABLO 1 v,,, in Tablosu
Dogrusal | Bilesen V,, ,
g]imayan n=2 n=3 n=4 n=>5 n==6
i " K, K; Ky Ks K¢
iy | m=2 v12
iy | m=31] 2v, v}
i4 m= 4 2V1V3 + V22 3V12V2 Vf‘-
lS m= 5 2V1V4 3V22V3 + 3V1V22 4\/13\/2 Vis
ig | m=6 20,V + v32 3v12v4 + v23 4v12v3 + 6v12v22 5v14v2 vl6
- 6V1V2V3
Vipm = VI (1)
Vit = (m=1v" 2 (), (1)

Bazi tekrarlamal terimler v, ,, Ornekli gdsterim yoluyla hesaplanir, esitlik (5.10) daki

dogrudan hesaplamalar: saglar. Bunlar, tablo 1’de n=6 dereceleri boyunca i, ’in bilesenleri

olarak cizelge olusturulmustur.

Benzer bir yontem, diger dogrusal olmayan giic serileri ile ve Ek A’da tartisilan
boyle orneklerle izlenebilir. Genellestirilmis dogrusal olmayan kabul esitlik (5.5) tarafindan
belirtilir. Buradan su denklem elde edilir.

n o]
i, (=21 . Jhy, (7). Iv,, 4 dTy ndT,  (5.14)
m=l ~=

18



Burada,

n—m+l1
Vion = dvi(t—1, Wopsin, N2ZmM (5.15)
i=1

Onceki boliimlerde, devrede her bir dogrusal olmama durumu icin n-1 . derecenin dogrusal
olmayan akimi gosterildi, pesinden dogrusal bir diferansiyel esitlik den n. derecenin dogrusal
olmayan karsiig1 gosterildi. Ozellikle eger girisler orantisiz olan iislerin toplami ise, n.
derecenin dogrusal olmayan karsiligi, tayf bileseni olarak fi,....., f,, frekans toplaminda

dogrusal olmayan H,(fi,......f,) transfer fonksiyonu icerir. Bu sebepten dolayi, dogrusal

olmayan transfer fonksiyonunun elde edilmesinde kullanilan “arastirma” metodunda, esitlik
K’min toplami oldugunda dogrusal olmayan akim kaynaginin ne oldugunu diizenlemek
faydalidir.

(1S exp( j2nf.t) (5.17)
k=1

i(t) nin Fourier doniigiimii K delta fonksiyonunun toplamidur.

K
I(f)=D0(f—fr) (5.18)

k=1

i(t) ye gore dogrusal olmayan akim kaynaklari dereceleri tarafindan, farkli derecelerin voltaj
karsiliklarina bagli olarak dogrusal olmayan akim bilesenlerini belirten onceki boliimlerde
genisletildi. Bu boliimde, devre iist limitlerine ulastigindaki voltaj karsiliklarinin boyle
iiriinler icin esitligi tiiretecegiz.

Simdi n.dereceden voltaj karsiligina ait esitligi yeniden gosterelim

V(1) =j._°.° JH, (& ...¢, ).gl(gi Yexp(j27&;t)dé (5.19)

Boylece v, (t) nin Fourier doniisiimii :

vn(f)=j._°.° JH, (&) 0(f =&~ —§n)é1(§i)d§ (5.20)

K delta fonksiyonun toplami olan girig tayfi icin, esitlik (5.18) den esitlik (5.20) yi
degistirirsek:

V., (f)zan (fkl ’“"fkn )5(f—fk1 _""_fkn ) (5.21)
k
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Prosediire aciklik getirmek icin, oncelikle v12 (t) gibi basit bir terimin Fourier doniisiimiinii

gozden geciririz, akim iislii oldugu zaman birince dereceden karesidir. Onceden oldugu gibi
F[.], gosterimi basitlestirmek icin Fourier doniisiimii olarak gosterilecek.

[T vE(t)exp(—j2aft)dt=F[v2 (1)]. (5.22)

vi(t), esitlik (5.22 ) nin integralinde V,(f) nin Fourier doniisiimiinii ifade etmektedir, integrali t
lizerinde disari ¢cikartiriz, bu sayede sunu bulabiliriz:

FlvZ (1= [Vi (& W, (£,)8(f -& —&,)dE &, . (5.23)

Simdi esitlik (5.18)de verilen ozel esitlikle ve K= 2 alirsak, esitlik (5.21) den esitlik (5.23)de
ver degistirirsek, sunu elde ederiz :

FIvVEOI=HE (f1)8(f=2f)+2H ((f)H ((fy)8(f—f1—f2)+HE (f,)8(f=2f,) (5.24)
Bu tayf f, + f, bileseninde H ( f, )JH ( f, ) katsayisina sahiptir.

Daha genel olarak, n. dereceden dogrusal olmayan kaynaklarin tayfinin elde edilmesinde,
sistemi K=n iislerinin toplami ve dogrusal olmayan akim bilesenleri her zaman
o(f — fi —....— f,) de bilesenleri ile ilgilidir, n! tarafindan boliinen tayf katsayist F,[v(t)]
ile gosterilir. s iceren vi(t) den farkli bir terim icin her biri m; i= 1,2,...., boylece
mp+mo+...+my-M buradan,

m m 0 mlkl m1k1+m2k2
Lo o T 0™
1 ) e Jj=myky+1
Vi, (€ T Vi, (&) (5.25)
I=n—k ¢ +1

5(f—i6gi )dgy ..dg,
i=1

Burada
N
Y mik; =n (5.26)
=

S1seeees [y frekansinda dogrusal olmayan akimun (1/n!) . tayfimin katsayist icin kazangtir.

Fn[v]’zl (t)..... vl’fss (t)}:NO
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z Hk1 (fl, ,fk )..... Hkl (fmlkl—k1+1 S fmlkl )....
e (5.27)
.Hks (fn—msks+1 geees fn_msks+ks )Hks (fn_msks+1 seees fn )
__________ m Sfakt('igri—_________
Burada
m !
No =k D™ (kyD)™2 (kD) Sm' m ! (5.28)

Ve toplam, farkli argiiman kiimeleri iireten f; ,iizerinde permiitasyonlardan farkli terimlerin
tamamimin sonuglaridir. Boyle katsayilar her bir frekansa gore simetrik yapildigi aciktir.
Gosterimi kisaltmak icin simetrilestirilmis fonksiyonlart kullanmak uygundur, bunlart basitce
tiim permiitasyonlarin toplaminda ilk terimin oniinde S sembolii ile gosteririz,

Slpkl (fl ""’fkl )Pk2 (fk1+l ""’fkl +ko )"'Pks (fn—msks +1 ""’fn )J:

=N, fZ Pry o fiey VP, (Fayatoes Fa kg Do Pry, (o k41000 S 0) (5.29)
ki

Simetrilestirilmis fonksiyon gosteriminin bir ornegi olarak, esitlik (5.14)ii kisaltarak
yazabiliriz

Fu[v2 ()vy (OI1=STH((f)H (f2)Hy (f3+f4) ] (5.30)

ve genel olarak,

my  my g _
F, [vkl Viy e Vi, (t)}—S[Hk1 (fi ’”"fk1 VHy,
(fi 41 Sty H
(F gy =ky 41 Py VH ey (5.31)

(fm1k1+l ’“"fmlkl +k2 )
Hks (fn—ks+1 ,“',fn )]

Burada mik; + maks + ...+ mks, = n dir.

Ayrica tamimdan her sabit icin oldukca aciktir.

F, [Av(1)]=A"F, [v(1)]. (5.32)
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Genel olarak,
Fo lu(t)+v(D]#F, [u(t)]+F, [v(D)]. (5.33)
Esitlik (5.31)’i egitlik (5.10)’a uygularsak, sunu elde ederiz,
Fylis (D1=K3Hy (fi)H (f2)Hy (f3)+2KySTH{ (f)Hy (f3,f3)] (5.34)

Ozetle, iislii sayilar tarafindan yiiriitiilen farkli derecelerin dogrusal olmayan akim
kaynaklarmmin elde edilmesinde kullanilan metot su sekildedir: ilk once farkli dogrusal
olmayan voltaj bilesenlerinin n. derecenin akimi bir fonksiyon olarak bulunur sonra F[i,] de
no(f = fi —....— f,)nin katsayisim  bulmak igin esitlik (5.31) uygulamir. Bu katsay

genellikle dogrusal olmayan transfer fonksiyonlarimin diisiik dereceden simetrik iiriinleri
cinsinden ifade edilebilir.

VI. DEVRE ANALIZI

Basit tek diigiimlii dogrusal olmayan devre (Sekil.2) boliim Il de her bir soyut bilesenin
agmn bir¢ok diigiim ve iki veya daha fazla dogrusal olmayan elementlerin tiim onemli
ozellikleri analiz edildi. Bu boliimde arastirma metodunu dogrusal olmayan transfer
Sfonksiyonu icin ve dogrusal olmayan akim metodunu dogrusal olmayan karsiliklar: elde
etmek icin kullanacagiz ve bu metotlart birlestirecegiz. Bu metotlarin birlestirilmesi giic serisi
tipinde dogrusal olmayan element iceren dogrusal olmayan aglarin genel ¢oziimiine liderlik
eder.

Yg Ya Yb

Vg
va YL
NON-ELEMAN vc

Sekil 3. Basit bir ii¢ diigiimlii dogrusal olmayan devre

Bu metot bir ornekle aciklanacak. Sekil 3 deki ti¢c diigiimlii basit bir devre diisiinelim.
Diigiimlerin voltajlari v, , vy, v. olur ve Fourier doniigiimleri V, = V,(f), Vi = Vi(f), Ve = V(f)
dir. Akim tek bir dogrusal olmayan eleman boyunca voltajinin giic serisi olur.

i, (1)=K[v, (t)]=iKnvl’} () (6.1)

n=1

Gosterimi basitlestirmek icin F[.] Fourier doniisiimii gostermektedir. Boylece
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FIK[vy(t)]]= [K[v,(t)] exp(—j2nft )t (62)

Kaynak ve yiik girigi Yg = Yg( f ) ve YL = YL( f ) dir. Frekans alaminda devre diigiim
esitlikleri su sekildedir.

Y,(V, =V, )+Y,(V, =V, )=0

Burada Y, =Y,(f),Y, =Y,(f) ve Y. =Y.(f) diigiim girisleridir ve Vg = Vg (f) voltajin
tayfidir.

Simdi [Y(f)] dogrusal olmayan elementler ¢cikarildigr zaman olusan dogrusal agin dogrusal
kabul matrisi olsun. Daha sonra esitlik (6.3) den

Y, (f)+Y,(f) Y, (f) 0
[Y ()= -Y, (f) K+Y,(f)+Y, (f) ~Y, (f) (6.4)
0 -Y, (f) Y, (f)+Y, (f)

n.dereceden transfer fonksiyonu v,(t) ve v,(t)ile ilgilidir, H ,, (f{,....f,) su

ctkarimda tamimlannugtir.
() oo n
Vo (=2 [ [H gy (fy e £ ). TTV, (fi exp(j 27 1)df; (6.5)
n=1 —% i=1

Benzer cikarumlar v, (t) ve v (1) icin Hy,(fy.....f,) ve H . (f{,....f, ) i tammlar.

Aslinda devredeki ... noktalarindaki voltajlardir.

Dogrusal olmayan aglarin analizinde birinci adim, voltaj V,(f)=exp(j27f) oldugu zaman
V,(f), Vo (f) ve V.(f) de O(f — fy) in katsayilarimi bulmaktir. Bu katsayilar H ,(f),
Hy (), H (f) ile gosterilir ve birinci dereceden transfer fonksiyonlarimin zamanin 'V, (t)

ye gore tamimlanmasudir.
Birinci dereceden transfer fonksiyonlari icin matris esitligi su sekilde ¢oziimlenmelidir.

H,(f) 1
[Y(fl)] Hbl(fl) :Yg(fl)o (6.6)
H,(f) 0

Burada kolon vektoriinde verilen birimler kaynaklarin diigiimlerdeki yerini tanmimlar. Matris
esitligi (6.6) min ¢oziimiinden elde edilen kazang,
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Hal(fl) 1
Hy,(f) =[Y(f1)]_1Yg(f1)0 (6.7)
H,(f) 0

Dogrusal olmayan analizin ikinci aduvmi ikinci dereceden dogrusal olmayan transfer
Sfonksiyonlart H ;5 (f 1 f2) , Hpr (f 1, f2) ve H»(f, fr) igin ¢oziimleri saglar. Bu transfer

fonksiyonlart iy (1) tarafindan iiretilen bir dogrusal akimn  28(f — f;— f,) mn
katsayilaridir. Dogrusal olmama boyunca akimin degeri, V,(f)=0(f— f1)+0(f = f3)

ctkarumi tarafindan sebep olunmus olabilir. Onceki béliimlerin sonuclart ikinci dereceden
transfer fonksiyonlarimin ¢oziilmiis olmasina baglhidr.

H,(fi.f) 0
[Y(fi+ £ Hy(fifo)|=| =Ky Hy( fi)Hy(f,)| (09
H,(fi fy) 0
Kazanci ise
H, ,(f,f) 0
Hoyo( fi 2 ) |[=I1Y(Fi+ £ )17 =Ky H o ( f)H(f )] (@Y
H (fi,f.) 0

Uciincii dereceden dogrusal olmayan transfer fonksiyonlari icin, suna sahibiz:

0
H,3(f15f2:13) (6.10)

_ -K;H (fl)H},l(fz)Hbl(f3)
Hys (f1.f25/3) Z[Y(f1+f2+f3)]1 3 3 bl
Hoo G farf) 2Ky STH 1 (fi)H yy (f2 0 f3)]

0

ve dahasudir.

Eger devre daha fazla giic serisi tipinde dogrusal olmayan element iceriyorsa,
gercek derece tiim dogrusal olmayan akimlart egsitlik (6.2) deki gibi orijinal diigiim
esitliginden tiiretilen matrislerin icinde goriiniir.

Genel prosediir Sekil 4. de gosterilmistir.

Yg
NONLINEER DEVRE
CIKIS
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NON-ELEMAN NON-ELEMAN

Yg
S(r-11) BIRLESTIRILMiS DOGRUSAL DEVRE H, ( fi )

NON-ELEMAN NON-ELEMAN
B
Fn(ian) Fn(ibn)
I

Yg

BIRLESTIRILMIS DOGRUSAL DEVRE | H,, (f....f,)

| | | |
Fu (icn) Fulia)

C

Sekil 4. Dogrusal olmayan ag analizinin ¢oziimii icin prosediir. (a) Dogrusal olmayan ag. (b)
Dogrusal agin ¢oziimii. (¢) dogrusal agin dogrusal olmayan akim kaynaklari ile ¢oziimii.

Adim 1 : Ag icindeki dogrusal olmayan elementi taniyin. Bu elementler kavramsal
olarak yeniden diizenlenerek agin dogrusal parcalarvun tasarimumn disina cikartilabilir.
Daha sonra verilen dogrusal olmayan agr dogrusal ag olarak , dogrusal olmayan
elemanlarin cesitli cikislara bagl olasiyla yeniden elden geciririz. Bu dogrusal devre
birlestirilmis dogrusal devre olarak adlandirilir. Birlestirilmis dogrusal ag sadece agin tiim
dogrusal elemanlarimi icermez ayrica dogrusal olmayan devre elemanlarimin tiim
bilesenlerini de icerir. Her bir dogrusal olmayan elemente baglanan uglar, dogrusal olmayan
uclar olarak adlandirilir.

Adim 2 : Analizin ikinci advmt olarak, tiim dogrusal olmayan uclar agik devre olsun.
[H,(f)] dogrusal agin birinci dereceden transfer fonksiyonu olsun.

H o, (f )]
H 4, Cf1)

(6.11)
[H ; ( f)] =
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Diigiimsel egitlikler kiimesinden, dogrusal ag disindaki tiim bagimsiz elementlerdir.
Ornegin, giris cikis uclari ile tiim dogrusal olmayan uglari su sekilde aliriz :

1
0

[H (O1=IY(O17 Y, (f)] (6.12)

0

Adim 3: Daha fazla analiz icin giris voltaj kaynagt kisa edilmis ve sifir-kabul (Norton)
akim kaynaklar: tiim dogrusal olmayan uclara baglanmigtir. Her bir akim kaynag ¢ikis ucu
dogrusal olmayan element boyunca birinci dereceden akimdir.

Adim 4: ikinci dereceden dogrusal olmayan transfer fonksiyon vektorii icin ¢oziim:

[~ Fy (ig) |
—F; (ij5)
—F (i.o)

[H, (fi+DI=1Y (fy + )17 . (6.13)

Burada i,,,i,,, i, ... , n = 1,2,... dogrusal olmayan element boyunca a,b,c...
diigiimlerinde ve F,li 1, n\o(f—fi—...—f,) in katsayisidir. Burada i, in kaynak
gerilimi :

Vo(f)=28( 1~ 1)

Adim 5 : Istenilen n. dereceden dogrusal olmayan transfer fonksiyonunun elde
edilmesine devam edilir.
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[~ F, Gigy) |
_Fn (ibn )
—F, (i)

[H, (fy+et 1=V )+t £, . (6.14)

Boliim 1V de tartisildigi gibi, n. dereceden daha diisiik olan transfer fonksiyonlar
dogrusal olmayan akimlar i,,,i,,, i.,,... ile ilgilidir. [H,(f)] vektorii birlestirilmig
dogrusal agda bulunan bagimsiz ¢ikislar kadar cok elemente sahiptir.

Tayf bilesenleri F,(i,) in fi,....f, frekanslarinda oneminden dolayi, bunlarin
hesaplanma metodu boliim 111 de tartisilmistir.

VII. DOGRUSAL OLMAYAN SISTEMLERIN ARDISIK (KASKAD) BAGLANMASI

Dogrusal olmayan bir agin analizi bir onceki boliimde anlatildi ve kabul matrisi
[Y(f)lnin tersini gerektirmektedir. Ag diigiimlerinin sayist N ise ve N genisse,
hesaplamalarin sayisi kabul matrisini ters cevirmek icin N° ‘e asagi yukart orantilidir. Bir
merdiven agda, siklikla agi parcalara ayiwrarak her bir parcamin kendini ayri analiz etme
imkani vardir. Her bir parcada daha az diigiim bulunur ve kabul matrisi tiim aginkinden daha
hizlt olarak ters cevrilmis olabilir. Bundan sonra tartisilan onemli nokta her bir parcanin
transfer fonksiyonlarimin birlestirilmesinden dolayt , bu parcalarin transfer fonksiyonlarinin
elde edilmesidir.

Burada sunulan sonug, dogrusal olmayan transfer fonksiyonlart icin alisiinis caglama
sonuglarim degistirmektir. Ornegin, [9] boliinmiis evreler arasindaki dogrusal birlesme bir
hesaba alimir. Devrelerin, evrelere boliinmesi dogrusal olmayan iletisimin ihmal edildigi
noktalarda yapilir.

Bu dogrusal birlesme varsayimi devre olciileri sunulan birlesmeler arasi degisimde
dogrusal olmayan devre evrelerinin kesinligini anlamli olarak gelistirildigi gosterilmistir. Bu

yaklagim iki dort-terminal o vefS aguun, sekil 5 de gosterilmistir, boliinmesinin referanst ile
acgtklanir.
Sekil 5 deki o devresini diisiinelim. Thevenin gerilim iireteci u,(t), aa’ ¢ikisindaki

seri a devresinin giris empedanst Z 4 ile kendi empedanst Z , yu yiiriitiir. Bu bb’ ¢ikisindaki
ctkis gerilimi v, (t) iiretir ve bir yandan bir yana Z, yiikler. Simdi o devresinin ¢ikis
empedansina, ¢ikis ucu bb” den bakildiginda, Z, esitolurolur. Z,,Z,, ,Z, empedanslar

dogrusal kabul edilir. Buradaki « devresi de dogrusal degildir. Aktif dogrusal olmayan
elemanlara izin verilir, agdaki tiim voltaj ve akimlarda saglarmir, giris voltaji u,(t) mn

degismeyen zamanli fonksiyonudur.
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Zp
A
Zﬁo§
Dyw | 3 2L
N Vi
eksik
— A o«-DEVRESI [ 4 B-DEVRFST 7
70O T 71 Zy0 T
w7 L | vl 57 L |52,
- DEVRESK Vy
6 Uaf 5 8
v - DEVRESI

Sekil 5. a — f ¢aglamasinin gosterimi

a devresinin boyutsuz  n. dereceden dogrusal olmayan transfer fonksiyonu
A, (fiseefy) s Uy () ctkis geriliminin tayfimin Volterra seri acumiyla tanimlanir.

Vo, (f)= ij. . JA, (&) 0(f =&~ mE), )ﬁUa (&,)d¢E; (7.1)
i=1

n=1 —°

Burada U ,(f) , u,(t) 'nin Fourier doniisiimiidiir.
Benzer sekilde [ aguun n. dereceden boyutsuz dogrusal olmayan transfer
fonksiyonu B, (fi,....f,), sekil 5 de su ¢citkarim tarafindan tanimlannustir.

Ve (f)= ij. . B, (&), 0(f =&y =8, )ﬁUﬂ (§;)ds;  (7.2)
n=l —% i=1

Burada 'V Y (t)ve u V; (t), B agwmn artan giris ve ¢ikis voltajlaridir. Kaynak empedansi

Z B B agimin giris empedanst Z, Bl Ve yiiklenen Z AL empedanst tamamen tekrar dogrusal

kabul edilir.
Sonug olarak y devreyi u, (t) giris voltaji, ¢ikis voltaji 1% (t) ve n.dereceden

dogrusal olmayan transfer fonksiyonu C, ( f1 ,...., f, ) su sekilde tamimlanr.
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V, (1)= ij. i JCu (&1 né).0(F =1, )IQ[Uy (&) df; (7.3)
n=l % i=1

Burada kaynak empedansi Z 7,,giri,v empedanst Z a Ve yiik empedansi Z A hepsi
vine dogrusal kabul edilir.

Varsayalim ki y devresi, aslinda 27 =Z, ve Z;L = Zﬁ] ile @ ve B agimn bir

caglamast olsun boylece a vef geri doniip « ile iliski icinde olmaz. Simdi Z B = Zyo @

sahibiz boylece [ boliimiinii yiiriiten Thevenin kaynak esitligi boylece o boliimiiniin
asagidaki empedans doniistimii ile ¢ikigiyla iliskilidir.

U (et D2 (D (7.4)
of Z,BI f) o :

Bu boyutsuz voltaj doniisiimii T(f) tarafindan tanimlanir.

Zoo (F)+Zg (f)
T(f)= 1% (7.5)
(f Za (1) o ()

Simdi y min ¢iktisvu ifade edebiliriz hem de sadece [ ya referanst ile ifade ederiz.

V(1) =3 - [By (b )8 (f—E =€, )f[luaﬁ &) (76

n=l —%

Esitlik (7.4) den esitlik (7.6) ya degistirdigimizde,

V,(f)= S By (&) e ). 8(f =& ==, )EIIT«S,- Wy (§)dE; (7.7)

n=1 —%

Boylece esitlik (7.1) den esitlik (7.7) ye yer degistirdigimiz de, & vef3 boliimlerinde caglamus
cikis tayfini elde ederiz.
Dikkat edersek esitlik (7.3) ve (7.7) esit olmak zorundadir. Bundan dolayr dogrusal

olmayan transfer fonksiyonu C,(fi.....,[f,), ya esitlik (7.3)ii yada esitlik (7.8) i verilen
no(f — fi—...— f,) katsayist ile V,(f) ¢iknsinda sistemi n iislerinin toplamindan
ctkardigimizda kullanilir,

Uy (£)=26(5~f1). (7.8)
k=1
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Esitlik (7.3) ve esitlik (7.8 ), esitlik (7.7) de yer degistirdigi zaman, belirtilen sinirlamalar
kaldirilir ve bilesen f| + f, +....+ f,, de yerlestirilir. Buradan asagidaki sonucu buluruz :

Ci(fi)=A(fOT(f1)By(f1) (7.9)
Cz (f1 ,fz):Al (fl )A1 (fz )T(fl )T(fz )Bz (fl ’fz) (7.10)
+ Ay (f1,f2)+T(f1 +f)B(f1+f,) .
3
C; (f1,f2,f3)Z{HA1(fi)T(fi)}B3 (f1:f2-f3)+S[A; (f1).
i=1
Az(fz,f3 YI(fI)T(fy+f3)+By(f1,f2,.f3)]+ (7.11)

AL (f1sfo s ST+t f3)
By (fi+fr+f3)
Bunlarin yorumlar esitlik (7.10) dan su sekildedir; y nin ciktisinda f; + f, deki bilesen

dogrusal iletisim boyunca & ve [ daki ikinci derece boyunca dogrusal olmayan iletisimi
etkiler ama S deki dogrusal iletisim boyunca etkiler.

Benzer argiimanlar C;(f},f,,f3) deki birlesik terimleri yorumlamak iginde
yapilabilir. Genel olarak,

Cop (f1 s fp) =D STAL (S sees i Do
k

Arm -(fn—kM +1 5 S

kl kl
T fi)-TC 2 f;). (7.12)

i=1 j=n—k,, +1

kl n
By QO fides 2 F1D

i=1 j=n—k,, +1

Burada toplam semboliiniin altindaki k olast farkli (ky,.....ky; ) in kiimelerinin toplamim
belirtir. Oyleki

Yk, =n (7.13)

Yiiksek dereceden dogrusal olmamanin karmagsik hesaplanabilir dogrusal olmayan transfer
fonksiyonu olarak goriilebilir. Her iki boliimiinde hafifce cikarilan devrelerde, aralarinda
dogrusal baglanma hem katsayr hem de bircok hesaplama icin gereklidir.

Son zamanlarda Penfield [38] tarafindan yapilan calismalar, 2-ugclu devrelerin
ayrilma metodu dogrusal matris kullanarak ¢ok boyutlu matris ailesinin kullanilmast boyunca
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dogrusal olmayan aglara genisletilebilir. Bu metot her bir basarili dogrusal olmayan
derecenin bir tam ¢oziimiinii saglar.

VIII. ELEKTRONIK DEVRE MODELLERI

Sadece dogrusal analizler kullamildigi siirece dogrusal modeller uygundur. Dogrusal
olmayan analizler basarili bir sekilde uygulandiginda, cihaz icerisindeki dogrusal olmayan
mekanizmalara dogrusal modeller uygulandigindan onemli olur. Cihazlarin modelleri
genellikle artan modellerdir. Akim ve voltaj egiliminden isletim noktasi hakkinda akim-voltaj
iliskisini tanmimlar. Eger dogrusal artan model Taylor serisinin bir modeli olarak ele alinirsa,
ihtiya¢c duyulan terimin modelleri hakkinda Taylor serisinin ek terimlerine ihtiyag
duyulacaktir. Iki terim ikinci dereceden bir model verir, ii¢ terim iiciincii dereceden bir model
verir vb. genis igletim noktalarini barindirmak icin genellikle matematiksel modelini ¢tkarmak
akim veya voltajin dogrusal olmayan yapisini tamimlamak ve daha sonra ihtiya¢ duyulan
Taylor serisi katsayilarini tiiretmek icin oldukca pratiktir.

Graham ve Ehrman [23] boyle aktif aletler icin etkin bir dogrusal olmayan model gelistirdi,
bu aletler yari iletken diyotlar, iki kutuplu koseli transistor ve vakum tiipleridir. Bu dogrusal
olmayan alet modellerinin dogasint gosterebilmek icin iki kutuplu koseli transistoriin bir
kopyast ¢ikarildr.

C3

1|
L

GERCEK TRANSISTOR

Cc
V1 b V3
Y2 o
A\

BAZ a, (V2 /,(,) KOLLEKTOR

Ccl1 = —[ l rc
Cgl’ ) CjeT
EMITER

Sekil 6. Dogrusal artan T-transistor modeli

Cesitli igletim gsartlarina gore ozellestirilmis bircok farkli transistor modeli vardur.
Bunlardan en eskisi, Ebers-Moll (1954) , iki diyot kiimesi ve akim jeneratorii ile belirtmigtir.
Bunlardan bir tanesi base-emitter yiizeyi, digeride base-collector yiizeyi dir. Diger biiyiik
isaret modelinde Linvill parca modelini [24] iceren Beaufoy-Sparkers sarj modelidir [25].
Bunlarin iyi bir tekrarint Hamilton et al [26] da bulabilirsiniz. Genel olarak, biiyiik isaret
modelleri genellikle gecici yada anahtarlama problemlerinde kullanilir.

Kiiciik isaretl transistor modelleri, transistorlerin iizerindeki anlamli frekans
genislikleri icin gelistirilmistir. En genel ve ortak modeller melez ve T-modelleridir. Bu
modellerin tartismalarmmt Searle et al [27] Thoraton et al [28] ve Gatrner [29] de
bulabilirsiniz. Her iki modelinde kullanan mikrodalga transistorlerin tekrarini Cooke[30] da
bulabilirsiniz. Sarj kontrol modeli kiiciik sinyal modeline uygulandi ve iyi sonuclar Gummel
ve Poon [31] tarafindan rapor edildi. Dogrusal olmayan T, dogrusal bir gonderici kapasitans
degerlendiren, Narayanan [9] tarafindan analiz edilen, yiikseltici kayip analizine uyguland.
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Graham Ehrman modeli, dogrusal olmayan gonderici kapasitansin etkisiyle dogrusal

olmayan T modelini kullanir [23].

Dogrusal artan iki kutuplu i transistor T modeli gekil 6 da gosterilmistir. Bu modelin 9

tane parametresi vardir.

Ana dagitict direng r,
Ana yayici direng n,
Toplayic1 direng r,

Ana ve gonderici terminaller arasindaki | C,
bas kapasitans

Diffiizyon kapasitansi Cp

Bosluk sarj katman kapasitans Ci
Kollektor-base kapasitans C.

Kollektor-base ve kismi kapasitans C;

Dogru akim kaynaginin kazanci oy =hf, I(1+hy,)

hf, parametresi diisiik frekansl kiiciik-isaret ortak emiter akim kazanci ve emiter

kapasitanst C, =Cp +C, dur.

Aymi transistoriin dogrusal olmayan modelimiz, sekil 7 de gosterilmistir. Yapisi
asagidaki degisiklikler hari¢ dogrusal modele benzer :

Cc3
|1
I
GERCEK TRANSISTOR
Y
vl rb V2 g(v2,M3-v1) V3
. AN— 6 .
BAZ KOLLEKTOR
AVaAY
cl=F/ rc
Kv2
EMITER

Sekil 7. Dogrusal olmayan artan T-transistor modeli
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1) ana- gonderici direnci r,, gelismis dogrusal olmayan diyotla yer degistirir,
boylece v, /1, akimimin yerine , dogrusal olmayan v, de K(v,)akinina sahibiz. Bu diyot
akimi su sekilde modellenebilir.

K (vy)=|1gq|exp(qvy /nkT) (8.1)

Burada I, gonderici késeli akinin dc isletim noktasidir, q elektronik yiik= 1.6x1 0’ C, k

Bolizman sabitidir = 1.38x10%" J K. T Kelvin cinsinden sicakliknir. Ve n ideallik faktériidiir.(
Not : oda sicakliginda, T=300 K, kT/q =25 mV.)

2)Difiizyon kapasitanst Cp dogrusal olmayan bir baska kapasitans ile degistirilir.
Béylece d [ ( C je +C D )Vz ]/ dt akimumn yerine, d . (v2)dt kapasiteli akima sahibiz.

}'e(VZ )dt
, V2 nin dogrusal olmayan bir fonksiyonudur.

=C C C’ Kl 2 K2 3
Ve (vy)= jev2a +Cpovy +Cp ( 5 vy + 3 V5 eer) (8.2)
Burada Cp, Cp egimli noktasidir, ve Cj, de kendisinin tiirevidir. Burada gonderici sarj

modelinin bir voltaj tarafindan kontrol edilen dogrusal olmama oldugunu not edelim.
3)Toplayict  koseli kapasitans C,. dogrusal olmayan bir kapasitans ile yer

degistirilir, boylece artan akim d[C-(vy —vy)]/dt, dyc(v3—vy)/dt ile degistirir. ¥, sarji
(v3 —Vv,) de dogrusal degildir.

Ye(vs—vy ) =k(v;—v, ) (8.3)

Burada k bir sabittir ve u dada kogeli kirlilik derecesine baglidur.

4)o jeneratorii av, I'r, dogrusal olmayan akim kaynagi olan ve hem hrpp hem de
¢1g dogrusal olmamasini modelleyen g(v,,vy —vy) le yer degistirilir. Bu kaynak modellerde
cok karmasik bir nicelik olarak verilen kapali fonksiyon esitligi ile asagidaki gibidir.

I =—Mol, (8.4)

Burada g(v,,v3—v;), I nin artan degeridir. M ise katlamali ¢arpim faktoriidiir, v —vyin
bir fonksiyonudur, &, 1. ye baghdir ve I artan degeri K(v,) olan gonderici akimdr.

Aletlerin olgiimlerinden model parametrelerinin cikarimi boliim [23] de detayli bir
sekilde bulunmaktadir.
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IX. DAR-BANT ISARETLERIN TOPLAMININ DOGRUSAL OLMAYAN TEPKISI

Tipik iletisim alicilarimin amact verilen bant genisliginde sinyalleri yiikseltmek ve
giris- giiriiltii karisimumi ayirmaktir. Istenen giris sinyali ve istenmeyen girisler merkez
frekanslarina gore tipik dar banttir. Alicilar frekans secen devrelere sahiptirler. Bunlar
ctkista goriinen bolgesel bantlarin sayisi ile sinirlidir. Bu nedenle bircok durumda alicinin
karsilig bilindik kesin giris ve cikis frekans bantlart yontemleriyle karakterize edilebilir . bu
boliimde dogrusal olmayan transfer fonksiyon yaklasimini dar bant bolgesel sinyalin
toplanmumin girisleri oldugu sistemlerin dogrusal olmayan karsiliklarvmin tiiretilmesi icin
uygulayacagiz.

Dogrusal  sistemlerde dar bant sinyalin analizinde, sinyallerin  karmasik
gosterimlerini koyulmast ispatta diigiik karmagsik zarf ve merkezi yada “tasiyict” frekans
bantta tiim pratik amaclar icin rasgele secilen fazi icin uygundur. x(t) sistemine girisi kabul
edilir, K dar bant sinyalinin toplami olur.

K
x(t)= D x; (1) (9.1)
k=1

Ozel olarak bu sinyallerden birisi istenilen sinyal olabilir ve digerleri karisumdur.
Sinyallerin dar bant tipinde olmast diisiik kosiniis ve siniis bilesenlerini c; (t) ve

sy (t) kapsar. Bir tasiyicryt bandin vy ile gosterilen merkez frekansinda modiile eder .
X, (t)=c,(t)cos2nmv,t—s,(t)sin2mv,t (9.2)

2, (t) yi tamumlamak, x,(t) nin karmasik zarfi yavas bir degisim gosterdiginden
uygulanabilir, oyle ki

i (t)=cp(t)+ js,(t) (9.3)

Bu tarumlamalarla, x, (t) nin standart karmasik gosterimi su sekildedir.

x.(t)= Re{zk(t)exp( j27tvkt)} (9.4)

Karmasik degiskenin gercek parcasi ayrica degiskenlerin ve karmasik esleniginin toplaminin
yarisina esittir. Bundan dolayt ayrica suna sahibiz :

Xy (t)=%[zk (t)exp(j27£vkt)+zz (t)exp(—j2av, )] (9.5)
x; (t) nin tayf
Xy (F)=2UZy (F =)+ 2] (<f =) (9.6)

Burada z; (t) ve Z; (f) Fourier doniisiim ciftidir.
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Z(f)=["_z(t)exp(—j2nft )dt (9.7)

veE

2 (1)=["Z,( f )exp( j2nft )dt (9.8)

Simdi Zy(f)=0 olsun ve ZZ (t),Z;(‘< (=f) ve —vi , z4(t),Z_(—f) ve v_; verilen

siraya gore gosterelim. Bu gosterimde giris tayfi su sekilde olur :

1K
X(f)=EZZk(f—vk) (9.9)
-K

Ve giris kendiliginden su sekilde yazilir:

K
x(t)=%2zk (t)exp(j27av,t) (9.10)

Dogrusal olmayan sistemin ¢ciktist y(t) yi yeniden bir Volterra serisine genigsletilebilir.
y()y=2y, ) (9.11)
n=1

Burada 'y, (t)yi n.dereceden ¢ikis bileseni yada n-derece ¢ikti olarak adlandiririz.

y(t)=.]. i [H, (f) s [)-TTX (fi exp(j27f,0) df; (9.12)
- i=1

Burada H,(fi,...., f,) n.derecen dogrusal olmayan transfer fonksiyonudur. Bu gdsterimle n
giris tayfimn iiriinii egitlik (9.12) de su sekilde olur.

n 1 K K
[IX(UfH=— 11 2Zi(fi-vi) (9.13)

i=1 2" k=—K k=—K

Esitligin sag tarafinda formun farkli terimleri (2K)" in toplamini aliriz.

k; ,-K dan K ya kadardir. Boylece
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K

K o
Vo (= Yo Y27 [0 [H, (&) né).
ki:_K an—K —°
(9.15)

[1Z, (i =vi, Yexp(j22;1)d¢;
=1

Esitlik (9.15) de bulunan aynmi {k;} kiimesine sahip integraller, ayn1 degere sahiptir. Ciinkii
H,(&,.....,&,) argiimanlarin yerini degistirmesi ile simetrik olarak belirtilirler. Simdi m;
zamanin sayist olsun, her bir k; ,{k;} kiimesinde bulunur, m;=0,1,....,n, boylece

K
dm;=n (9.16)
i=——K

Burada n\l(m_g!....mg") kimlikli integraller her bir ayri {k;} kiimesinin icindedir. Bu
integralleri toparlarsak,

12-n « 1 :
Yn (l):z I’l' '_[, . IHn (51 """é:n ).szl_ (fi—vkl_ )exp(]Zﬂ'é:it)dgi (9.17)
Kk M_g -.eet Mg . — i=1
Buradaki toplam isareti altindaki k, toplam sadece tiim ayrt {ki............. k, } kiimelerini

gosterir. Simdi esitlik (9.17) de iki eslenik bilesenin toplamini y,,, ile gosterelim.

n
nl2—n 12”%”‘1"

Y (1)=R, —.e (9.18)

[j._Zan(QHki ...... fm+vkn).[_llzi(fl.)exp(jzzfiz)dfi“

Boylece

Yy (O)=2y,, (1) (9.19)
k

Esitlik (9.18) deki integralin yorumu su gsekildedir. Sabit durumda bir, girisi gibi olan
bolgesel bilesenler dar-bant frekansin toplamina sahip dogrusal olmayan sistem, cikista tiim
tagiyict intermodiilasyon frekanslarimin merkezinde yeni bir dar bant bolgesel sinyal
olusturur. Dalga bi¢imi vy, (t) tamimlandigr gibidir ve frekans bolgesindeki dalga bigimini

belirtir.
V=Y v,
1 l
Vi e Vi), de merkezli giris bilegenlerinin intermodiilasyona baglanabilir. Eger bu dalga

seklinin bir karmasik zarfint q,,(t) ile gosterirsek, boylece
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n
Y (1)=Resq,, (t)exp(j27z2vki r] (9.20)
1

n!2_”+1

mj . J.H” (é:l +vki "“"‘fn Vi)
—K ceoe K . —o0

G ()=q, (v vy )=
v “ “n (9.21)

[1Z; (§i)exp(j27;1)d¢;

i=1

Vi e Vi, de merkezli giris bolgelerine gore 'y, (t) yi intermodiilasyon bileseni olarak

adlandiririz. n ¢iktistmin derecesi, intermodilasyon giris bolgelerinin sayisina karsilik gelir,
bu bileseni iiretebilir ve ayrica n. dereceden intermodiilasyon olarak da adlandirilabilir.
Bolgelerin bazilart kendi kendilerine harmanikler olarak intermodiile olabilirler ve n, K dan
biiyiik olabilir.

Vnin: vy ..o vi bilesen frekansinmin permiitasyonunun derecesi onemsidir taki

intermodiilasyon sekli olan 'y, (t) yi etkilemediginde. Eger kiimede bulunanlar sadece

bilesenin derecesi ile ayrilirsa, her iki v kiimesi ayirt edilemez. Esitlik (9.18) ve (9.21) de
bulunan integrallerin karsisinda kombinasyonel katsayi, v’nin tiim (2K)" kiimeleri arasinda
boyle ayirt edilemez kiimelerin sayisini alir. Her iki v kiimesi ayirt edilemezdir eger en az bir
bilesende ayriltyorlarsa. Ayirt edilebilir kiimelerin sayist n intermodiilasyon bolgesi icin her
biri 2K giris bileseninden toplanabilir.

2K+n-1
(9.22)
n
Simdi y,(¢), v frekans toplaminda merkezli frekans bolgesinde y(#) nin bilesenidir.
n K
v=Yv, = Y my, (9.23)
i=l | k=K
Ve simdi g, (t) , karmagik zarfi olsun,
y,(t)=Refq,(t)exp( j2mvt )} (9.24)

Intermodiilasyon iiriinleri simirsiz ¢cok dereceleri ve ¢ok farkly bélgesel bilesen kiimeleri ile
yamindaki bir tasiyict frekansa katkida bulunabilir. Bundan dolay:, y,(t), tim Yy, (t)ve

q,, (t) nin toplamidr.

q,(t)= iqnv(t) (9.25)

v,n=1
Pratikte sadece ilgili toplamin ilk bazi bilesenidir. Ornegin, v; ve vy de iki dar bant
bilesenlerinin girisini iceren dogrusal olmayan bir sistem diisiinelim ve v = 2 v; . v, merkezli
bolge icerisinde ¢ciktinin gozden gecirmesini diizelesin. Daha sonra suna sahibiz :

V, (1)=y3,(E)+ys, (1) +ys,. () +..... (9.26)

Burada v = 2v; + vy, a = (vi, vi, v2),b=(- v; vi v; Vi V2) ve ¢ = (-v2, Vi Vi V2 V2).
Vs, (t)veys.(t) yi incelersek, besinci dereceden ayni frekans bolgesine diisen iki farkl katkuy:
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ifade eder. Bu ornek, ¢iktimin sadece n ve v den ¢ok 'y, (t) bileseninin indisinde biitiin v

vektoriinii tagimanin onemi belirtilmistir.
v = f] ve vy = f, de iki tonlu girisi iceren agik drnekle daha dgretici olacaktir.

x(t) =%(A1 exp( j27f 1)+ Af exp(— j27f 1)+ Ay exp( j27af51) + AL exp(— j27f51)) (9.27)
Boylece giris bilesenlerinin iki bolgesinin karmagik zarflarinin tayfi:
ZI(f)=A16(f) ve Z,(f)=A6(f) (9.28)

Iki- tonlu giris genellikle dogrusal olmayan sistemleri test icin kullamilir. n. dereceden
intermodiilasyon bileseninin fkl""" fkn iistel girislerinin karmagik genligi B( fkl""" fkn)

tarafindan gosterilir. bu genlik egitlik (9.21) den bulunabilir.

(9.29)

!
B(fy, s fr, )= L L

P Hy (g s iy Do by ook, =71,42
2 m_s'm_j'm_;'\m,!

TABLO II BiRiNCi VE iKiNCi DERECE DOGRUSAL OLMAYAN KARSILIKLAR

Kombinasyon | Kombinasyon Karsilik | Karsilik genligi Karsilik tipi
No m; | my | m3 | my | frekansi
n=1
1 1 |0 |0 |0 |f A Hy(f)
2 0 1 0 0 f2 A2 H](fz) dogrusal
3 0 |0 |1 |0 |-f) A, Hy(-f))
4 0 0 0 1 - f2 A2 Hl('fl)
S
n=2
1 I |1 |0 |0 |fi+1 A1A; Ho(f), )
2 0O |1 |1 |0 |f,—1) A* A% Hy(fy, -f)) L
3 0 [0 |1 |1 |-f2—f |AA; Ho(-f) ) (
4 I |0 |0 |1 |fi-f; AA*, Hy(f), -f5) ikinci derece
5 1 [0 |1 |0 [fi-fi=0 [IAFH(f -f)
6 0 [1 |0 |1 [fH-—£=0 [IAFHxE -5) b,
intermodiilasyon
7 2 10 |0 |0 [2f 1. )
EAl H, (f;,f))
8 0 |2 |0 |0 |21, 1.,
S A Hy (M, 1) \
9 0 |0 |2 |0 |-2f | o
EAI HZ(fl"fl) ikinci
10 0 [0 |0 |2 |-2f *
? LN R
2 harmonik

Birinci dereceden giris ve cikis bilesenleri harici olarak tablo Il de listelenmigtir ve iiciincii
dereceden bilesenlerde tablo Il dedir. Bundan dolay: tiim olasi kiimelerin toplami, her bir
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{- fkl — sz,...., fkn} kiimesi, karmasik eslenik genligi ile kendi eslenigine sahip olmak

zorundadir ve listede sunulur, sadece asagidaki durum haric:

Bu y,(t)nin gercek olmasiyla wyumludur. Dogrusal olmayan karsiliklarin her bir tipinin

ismi, karisgim calismalarina etkisinden otiirii etiketlendirilir, son kolonda belirtilmistir. n=1
terimi dogrusal karsiliklar olusturur. n=2 teriminin dordii ikinci harmoniktir ve kalan alti

terimde ikinci derece intermodiilasyon terimleridir. f; ve f, de yirmi dordiincii derece
terimleri vardir, bunlar sikistirma olarak yorumlanabilir, 3 f; ve 3 f, de iiciincii derece

harmoniklerdir. Digerleri uygun intermodiilasyon iiriinleridir.

qnf, (’):A1H1(fl)+§A1|A2|2H3(—f2’f1’f2)+

3 2
ZA1|A1| Hy(=f1.f1.f1)+

(9.30)

Birinci terim dogrusal karsiliktir. Ikinci terim, f>, nin sebep oldugu f; ‘de desensitization
olarak adlandirilir. Uciincii terim f; de dogrusal terimin compression olarak adlandirilir ve

A genliginde ortaya ¢ikan etkiyi belirtir ve artar.

TABLE 11l
Tetro-Oroer NoONLINEAR RESPONSES

fCo:-_':ina:io.—.! Corbinatien ' Freguancy I roplitude | Typ= i
Iii o, 5 ™, Ty amy e, cf R=a3pons= of Response f Response
; 1 i izl a fol e -n- % ;:lizazﬂltfl.fz.-fll .
i z [ 2] 2 (2] Ef-E=-F 3 Al_;2’ HylE,).~F) -5} \ Dﬂfﬁif{?;?,dfi
g 3 2 Lo} L [3] B8 -f= o8, %""1' “zz’*:‘fl"fl"-z] ke el st
i 4 tal ol o J1) gef-f= f 3 AA, TH U, £a-g)
ey IO O H 5, | 2R, B B 1Y
; 5 jel 2] 1 ]of2e,-¢ 3 a] ag Hy (£, £5.-£)) _ Trird-Oras:
: 7 ! e | o] 2 |1|2f,-¢, 3 al%a; Hyl-f.-8,-5) | SRSAEE e
:ﬁ_._”f_ﬁ ; 1ju] e 2j f-2, - 3 Ay :.;2222( £y o= £ymEy) i
9 ; 2 ] 1 jo]ms =6 i %Alj.‘-\l 25{3( £ B8] |) ;
: B . o210 |1 zfz- g gy : A, :;2* Hyl 50 52,—1} ] . ;-;:j;:;g;: 1
A 3 tilaf ¥ yoE At 33, A, B £.-5.-5) ‘P L i
5 12 i 0 ' 1 i o i 2i 725,75, 3 A, 2;.2: Hil £,,-5,.-5)) i |
B ! 2 1 orf o ‘ i ‘25‘1— _fz'_,‘_:b i-’*“_f D HJ{ £ 5.5 1 %

! L] 2'. 0 EE- r s2e | 3a, Rézh'a{ SUREAN | Thizd-Ostar |
5 13 0 * 1! 2 'ici E,-2E } 2 AE A}ZHE{ £,0-5 .5} [ e ,
Tl it B el b o Sk D O e Tl e -8, | MUV
P |3 E oj o ]o 3%, | I3 HAE. &7 2] E] I
P13 030 ig at, :19.;3: 0l e B £1 | !"ﬁ‘!ize_i‘m !
; 19 P o | 0 i 3 | ei-3g) _l:;a; Hy (£ -5 ,-5;) !i = !
] 2 fo ;0! o0 3035 a3 Hy(-£,.-5,.-5) ) i
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10. COKLU ISARETLERIN OLCUMU

Bu boliimde onceki boliimdeki analitik sunumu ornek devre ve alict safhalarindaki
olciimlerle iligkilendirecegiz. Burada dogrusal olmayan devrelerin iki sinyalli test metodu
lizerine yogunlasiyoruz. Bu sayede olciilen dogrusal olmayan parametrelere bagl dogrusal
olmayan devre modellerinin hesaplanan analitik tahminleri ile karsilastirabiliriz.

Ilk olarak sekil 8 de kaynak onleyici Z ¢ ve yiik dnleyici 7 ile yiikselte¢ blok
diyagraminda belirtilen fi frekansinda giic iligkilerini sorgulayacagiz. Varsayalim ki fi

Jfrekansinda Thevenin kaynak voltaji v (t) k tane siniis dalgasinin toplami olsun ve karisik
genisligi A; olsun. Mevcut giren giic P, (f; )ile belirtilir. Bu giic i¢ engelleyici Z

kaynak tarafindan yiikiin terminallerinden gecerek yiike verilebilecek en yiiksek giictiir. En

fazla durum kaynak dig engelleyici ile yiiklendiginde olur.

2
P, (f)=1 4] =12, (10.1)
AT g Re{Z, ()}

Zs(t)

YUKSELTEG VL(t) | zL(B)

Vs(t)

Sekil 8 yiikseltici blok diyagrami

Cikan voltaj v (t ) farkli ic hafiflemelerine bagl siniis dalga bilesenlerinin
toplanmudir. Varsayalim ki i¢c hafiflemelere bagl giren frekans ifkl J setine baglt v (1)
nin karisitk genislik bileseni B( f ky fr olsun fi frekansinda yiik engelleyicisine

n

verilen ¢ikti giicii.

2
By (/i)
P (f)==RelZ, (f, ﬁ% (102)
’ |7, ()
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f frekansindaki yiikselteclerin doniisiim kazancint soyle tanimliyoruz.

8r ()= () ps(f) (10.3)
ama formiil (9.29) dan
2 2 2
|BCFoO|™ =|A: |7 |H, () (10.4)
boylece formiil (10.1) ve (10.2) yi formiil (10.3) iin icine koyarsak

AReAZ ( f )}RAZ,(f )}
Z,(f )

gr(f)= H(f) (10.5)

i elde ederiz ki H, (f],...,f, ) ik zve kaynak engelleyici z nin oldugu devre icin

tamimlannustir.

Yiikseltecin dogrusal olmayan doniisiim fonksiyon analizinden kazancimi dogru tahmin

edebilmek icin kayna ve yiik engelleyicileri de uygun frekanslarda goz oniine alinmalidir.

Daha genel olarak f ky e f k. deki giren isaretlerin i¢ hafiflemeden kaynakly déniisiim
n

kazanimlart g r ( fkl yeeey fk )ile tanimlanmustir.
n

g7 (fry s Fo V=P (Fry o Fe VP4 (Fr )P a (Fr D] (106)

Hhhhacgiklamayi yaz

2
1 n |B(fk1 ’“"fkn )|
Pr (fi, s Sk, )=5Re Zp| 2 Jx, (10.7)

-1 . 2
()

buna gore iki-ton isaret girisi icin
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2t (n!)2|Hn (fiy ot )|2 RG{ZL{Efki J}ERC{Z.Y (i, J (10.8)

" 2
Zb(szl J
i=1

giicti biiyiik harfle 1 mW la iliskili desibel biciminde belirtiyoruz.

P( f)=10log,[P,( f )/1mW]

P.(f)=10log,,[P,( f )/1mW] (10.9)
benzer olarak bu gosterimde de

P (f)=10logy | p; (f)/1mW | (10.10)

genellikle kaynak ve yiik engelleyicileri 50  olarak genellendirilebilir. Her isaret egit
meveut giic Py (f)=Pyve Z (f)=2; (f)=50%2 olarak varsayilirsa da son iligki

P (f)=P4 +20log o |H, (f)|+6dBm (10.11)
Py (fy, i, )=2P, +20log |H2 (fy, -f, )|+2.04 dBm (10.12)

Py (fy, iy +Jis )=3Py +2010g10‘H2 (fry + Sy > Sy )‘—4.44 dBm  (10.13)

Eger bu ii¢ giic bileseninden herhangi biri tek basina cikarsa desibel dlceginde diiz cizgiler
halinde mevcut gii¢ Py yva karst ¢izilir. Bu demektir ki dogrusal cikti bileseni birlesik bir

egime sahiptir. Gergek devreler de yiikten gecen giic P (f) vi ozel bir frekansta (f) olcebiliriz.
Bu giic o frekansta ki i¢c hafifleme iiriinlerinin biitiin bilesenlerine baghdir. Ornegin f

frekansindaki bilesen
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a1 () +q3 L =) +ras (6 f . fr = fr)+..0(5). 10.14)

Bununla beraber isaretler kiiciik oldugunda kiiciik bir dogrusal olmayan carpitma olusur ve
viiksek dereceli bilesenler onemsizlesir. Kiiciik isaretler icin en kiiciik dereceli bilesen

neredeyse biitiin giicii icerir.

P, (f) =P (f,) i=12. (10.15)
P fo tf, )2 fi fi, ) kiky ky =£112 (10.16)

PL(fk1+fk2 +fk2)5P3(fk1,fk2afk3) (10.17)

Parazit ¢aliymalarinda P(f=1H) By va karst cizilmesi ve bu egrilerin egimlerinin diisiik
kiiciik igaret bolgeleri icerisinde PR pin egimlerinin de kendi sinyal bolgeleri icersinde ki
kesismelerinin denetlenmesi alisa gelmigtir. P () nin egiliminin PR pin egilimi ile her

ikisi de diisiik isaret bolgesinde cizilmistir. Kesistigi yerde cikan giicii L, in n. kesismesi
denir.
Tahmini olarak isaret bolgelerin de bulunan kesismelerin yiiksek isaret bolgesinde de

bulanabilecegi vurgulanmalidir. Tahmin edilen bir kesisme olgiilen bir kesisme ile ayni
sonucu vermeyebilir. Formiil (10.11), (10.13), (10.15) ve formiil (10.17) de ac¢ik bir sekilde bu

tamimdan yola cikarak kesisme noktalarint ongorebiliriz.

3
_ |H, ()]

ve

EXes
|H3 (f2.f2 - f1)]
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n ~
Bu  gosterimlerden n. kesismenin  H  (fi ..., f,) nin |H1 (f1 )| le bagintili

biiyiikliigiine etkisini ol¢tiigii sonucunu ¢ikarabiliriz. Kesisme iizerine bilgiler cogunlukla

genis bantli sistemlerde uygulanir.

|5, (f)|=|H, (f2)|=|H, ()
(10.20)

‘Hn (fk1 ,...,fk )‘ = sabit, biitiin {kl- }icin (10.21)

n

Iki yorumda siralidir. Birincisi n , dereceli kesisme noktasimn degeri biiyiidiikce ozel devrenin
n derecedeki yamiti onemsizlesir. Ikincisi eSer sistem formiil (10.20) ve formiil (10.21)
dekilere dayali olarak genis bantli degilse n derecesinde bircok kesigsme noktasi bulunur ve bu

kesisme noktasinin sonucu belirsiz olur.
11 ORNEKLER

Ornekl : Tek sayfali doniistiiriicii yiikselte¢

Bu boliimde tek safhali doniigiim yiikselticiler icin onceki boliimlerde sunulmug
analizlere dayali olciim ve ongoriileri karsilastirtyoruz.

Sekil 9 devrenin semasint gostermektedir. Doniistiiriicii  bir 2N2950 bipolar
doniistiiriicti olup boliim 9 daki metotlara gore modellenmistir. Yiikseltecin diisiik isaret
ekleme kazamimlart frekans bandina gore olciiliir ve formiil (10.5) kullanmilarak yapilan
hesaplarla karsilastirilir. Sekil 10 da verilen sonuclar 100 kHz den 100 mHz kadar olan genig

frekans araliginda iyi bir uyusma gostermektedir.

Tekli isaret olciimiinii ikili isaret olciimii izlemektedir. Birinci olarak isaretlerin ikisi
de2,5 ve 3 mHz frekansta uygulanmaktadir. Enerji ¢ciktilart Py un fonksiyonlart gibi ol¢iiliir.

Sonuclar sekil 11 de Pl(fl), B= 1) e B o= 1) diizgiin cizgilerin iist liste

konulmasu ile ¢cizilmigtir.
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Yaklasik giren giic seviyesi Py nn -16 dBm veya en fazla biiyiikliigii

| A | - | A, | =25 mv MV’ a kadar cok iyi bir uyusma oldugu goriilmektedir. Benzer sonug¢larda

iki bant dis1 sinyal (fi=-30, ,f2=51,4 Mhz) icinde belirtilmistir. Sekil 12 de gosterildigi gibi i¢
hafifleme egrileri tekrar 25 mv tepe biiyiikliigiinde diiz ¢izgilerden sapmaktadir. 25 mV
olusum yaklasik kT/q nun oda sicakligindaki degerine esittir ki bu deger bizim modelimizdeki

tabandan yayilimli artik birlesme voltajinin gecerlilik araligin kisitlamaktadir.

Ikinci ve iiciincii dereceden i¢c hafifleme carpikligi diisiik isaret seviyelerinde

sabitlenmis frekans denklestirilmesi 0,5 Mhz ‘e olciilmiistiir.

Sonuclar bilgisayar analizlerinden elde edilen diizgiin olmayan 2. ve 3. dereceden
doniisiim fonksiyonlart ile karsilagtirilmistir. Sekil 13 ve 14 te de gosterildigi gibi uyusma her
iki durumda da oldukca iyidir. Bu bize diisiik isaret seviyesinde dordiincii besinci ve yiiksek
derecelilerin dikkate alinmasina gerek olmadigini ve 3. dereceden modelin o girdi araligin da

yeterli oldugunu gostermektedir.
Ornek 2: Bir VHF iletisim alicist

Diger ornekse sekil 15 de c¢izilen biitiin bir AM/FM alicisidir. Alict ozel kati
bilesenler kullanir. 30-100 Mhz RF akort edicisi RF yiikselteci karistirici ve yerel salinimci
icerir. Alicimin diger baglica parcalar sekil 15 de gosterilen Vitf on yiikselteci ve IF yiikselteci
soylendigi gibi RF/IF isaret iglemci yolu icinde 12 doniistiiriicii bulunmaktadir. Alict RF den
21,4 Mhz IF e tek frekans doniistiiriiciisiine sahiptir. Bu heterodyning nin etkisiyle istene tepki

2. dereceden olanlardir. Ve en biiyiik istenmeyen tepki ise 4. derecedendir.

Sekil 16 da istenen tepkilerin olgiilen degerleri diizgiin olmayan devre analizleri ile

|H2(_f1’fL0

hesaplanmug )| la karsilagtirilmaktadir. Teori ile ol¢me arasinda gizli bir uyusma
vardir. Her ne kadar ikisi de 65 dB lik bir farklilik yasasa da isaret seviyelerinde istenen ve
yvansima tepkilerinde esit derecede iyi sonuclar elde edilmistir. Buna gore 6lgiim ve analiz
120 dB biiyiikliik araliginda 3:1 frekans aralig icermektedir. Iki girdi yerel salimm isareti ile
ic hafifleme icin benzer sonuclar elde edilmistir. Ornegin 4. dereceden tepki sekil 17 de

cizilmistir. Analizlerde yer almis bir kisinin diisiincesini aktarirsak dagitimcinin ozellikleri

icinde olmayan aktif alet degerleri dogrusal olmayan model alet degerleri gibi ol¢ciilmelidir.
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Safhalar arast engelleyici ciftleri de tasirma analizindeki sebepler nedeniyle dikkatlice

olciilmelidir.

Spina, Lexa ve Weiner in raporuna gore bilgisayar programi yalnizca onemsiz
bilesenlerle devre degisken degerleri ve safhalar arast engelleyici ciftine ait Olgiim
olmadiginda dogrusal olmayan devre analizinin tipi bize kullanisli sonucglar verdigi olarak

tamimlannustir.
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12. ARDISIK MODEL FREKANS GUC SERISI

Bu arastirma raporunun basinda genel olarak iki isaret girdili ve ¢oklu isaret girdili
ic hafiflemeleri tartisttk. Bu durumlar da dogrusal olmayan doniigiim fonksiyonlarinin
valnizca ozel frekanslarda noktasal degerlere gore sistem tepkisi karakterize edilir. Girdi
bilesenleri ayarlandiginda her isaret tasiyici frekansinda belirli bir bant genisligi kapsar.

Dogrusal olmayan doniisiim fonksiyonlari her i¢ hafifleme bilesenin bant genisligi
boyunca sabit olana kadar alanlarin ortasindaki nokta degerleri dogrusal olmayan doniisiim
fonksiyonlarin hareketini aciklamak icin vyetersizdir. Oyle bile olmasa biitiin dogrusal
olmayan doniisiimleri her durum icin oOzellestirmek gereksizdir. Iletisim kanallart ve
alicilarimin dogrusal analizlerinde ki duruma kiyasla kesin kanonik modellerinin kullanimiyla
karakterizasyonunun etkisini artirir. Bir kanonik modeli biitiin dogrusal olmayan doniisiim
fonksiyonun ozel girdiye uygunlugu ile yaklasik olarak ortaya cikmaktadir.

TABLE IV

SELECTED OLTPUT COMPONENTS FOR A MILDLY NONLINEAR SYSTEM HavVING THREE
= . F Narrow-Banp InruTs (K = 3)

f Frequency Coavaaticaal |
§ Input Comgcnents Zone Volterra Analysis Analysis
i
Desirzd v, 5;° Sl(t) Ay
Undesired vy 12 = izft) 2
Undagirad sy iJ = i,{(x) aq
Complex Output Envelopz | Outp:t Powes
q_  (t) Serizas Terms
F (v )s a:_;l
1 z"z 232 !
F,-ﬁ\.s);:,‘ 2.3y ..
RN o x5
|
2820 Y3 12‘3 35 !
'ﬁ = aw
b s L S 2s

378 Bylv, v =) s

3/4 2 (\2,\2.-—— )-.-

ur

3/2 -3(\1,;.&, vadi,i
/2 (\J,-3' YA it
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"3( 2" 72 3
3/4 l-' (=v 2eVyr Yy i

;
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|
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n!2—n+1 n
q,,(t)= H,(v)[Tz, (1) (12.1)
m_K.’...mK ! i=1
actklamayt
n K "
[Tz (t)= 11 2, (1) (12.2)
i=1 k=—K
actklama
n!2—n+1 K . .
v, (t)= Re<H,(v)[]z*(t)exp( j2mm,v,t )} (12.3)
m_g!l.mg! i=K
actklama

x(t)= Re{sl(t Jexp( j2mv,t )}
x,(t)=Reli,(t)exp( j2mv,t )} (12.4)
X;(t)= Re{i3(t Jexp( j2mv,t )}

Bu ornek icin bazi onemli bilesenler formiil (12.1) ile ozellestirilmistir ve tablo 4 de
gosterilmektedir. Bu tablonun ilk ii¢ kolonu parazit ¢alismalarinda da kendi frekans

bolgesinde ve karisik ortiisiinde kullamildigi  gibi  bilesenlerin adini  vermektedir.

H,sv,) sabitleri her sonucun oniindeki genellikle karisiktir ve farkli iletisimli frekans

setleri icinde farklidir. Bu geleneksel yaklasimla ii¢ isaretli girdi arasinda bir zithik yaratir ki
biri aym derecenin gercek sabitleri ile ayni dereceden c¢iktimin bilesenleri icin olan giic

serisiyle dogrusal olmayan tepkiyi modeller.

0o n
y(1)=Ya, [Re{A; exp(j2m 1)+ Ay exp(j2v,1)+ Ay exp(j2av;1) }] (12.5)
n=l1
L . ve e VA A A3 613 .. a, - . v e g .
Uc isaretin biiyiikliigii “™, 2 ve sabiti ise tipik olarak ™ in ters isaretlisidir ki basing

terimi buradan gelir. Tablo 4 deki son kolon ise sabit dogrusal olamayan doniisiim
fonksiyonlu frekans giic serisini basit durumunun karsilastirilmasin gosterir ve bu serilerdeki

fark frekans bilesenlerinin genisligini gostermektedir.

Daha  genel  olarak  f =(f,....f, )icinH , ( f)Taylor serisi iginde

genigletilebilir.
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H,(f)=H,(v)+ Zf ", (f) +... (12.6)
fl f:V

Coklu degisimli Taylor serisi agiluminda ki p ninci derecedeki terim H | (f) icin kisaltilmg

halde soyle gosterilir.

P o |
flafl fz£+---+fn$ H,(f) (12.7)

f=v
bu operasyonlar yapildiginda yalniz terimler
T N (128
nlp=y
Pi biitiin tamsaytlarda 0 dan p ye aralikli
pptpyt..tp,=p (12.9)

H , (f) nin biitiin ¢coklu degisimli Taylor seri agilumi carpumly toplami

pP1 Pn p
H (f)—ZZf1 oS OTH(froe [ ) (12.10)
p=0p P!P2lp,! ap1f1ap2f2---apnfn f=v

p Dbiitiin permitasyonlarin toplamini gostermektedir ki formiil (12.9) u saglasin. Bu

permiitasyonlarin toplam sayist n tane hiicrenin p tane maddeden ayrilmasinin yolunun
n+p-1
n

Bu demektir ki ii¢c tane dogrusal ve 4 tane de ikinci dereceden terimler iiciincii

toplam sayisidir. Ve (

dereceden dogrusal olmayan tepkinin icinde bulunmaktadir. (p=2,n=3)
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Eger H , ( f)formiil (9.21) in igine koyarsak onun biitiin ¢coklu degisimli Taylor
seri actlimli formiil (12.10) ozellesmekte girdiye bagimli i¢ hafifleme bilesenleri karisik
ortiide 'V, q,, (t)de takip etmektedir. Eger Fourier degisimi icin bilinen bir iliskiyi fark

edersek terimi basitlestirmek miimkiin olur.

(p)
—— /27w )" = (t) (12.11)

- . (1)
ry ot )i =43
[ 12 f el jomi e =7 o

Z (p) (t) z(t)nin p ninci tiirevi igin kullanmilir.

(n;m_K,...,mK) 0PH, (v) (pi )(t)

oo noz
q, (1)= Z Z H (12.12)
Y p=0p 2" pilep,! APUf 0P f, inl (245)P
actklama
0PH (v 0PH yeess
n V) n S fo) (12.13)

AP f1wdPn f, AP [P fy. 300 f |

coklu bir integrasyon yerine formiil (9.21) ile iliskili biiyiik bir basitlesme olusur. I¢ hafifleme
dalga formunu 'y, (t) karsik ortiisii g, (t)girdi bilesenlerinin cesitli tiirevlerinin
agurlikly iiriinlerinin toplamina neden olur. Agirliklar girdi alanlarinin merkez frekanslarinda

degerlendirilen zamandan bagimsiz sabitlerdir. v ky sees Vi . Bu tipteki agilim yapilart
n

toplamdaki her terim icin seri diferansiyeli ve carpicist olarak bir sistemdir.
Frekans giic seri acitlimimin faydast P nin icindeki terimlerin yakinsakligin
dogrulamak bu yiizden de acilimin ilk birkag terimi yeterli bir yaklagim olusturmakta, yeterli

gelmektedir. Ornegin iki isaretli iiciincii dereceden cikti icin frekans giic seri kanonik model
yapust ve H | (v) acilimimi kullanarak iki terimli dogrusal olmayan tepki diisiiniin. Daha da
basitlestirmek icin birinci tiirevi dz(t)/dt=z(t) z(t) yle gosterilir.

Bu ornek igin eger her girdi frekans bolge yaklasimi H 3 (v)dogrusal bagimliliga yeterince

sahipse girdi bilesenlerinin i¢ hafiflemesine bagli cikti bilesenlerinin ticiincii derece karisik

ortiisiinde v de
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a3, <r>=% Hy (v vy v) 22 (12, (1)

2 OH3(vi,vi,vy)

2 (D2, (Dz, (1)

27 of
2 OH3 (vi,vi,vy) 2 :
, zy (1) 2, (1)
27 af3
(12.14)
actklama
z,(t) 'adT z N
Pty i
2
It Ha(%,1,2,)
Z2

4
223 ol Lznizz 2 3Hyy) 3 '
'® 3 31, \& 7" %srth)
3 3 73 lv)
2 122 i dHsly
t Py ;X > 1 2 Hily)
") dr 2t]  afs

Fig. 18. Example of frequency power series canonic model: n=3,k; =2,k =1,p=0, L.

Bu 3 iiriin tasarlannus % ile carpilmig 2v1 +V, intermodiilasyon frekanst ile dtelenmis ve

gercek parcast form olusturmak icin alinmistir. Kanonik model iglemleri 9.21 deki 3’lii
integral incelenirse dogru yonlii giden islemlerde 12,14 iin canlandirilmasinda karigik

katsayilariyla intermoiilasyonu ilk terimi bozulan eklentisini gosterir.  Bu bozulan

terimler &1 (1) ye 22 (0) isaret cevaplarinin sabit olmadigimi ¢coklu degerler alabildigini kabul
eder. Kanonik uygulamamin 0zii, v de merkezlenmis her bir intermodiilasyon bolgenin
uygulamasidir. Bizim burada sadece ihtiyaciniz olan dogrusal olmayan doniisiim fonksiyonu
ve parcalt dogrusal olmayan devrenin etkisini modellemek icin ilk tiirevinin devrenin kendi
yapisint gosteren karigik katsayilar. Ik fizibilite dogrulamalarinda genisleyen tip kanonik

modellin aract tabii ki tahmin edilmis. Bundan daha fazla olarak kanonik model analitik
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anlatimi diferansiyel edilebilen fonksiyon oldugu zaman ki fonksiyonun tiirevinin
degeridir. Piers gercek bilgisayar hesaplamalari nokta degerlerinin orgiisiiniin bu frekanstaki

dogrusal olmayan doniisiim fonksiyonlarin gosterdigini soylemistir.

13.TAPPED GECIKMELI ARDISIK BAGLI SISTEM MODELI

Dogrusal olmayan fonksiyon kullanish bir yaklasik deger elde etmek icin Taylor serisi
denklemlerinin ilk terimleri icin sinyalin bant genisligini gosteren bolge frekans ile birlikte
cok fazla degisebilir. Bu kosullarda periyodik araliklarla ¢oklu degerli ornek fonksiyonu
kullanmilarak dogrusal olmayan isaret cevabi uygulamasina dayanarak diger kanonik modeli
ornek gosterebiliriz. Bu model tavsiye edilmiy ....tarafindan ve buna aralikli gecikmeli ¢izgi
kanonim modeli denmis ve bu boliimde agiklanmistir. Bu modelin adt tiirevi alinan asagidaki

matematiksel  fonksiyonun sinyal igleme yapisinda gosterilmistir. Karmasik zarfi

tamimlamayla baslar v = (v ky > Vi )
n

h,(t)= Re{gnv(l‘)exp[jZTc(vkll‘1 +o.tv 1, )J} (13.1)

esitlik (13.1)’deki frekans setinin dar bantli uygulamast bunun cevabt g (t) nin dogrusal

olmayan isaret cevabi oldugu zaman H (t) dogrusal olmayan isaret cevabudur.

(tl""’t")nin kisaltmasinda T olarak alinmuigtir. gnv(t)nin indeksini v olarak

H,(f)

kullaniriz bu uygulamanin merkez frekansimi dogrulamak icin. Dogrusal olmayan
transfer fonksiyonu v ve —v de merkezlenmis temel bant spektrumunun toplami asagidaki

formiildeki gibi belirtilebilir.

Hn(f):%[Gnv(f—vHG*nv (= f=v)] (13.2)

Burada G, , ( f)asi bant spektrumudur ve Ew®) pin coklu degiskenli fourier

f_v:(fl Vi S _an)

fonksiyonudur. Ve diisiiniin ki her zkt bant limitli olsun boylelikle
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karisik zarfin spektrumu giris elemanmin karisik zarfimin spektrumu -2v de merkezlenmen
dogrusal olmayan doniigiim fonksiyonun asil bant spektrumunun kuyrugu ile oOrtiismez

boylelikle;

n

Gw(-f- 2V)H g3 (/)

i=1

0 (13.3)

intermodilasyonun elemanin karigik zarfi asagida 13.4 fonksiyonu gibi yazilir.

g, (H=—=m=2" [ [ Gy ()

m_g !...mK !

‘ (13.4)
12k, (fi)exp(j2af;t)df;.

i=1

|f|<B/2

Diisiiniin ki [f] bolgesinde 81 bant limitimiz var. Dalga formu ve karisik

g, (1)

dalga formu ile sonu¢ veren sinirlt genislikli dalga formu ayrik serilerle drnekleme

teorimi kullanarak gosterilebilir

sinTB(t —rT)
nB(t—rT)

g,(t)=28,0rT) (13.5)

tr=t i¢in &1, (rT) g, (t) nin degeri oldugu zaman genelde bilinen ornekleme

deger T=1/B dir. 13.5 deki Kesisim fonksiyonunu sin ¢ B (t - I”T) yani

sincy E(Sinﬂy)/ﬂy (13.6)
Fourier fonksiyonu aciklama YAP
1, x‘ <%
Rect x =+ (13.7)
0, x‘ > 1
\ 2

Genellikle biz tilde igareti kullaniriz fonksiyonun bant limitli versiyonu icin
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G (f)=G, (f)[IRect(f /B,) (13.8)
i=1

Bu anlasmayla coklu degerli bant limitli fonksiyon her bir /i ordinat frekansi Bi bant
genisligi icin bant limitlidir. Bant limitli karisik zarf g, (1)ve Gnv (f) Fourier

doniistimiidiir.

gnv(t): J._O;J‘Gnv( f )exp[_ izn(fltl +...t fntn )]df (]3-9)

Esitlik (13.5) formiiliine benzer olarak ¢oklu degiskenli bant genisliginde sinirli her

koordinat boyunca n boyutlu dérnekleme teoremini tartigabiliriz.

g (tenty)=>..>% (nT,,...,r,T,)
1 ! (13.10)

ﬁ sinc|B.(t,—rT,)]

i=1

Her T her tam sayr degeri ve " Grnekleme araligt icin i. Koordinat daki Bi bant
genisliginin tersi olarak diisiiniiliir. Ornegin T; =1/B;yi g, (rTy,...,r,T,),
t=nl L= 215 de n. dereceden isaret cevabimin n boyutlu ornek degeridir. Gnvt nin

acthmin  biitiinliigii bu durumda c¢ekirdek olarak goziiken herhangi bir n katl
integrasyonudur. Cekirdek boliinebilir ve n. Integrasyonu ayri ayri tasinabilir. Esitlik (13,10)
daki denklemin her iki tarafli Coklu boyutlu foruer fonksiyonunu almakla 13,11 deki denklemi

elde ederiz

G, (f)=>38,(rT )IEIBi Rect% exp( j2nr.T, f, ) (13.11)
r i=1 D;

i

(fl""’ f ) (4T, T,) fve rT olarak yazildiginda.
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r; ler biitiin tam sayilart kapsamastyla toplamdan r tek parca olarak ¢ikarlirsa ¢oklu

toplamlt 1y ,¥y ..., ¥, lizerinde tek bir deger olusur. Coklu degiskenli Ornek degerler

n
g,y (rT) t den bagimsiz degerlerdir. Her giris eleman zarfi z; (t) bir bant genisligi i¢in

bant simirl oldugu idea edildiginde

G,.(£)=112,(f)=G.( £ )12, (f,) (13.12)
i=1 i=1

esitlikler (13.12) den ( 13.11) i hesaba alarak (13.13) formiiliinii elde ederiz.

I no 1
G (1) == 28, (1T [z, (6 =1 T;). (13.13)
Belirli bir frekans icin v yi oyle atayalim ki v = M_py g +..+ My e olsun.

Intermodiile edilmis elemamn karisik zarfi v deki giris bolgesine dayanarak 13,14 deki formiil

gibi yazilabilir.
g, OT) K

an ()=— ) I1

m_K!...mK! r Bl ...Bn kZ_KBl

2" (t=r, T, ) (13.14)

Tekrar biiyiik bir basitlestirmeyle bir digerine gore bir cok yer degistirmeyle
intermodiile edilen giris elemanin agirlikli toplamumin formiil 9,21 deki ¢coklu integralin yerine
konulmast ile basitlestirilebilir. Son denklem bosluklu gecikme cizgisinin kanonik modelinin
cizgisine yayilir. Bu modelde n. Derecen cevap Bi i. Giris elemanin bant genisligi oldugu
verde 1/Bi araliklarinda bogluklu gecikme c¢izgisinin tek diize siralanmig bosluklar ile dar
bant elemanlarmmin giriginin her karisik zarfi gecisiyle belirlemistir. bu tip gecikmis zarflarin
her cesit iiriinleri uygun karisik esdegeri ile sekillenmis ve sonra v frekans setinin n. Sirall
ctkistmin karisik zarf formuna eklenmistir. Acikca bu tip modellerin araglart 13.14 deki ¢oklu
toplamin koveryansina dayanir. Boylelikle sadece belirli sayidaki bosluklar kullanilmalidir.

gﬂv(}iTI""’r"T")gabucak diisiiriilmeli her ri degeri icin r inin mutlak

Baska bir degisle
degerleri uzun gecikmelere sebep olacagindan sistemi pratik yapmaz ihtiyaclart yiikseltir. Bu
esdeger frekans bagimsiz ve sadece ayrik ornek noktalarla hesaplanmistir. Kanonik model
bosluklu gecikme cizgisini gosteren en basit ornek tabii ki v frekans setindeki n. dereceden

dogrusal olmayan isaret cevabt sadece tek bosluk ile etkili bir sekilde modellenebilir. Bu
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sadece sistem daginik olmadiginda olusur ki frekans cevabi sabittir. Bu durumda giris
bolgesinin n. Dereceden intermodiilasyonunun karisik zarft 13,15 verildigi gibi v de
merkezlenmigstir. Simdi n. Dereceden dogrusal olmayan isaret cevabinin zarfi her boyutta

sabit ve bant limitliyse ¢coklu boyutlu Fourier fonksiyonu asagidaki formiildeki gibi olur

n! q ny (0) K 1 m
Ay (1) = [T —z."* (t=r,T,) (13.15)
" 2" m_gy..my, B{By..B, (= ¢ B,

H, (v)=G,, (0)/2oldugu yerde

g (O=["_..[G,, (f)df =B\B, ...B,G,, (0)
- B1B2 ""BI’L 2Hn (V)

(13.16)

Spektrumun negatif tarafimin kuyrugu 2v civarindaki frekans bolgesine uzamaz. boylelikle

H,_  (0)= lgnv (())/B1 ,,,Bndlr. Karsilagtirilan  denklem formiil 13,15 deki n.
2

ny

Dereceden cikig icin tek bosluklu formiill2,1 deki denklemden sabit doniisiim fonksiyonu icin
tek bosluklu gecikmeli ¢izgi model devam eder. Frekans giic seviyesi modelindeki terimlere

ozdestir.

2
m BTN SR VRN

Zz
1 " L.
I Iz ] B i | 2 3Hy¥) =

2] af, )

e | % Z, z, i_ 2HiY)
— = = » —
gt ST | 2] afs
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v+, intermodiilasyon frekansi ile otelenmis ve

Bu 3 iiriin tasarlanmis % ile carpilmig
gercek parcast form olusturmak icin alinnustir. Kanonik model islemleri 9.21 deki 3’lii
integral incelenirse dogru yonlii giden islemlerde 12,14 iin canlandirilmasinda karigik

katsayilariyla intermoiilasyonu ilk terimi bozulan eklentisini gosterir. Bu bozulan terimler

40 e 20 isaret cevaplaruimin sabit olmadigimi ¢oklu degerler alabildigini kabul eder.
Kanonik uygulamamin 06zii, v de merkezlenmis her bir intermodiilasyon bolgenin
uygulamasidir. Bizim burada sadece ihtiyacimiz olan dogrusal olmayan doniisiim fonksiyonu
ve parcalt dogrusal olmayan devrenin etkisini modellemek icin ilk tiirevinin devrenin kendi
yapisint gosteren karisik katsayilar. Ilk fizibilite dogrulamalarinda genisleyen tip kanonik
modellin aract tabii ki tahmin edilmis. Bundan daha fazla olarak kanonik model analitik
anlatimi difransiyelenebilen bir fonksiyon oldugu zaman ki fonksiyonun tiirevinin degeridir.
Piers gercek bilgisayar hesaplamalar: nokta degerlerinin orgiistiniin bu frekanstaki dogrusal

olmayan doniisiim fonksiyonlarini gosterdigini soylemigtir.

z&)

———» §34(0,0,T)
amiiand

SRS
p—— 23 3( T,0,0) Lt

it

Sekil. 19 Gecikme swrali kanonik modelin ornegi:
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15) tek musluklu modeldeki ifadeler (12.1) ve sabit transfer fonksiyon modeli bizi su sonuca
gotiiriir ki, tek musluklu gecikme sirali model, e-term frekans giic serileri modeline benzer.
Her ikisi de uygulanabilirdir ve lineer olmayan tepki girdi sinyallerinin bant araliklar:
iizerinde frekans-bagimli degildir. genelde, modeldeki her bir gecikme sirasi 1 den fazlaya
sahip olabilir. Musluk sayilarint z; ve Ny ile gosterdik,

V= (Vl Vo ,V3 ); V= (2V1 +V, ) icin iigiincii derece 2 musluklu bir kanonik
model sekil 19 da gosterilmektedir. Esit araligi oldugunu farz ettik BI = B; ve kesme

araligi T; = T, = T bu durum icin iiciincii derece ¢ikti:

- 3 T3 L &L L
g3, (=2 > 283, (nT,rn,T,r3Tt)
8 r1=0r2=0r3=0

21 (f—rlT)Zl (f—rzT)Zl (t—r3T)
3
=3%[ Z3, (0,0,0)22 (1)z (1)

+283,(T,0,0)z, (1=T)z; (1)z, (1) (13.17)
+33, (T.T,0)22 (1=T)z, (1)
+83,(0,0,T)z2 (1)z, (1=T)

+285,(T,0,T)z, (1=T)z;(1)z, (t-T)

+84, (T.T.T)z2 (t=T)z, (t-T) ]

n=3veNI =N, =2, iiclii toplamda karsilanmasi gereken 2° = 8 terim var fakat bazilari
benzer. Zi(t) urunde iki defa olusuyor. (k; = 2). Bu durum suna benziyor: iki tane benzer ve
bir tane farkli bozuk parayi havaya atiyor ve ayirt edilebilir duzenlemeleri sayiyoruz ve bu
sayi 6 dir.

burada goriilebilir ki bu modeller gerekli musluklarin sayisi arttikca hizli bir sekilde daha
karmagsik hale gelebilirler. Genelde, eger 7y .icin gecikme sirasi Nf kadar musluga sahipse,
(13.14) deki her bir // 1 den N; ye kadar degisir. Dahasi, g.(rT) kapsamindaki
permiitasyonlar degerini etkilemediginden dolay, (13.14) de bulunan ¢oklu toplamdaki baz

terimler ayni degere sahiptir. my ; ayirt edilemez faktorlerini  z, (t) Np musluk

pozisyonlarindan birine yerlestirmenin yollarindan biri soyledir:

(Nk +my, —1)
Ny (13.18)
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Dolayisiyla eger z,(t)otelenmis iiriinde my  kere olursa (13.14) deki ayuwrt edilebilir

terimlerin sayisi:
ﬁ (Nk +m, — 1]
k=K Ny (13.19)

Bu ornek sayesinde, VHP alicisinin tuner boliimiindeki genis bant capraz modiilasyon
durumunu inceledik. Laboratuar olgiimleri yapildr ve musluklu gecikme kanonik model ile
vapilan tahminlerle karsilastirildi. Bu ornekteki secilen sinyal FM modiilasyonlu 50 MHZ
tasiyicilt 5 Khz oraminda ve 1 MHZ lik zirve dagilimindaydi. Arzu edilen sinyal tunerin
modellendigi nominal frekanstaydi ve 45 Mhz di. Sekil . 20. ilk capraz modiilasyon yan
bantlart icin tahmin edilen ve olgiilen seviyeler.Lineer olmayan transfer fonksiyonu ile

basliyoruz.

H, (-, f2, 5010 (13.20)

fl = 1/1 = 45 MHz, f2 = 50 MHz + kifm(kl integer), 3 = 50 MHz + k2fm(k2 integer), f3= 5
kHz, ve f4 = v4 = fLO = 45MHz + fIF.

Incelenecek ¢apraz modiilasyon iiriinleri su frekanslarda olusur:

fir vk S, ko f, = fir Thkif ,.kHz ky=12,... (13.21)

ilk yan bant ciftiyle birlikte f,. +5 kHz.

Tiirevin dordiincii derece transfer fonksiyonu 64 puan da hesaplandi. Bu iki boyutlu frekans
alaninda ve 1.4 Mhz de frekansin her iki tarafinda oldu. DFT dordiincii derece reaksiyonu
yarattt ve buda dordiincii derece (siralt) musluklu gecikme modelinde oldugu gibi kullanild:.
(13.17). bu modelden, ilk 4 capraz modiilasyon yan bant seviyeleri k3 = 1, 2, 3, 4 olarak
hesap edildi.

[k 2 yan bant icin élgiilen karisim giris seviyelerinde sinyal -50 dBm de sabit tutuldu. Birinci
derece yan bantlar icin olan sonuclar sekil 20 de karsilastiriryor. Mevcut karigim sevileri
icin -45 dBm den diisiik durumda, olciilen yan bant seviyeleri ikinci derece egriye
sahiptir.. bu da capraz modiilasyon icin dogru egridir. -45 dBm den biiyiik girdi sinyalleri
icin , egriler degisir, diisiik ve yiiksek yan bantlarda biiyiik ayrimlar olusur. -45 dBm girdi
giiciiniin onemi su degerler referans yapilarak aciklanabilir. -45 dBm, -40 dBm, ve -35 dBm,
olciilen ve istenen 45 MHz lik sinyal 50 MHz karisum 0.1 dB, 0.3 dB, ve 0.8 dB, kadardir..
dolayisiyla, capraz Modiilasyon biiyiik sinyal etkileriyle ilgilidir. Uciincii ve daha yiiksek
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stralt yan bantlar icin musluklu gecikme sirali kanonik model icin yapilan yazilim
hesaplamast yetersizdi. Yan bandin sirast arttikca, hesaplama transfer fonksiyonu icin daha
iyi bir frekans girdi ister,daha iyi bir musluk araligi ister daha fazla musluk sayisi ister.
Orneklerin frekans girdi yeterince yogun degilse, onu karsilamak icin musluk sayisi
artirtlabilir. Biitiin durumlarda, model sadece devreler kiiciik sinyal alaminda calistirildig

durumda ¢apraz modiilasyon i¢in dogru tahminler saglar.

XIV. SIKISTIRMA, DESENSITIZATION, CAPRAZ MODULASYON

Bolgesel girdileri ortalama analizleri ve lineer olmayan transferin Taylor serisi genisletilmesi
bize gerekli analitik araglart saglar. Bu analitik araglar lineer olmayan etkilerin
degerlendirilmesi ve agiga kavusturulmasi icindir. Bu etkiler iletisim alicilarinda
stkistirma,ve capraz modiilasyondur. Bu analitik sonuclar deneysel olciimlerle yakin neticeler
verdi ve kiiciik sinyal alaninda teorinin pratik kullanimini gosterdi.

z,=z,(H)ve z, =2z,(t), Vi ve V2,de merkezlensin ve istenen frekanslarin zarflart olsun.
(9.25) den hatirlayabilecegimiz gibi frekans alamindaki cikti sinyalinin complex zarfi tiim
complex zarflarin toplamiyla verilmistir. Bu zarflar girdi alaninda vl, ve v2 da dir.

Intermodulasyonla azaldiklart icin daha yiiksek sira terimleri kiiciik sinyaller icin goz ardi
edilebilir.

3 3
q(t;vy)=q(t;vy )+ZQ3 (£3vq,v1-—V; )+EC]3 (£5V1 V5 ,= Vg )eee (14.1)

deki her bir parca terimi uygun lineer olmayan transfer fonksiyonundaki bilinen bir yola
bagimlidir. z,(t)ve z,(t) her bir lineer olmayan transfer fonksiyonunun merkezi frekanslar

hakkinda Taylor serilerinin genigletilmiginin onde gelen terimlerini listeleyerek sunlart elde

ederiz;

q, (t;v)=H (v )z +... (14.2)

2
qs (v vy =y ) =H (vv,=v)|z (0] 2 () +... (14.3)
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2

q3 (t;v1,vz,—v2)=H1(vl,vz,—vz)zl(t)|z2(t)|
0H, (v{,v, ,—V,)

n 3 1-Y2 2

|21 ()12, (1))

270f, (14.4)
oH3(v) OoHz(v) =
—_— +— +...
2mof, T2 ey

su  durumda v=(v,,v, = V,), ve O0H,(v)/of sunu belirtir: OH(f)/df,
=01 ;) =0,,v, —v,) de degerlendirilir.
Sikistirma girdinin arzu edilen z,(t) isaretin artirlldigi zaman gozlenen dogrusal olmayan

etkidir. Esitlik (14.2) de gosterilen sekilde lineer bir tarzda artirmanin yerine alici ¢iktis
girdi ile orantili bir yol takip etmez. Bu etkinin baslamasindan sorumlu olan terim

q,(t;v,,v, —v,) dedir, esitlik (14.1) dedir ve ayni zamanda Vi dedir.
dogrusallik orani diisiinerek incelenebilir.

q(t;v,)
Q1(t;V1)

(14.5)

Re{H s(W)/H, (vl)} deki terim genellikle negatiftir.

Bu iyi bilinen bir gercektir. Ancak girdi frekanst bantta supuruldukce sikistirma teriminin
asamast degisebilir. Bazi frekanslarda lineer kazanctan fazla oldugu gozlenebilir yani
stkistirmadan ziyade kiiciik bir genisleme olur.

sekil 21 2N2950 transistor un 4 MHz de tek basamakli sikistirma egrisini gostermektedir.
Burada goriilebilir ki (14.5) deki teorik tahmin o6lgiimle uyusmaktadir bandin diger noktalart

icin benzer sonuglar elde edilmistir. Su not edilmelidir ki H,(v,,v,,~v,) parcast H, (v,)ile

surecin tamamen disinda kaldiginda alicinin lineer menzili suni olarak belirecektir. Iki tonlu
intermodulasyon olcumu ayni girdi giic alaninda alicinin zaten lineer oldugunu gosterebilir.
Bu sunu gosterir, stkistirma olcumu giivenilir bir gosterge degildir.

Desensitization alicida gozlenen lineer olmayan bir etkidir. Gozlenen gsey sudur:
pifrekansinda arzu edilen sinyalde alici ¢iktisinda i de bir azalma. (14.3) de belirtilen etkinin

sorumlusu ¢ikti zarfinin terimi yine (14.2) de verilmistir. Analizin tahmin ettigi gibi
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lineerlikten uzaklasma ortalama olarak takip edecektir, (tartisilan sikistirma terimi gozardt

edilerek)

q(t;v,)
Q1(t;V1)

z1+§Z22Re{H3(VI’v2’_v2)} (14.6)
4 H (v,)

Sekil 16 da ki iki asamali yiikselte¢ kullanilarak bir deney yapildi. Arzu edilen igsaret  -55
dBm de ve 19.75 MHz de modiile olmayan bir tondu, ve karisim yapan sinyalde modiile
degildi ve gii¢c ve frekans olarak farklilik gosteriyordu. Sonuclar sekil 22 de gosterilmektedir.
Su not edilmelidir ki; model hangi sinyal seviyelerinde desensitization baslar onu tahmin
ediyor ancak ne kadar desensitization oluyor onu tahminde muhafazakar ve temkinli
davraniyor ciinkii lineer olmayan etkiler, yiiksek karisim girdisi seviyelerinde, daha yiiksek
strali terimlerin oyuna dahil olmasint saglayacak kadar giiclii oluyor.

Capraz modiilasyon bir alicidaki daha ciddi lineer olmayan etkilerden biridir. Bu, v,
tasima frekansindaki arzu edilmeyen karisum sinyalinin modiilasyonunun v, tasima
frekansindaki arzu edilen sinyaline transfer edildigi durumlarda olusur ve rahatsiz edici
capraz konusmaya neden olur. Capraz modiilasyon sadece z,(t) deki terimlerden ortaya
ctkar. Mekanizmast AM ve FM isaretleri icin farklidir. AM karisumi karisik bir zarfa sahip

olsun:

Z2,(t)=B(1+m, cos2mu,t ) (14.7)

burada B, karisim tasiyicisumin karisik genligidir, m, modiilasyon indeksidir, ve [,
modiilasyon frekansidir.Esitlik (14.2) deki z, den sadece énde gelen terimi koruyarak sunu

buluruz: z, deki ¢ikti sinyalinin karisik zarfi kiiciik B icin ortalanabilir.

H,(vi,vy,—v5)

2

Q(t;vl)EHl(Vl)Zl(t) 1+§m2|B| 32172 2 COSZﬂ',UQf (14.8)
2 H(v)

eger z,(t)sabitse, arzu edilen sinyalin modiile olmadigi durumda oldugu gibi, analiz, ¢apraz

modiilasyon yan bant tasiyict oranini su sekilde modeller:

H,(vy,vy,,-Vv,)
: ation _ 3, |B|? |22 2 (14.9)
carrieramplitude 2 Hy(vy)

cross mod ulation
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tipik bir olcum seti yaygin ton yiikselte¢ icin sunlarla yapildi: v,= 19.75 MHz, v,= 25 MHz,
m, = 0.3. iigiincii derece-sirali lineer olmayan transfer fonksiyonun biiyiikliigii
|H (Vv v, )|, (14.9) dan anlasilacagt gibi, olciilen capraz modiilasyon yan bant-tagtyict

oramindan, devre modelinden bu fonksiyonun degerleriyle karsilastirildi.  sekil 23 de
gosterilen sonuglar sunu gosterir: bant arasinda genel bir goriis birligi vardi, bu suna isaret
ediyor; uygulanan diisiik seviyelerde kiiciik sinyal teorisi gecerliydi, ve devre modelleri

calistyordu. Eger istenen sinyal sadece bir ton degil kendisi AM ise;

z,(t)=A(1+m, cos 2mu t ) (14.10)

oyleyse, AM den detektoriiniin ¢iktisi soyle modellenebilir: |q(t;v1 )| dalgalar icerir p, +p,
|,u1 —,uz| (14.8) den goriiliir, kiiciik modiilasyon icin ve m,, iki par¢anin genligi |,u1 —,uz| ve

onlar goz ardi edilebilir. Bir AM detektoriiniin bu yiizden yaklasik olarak suna orantilidir:

‘1 +my cos 2T 1 + OLs( t )‘ (14.11)

su durumda s(t),|s(t)|2 =1, bu capraz modiilasyon dalga formudur, ve & komplekstir |0!| <1

icin , bu ¢cikti ortalama olarak tasryici ile birlikte modiilasyon parcasidur.

m, cos 2Tt + Refous(t )} (14.12)

Sekil. 22. olciilen ve tahmin edilen desensitization (14.8) ve (14.12) den, deteksiyon sonrasi

capraz modiilasyon istenen sinyal genlik orani oyleyse yaklagik;

H b ’_
SE\B\Z Re 3(V1,V2,7V2 ) (14.13)
m H(v)

FM karwsimu icin, karisik zarfumiz var;

Z,(t)= Bexp(jjfzsin 2nk2zj (14.14)
2
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oyle ki; A, en fazla frekans dagilimidir, ve Af, modiilasyon frekansidir. |z2|2 =|B|2simdi

modiile olmadigindan dolayi, Taylor serileri geniglemesinden ilk modiile terimler kare

parantez icindekilerdir (14.4). cikti sinyalinin karisik zarfi simdi kiiciik B icin ortalanabilir:

2
346 |B|" (9H; (v vy, —v)) aH3(V1’V2’_V2)J (14.15)
(tvp)=H (v zy (O] 1+= cos2 7t :
A=A 2H1<v1>( o, o &

eger istenen karisik zarf FM ise;

A
7 (1) = Aexp[j Jl sin 27[ﬂztj (14.16)

1

karisik bir zarfla calisan FM deteksiyonunun ciktisint bulabiliriz;

2 (1) =[1+as()] (14.17)

veya |a| << 1, FM deteksiyonunun ¢iktist yaklagik olarak

iarg {Zl(t )+ iIm {os(t )} (14.18)
dt dt

(14.2) ve (14.8) uygun oldugu yerde. Capraz modiilasyonda veya modiilasyon transferinde

kiiciik sinyal ortalamalarini ozetleyebiliriz; bir AM veya J karisumi veya z,(t) karisim
sinyali goreceli olarak istenen ya da FM sinyal 7z (t) ine neden olur. Analizler sadece ¢apraz

modiilasyon —isaret oramni degil ayni zamanda ¢kt dalga formlarvmin  ¢apraz

modiilasyondan dolay: gercek carpitilmasini da modeller.

Sekil. 23. hesaplanmus iiciincii derece transfer fonksiyonu ve ol¢iilmiis ¢capraz modiilasyondan

alinan degerler.

Farz edelim,

zi(t)=1+mys,(t) (14.19)
ve

2,(t)=B[l+m,s,(1t)] (14.20)
suna sahibiz;

64



g(vit) =1+ mlsl(z)]{1+%\19\2[1+mzs2(z)]2

H3(v)}
H(v,)

(14.21)

farz edelim ki; s,(t) kare bir dalgadir ve +1 ve -1 arasinda degismektedir ve s, (t) birlesik

sin dalgasimin genligidir. Capraz modiilasyon s, (t) yiiziinden ¢apraz modiile ¢ikti formu hala

bir kare dalga olacaktir. Ciktidaki AM detektordeki zirve yiikselte¢ seviyeleri sekil 24 dedir,

oyle ki;
3,12 2 Hy(v )
P=(1+m) 1+=|B] (1+m,) Rey—>— (14.22)
2 H(v,)
3.2 2 H(v )
Q=(l+m1) 1+—‘B‘ (l—mz) Req——— (14.23)
2 H/(v)
' TABLE V
/ : ; CRrOSS-MODULATION ANALYSIS
"DISIRED |UNDESIRED DETECTOR POST DETECTION
SIGXAL | SIGNAL INPUT crTeuT
, signal-to-crossmodulation
| z)i8) | 22“‘) qleiv) amplitude ratis
H. (V) m JEa (v oV, =v,)
! i b I B 2112 » Tolee Lo Sl 1Y
! Ax ' AM 1 + m cos2ry t+3=_|B|° —— cos2mp,t = |B8]° Re{ 5
| | N e LA WY 2 = Ca oy )
? L |
| ! W) ()N
i ! | 12 —m= e )
| - Bl 2H 3H_~ A, |8} ( 5= T !
i i f 3 | 3 e e L -2 o |
| AN ' F, e}l ¢ & AL cos2TA Mss™ - =) S Rey i i
‘ i i 1 L 2 H 2 zt(afa EHZ_’. 2 m L E, (v) :
] H H
| ! i
i ' i
! ]
¢ i H, (V) Im.u H_ ()
e : e i Fy 3+ 2= |2 * oo i 1 2°2 1212 3= 1
g Aan lz(e 1+ mls] H (u) So52TH,E Az, 3 EET!
H ! 1 1 1" 1 |
| |
] PN EEENTRY
| 1 2 3= 3'=" i
! LTX N E-¥ M W 7 iy —
- - ! Ly - wanl, 3 3y 27 13 e gal2 s ; ey
; 120 0T (G, 7 3E, )eosrmge ) [ a5,lelt {0y f
',l KEEN 3 4 L 1Yy
; A
Hy = iiji') v = (\-l \2.-»2)

25. Senkronize edilmemis kros modiilasyon ¢ikis dalga sekli goriilmektedir.
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3,2 2 Hi(v)
=1- 1+— 1 _ .
R=(1-m,) +2\B\ (1+m,) Re{Hl(vl )} (14.24)
30,12 2 H3 (v)
S=(1-m, )| 1+2|B|* (1- Re]——~ .
(1=my ) 1+ 2] B (1=m;) G{Hl(vl)} (14.25)

goriilebilir ki ,genlik  oranlari: n=(P-Q)/(R-S)=10+m)/(1-m,)  karisim
parametrelerinden bagimsizdir. Bu oran lineer olmayan modiilasyon transferinin

asimetrisinin bir olcusudur. Benzer olarak, bu oran
H 3 (v)

3 2 2
S=(1- 1+=|B 1— Req ——
( m1) 2| | ( mz) {Hl(h)

} diizelt(14.26)

bilinen parametrelere baghdir 1£12 ve m2, ve dogrusal olmayan transfer fonksiyon oraninin
gercek boliimiindedir. oran r2 c¢apraz modiilasyondan dolayr kare dalga formlarinin
modiilasyon indeki olarak yorumlanabilir. IF genlikleri icin, m L = -5 ile bir deney, rl = 2 ve
r2 = 0.18, genlik icin hesaplannus deger ri= 2.0 ve r2 = 0.192. sekil 24 ile kiyaslanmak

lizere ¢ikti dalga formunun bir fotografi sekil 25 de gosterilmistir.

EK-A DOGRUSAL OLMAYAN AKIMIN TEKRARLAMASI

Bu ekte, eyitlik (5.15) in bir ispatini veriyoruz.. Bu kabul — zSv _ (t) toplamumn n. giicii z

nin giiciine v, ile 2™ nin katsayisi olarak yeniden derecelenebilir.:

2 Vo = {Z ZSVS(t)} (A1)
m=n s=1

problem (A.l) ile tamumlanan v, . icin esitligi bulmakiir

A(z)=Y2"v (1) s

s=1
ve

o n—1
B(z)={2zsvs(t)} (A.3)
s=1
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(A.l) deki orijinal farz edigimizle su da olmali

B(z)= 27z"v, . (A4)

m=n-—1
dolayistyla (A.l) su sekilde yazilabilir:

> 2", =A(z)B(z) (A.5)

iki fonksiyonun iiriiniiniin /n-katly farklilagmast icin

Leibnitz's teoremini hatirlayalim;

dm - (m di dm—i
—A(z)B(z)= , -A(z) :
dZm Z(:) i le dZm—l

B(z) (A.6)

(A.5) in her iki tarafint m defa farklilastirarak z ye gore (A.6) ve sonucta z = 0 yaparak

sunu elde ederiz;

> m . .
mlv, , = > i vi(t)(m—=i)lv, . . (A7)
i=0

bu durumda (5.15) soyle kurulur

m—n+1

Vm,n = Zvi(t)vm—i,n—l (A.8)
i=l1

algak sinir v,(t)nin sifir olmamast sadece I > 1 olmasinn bir sonucudur. Asag limit takip
eder ciinkii (A.1) da m > n, dolayistyla (A.8) da suna sahip olmaliyiz

m—i2n—1 (A.9)

s /, nin en biiyiik kabul edilebilir degeridir yani sunun tistiindeki iist limit

i=m—-n+1 (A.10)
tamim (A.l), n = 1 igin;

Vit = V(1) (A.11)

ispati tamamlar. (A.8), ve(A.ll) ve dogrusal olmama durumunun bir giic serisi oldugu

durumlarda (5.1) mevcut lineer olmama durumunu ol¢cmekte bir metottur.
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,— 1 e kadar olan lineer olmayan reaksiyonlar acisindan. Benzer bir islem (5.4) de belirtilen

bagimli lineer olmama durumu ile takip edilebilir. Soyle ki,

ipng ()= 2 ng,n”m"n

m=1 n=1

(A.12)

burada u = u(t) ve u = v(t) devredeki iki degisik noktadaki voltajlardir. Daha once oldugu
gibi,
. _ m._.n
Ipn (1)= Zng,nu v (A.12)
m=In=1
burada u = u(t) ve u = v(t) devredeki iki degisik noktadaki voltajlardir. Daha once oldugu
gibi
ipn (1) = Zzgmnzzumszzv (A.13)
m=1n=1
D, ., fonksiyonunu tammlayalim, sunla ilgili olarak, u™ v"
. _ (o0) (e o] (o0) l
ipng (D=2 28wy 22'® (A.14)
m=1 n=1 [=m+n
Toplamlarin sirasini degistirerek z! nin katsayisint bulmak icin, sunu elde ederiz
lDNL(t)_ZZ Z zgmn mmn,l — ZZ ll(t) (A.15)
n=1 m=l1 [=0
Formiil (A.15) den mevcut terim sirast i in /iy, (t)
[-11-n
()= 28mn®nm (A.16)
n=lm=1

oyle ki
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-1
q)m,n,l =Zuj,mvl_j,n’ [2m+n (A.17)
Jj=1

ve, (A.8) e benzer olarak, u im takip eder,

Jj—m+l
Zui(t)uj—i,m—l’ jzm (A.18)
=1
Oyle ki;
p=u(t) (A.19)

dogrusal olmayan /i (t) (5.3) de belirtilen kapasitans hafiza bagimsiz dogrusal olmama

durumu ile iiretilmistir, su formdadur,

d & o d
iNCL(t):Ez_:lynvn(t):;,Yn nl(t) V(t)

(A.20)

actk bir sekilde u = dv(t)/dt ile (A. 12) nin dzel bir durumudur, Dogrusal olmayan iiretim de

bu metoda diiser, Ciinkii;

t ) t oo
i (D= [dt Yy, vt ()= [dt Yi, (1) (A.21)
—o0 n=1 —oo m=1
b (1) = 20,V (4.22)
n=l

son olarak, ayni metot genellenmis lineer olmayan bir kabule uygulanabilir, oyle ki,
e} n
i, (1)=2 0" o fh, (Tt [Ty -1, Mr, (A.23)
n=1 i=1

bir genisletme v(t - r/) bir ikili degisken ile degisik voltajlarin toplami, r nin izini siirmek igin,

sunu elde ederiz:

i (t)= Zj Jh, (T, )H[sz(t— )}dt,- (A.24)

Leibnitz's farklilasma formiiliinii uygulayarak, ispatlayabiliriz, m soyle verilmistir,
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n
[T 2z, (f—Ti) =2.2"V (A.25)

=1 s=1 m=n
m—n+1
Viun = Zvi (Z_Tn )Vm—l,n—l ’ mzn (A.26)
i=1
Vit =V (t—7,) (A.27)

ornegin, eger n = 2, kanitlayabiliriz,

2 oo
{ 20 (f—fi )}=ZV1 (f_ﬁ )+Z2V1 (’_71 )V1 (t_Tz )+ (A.28)
=1L s=1

1

vy (=2 vy (=25 )+vy (t=75 vy (-7, )]+

im(t): Z;I:oj‘hn (Tl,...,Tn)szvm,nd'tl...d’cn (A.29)
n= m=n

toplamlarin sirasini degistirerek, (A.25)’ i (A.24) de yerine koyarak

o0 mo
lm(t): szz_[_m,[hn (Tl””’Tn )Vm’ndﬂcl...dﬂcn (A.30)
m=1 n=1

m
i(t)= Zj_mjhn (2'1 oo Ty )vm,ndﬁ ...dTn (A.31)
n=l1
elde edilir,

Kilo 10° Mili 107
Mega  10° Mikro 10°
Giga  10° Nano 107
Tera 1 012 Piko 1 0-12
Peta 107 Femto 10"
Atto 1078

*JJ.BUSSGANG, L.ENHRMAN and J W.GRAHAM “Analysis of Nonlinear Systems with
Multiple Inputs” IEEE Proc.1974.
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