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ÖNSÖZ ÖNSÖZ ÖNSÖZ ÖNSÖZ     
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notlarının bir bölümüdür. Bu nedenle bir kitap hazırlamak maksadıyla notlarının bir bölümüdür. Bu nedenle bir kitap hazırlamak maksadıyla notlarının bir bölümüdür. Bu nedenle bir kitap hazırlamak maksadıyla notlarının bir bölümüdür. Bu nedenle bir kitap hazırlamak maksadıyla 
hazırlanmış not değildir.  Notun temel içeriği “Nonlineer Sistemlerim hazırlanmış not değildir.  Notun temel içeriği “Nonlineer Sistemlerim hazırlanmış not değildir.  Notun temel içeriği “Nonlineer Sistemlerim hazırlanmış not değildir.  Notun temel içeriği “Nonlineer Sistemlerim 
Modellenmesi ve Analizinde” son yıllarda özellikle mikroModellenmesi ve Analizinde” son yıllarda özellikle mikroModellenmesi ve Analizinde” son yıllarda özellikle mikroModellenmesi ve Analizinde” son yıllarda özellikle mikro----elektronikte IC ve elektronikte IC ve elektronikte IC ve elektronikte IC ve 
VLS devrelerinin gerçek modellenmesi ve analizinde kullanılan ileri derece VLS devrelerinin gerçek modellenmesi ve analizinde kullanılan ileri derece VLS devrelerinin gerçek modellenmesi ve analizinde kullanılan ileri derece VLS devrelerinin gerçek modellenmesi ve analizinde kullanılan ileri derece 
matematik konusunu  içerir. Bu notlardan  faydalanacakların  belli seviyede matematik konusunu  içerir. Bu notlardan  faydalanacakların  belli seviyede matematik konusunu  içerir. Bu notlardan  faydalanacakların  belli seviyede matematik konusunu  içerir. Bu notlardan  faydalanacakların  belli seviyede 
doğrusal ve doğrusal olmayan doğrusal ve doğrusal olmayan doğrusal ve doğrusal olmayan doğrusal ve doğrusal olmayan sistemler hakkında temel bilgiye sahip olduğu sistemler hakkında temel bilgiye sahip olduğu sistemler hakkında temel bilgiye sahip olduğu sistemler hakkında temel bilgiye sahip olduğu 
varsayılmıştır. Bu notlatın araştırmacılar, doktora ve yüksek lisans  çalışması   varsayılmıştır. Bu notlatın araştırmacılar, doktora ve yüksek lisans  çalışması   varsayılmıştır. Bu notlatın araştırmacılar, doktora ve yüksek lisans  çalışması   varsayılmıştır. Bu notlatın araştırmacılar, doktora ve yüksek lisans  çalışması   
yapanlar için daha faydalı olacağını düşünmekteyim. Ayrıca konuyla ilgili daha yapanlar için daha faydalı olacağını düşünmekteyim. Ayrıca konuyla ilgili daha yapanlar için daha faydalı olacağını düşünmekteyim. Ayrıca konuyla ilgili daha yapanlar için daha faydalı olacağını düşünmekteyim. Ayrıca konuyla ilgili daha 
ayrıntılı çalışmalar için ayrıntılı çalışmalar için ayrıntılı çalışmalar için ayrıntılı çalışmalar için MIT den üstat “ den üstat “ den üstat “ den üstat “N. WIENER” ve  Hocam “Martin  ve  Hocam “Martin  ve  Hocam “Martin  ve  Hocam “Martin 
SCHETZEN”  ve arkadaşlarının  eserlerinden faydalanabilirler.  Faydalı olması ”  ve arkadaşlarının  eserlerinden faydalanabilirler.  Faydalı olması ”  ve arkadaşlarının  eserlerinden faydalanabilirler.  Faydalı olması ”  ve arkadaşlarının  eserlerinden faydalanabilirler.  Faydalı olması 
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“Kainatın Bu Kadar Kararlı Olmasının Te“Kainatın Bu Kadar Kararlı Olmasının Te“Kainatın Bu Kadar Kararlı Olmasının Te“Kainatın Bu Kadar Kararlı Olmasının Tekkkk    

 Sebebi, Yüksek  Sebebi, Yüksek  Sebebi, Yüksek  Sebebi, Yüksek Dereceden Nonliner Olmasıdır” Dereceden Nonliner Olmasıdır” Dereceden Nonliner Olmasıdır” Dereceden Nonliner Olmasıdır”     
 Laplace Laplace Laplace Laplace    

    
1.GİRİŞ1.GİRİŞ1.GİRİŞ1.GİRİŞ    
 

Bu analiz tekniği doğrusal olmayan sistemlerin analitik analizinde kullanılır. Bunlar 
arasında  daha çok haberleşme   sistemlerinde kullanılan  alıcı, verici, diğer araç ve 
gereçlerin tasarım   analizinin yapılmasında sıkça kullanılır.  Haberleşme  sistemlerinde 
oluşan frekans karışımları, distorsiyon ve gürültü oluşturan kaynaklar sistemlere de 
uygulanabilir. Doğrusal olmayan sistemlerin veya devrelerin çıkış cevaplarının  analizinde 
analitik yöntemler büyük zorluklar oluşturur. Bu durum sistem analizinde ciddi sorun 
yaratmaktadır. Ancak  gerçek Dünyada çoğu sistemler  insanoğlunun uğraştığı sistemlerden  
çok daha  büyüktür veya daha küçük  hacim ve alana  sahip olabilen doğrusal olmayan 
sistemler de mevcuttur. 

Bu çalışmada  sunulan yaklaşım özellikle  tabiatın  insanoğluna  sunduğu faydalı ve 
insan oğlunun kendi çapındaki sistemlere uygulanabilir olmasıdır. Çünkü evren  bir makro 
sistemdir. Ancak bu büyük sistemi meydana getiren pek çok alt sistemde mevcuttur. Buna 
karşılık hücre ve DNA da kendi boyutunda karmaşık bir sistemdir. Burada Volterra 
fonksiyonlarını kullanarak detaylı bir frekans düzleminde analiz yapılmıştır [1].  Volterra 
fonksiyonlarının  doğrusal olmayan sistemlere ve devrelerler için ilk uygulanmasını  
N.Wiener  yapmıştır [2]. Wiener’in MIT’ de öğrencileri olan  Lee, Schetzen ve Sanberg 
tarafından Volterra serileri geliştirildi. 1950’lerin sonunda Volterra serileri geliştirilerek 
doğrusal olmayan sistemlere uygulanması için sürekli bir çaba vardır. Bu çalışmaların büyük 
çoğunluğu üniversitelerde yapılmıştır  ve genellikle etkileşimli olmayan sistemlerin 
problemlerine odaklıdır [3]-[8]. Bu yaklaşımın uygulamaları vardır ancak sürpriz biçimde  
son zamanlarda sıkça  kullanılmaktadır. Narayanan 1967’de bu tekniği bir doğrusal olmayan 
junction transistörünün T-modeli ve transistörlü yükselticilerin kayıplarını ve distortion 
analizinde kullandı [9]. Daha sonra Maurer’la birlikte Gauss girişleriyle doğrusal olmayan 
reaktif sistemlerin tepkimesinin analizini genişlettiler [10]. Narayanan   transistörlü kaskat  
yükselteçlerin  analizinde ve geri besleme yükselteçlerindeki kayıpları analiz etmiştir [11-12]. 
Poon üçüncü derece yükselteç distortion çalışmaları için şarj kontrol transistörlerinin 
Volterra analizlerini  kullandı [13]. Kuo ve Witkowski, Volterra tekniklerini kullanarak 
üçüncü derece distortion hesaplamak için bir bilgisayar programı geliştirdi [14].Meyer ve 
ekibi [15] yükselteçlerin deneysel çapraz-modülasyon tanımlamasının da Volterra analizleri 
kullanıldı. Bedrosian ve Rice tarafından yazılan, sinüs dalgalarının ve Gauss gürültüsünün ve 
sunulan çeşitli önemli örnekler tarafından işletilen sistemlere Volterra serilerinin bir 
uygulamasının tanımlandığı çok önemli  bir raporu MIT de tamamladı.  Sonra Schetzen 
doğrusal olmayan sistemlerin sorunları ile ilgili 1962 MIT bir rapor hazırladı.  
 Elektromanyetik girişimler  ve uyumlu bağdaşabilirlik  alanlarında Volterra 
analizinin birçok uygulaması vardır. Güç serilerinin analizinde vurgulanmak istenen, sanki 
alıcılar hafızasız doğrusal olmayan sistemlerdir. İlk analizde hafıza, davranışlarının doğrusal 
olmayan işlemlerle  etkileşimli olmayan giriş, çıkış filtrelerini içerir[17].  
 Bu çalışma, Volterra fonksiyonlarının doğrusal olmayan devre analizi ve ilgili 
elektromanyetik etkisi üzerine odaklanmıştır. Bu çalışmanın sonuçları profesyonel 
toplantılarda rapor edilmiştir [18] – [22] ve hava kuvvetleri tarafından bir kitap olarak 
yayınlanmıştır[23]. Bu makale doğrusal olmayan devrelerin çok güçlü yanlarını kapsamaz, 
[21] de özetlenmiştir ve detaylı olarak [23] de tartışılmıştır.  
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  Analizlerde metot olarak,  tamamen  doğrusal olmayan aletlerin modellenmesi ve  
doğrusal olmayan devrelerin  frekans düzleminde  analizi yapılmıştır. Volterra teorisinin 
genişlemesi, yüksek dereceden büyük boyutta doğrusal olmayan sistemler geliştirilmiş ve 
uygulanmıştır. Ayrıca iletişimde  alıcı-verici  modelindeki problemlere uygulanarak bir 
bütünleşik  sistem elde edilmesi üzerine inşa edilmiştir. 
 Doğrusal  olmayan devre elemanları  direnç, kondüktör, bobin, transistör, vakum 
tüpleri ve diyotları içeren  sistem tasarımında sıradan  devrelerin transfer fonksiyonlarının  
elde edilmesinde tüm sayısal sonuçların hesaplanmasında  kullanılmaktadır.  Son yıllarda ise 
tümleşik devre tasarımında sıkça kullanılmaktadır. 
 
 Bu çalışma doğrusal olmayan devrelerin Volterra-Wiener analizi ile başlar ve 
doğrusal olmayan devrelerin karşılıklarını doğrusal olmayan güç serisi ile hesaplayan geçerli 
olan metotları açıklar. Bu metot da bir doğrusal olmayan diferansiyel denklemin çözümünün 
probleminde aynı doğrusal denklemin tekrarlayan çözümü fakat her seferinde farklı bir 
doğrusal olmayan etkiyle yaklaşılmıştır. Karmaşık  doğrusal olmayan sistemlerin doğrusal 
olmayan transfer fonksiyonlarının hesaplanması açıklanmıştır. Bu metotlarla bütün bir 
iletişim alıcı sistemi gibi büyük bir doğrusal olmayan sistemi analitik modellemek  mümkün 
olabilmektedir. Aynı çözüm  doğrusal olmayan aletlerin analitik  modellenmesi de  
yapılmaktadır. 
. 
 Sözü edilen genel metodun genel  şekli verilerek sade   bir uygulama ile 
örneklenmiştir. Analizde  çoklu  giriş işaretinin  doğrusal olmayan bir sistemle nasıl etkileşim 
yaptığını göstermektedir. Analitik model temelli hesaplanabilir sonuçlar ölçülebilir fiziksek 
büyüklüklerle karşılaştırılır.  Giriş işareti modüle edilmiş veya edilmemiş  bileşenleri olabilir. 
Modüle edilmiş giriş bileşenleri için, doğrusal olmayan transfer fonksiyonları genişletilir ve 
kanonik model olarak isimlendirilirler, Bunlar sistemin bazı parametrelerle kullanışlı bir 
frekans aralığıyla tanımlanır.   
 

    
II. SİSTEM ÇIKIŞININ  VOLTERRA AÇINIMI  II. SİSTEM ÇIKIŞININ  VOLTERRA AÇINIMI  II. SİSTEM ÇIKIŞININ  VOLTERRA AÇINIMI  II. SİSTEM ÇIKIŞININ  VOLTERRA AÇINIMI      
 

Buradaki analitik yaklaşımın temeli olan fonksiyonel açınım Volterra serileri olarak 
bilinir. Bu bölüm ilgili olan matematiksel ilişkileri özetler. 
 Volterra açınımı, herhangi bir fonksiyonun  operator  fonksiyonel  şekli G[x],  
şeklinde temsil etmektedir ve  fonksiyon  alanı içerisinde süreklidir ve açınımı  
 

∑
∞

=
=

0
][][

n
xnFxG                                 (2.1) 

 
şeklinde  temsil ve ifade edilir. ][ xnF   düzenli homojen fonksiyonel formudur.Açınımı ise  

 

∫ ∫+= b
a

b
a nddnxxxnnhoKxnF ξξξξξξξ ,.....,1)().....2()1(),.....,1(...][

       (2.2) 
 
şeklinde olup Ko sabitleri ve n indisi fonksiyonun dereceni temsil eder. 
 Eşitlik (2.1)’de  verilen seri “Volterra fonksiyonel serisi” olarak adlandırılır.   Eğer 
fonksiyonun    her x(t) değerine karşılık gelen değer tanımlı ise  seri “yakınsak“  olarak 
adlandırılır.  
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  Norbert Wiener fonksiyonel seri açınımı  doğrusal olmayan sistem analizine 
uyguladı [2]. Wiener doğrusal olmayan sistemin çıkışını y(t) girişini x(t) olarak tanımlayarak, 
giriş-çıkış arasında  fonksiyonel bir ilişkinin  olduğunu  göstermiş ve her ikisini de 
fonksiyonel seriyle ilişkilendirmiştir. Bu benzerlik, güç seri açınımına uygulandığında, serinin 
ilk birkaç fonksiyonel terimleri eşitlik (2.3) deki gibi elde edilir. 
 

.....)()()(),,(

)()(),()()()(

3213213213

21212121

+−−−

+−−+−=

∫ ∫ ∫

∫ ∫∫

∞

∞−

∞

∞−

∞

∞−

τττττττττ

τττττττττ

dtxtxtxh

dtxtxhdtxhty

                            

          (2.3) 
        
 
Bu gösterim y(t)’nin doğrusal olmayan çözümü için çok zor değildir. Daha ayrıntılı bir analiz 
için terim sayısı yeterli değildir. Eşitlik (2.3) seri açınımı küçük-işaret doğrusal olmayan 
durumlar için  yeterlidir. Ancak terim sayısı çok olduğu zaman pratik olarak uygulanabilirliği 
zorlaşır. Bu durumda büyük-işaret doğrusal olmayan durumuna karşılık gelir.  Bu durumda 
çözüm için daha değişik ve karmaşık metotlar aranmalıdır. Bu durumda çözümü zorlaştırır. 
Eşitlik (2.3) serisinin  n. dereceden Volterra çekirdeği, ),,......,,( n21nh τττ  n.dereceden 

doğrusal olmayan dürtü (impulse) cevabı (nonlinear impulse response) olarak adlandırılır.  
Bunun frekans düzlemindeki  Fourier dönüşümü  n.dereceden doğrusal olmayan transfer 
fonksiyonu olarak adlandırılır.Bu fonksiyon 
 

nnn

nnnn

dddfffj

hfffH

ττττττπ

τττ

,...,)]....(2exp[

),....,,(...),....,,(

212211

2121

+++−

= ∫ ∫
∞

∞−

∞

∞−  

    (2.4) 
 
şeklinde tanımlanmıştır. Bunun tersi ise, n.dereceden doğrusal olmayan dürtü transfer 
fonksiyonu verir ve ters Fourier dönüşümü uygulanır; Bu ise, 
 

nnn

nnnn

dfdfdffffj

fffHh

,....,)]...(2exp[

),....,,(...),...,,(

212211

2121

τττπ

τττ

+++−

= ∫∫
∞

∞−

∞

∞−  

                          (2.5) 
 
tanımlıdır. Eşitlik (2.3) deki giriş-çıkış ilişkisi ise 
 

∑
∞

=

=
1

)()(
n

n tyty             (2.6) 

 
şeklinde tanımlanır. Aşağıdaki eşitlik de 
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∫∫
∞

∞−

∞

∞−

−−= nnnnn ddtxtxhty ττττττ .....)()...(),....,(...)( 111             (2.7) 

 
çıkış bileşeni n. derecededir. 
 Eşitlik (2.6) eşitlik (2.7)’de  yerine konduğunda   ve integral nττ ,....,1  üzerinden 

yapıldığında eşitlik (2.8) elde edilir.. 
 

iii

n

i
nnn dftfjfXfffHty )2exp()(),....,,(...)(

1
21 π

=

∞

∞−

∞

∞−

∏= ∫ ∫       (2.8) 

 
X(f) giriş tayfının (spectrum) bir fonksiyonu olarak çıkışın açınımı n.dereceden ifade 
edilmesidir. Bu çalışmada, alışılageldik zaman fonksiyonun Fourier dönüşümü büyük 
harflerle ve küçük harflerle de  zaman fonksiyonunu temsil edecektir. 
 Burada “derece” terimini doğrusal olmayan çıkış bileşeni yn(t) ile kullanıyoruz. 
Giriş harmonik  tonların toplamı olduğu zaman böyle bileşenlerin derecesi katkıda bulunan 
giriş işaretlerinin sayısı kadar olacaktır. Ayrıca bu derece kavramı ilerleyen bölümlerde daha 
açık olacaktır.  Örneğin  ikinci dereceden karşılık, bir frekans da iki ayrı frekans toplamı da 
olabilir, yada her giriş işaretinin bir ikinci harmoniği de olabilir. Doğrusal olmayan 
sistemlerin analizinde birçok durum vardır. Bu sistemlerde farklı derecelerdeki doğrusal 
olmama durumunda aynı frekans da karşılıklarında sonuçlanabilir. Bir karşılığın frekansı 
olmayabilir. Bundan dolayı karşılığın derecesi tamamıyla belirticidir. 
 Eşitlik (2.8)’in her iki yanını da Fourier dönüşümünü  uygularsak kazanç 
n.dereceden çıkış tayfı, 
 

ii

n

nnnn dffXfffffHfy )())...(),....,(...)( 11 ∏−−−= ∫ ∫
∞

∞−

∞

∞−

δ    (2.9) 

 

burada  (.)δ  delta fonksiyonudur. Giriş–çıkış tayflarının ilişkisi eşitlik (2.6) da gösterilmiştir 

ve sonra da 

∑
∞

=

=
1

)()(
n

n tYtY        (2.10) 

 
şeklinde tanımlıdır. Eğer girişler eşit  genlikli iki sinüs işareti   af  ve bf  nin  toplamıysa ve 

ab ff >   ise 

 
)()()()()( bbaa fffffffffX −+++−++= δδδδ     (2.11) 
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Şekil 1. Doğrusal olmayan Volterra-Wiener sistem modeli 
 
 

ikinci dereceden çıkış tayfı Y2(f), baabba f,f,ff,ff 22−+  ve sıfır olmak üzere 

intermodülasyon frekansbileşenleri dikkate alındığında,   beş tür frekans bileşenine 
sahiptir.Bunlar; 
Y2(f), ba ff +  frekansın da şu formda gösterilir. 

 
 )()],(2),(2[ bfaffbffafHaffbfH −−−+− δ                     (2.12) 

 
burada doğrusal olmayan transfer fonksiyonlarının bileşenleri simetrik fonksiyon olarak 
varsayılırlar. Değişkenlerin derecelerinin yerleri değiştirilebilir. ),....,( 1 nn ffH .  Impuls  

karşılığı ),....,( 1 nnH ττ  bileşenlerinin bir simetrik fonksiyonu olmadıkça bu genellikle 

doğru değildir. Şimdi ),....,( 1 nnH ττ  ve bundan dolayı )f,....,f(H nn 1 değillerdir. 

Aslında simetrik olabilirler.Aynı ise eşitlik (2.7) deki gibi olabilir.  )( tyn  çıkışı  
değişkenlerinin  her durumu için aynı olabilir.  
 

∫ ∫ ∑∑
=

∞

∞−=

=−
!

1
1

!

1
))((

!
1

....)).(2exp())((...
!

1 n

l
lnnlln

n

l

fPH
n

ddfPjPh
n

τττπτ       (2.13) 

 
Burada f vektördür [f1, f2,…., fn] ve τ  bir vektördür ],....,,[ 21 nτττ . Her  )(τlP  ve 

)( fPl ,  τ  ve f   vektörlerinin n bileşenlerinin n! permütasyonu ile ilgili bir vektördür. 

fPl ).(τ  çarpımı vektör çarpımıdır.  Burada formülü biraz basitleştirmek için simetrik 

fonksiyonu argümanların permütasyonları ile S sembolü ile gösteriyoruz. 
 

∑
=

≡
!

1
1 )).((

!
1)],...,([

n

l
lnnn fPH

n
ffHS                                (2.14) 

eşitlik (2.4) den ,  
 

),...,(),...,( 11
*

nnnn ffHffH −−=                 (2.15) 
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 burada fonksiyonun karmaşık eşleniğini (conjugate,  *) gösterir. 
 
Bu analizden sonuç olarak  doğrusal olmayan sistemin modeli Şekil.1 de gösterilmiştir. Bu 
şekilde çıkış düşük dereceden paralel kolların toplamı olarak temsil edilir. Eşitlik (2.8)‘i  çok 
boyutlu zaman fonksiyonun tanımından genelleştirilmiştir Çok tayflı yoğunluğu ise  
 

iiii

n

nnnn dftfjfXffHtty )2exp()().,...,(...),...,( 11 πΠ∫ ∫
∞

∞−
=       (2.16) 

 
şeklinde olup eşitliğin  n-katlı Fourier dönüşümü, yada çok tayflı yoğunluğu 
 

nnnnnnn dtdttftfjttyffY ...)]...(2exp[).,...,(...),...,( 11111 ++−= ∫ ∫
∞

∞−
π          (2.17) 

böylece 
 

nnnnnnn dfdftftfjffYtty ...)]....(2exp[).,...,(...),...,( 11111 ++= ∫ ∫
∞

∞−
π             (2.18) 

 
Bunu eşitlik (2.6) ve eşitlik (2.11) in karşılaştırılması  takip eder. 
 

)()...(),....,(),...,( 111 nnnnn fXfXffHffY =                               (2.19) 

 
ve 

nnnnn dfdffffffYfY ,...,),.....,().,...,(...)( 111 −−−= ∫ ∫
∞

∞−
δ          (2.20) 

 
şeklindedir. Bu durumda )( fYn  çok tayflı ),.....,( 1 nn ffY  yoğunluğun integralidir. 

 
 
 
III. PROBİNG METODU İLE DOĞRUSAL  OLMAYAN TRANSFER FOKSİYONUN   

ELDE EDİLMESİ 
 

Doğrusal olmayan transfer fonksiyonunu elde etmek için uygun analiz metotları 
“probing” yada “harmonik giriş” olarak adlandırılırlar. Harmonik  giriş metodundan [16]  
bahsedilecektir. Bu metodu doğrusal olmayan transfer fonksiyonu elde ederek ve tek döngülü 
basit bir devrede örneklendirerek anlatacağız. 
Varsayalım ki doğrusal olmayan bir sistemin girişi ve çıkışı R ilişkisi ile y(t) nin tüm 
değerlerinde karakterize edilsin. Böylece  
  

)]([)( txRty =                                           (3.1) 
 
x(t) giriş ve y(t) çıkışıdır. Biraz ayrıntılı düşünüldüğünde bu eşitliğin  yalnızca bir sabit-
durum çözümü vardır. Bu çözüm Volterra açınımı tarafından ifade edilebilir; 
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∑∫ ∫
∞

= =

∞

∞−
=

1
11

1
21 )2exp()().,...,,(...)(

n
i

n

i
nn dtjXHty ξπξξΠξξξ             (3.2) 

 
Eşitlik (3.2) deki doğrusal olmayan sistemin çıktısı, doğrusal olmayan transfer fonksiyonu 
olarak adlandırılan Volterra çekirdeklerinin ),...,( 1 nn ffH , bulunmasını gerektirir. 

 Şimdi sistemin girişi x(t) üslerin toplamı olmalıdır. 
 

)exp(....)exp()exp()( 21 tjtjtjtx nωωω +++=                      (3.3) 

 

ii fπω 2=   i = 1,2,..,n ve iω  oranlı değildir. Eşitlik (3.3) deki girişin Fourier dönüşümü delta 

fonksiyonunun bir toplamıdır. 
 

)(....)()()( 21 nfffX −++−+−= ξδξδξδξ              (3.4) 

 
Bu tür girişler “gerçek girişi” (probing input) yada “harmonik girişli” olarak adlandırılır. 
Bu girişle  çıktının Volterra açınımı   eşitlik (2.3) ve (2.8) şu şekilde olur. 
 

∑∫ ∫
∞

= =

∞

∞−
−++−=

1
1

1
1 )2exp()](...)([).,...,(...)(

n
iinii

n

i
nn dtjffHty ξπξξδξδΠξξ            (3.5) 

 
Delta fonksiyonlarının toplamının çarpımı, farklı tüm terimlerin toplamını genelleştirir. 
Formu : 
 

  )()....()(
21 21 nknkk fff −−− ξδξδξδ                                          (3.6) 

 
tanımlıdır. Her bir ki indisi birden n’ e kadardır. Eğer her bir 

ikf bir çarpımda  olursa eşitlik 

(3.6) gibi mi kere , daha sonra  
 

),.....,;(
!!...!

!
1

21
n

n
mmn

mmm
n

≡                                                    (3.7) 

 
şeklindedir. Benzer terimler vardır ama faktörlerin permütasyonu içindir.  Eşitlik (3.7), çoklu 
katsayıları ),.....,;( 1 nmmn ile göstermiştir.  Şimdi eşitlik (3.5) de benzer terimler toplanarak 

yeniden yazıldığında, 
 

∑∑
∞

=

++=
1

1
1

)...(2exp().,.....,(
!!....

!
)(

n
nkknkikn

m n

tffjffH
mm

n
ty π                  (3.8) 

 
 
Toplam işaretinin altındaki m ayrı {mi} kümelerinin tamamının toplama dahil edileceğini 
gösterir, yani: 1+< ii mm  ve 

 

  ∑
=

=
n

i
i .nm

1
                                                                    (3.9) 
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burada1 1+< ii mm  eşitsizliği {fmimi} deki frekansları sıralar. Burada dikkat edilmesi 

gereken husus, eşitlik (3.4) den eşitlik (3.8) deki giriş ile, y(t)’nin n.derece bir terimi  şöyle 
verilir: 
 

].)....(2exp[)],....,([! 11 tffjffHSn nnn ++π             (3.10) 

 

1

2

i(t)

C C
dv

dt
K v1K v2

2

 
Şekil.2.  Basit bir doğrusal olmayan devre 

 
 
Bunlar simetrileştirilmiş n. dereceden  doğrusal olmayan transfer fonksiyonu 

)],...,([ 1 nn ffHS  analitik olarak, sistem girişi eşitlik (3.3) de verilen n üslerinin 

toplamı olduğunda, sistem çıktısındaki ])....(2exp[! 1 tffjn n++π  in katsayısı olarak 

elde edilebilir. Bu bir analitik metodudur. Bundan dolayı eşitlik (3.3) deki orantısız üslerin 
toplamı gerçek değildir. Böyle bir toplam analitik bir araştırma işareti olarak kullanılabilir. 
Ama  gerçek bir ölçümün temelleri olarak değil. Eşitlik (2.14) simetrik transfer fonksiyonu  
olduğu her zaman varsayılmıştır hatta harici olarak belirtilmiştir. 

Bu gözlemde, giriş eşitlik (3.3) olduğunda sistemin davranışlarını tanımlayan 
eşitliklerden tüm doğrusal olmayan transfer fonksiyonlarının elde edilmesi için yinelemeli bir 
öneri ile ])......(2exp[ 1 tffj n++π ’in katsayısı )],....,([! 1 nn ffHn  lidir. Böyle 

bir eşitlikten verilen bir sistem tek bir üslü heyecan ile ilk araştırılmıştır. Bu )(1 fH ’nin  

elde edilmesine izin verir. Daha sonra iki üssün toplamı uygulanır.  Bu kazanç 
),( 212 ffH , )(1 fH  cinsindendir. Bu prosedür, n. adıma kadar her bir adımda girişe 

ek bir üs eklenmesi ile devam eder, giriş ),....,( 1 nff  de n üslerinin toplamını içerir. Daha 

sonra daha düşük dereceden doğrusal olmayan transfer fonksiyonlarından n. dereceden 
doğrusal olmayan transfer fonksiyonunun elde edilmesi ile devam edilir. 

Bunun gösterimi için, şekil 2 deki gibi bu metoda uygulanabilir basit bir devreyi 
düşünelim. Şekil 2 bir kondansatör, bir doğrusal direnç ve bir doğrusal olmayan direnç 
paralel olarak akım kaynağı i(t) içermektedir.  Doğrusal olmayan diferansiyel denklem 
kondansatör boyunca, akım i(t) ve voltaj v(t)  ile ilgilidir.  Bu şu şekilde verilir : 

 

)()()()( 2
21 tvKtvKtv

dt
dCti ++=                                                     (3.11) 
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Burada RK /11 = ’dir. Biz i(t) yi x(t) ve v(t) ile tanırız. Eşitlik (3.8) den v(t) için yer 

değiştirirsek, başarılı  bir giriş işareti  kullanarak bu devrenin doğrusal olmayan transfer 
fonksiyonunu başarılı bir şekilde elde ederiz. 
 

)2exp()( ftjti π=                                                                           (3.12) 
 
Bundan dolayı eşitlik (3.11) her t ve her f için memnun edici olmalıdır. Her bir harmonik 
bileşende ayrıca kişisel olarak eşitliği tatmin  edici olmalıdır. Eşitlik (3.8)in yer 
değiştirmesinden sonra eşitlik (3.11)in her iki yanındaki )2exp( ftj π ’nin katsayılarını v(t) için 
eşitleriz. Burada  
  

 )()2(1 11 fHKfCj += π                                                 (3.13) 

 
alırız. Bundan dolayı belirtilen devrenin birinci dereceden Volterra çekirdeği basitçe eşitlik 
(3.11) in çözümüdür. 

)2(
1

)(
1

1 KfCj
fH

+
=

π
                                                (3.14) 

 
Benzer şekilde iki üssün toplamı ile  
 

  )2exp()2exp()( 21 tfjtfjti ππ +=                            (3.15) 

 
Eşitlik (3.11) in her iki tarafındaki ])(2exp[!2 21 tffj +π  nin katsayıları, eşitlik (3.8) 

deki v(t) nin değişimini uyguladıktan sonra, eşitlersek, 
 

)()(),(])(2[0 21112212121 fHfHKffHKCffj +++= π     (3.16) 

 

)f,f(H 212  ve eşitlik (3.13) ü alırsak eşitlik (3.16) daki kazanç : 

 

)ff(H)f(H)f(HK)f,f(H 21121112212 +−=                (3.17) 

 
ve üç üssün toplamıyla devam eder. 
 

 )2exp()2exp()2exp()( 321 tfjtfjtfjti πππ ++=                    (3.18) 

 
 
Eşitlik (3.11) in her iki tarafındaki ])(2exp[!3 321 tfffj ++π  nin katsayıları, 

değiştirerek uyguladıktan sonra, eşitlersek, 
 

)()]()(

),()(),()([
3
1

),,(

321121231

312213221123213

fffHffHfH

ffHfHffHfHKfffH

+++

++−=              (3.19) 

 
Daha sonra eşitlik (3.17) deki ikinci dereceden çekirdek için değiştirirsek, 
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)()]()(

)()[()()(
3
1

),,(

3211131321

211312111
2
23213

fffHffHffH

ffHfHfHfHKfffH

+++++

++−=
           (3.20) 

 
Bu kural her adımda daha yüksek derecede doğrusal olmayan transfer fonksiyonlarını daha 
düşük derecedeki doğrusal olmayan transfer fonksiyonu cinsinden yazarak sonsuz sayıda 
eşitlik (3.19) da olduğu gibi bulabiliriz. 
  

 )(),....,( 1
1

1 i

n

i
nn fHffH Π

=
<                                 (3.21) 

 
Volterra çekirdeklerinin kesin değerlerinin ne olduğunda daha küçük dereceleri ile 
yakınsaması   beklenebilir. 
 
Eşitlik (3.11) in tek bir ikinci derece v2(t) terimi ile  analizi, şu formda her doğrusal olmayan 
diferansiyel denkleme genelleştirebiliriz. 
 

∑ ∑
∞

=

∞

=

+=
0 2

)()()(
r n

n
nr

r

r tyKty
dt

dtx β                                  (3.22) 

 
y(t) deki doğrusal olmayan terimler bir güç serisidir. Tek üslü bir girişe uygularsak, 
 

)2(
1)(1 fjL

fH
π

=                                                         (3.23) 

 
burada )2( fL π  f ‘de bir polinomdur. 
 

  ∑
∞

=

=
0

)2()2(
r

r
r fjfL πβπ                                                (3.24) 

 
Eşitlik (3.24) ve (3.22) ile belirtilen  doğrusal bir devre gösterimidir ve bu birleştirilmiş 
doğrusal devre olarak adlandırılır. 
 
 
 
 

IV. DOĞRUSAL OLMAYAN AKIM METODUNDAN 
DOĞRUSAL OLMAYAN TEPKİNİN TANIMLANMASI 
 
Bu bölümde, doğrusal olmayan bir sistemin karşılığını, doğrusal olmayan bir güç serisi türü 
ile elde edilmesiyle “doğrusal olmayan akım” metodu sunulacaktır. Bu yaklaşım doğrusal 
olmayan karşılıkların,  gözden geçirilmesinden türetilmiştir, burada eşitlik (3.22) deki 
doğrusal olmayan diferansiyel denklemle artan derecelerinin başarılı bir uygulamasıdır. 
Doğrusal olmayan akım kavramın derece ile tanınır. 

Bu iddiayı göstermek için eşitlik (3.22) şu formda varsayılır. 
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 )()( tzitx =                                                    (4.1) 

 
z değişkeni farklı terimlerin hangi derecesinin olduğunu saklamamızı sağlar, 
Volterra tanımından eşitlik (3.2) den  
 

ii

n

i
inn

n
n dftfjfIffHzty )2exp()(),....,(....)(

1
1 π∫ ∫ ∏

=

∞

∞−
=       (4.2) 

 

burada alışageldik simgesel gösterimde f(I ) , )(ti nin Fourier dönüşümüdür. Şimdi )(tv ’yi 

girdi )(ti devreye uygulandığında, çıktı olarak tanımlayalım. 
 

∑ ∑
∞

=

∞

=

+β=
0 2r n

n
nr

r

r )t(vK)t(v
dt

d
)t(i    (4.3) 

 
Daha sonra n-katlı integrale eşit olan )(tvn ye eşitlik (4.2) deki gibi aynı çekirdekle sahibiz. 

 

ii

n

i
innn dftfjfIffHtv )2exp()(),....,(...)(

1
1 π∫ ∫ ∏

=

∞

∞−
=            (4.4) 

Böylece 
 

 )t(vz)t(y n
n

n =                                                (4.5) 

ve 

∑ ∑
∞

=

∞

=

==
1 1n n

n
n

n )t(vz)t(y)t(y                                  (4.6) 

 
Bu ön hazırlıkla,  )(ti  ve )(tv  iki  diferansiyel eşitlikle ilgilidir: eşitlik (4.3), yada eşitlik (4.1) 
ve (4.5) in eşitlik (3.22) de değişiminden elde edilir. 
 

n

n s
s

s
n

n r
nr

r

r
n tvzKtv

dt

d
ztzi ∑ ∑∑ ∑

∞

=

∞

=

∞

=

∞

=








+=

2 11 0
)(])([)( β              (4.7) 

 
Bundan dolayı, eğer )(tvn  olarak gösterilen )(tv ’nin kişisel doğrusal olmayan bileşenleri 

için eşitlik (4.7) yi çözümlersek, eşitlik (4.3) ün çözümü aşağıdaki eşitlik olur. 
 

∑
∞

=

=
1n

n )t(v)t(v                             (4.8) 

 
Rasgele bir değişken olan z nin tanımı, başarılı bir vn(t) nin çözümüne yardımcıdır. Bunu 
görmek için eşitlik (4.5)’i en düşük dereceden )(1 tv , )(2 tv , )(3 tv  nin 3 doğrusal olmayan 

karşılıkları için çözeriz. 
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)(1 tv  yi çözmek için eşitlik (4.5) her iki tarafını  z’ye göre ayırırız ve cevapta  z = 0 olarak 

düzenleriz. Bu prosedürün kazanımının diferansiyel denklemi, eşitlik (4.5) in doğrusal 
parçasını basitleştirmesi gereken )(1 tv  için, şu şekildedir : 
 

∑
∞

=

β=
0

1
r

r

r

r )t(v
dt

d
)t(i                                                (4.9) 

 
Bundan dolayı birinci dereceden karşılık bileşeni olan )(1 tv  eşitlik (4.7) nin doğrusal kısmı 

için yeterlidir. Sanki )(tvn de güç serisi tarafından belirtilen doğrusal olmayan element 
devreden çıkartılmış ve akım kaynağı i(t)  sadece devrenin doğrusal kısmına uygulanmış 
gibidir. 
 
İkinci dereceden doğrusal olmayan karşılık )(2 tv yi çözmek için,  eşitlik (4.5)’in her iki 
tarafını z ye göre ayırmak için işlemi tekrarlarız ve daha sonra z = 0 yaparız. Bu yapıldığı 
zaman, )(2 tv  tarafından yeterli olan diferansiyel denklemi alırız. 
 
  

∑
∞

=

+β=
0

2
1220

r
r

r

r )t(vK)t(v
dt

d
                                        (4.10) 

 

Bu eşitliği eşitlik (4.7) ile karşılaştırılması bize, )t(v2 , doğrusal olmayan  terminallerine 

)t(vK 2
12 olarak uygulanan akım tarafından yürütülen devrenin doğrusal parçasının 

karşılığı olarak elde edilebileceğini  önermiştir. Biz bu akımı 2.derecenin doğrusal olmayan 
akımında çağırırız:  

  )t(vK)t(i 2
122 =                                                   (4.11) 

 
Eğer bu işlemi z’ye göre üç defa tekrarlarsak, )(3 tv  tarafından diferansiyel denklem elde 

edilir. 
 

∑
∞

=

++=
0

3
132123 )()()()(0

r
r

r

r tvKtvtvKtv
dt

d
β                              (4.12) 

 
Burada tekrar doğrusal olmayan bileşen )(3 tv , devre aşağıdaki akım tarafından yürütüldüğü 

zaman doğrusal devrenin karşılığıdır. 
 

 )t(vK)t(v)t(vK)t(i 3
132123 2 +=                                 (4.13) 

 
Bu akım doğrusal olmayan elementin terminallerindedir. 
  
Bu prosedürün istenilen doğrusal olmayan karşılık derecesine ulaşıncaya kadar 
tekrarlandığında başarılı olduğu görülebilir. 
Genel olarak n.derecenin akımını doğrusal olmayan element boyunca şöyle 
tanımlayabiliyoruz. 
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0
2 1

)()(

=

∞

=

∞

=
∑ ∑ 





















=

s
m

m

s
s

s
nmn tvz

dz

dKti                                               (4.14) 

 
m > 1 olduğunda, in(t) n den daha yüksek olmayan derecelerin doğrusal olmayan 
karşılıklarına bağlı değildir, ve sadece ve sadece daha henüz hesaplanan n-1 )(1 tv  ,..., 

)(1 tvn−   karşılıklarına bağlıdır.  

 

∑∑
=

=
p

p
n

p

m

n

m
mn tvtv

pp

m
Kti m )()....(

!!....
!

)( 1
1

12
          (4.15) 

 
Toplam işaretinin altındaki p işareti, mpp ,...,1 ’e kadar olan tüm kümelerin toplamını 

belirtir. Buda şu şekilde sağlanır 
 

 1,...3,2,...,2 21 −==+++ nmnmppp m  ,                                     (4.16) 

 
Burada üs pi 0 dan n’e kadar uzanır. Bundan dolayı, )(1 tv  ve )(ti ’ye bağlıdır, )(2 tv  

)t(v1 ’ye, )t(v3 , )t(v1 ’ye ve )t(v2 ’ye vs. ama sonunda tüm doğrusal olmayan 

akımlar )t(i ’ye bağlıdır. Örneğin, kp
kv  kkp ’nın )t(i ’de derecesidir. Bundan dolayı 

eşitlik (4.16) )t(i  üzerinde )t(in ’nin derecesinin bağımlılığını verir. 

  
Doğrusal olmayan bir devrenin karşılığının güç serisi ile elde edilmesinde kullanılan 

doğrusal olmayan akım metodunda, doğrusal olmamak şöyle özetlenebilir. 
 

Adım 1 : )t(v1 nin birince dereceden karşılığı çözmek için, sanki doğrusal olmayan 

elementler devreden silinmiş gibi )t(i , basitçe devrenin doğrusal olan 

parçalarının karşılıkları çözülür. 

Adım 2 : Birinci derecen voltaj )t(v1  hesaplandıktan sonra , doğrusal olmayan akım 

)t(i2  hesaplanır. Genel olarak doğrusal olmayan  )t(in  akımı hesaplanırken( 

bkz. Eşitlik (4.15)) )t(vn 1−  bulunur. 

Adım 3  :  Doğrusal diferansiyel denklemden ‘ yi çözmek için 
 

 [ ] ,0)()( =+ titvL nn       n=2,3,….                                           (4.17) 

 

 L sembolik olarak doğrusal diferansiyel denklem işlemlerini gösterir ve )t(in  2. 

adımda hesaplanan doğrusal olmayan akım kaynağıdır. 
 
Bu metot açıkça tekrarlamalıdır,  sonraki daha yüksek dereceden bileşen bulunmadan önce 
daha düşük olan tüm derecelerin bileşenlerini gerektirir. Sonuç olarak toplam karşılık tüm 
bileşenlerin toplamıdır. 
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∑
∞

=

=
1n

n )t(v)t(v                                                                            (4.18) 

 
Ama toplam sıklıkla uyumlu doğrusal olmayanlar için yuvarlanır. 
  

Sonuç olarak, toplam karşılık için doğrusal olmayan diferansiyel denklemin yerinde, 
doğrusal olmayan karşılıkların bileşenleri için, belirtilen bir doğrusal diferansiyel denklem 
hızlıca  çözülür, her seferinde de uygun bir eşitlik kullanılır. Uygun eşitlik bu işlemin n. 
aşamasında daha önceki aşamalarda elde edilmiş daha düşük dereceden bileşenlerin 
doğrusal olmayan karşılıkların çözümünün bir fonksiyonudur. Toplam karşılık için seri 
eşitliklerinde tüm bileşenlerinki toplanır. 
 
 
 
V. HARMONİK GİRİŞLER İÇİN DOĞRUSAL OLMAYAN AKIM KAYNAKLARI 
 
Bundan önceki bölümlerde,  doğrusal olmayan bir diferansiyel denklemin çözümünde, paralel 
olarak bağlanmış doğrusal olan ve olmayan elementlerle bir akım kaynağı tarafından 
yürütülen terminallerdeki voltaj için alışageldik, azar azar ilerlemeli metot sunuldu. Doğrusal  
olmayan elementlerin tipi, voltajdaki güç serisine bağlıdır.  n. derecen doğrusal olmayan 
karşılığı daha küçük dereceden doğrusal olmayan karşılıkların bulunarak bir sonraki 
seviyeye geçilerek gösterildi. Şimdi birinci adım, tekrarlamanın her bir alt seviyesinde  n. 
derecenin akımı , doğrusal olmayan element sanki doğrusal bir devrenin kaynağı gibi 
davranır. Bu metot doğrusal olmama güç serisi tipini genelleştirir.  
Bu bölümde, birçok örnekleri tarafından gösterilen doğrusal olmayan elementlerin genel 
girişler için ve özellikle doğrusal olmayan transfer fonksiyonunun elde edilmesinde ortaya 
çıkan harmonik girişler için n.dereceden akımları  elde edeceğiz.  
Bu metotda bahsedilen doğrusal olmayan elementler güç seri bağımlılığının aşağıdaki 
durumunu içerir. 
Doğrusal olmayan kondüktans 
 

∑
∞

=

==
1n

n
n )v(k)t(vK)t(i                                                (5.1) 

Doğrusal olmayan indüktans 

   ∑ ∫
∞

=

∞

∞−

==
1

)()()(
n

n
n vdttvti ΓΨ                                            (5.2) 

Doğrusal olmayan kapasitans 

∑
∞

=

γ=γ=
1n

n
n )v(

dt

d
)t(v

dt

d
)t(i                                       (5.3) 

“Bağımlı doğrusal olmama” (genellikle aktif doğrusal olmayan elementlerde karşılaşılır). 

∑ ∑
∞

=

∞

=

Γ==
1 1

),()()()(
m n

nm
mn vutvtucti                             (5.4) 

 
Burada u ve v devredeki farklı noktalardaki voltajı gösterir ve toplam işareti doğrusal terim 
içermez. Genelleştirilmiş doğrusal olmayan kabul, 
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∑∫ ∏∫
∞

=

∞

∞−
=

=−=
1 1

1 )()(),...,(...)(
n

i

n

i
inn vHdtvhti ττττ                              (5.5) 

 
Bunların üçü anlıktır, Doğrusal olmayan hafızaya karşılaşılmaz,  örneğin bir hafifçe doğrusal 
olmayan devre elemanı DC işletim noktası hakkında serinin ilk birkaç terimi tarafından 
belirtilebildiği zamandır. Hafifçe doğrusal olmama teriminin anlamı devreyi etkin bir şekilde 
karakterize etmek için  güç serisinin sadece ilk bazı terimleridir. Doğrusal olmama d)  bir 
bağımlı doğrusal olmama olarak adlandırılır. Bununla element aktif ve devrede başka bir 
yere kaynak olarak yerleştirildiğinde ve iki düğüm arasında yerleştirilmediğinde 
karşılaşılır.Akım ve gerilim  aşağıdaki eşitlik ile ilgilidir,  
 
           )()( 0 tvvtvtoplam +=            ve     )()( 0 tiititoplam +=  

 

0v  ve 0i  hareketsiz koşullarını yada doğrusal olmayan elementlerin işletim noktalarını 

göstermektedir. 
  

İlk olarak, son iki bölümde belirtilen )(tv  de bir güç serisi olan )(tiNL  akımını 

genelleştiren  doğrusal olmamayı gözden geçirir. 
 

∑
∞

=

=
2n

n
nNL )t(vK)t(i                                                    (5.6) 

 
Toplam işareti ile çeyrek terimleri başlayalım. Burada doğrusal terimler doğrusal devreleri  
içerir. Gerilim  )(tv  şu şekilde bir formülü vardır, 
 

∑
∞

=

=
1

)()(
n

n tvtv                                                                          (5.7) 

 
)(tvn  kendiside giriş akımı )(ti  boyunca bir fonksiyondur.  

 

∫ ∫ −−=
∞

∞−
nnnnn ddtitihtv ττττττ ....)(),.....(),...,(...)( 111             (5.8) 

 
Eşitlik (5.6)’nın toplamını, uygulanan )(ti  akımının gücüne bağımlılığına göre )(tiNL  nin 

bileşenlerini gruplayarak yeniden düzenleme imkanımız var. Bu düzenleme sonuçta  toplamı 
verir. 

             ∑
∞

=

=
2n

nNL )t(i)t(i                                                                (5.9) 

 
)(tin , )(ti  de n.derecen doğrusal olmayan bileşenin doğrusal olmayan akımıdır. Örneğin 

eşitlik (5.7) yi eşitlik (5.6) da yer değiştirirsek ve uygun terimleri toplarsak, şunu buluruz : 
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)()( 2
122 tvKti =  

)()(2)()( 212
3
133 tvtvKtvKti +=  

[ ])()(2)()()(3)()( 31
2
222

2
13

4
144 tvtvtvKtvtvKtvKti +++= ..Vs.           (5.10) 

 
Bu usul aşağıdaki tekrarlamalı olacak şekilde  simetrileştirebilir. İspatı EK-A’dadır. 
 

∑
=

=
n

m
mmn n,vK)t(i

2
                                                  (5.11) 

Burada, 

       ∑
+−

=
−−=

1

1
1

mn

i
n,imin,m v)t(vv                                      (5.12) 

ve  

)t(vv m,m =1                                                      (5.13) 

 
TABLO 1   nmv ,  in Tablosu 

Bileşen nmV ,  

2=n  3=n  4=n  5=n  6=n  

Doğrusal 
Olmayan 
Akım 
 im 

2K  3K  4K  5K  6K  

2i  2=m  2
1v      

3i  3=m  212 vv  3
1v     

4i  4=m  2
2312 vvv +  2

2
13 vv  4

1v    

5i  5=m  412 vv  2
213

2
2 33 vvvv +  2

3
14 vv  5

1v   

6i  6=m  2
3422 vvv +  3

24
2

13 vvv +  

3216 vvv−  

2
2

2
13

2
1 64 vvvv +  2

4
15 vv  6

1v  

                                                            )(1, tvv m
mm =  

)()()1( 2
2

11, tvtvmv m
mm

−
− −=  

  
 
Bazı tekrarlamalı terimler nmv , , örnekli gösterim yoluyla hesaplanır, eşitlik (5.10) daki 

doğrudan hesaplamaları sağlar.  Bunlar, tablo 1’de n=6 dereceleri boyunca ni ’in bileşenleri 

olarak çizelge oluşturulmuştur. 
 Benzer bir yöntem, diğer doğrusal olmayan güç serileri ile ve Ek A’da tartışılan 
böyle örneklerle izlenebilir. Genelleştirilmiş doğrusal olmayan  kabul  eşitlik (5.5) tarafından 
belirtilir. Buradan şu denklem elde edilir. 
 

∫∑ ∫
=

∞

∞−
= mnmmm

n

m
n ddvhti ττττ ....),....,(...)( 1,1

1
         (5.14) 
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 Burada, 
 

∑
+−

=
−−τ−=

1

1
1

mn

i
,n,immin,m v)t(vv   mn ≥                                  (5.15) 

 
)( 11, τ−= tvv mm                                                        (5.16) 

 
Önceki bölümlerde, devrede her bir doğrusal olmama durumu için n-1 . derecenin doğrusal 
olmayan akımı gösterildi, peşinden doğrusal bir diferansiyel eşitlik den n. derecenin doğrusal 
olmayan karşılığı gösterildi. Özellikle eğer girişler orantısız olan üslerin toplamı ise,  n. 
derecenin doğrusal olmayan karşılığı, tayf bileşeni olarak nff ,.....,1  frekans toplamında 

doğrusal olmayan ),.....,( 1 nn ffH  transfer fonksiyonu içerir. Bu sebepten dolayı, doğrusal 

olmayan transfer fonksiyonunun elde edilmesinde kullanılan “araştırma” metodunda, eşitlik 
K’nın toplamı olduğunda doğrusal olmayan akım kaynağının ne olduğunu düzenlemek 
faydalıdır. 
 

 ∑
=

π=
K

k
k )tfjexp()t(i

1
2                                                    (5.17) 

 
i(t) nin Fourier dönüşümü K delta fonksiyonunun toplamıdır. 
 

∑
=

−=
K

k
kfffI

1
)()( δ                                                    (5.18) 

 
i(t) ye göre doğrusal olmayan akım kaynakları dereceleri tarafından, farklı derecelerin voltaj 
karşılıklarına bağlı olarak doğrusal olmayan akım bileşenlerini belirten önceki bölümlerde 
genişletildi.  Bu bölümde, devre üst limitlerine ulaştığındaki voltaj karşılıklarının böyle 
ürünler için eşitliği türeteceğiz. 
Şimdi n.dereceden voltaj karşılığına ait eşitliği yeniden gösterelim 
 

ξπξξΠξξ dtjIHtv ii

n

i
nn )2exp()().,...,(...)(

1
1

=

∞

∞−
∫ ∫=                                (5.19) 

 
Böylece )(tvn  nin Fourier dönüşümü : 

 

ξξΠξξδξξ dIfHfv i

n

i
nnnn )()......(),...,(...)(

1
11

=

∞

∞−
−−−= ∫ ∫             (5.20)               

 
K delta fonksiyonun toplamı olan giriş tayfı için, eşitlik (5.18) den eşitlik (5.20) yi 
değiştirirsek: 
 

∑ −−−=
k

kkkknn nn
fffffHfV )....(),...,()(

11
δ                                 (5.21) 

 



                                                                                                                                                   

20 

 

 
Prosedüre açıklık getirmek için, öncelikle )(2

1 tv  gibi basit bir terimin Fourier dönüşümünü 
gözden geçiririz, akım üslü olduğu zaman birince dereceden karesidir. Önceden olduğu gibi 
F[.], gösterimi basitleştirmek için Fourier dönüşümü olarak gösterilecek. 
 

∫
∞

∞−
≡− )].([)2exp()( 2

1
2
1 tvFdtftjtv π                                                    (5.22) 

  
v1(t), eşitlik (5.22 ) nin integralinde V1(f) nin Fourier dönüşümünü ifade etmektedir, integrali t 
üzerinde dışarı çıkartırız, bu sayede şunu bulabiliriz: 
 

∫ ∫ −−=
∞

∞−

.)()()()]([ 21212111
2
1 ξξξξδξξ dfVVtvF                              (5.23) 

 
Şimdi eşitlik (5.18)de verilen özel eşitlikle ve K= 2 alırsak, eşitlik (5.21) den eşitlik (5.23)de 
yer değiştirirsek, şunu elde ederiz : 
 

)2()()()()(2)2()()]([ 22
2
121211111

2
1

2
1 fffHffffHfHfffHtvF −+−−+−= δδδ       (5.24) 

     
Bu tayf  

21 ff +  bileşeninde )f(H)f(H 2111  katsayısına sahiptir. 

 
Daha genel olarak,  n. dereceden doğrusal olmayan kaynakların tayfının elde edilmesinde, 
sistemi K=n üslerinin toplamı ve doğrusal olmayan akım bileşenleri her zaman 

)....( 1 nfff −−−δ  de bileşenleri ile ilgilidir, n! tarafından bölünen tayf katsayısı )]([ tvFn  

ile gösterilir. s içeren vi(t) den farklı bir terim için her biri mi, i= 1,2,…., böylece 
m1+m2+...+ms=M  buradan, 
 

n

n

i
i

lm

n

knl
jk

kmkm

kmj
i

km

i
k

m
k

m
kn

ddf

VV

VtvtvF

s
s

s

s

ξξξδ

ξξ

ξ

...)(.

)().....(

)(...)().....(

1
1

1

11

2

2211

11

11

1
1

1

∑

∏

∏∫ ∏∫

=

+−=

+

+==

∞

∞−

−

=





                                  (5.25)  

Burada 
 

  ∑
=

=
s

i
ii nkm

1
                                                                  (5.26) 

nff ,.....,1  frekansında doğrusal olmayan akımın (1/n!) .  tayfının katsayısı için kazançtır. 

  

0)().....(1

1
NtvtvF s

s

m
k

m
kn =



  
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444444444444 3444444444444 21

44444444444 844444444444 76

faktörlerim

nkmnkkkmnkmnk

faktörm

f
kmkkmkkk

s

sssssssss

ik
i

ffHffH

ffHffH

),....,(),....,(.

.

.

)....,....,().....,....,(.

11

11

1

1111111

+−+−+−

+−∑
                     (5.27) 

Burada   
 

!/!...)!......()!()!( !
121 210 nmkkkN s

m
s

mm ms
=                             (5.28) 

 
Ve toplam, farklı argüman kümeleri üreten fi ,üzerinde permütasyonlardan farklı terimlerin 
tamamının sonuçlarıdır. Böyle katsayılar her bir frekansa göre simetrik yapıldığı açıktır. 
Gösterimi kısaltmak için simetrileştirilmiş fonksiyonları kullanmak uygundur, bunları basitçe 
tüm permütasyonların toplamında ilk terimin önünde S sembolü ile gösteririz,     
 

[ ]=+−++ ),...,()...,...,(),...,( 111 211211 nkmnkkkkkkk ffPffPffPS
sss

 

 

∑ +−++=

ik
sss

f
nkmnkkkkkkk ffPffPffPN ),...,()...,...,(),...,( 11110 21121

     (5.29) 

 
Simetrileştirilmiş fonksiyon gösteriminin bir örneği olarak, eşitlik (5.14)ü kısaltarak 
yazabiliriz 
 

])()()([)]()([ 43221112
2
14 ffHfHfHStvtvF +=                     (5.30) 

 
ve genel olarak, 
 

)],...,(

)....,...,(

),.....,(

)...,...,(

.),...,([)(.....

1

1

1

21

1

21111

211111

111

111
2

2

1

1

nknk

kkmkm

kkmkkm

kkk

kkk
m
k

m
k

m
kn

ffH

ff

Hff

Hff

HffHStvvvF

ss

s

s

+−

++

+−

+

=





        (5.31) 

             
 
Burada m1k1 + m2k2 + ….+ msks = n dir. 
 
Ayrıca tanımdan her sabit  için  oldukça açıktır. 
 

        )].([)]([ tvFAtAvF n
n

n =                                        (5.32)    
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 Genel olarak,    
  

 )].([)]([)]()([ tvFtuFtvtuF nnn +≠+                                  (5.33)   

 
Eşitlik (5.31)’i eşitlik (5.10)’a uygularsak, şunu elde ederiz, 
 

)],()([2)()()()]([ 322112312111333 ffHfHSKfHfHfHKtiF +=               (5.34) 

 
Özetle, üslü sayılar tarafından yürütülen farklı derecelerin doğrusal olmayan akım 
kaynaklarının elde edilmesinde kullanılan metot şu şekildedir: ilk önce farklı doğrusal 
olmayan voltaj bileşenlerinin n. derecenin akımı bir fonksiyon olarak bulunur sonra F[in] de  

)....(! 1 nfffn −−−δ nin katsayısını bulmak için eşitlik (5.31) uygulanır. Bu katsayı 

genellikle doğrusal olmayan transfer fonksiyonlarının düşük dereceden simetrik ürünleri 
cinsinden ifade edilebilir. 
 
VI. DEVRE  ANALİZİ 
 
Basit tek düğümlü doğrusal olmayan devre (Şekil.2) bölüm III de her bir soyut bileşenin 
ağının birçok düğüm ve iki veya daha fazla doğrusal olmayan elementlerin tüm önemli 
özellikleri analiz edildi. Bu bölümde araştırma metodunu doğrusal olmayan transfer 
fonksiyonu için ve doğrusal olmayan akım metodunu doğrusal olmayan karşılıkları elde 
etmek için kullanacağız ve bu metotları birleştireceğiz. Bu metotların birleştirilmesi güç serisi 
tipinde doğrusal olmayan element içeren doğrusal olmayan ağların genel çözümüne liderlik 
eder. 
 

a
cb

YL

Yg Ya Yb

Vc
Va

NON-ELEMAN

Vg

 
Şekil 3. Basit bir üç düğümlü doğrusal olmayan devre 
 
 
 Bu metot bir örnekle açıklanacak. Şekil 3 deki üç düğümlü basit bir devre düşünelim. 
Düğümlerin voltajları va , vb , vc olur ve Fourier dönüşümleri Va = Va(f) , Vb = Vb(f) , Vc = Vc(f) 
dir. Akım tek bir doğrusal olmayan eleman  boyunca voltajının güç serisi olur. 
 

 ( )tvKtvKti n
b

n
nbb ∑

∞

=

==
1

)]([)(                                                              (6.1) 

 
Gösterimi basitleştirmek için F[.] Fourier dönüşümü göstermektedir. Böylece 
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∫
∞

∞−

π−= dt)ftjexp()]t(v[K)]]t(v[K[F bb 2                               (6.2) 

 

Kaynak ve yük girişi )f(YY gg =  ve )f(YY LL =  dir. Frekans alanında devre düğüm 

eşitlikleri şu şekildedir. 
 

           0=−+− )VV(Y)VV(Y baagag      

0)()]]([[)( =−++− cbbbaba VVYtvKFVVY                         . 

        0)( =+− cLbcb VYVVY                        (6.3) 

 
Burada )( fYY aa = , )( fYY bb =  ve )( fYY cc =  düğüm girişleridir ve )( fVV gg = voltajın 

tayfıdır. 
Şimdi )]([ fY  doğrusal olmayan elementler çıkarıldığı zaman oluşan doğrusal ağın doğrusal 
kabul matrisi olsun. Daha sonra eşitlik (6.3) den  
 

















+−

−++−

−+

=

)()()(0

)()()()(

0)()()(

)]([

fYfYfY

fYfYfYKfY

fYfYfY

fY

Lbb

bbaa

aag

             (6.4) 

 
n.dereceden transfer fonksiyonu )(tva  ve )(tvg ile ilgilidir, ),....,( 1 nan ffH  şu 

çıkarımda tanımlanmıştır. 
 

∏∫∑∫
=

∞

=

∞

∞−
=

n

i
iiignan

n
a dftfjfVffHtv

1
1

1
)2exp()(.),....,(....)( π        (6.5) 

 
Benzer çıkarımlar )(tvb  ve )(tvc  için ),....( 1 nbn ffH  ve ),...,( 1 ncn ffH  i tanımlar. 

Aslında devredeki … noktalarındaki voltajlardır. 
  
Doğrusal olmayan ağların analizinde birinci adım, voltaj )2exp()( fjfVg π=  olduğu zaman 

)( fVa , )( fVb  ve )( fVc  de )( 1ff −δ  in katsayılarını bulmaktır. Bu katsayılar )(1 fH a , 

)(1 fHb , )(1 fH c  ile gösterilir ve birinci dereceden transfer fonksiyonlarının zamanın )(tVg  

ye göre tanımlanmasıdır. 
Birinci dereceden transfer fonksiyonları için matris eşitliği şu şekilde çözümlenmelidir. 
 
















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


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
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1

1
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1 )f(Y

)f(H

)f(H

)f(H

)]f(Y[ g

c

b

a

               (6.6) 

 
Burada kolon vektöründe verilen birimler kaynakların düğümlerdeki yerini tanımlar. Matris 
eşitliği (6.6) nın çözümünden elde edilen kazanç, 
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Doğrusal olmayan analizin ikinci adımı ikinci dereceden doğrusal olmayan transfer 
fonksiyonları ),( 212 ffH a  , ),( 212 ffHb  ve ),( 212 ffH c  için çözümleri sağlar. Bu transfer 

fonksiyonları )(2 ti  tarafından üretilen bir doğrusal akımın  )(2 21 fff −−δ  nın 

katsayılarıdır. Doğrusal olmama boyunca akımın değeri, )()()( 21 fffffVg −+−= δδ  

çıkarımı tarafından sebep olunmuş olabilir. Önceki bölümlerin sonuçları ikinci dereceden 
transfer fonksiyonlarının çözülmüş olmasına bağlıdır.  
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Kazancı ise 
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Üçüncü dereceden doğrusal olmayan transfer fonksiyonları için, şuna sahibiz: 
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ve dahasıdır. 
 Eğer devre daha fazla güç serisi tipinde doğrusal olmayan element içeriyorsa, 
gerçek derece tüm doğrusal olmayan akımları eşitlik (6.2) deki gibi orijinal düğüm 
eşitliğinden türetilen matrislerin içinde görünür.  
 Genel prosedür Şekil 4. de gösterilmiştir. 
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Şekil 4. Doğrusal olmayan  ağ analizinin çözümü için prosedür. (a) Doğrusal olmayan ağ. (b) 
Doğrusal ağın çözümü. (c) doğrusal ağın doğrusal olmayan akım kaynakları ile çözümü.  
 
 

Adım 1 : Ağ  içindeki doğrusal olmayan elementi tanıyın. Bu elementler kavramsal 
olarak yeniden düzenlenerek ağın doğrusal parçalarının tasarımının dışına çıkartılabilir. 
Daha sonra verilen doğrusal olmayan ağı doğrusal ağ olarak , doğrusal olmayan 
elemanların çeşitli çıkışlara bağlı olasıyla yeniden elden geçiririz. Bu doğrusal devre 
birleştirilmiş doğrusal devre olarak adlandırılır.  Birleştirilmiş  doğrusal ağ sadece ağın tüm 
doğrusal elemanlarını içermez ayrıca doğrusal olmayan devre elemanlarının tüm 
bileşenlerini de içerir. Her bir doğrusal olmayan elemente bağlanan uçlar, doğrusal olmayan 
uçlar olarak adlandırılır. 

Adım 2 : Analizin ikinci adımı olarak, tüm doğrusal olmayan uçlar açık devre olsun. 
)]([ 1 fH  doğrusal ağın birinci dereceden transfer fonksiyonu olsun. 
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Düğümsel eşitlikler kümesinden, doğrusal ağ dışındaki tüm bağımsız elementlerdir. 

Örneğin,  giriş çıkış uçları ile tüm doğrusal olmayan uçları şu şekilde alırız : 
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Adım 3: Daha fazla analiz için giriş voltaj kaynağı kısa edilmiş ve sıfır-kabul (Norton) 

akım kaynakları tüm doğrusal olmayan uçlara  bağlanmıştır. Her bir akım kaynağı çıkış  ucu 
doğrusal olmayan element boyunca birinci dereceden akımdır. 

Adım 4: ikinci dereceden doğrusal olmayan transfer fonksiyon vektörü için çözüm: 
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Burada ani , bni , cni , ….., n = 1,2,…. doğrusal olmayan element boyunca a,b,c… 

düğümlerinde ve ][ ann iF ,  )....(! 1 nfffn −−−δ  in katsayısıdır. Burada ani in kaynak 

gerilimi : 

∑
=

−δ=
n

i
ig )ff()f(V

1
 

Adım 5 : İstenilen n. dereceden doğrusal olmayan transfer fonksiyonunun elde 
edilmesine devam edilir.  
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Bölüm IV de tartışıldığı gibi,  n. dereceden daha düşük olan transfer fonksiyonları 

doğrusal olmayan akımlar ani , bni , cni ,… ile ilgilidir. )]([ fH n  vektörü birleştirilmiş 
doğrusal ağda bulunan bağımsız çıkışlar kadar çok elemente sahiptir. 

Tayf bileşenleri )( nn iF  in nff ,....1  frekanslarında öneminden dolayı, bunların 

hesaplanma metodu bölüm III de tartışılmıştır. 
 
 

VII. DOĞRUSAL OLMAYAN SİSTEMLERİN ARDIŞIK (KASKAD) BAĞLANMASI  
 

 Doğrusal olmayan bir ağın analizi bir önceki bölümde anlatıldı  ve kabul matrisi 
)]([ fY nin tersini gerektirmektedir. Ağ düğümlerinin sayısı N ise ve N genişse, 

hesaplamaların sayısı kabul matrisini ters çevirmek için N3 ‘e aşağı yukarı orantılıdır. Bir 
merdiven ağda, sıklıkla ağı parçalara ayırarak her bir parçanın kendini ayrı analiz etme 
imkanı vardır. Her bir parçada daha az düğüm bulunur ve kabul matrisi tüm ağınkinden daha 
hızlı olarak ters çevrilmiş olabilir. Bundan sonra tartışılan önemli nokta her bir parçanın 
transfer fonksiyonlarının birleştirilmesinden dolayı , bu parçaların transfer fonksiyonlarının 
elde edilmesidir. 

Burada sunulan sonuç, doğrusal olmayan transfer fonksiyonları için alışılmış çağlama 
sonuçlarını değiştirmektir. Örneğin, [9] bölünmüş evreler arasındaki doğrusal birleşme bir 
hesaba alınır. Devrelerin, evrelere bölünmesi doğrusal olmayan iletişimin ihmal edildiği 
noktalarda yapılır. 

Bu doğrusal birleşme varsayımı devre ölçüleri sunulan birleşmeler arası değişimde 
doğrusal olmayan devre evrelerinin kesinliğini anlamlı olarak geliştirildiği gösterilmiştir. Bu 

yaklaşım iki dört-terminal βα ve  ağının, şekil 5 de gösterilmiştir, bölünmesinin referansı ile 
açıklanır.  

Şekil 5 deki α  devresini düşünelim. Thevenin gerilim  üreteci )(tuα , aa ′  çıkışındaki 

seri α  devresinin giriş empedansı IZα  ile kendi empedansı aZ yı yürütür. Bu bb ′ çıkışındaki  

çıkış gerilimi  )(tvα  üretir ve bir yandan bir yana LZα  yükler. Şimdi α devresinin  çıkış 
empedansına, çıkış ucu  bb ′  den bakıldığında, 0αZ  eşitolur olur. αZ , IZα , LZα  empedansları 

doğrusal kabul edilir. Buradaki α  devresi de doğrusal değildir. Aktif doğrusal olmayan 
elemanlara izin verilir, ağdaki tüm voltaj ve akımlarda sağlanır, giriş voltajı )(tuα  nın 

değişmeyen zamanlı fonksiyonudur. 
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Şekil 5. βα −  çağlamasının gösterimi 
 
 
α  devresinin boyutsuz  n. dereceden doğrusal olmayan transfer fonksiyonu 

),....( 1 nn ffA  , )(tuα çıkış geriliminin  tayfının Volterra seri açımıyla tanımlanır. 
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Burada  )( fUα  , )(tuα ’nin Fourier dönüşümüdür. 

 Benzer şekilde β  ağının n. dereceden boyutsuz doğrusal olmayan transfer 

fonksiyonu ),....( 1 nn ffB , şekil 5 de şu çıkarım tarafından tanımlanmıştır. 
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Burada  )( tV β ve )( tu β , β  ağının artan giriş ve çıkış voltajlarıdır. Kaynak empedansı 

βZ , β  ağının giriş empedansı IZ β , ve yüklenen LZ β  empedansı tamamen tekrar doğrusal 

kabul edilir.  
 Sonuç olarak γ  devreyi )( tu γ  giriş voltajı, çıkış voltajı )( tvγ  ve n.dereceden 

doğrusal olmayan transfer fonksiyonu ),....,( 1 nn ffC şu şekilde tanımlanır. 
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Burada kaynak empedansı γZ ,giriş empedansı IZ γ  ve yük empedansı LZ γ  , hepsi 

yine doğrusal kabul edilir. 
  

Varsayalım ki γ  devresi, aslında αγ ZZ =  ve IL ZZ βγ =  ile βα ve  ağının bir 

çağlaması olsun böylece βα ve  geri dönüp α  ile ilişki içinde olmaz. Şimdi 0αβ ZZ =  a 

sahibiz böylece  β  bölümünü yürüten Thevenin kaynak eşitliği böylece α  bölümünün 
aşağıdaki empedans dönüşümü ile çıkışıyla ilişkilidir. 
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Bu boyutsuz voltaj dönüşümü )( fT  tarafından tanımlanır. 
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Şimdi γ  nın çıktısını  ifade edebiliriz hem de sadece β  ya referansı ile ifade ederiz. 
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Eşitlik (7.4) den eşitlik (7.6) ya değiştirdiğimizde,  
 

∏∫∑∫
=

∞

=

∞

∞−
−−−=

n

i
iiinnn

n
dVTfBfV

1
11

1
)()()...().,...,(...)( ξξξξξδξξ αγ

            (7.7) 

 

Böylece eşitlik (7.1) den eşitlik (7.7) ye yer değiştirdiğimiz de, βα ve  bölümlerinde çağlamış 
çıkış tayfını elde ederiz.  
 Dikkat edersek eşitlik (7.3) ve  (7.7) eşit olmak zorundadır. Bundan dolayı doğrusal 
olmayan transfer fonksiyonu ),....,( 1 nn ffC , ya eşitlik (7.3)ü yada eşitlik (7.8) i verilen 

)....(! 1 nfffn −−−δ  katsayısı ile )( fVγ   çıktısında sistemi n üslerinin toplamından 

çıkardığımızda  kullanılır, 
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 Eşitlik (7.3) ve eşitlik (7.8 ), eşitlik (7.7) de yer değiştirdiği zaman, belirtilen sınırlamalar 
kaldırılır ve bileşen nfff +++ ....21  de yerleştirilir. Buradan aşağıdaki sonucu buluruz : 
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  (7.11)                     

Bunların yorumları eşitlik (7.10) dan şu şekildedir;  γ  nın çıktısında 21 ff +  deki bileşen 

doğrusal iletişim boyunca α ve β  daki ikinci derece boyunca doğrusal olmayan iletişimi 
etkiler ama β  deki doğrusal iletişim boyunca etkiler. 

 Benzer argümanlar ),,( 3213 fffC   deki birleşik terimleri yorumlamak içinde 

yapılabilir. Genel olarak,  
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Burada toplam sembolünün altındaki k olası farklı ),....,( 1 Mkk in kümelerinin toplamını 
belirtir. Öyleki  
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Yüksek dereceden doğrusal olmamanın karmaşık hesaplanabilir doğrusal olmayan transfer 
fonksiyonu olarak görülebilir. Her iki bölümünde hafifçe çıkarılan devrelerde, aralarında 
doğrusal bağlanma hem katsayı hem de birçok hesaplama için gereklidir. 
  

Son zamanlarda Penfield [38] tarafından yapılan çalışmalar, 2-uçlu devrelerin  
ayrılma metodu doğrusal matris kullanarak çok boyutlu matris ailesinin kullanılması boyunca 
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 doğrusal olmayan ağlara genişletilebilir. Bu metot her bir başarılı  doğrusal olmayan 
derecenin bir tam çözümünü sağlar. 
 
 
 
VIII. ELEKTRONİK DEVRE  MODELLERİ 
 
Sadece doğrusal analizler kullanıldığı sürece doğrusal modeller uygundur. Doğrusal 
olmayan analizler başarılı bir şekilde uygulandığında, cihaz içerisindeki doğrusal olmayan 
mekanizmalara doğrusal modeller uygulandığından önemli olur. Cihazların modelleri 
genellikle artan modellerdir. Akım ve voltaj eğiliminden işletim noktası hakkında akım-voltaj 
ilişkisini tanımlar. Eğer doğrusal artan model Taylor  serisinin bir modeli olarak ele alınırsa, 
ihtiyaç duyulan terimin modelleri hakkında Taylor serisinin ek terimlerine ihtiyaç 
duyulacaktır.  İki terim ikinci dereceden bir model verir, üç terim üçüncü dereceden bir model 
verir vb. geniş işletim noktalarını barındırmak için genellikle matematiksel modelini çıkarmak 
akım veya voltajın doğrusal olmayan yapısını tanımlamak  ve daha sonra ihtiyaç duyulan  
Taylor serisi katsayılarını türetmek için oldukça pratiktir. 
Graham ve Ehrman [23] böyle aktif aletler için etkin bir doğrusal olmayan model geliştirdi, 
bu aletler yarı iletken diyotlar, iki kutuplu köşeli transistör ve vakum tüpleridir. Bu doğrusal 
olmayan alet modellerinin doğasını gösterebilmek için  iki kutuplu köşeli transistörün bir 
kopyası çıkarıldı. 
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Şekil 6. Doğrusal artan T-transistör modeli 

 
 

Çeşitli işletim  şartlarına göre özelleştirilmiş birçok farklı transistör modeli vardır. 
Bunlardan en eskisi, Ebers-Moll (1954) , iki diyot kümesi ve akım jeneratörü ile  belirtmiştir. 
Bunlardan bir tanesi base-emitter yüzeyi, diğeride base-collector yüzeyi dır. Diğer büyük  
işaret modelinde Linvill parça modelini [24] içeren  Beaufoy-Sparkers şarj modelidir [25]. 
Bunların iyi bir tekrarını Hamilton et al [26] da bulabilirsiniz. Genel olarak, büyük işaret 
modelleri genellikle  geçici yada anahtarlama problemlerinde kullanılır. 

 
Küçük işaretl transistör modelleri, transistörlerin üzerindeki anlamlı frekans 

genişlikleri için  geliştirilmiştir. En genel ve ortak modeller melez ve T-modelleridir. Bu 
modellerin tartışmalarını Searle et al [27] Thoraton et al [28] ve Gatrner [29] de 
bulabilirsiniz. Her iki modelinde kullanan mikrodalga transistörlerin tekrarını Cooke[30] da 
bulabilirsiniz. Şarj kontrol modeli küçük sinyal modeline uygulandı ve iyi sonuçlar Gummel 
ve Poon [31] tarafından rapor edildi. Doğrusal olmayan T, doğrusal bir gönderici kapasitans 
değerlendiren, Narayanan [9] tarafından analiz edilen, yükseltici kayıp analizine uygulandı. 
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 Graham Ehrman modeli, doğrusal olmayan gönderici kapasitansın etkisiyle doğrusal 
olmayan  T modelini kullanır [23]. 

 
Doğrusal artan iki kutuplu i transistör T modeli şekil 6 da gösterilmiştir. Bu modelin 9 

tane parametresi vardır. 
 

Ana dağıtıcı direnç er  

Ana yayıcı direnç br  

Toplayıcı direnç cr  

Ana ve gönderici terminaller arasındaki 
baş kapasitans 

1C  

Diffüzyon kapasitansı DC  
Boşluk şarj katman kapasitans jeC  

Kollektör-base  kapasitans cC  

Kollektör-base ve kısmi kapasitans 3C  

Doğru akım kaynağının  kazancı )1/(0 fee hhf +=α  

 
 

ehf  parametresi düşük frekanslı küçük-işaret  ortak emiter akım kazancı  ve emiter 

kapasitansı  jeD CCC +=2  dır. 

Aynı transistörün doğrusal olmayan modelimiz, şekil 7 de gösterilmiştir. Yapısı 
aşağıdaki değişiklikler hariç doğrusal modele benzer : 

 

KOLLEKTÖR

EMITER

BAZ

GERÇEK TRANSISTÖR

C1

V1 V2 V3

C3

rb

rc

1

KV2

g(V2,V3-V1)

 

 
 

Şekil 7. Doğrusal olmayan artan T-transistör modeli 
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1) ana- gönderici direnci  er ,  gelişmiş doğrusal olmayan diyotla yer değiştirir, 

böylece erv /2  akımının yerine , doğrusal olmayan 2v  de )( 2vK akımına sahibiz. Bu diyot 

akımı şu şekilde modellenebilir. 
  

)/exp()( 202 nkTqvIvK E=                                                         (8.1) 

 
Burada 0EI , gönderici köşeli akımın dc işletim noktasıdır, q elektronik yük= 1.6x10-19 C ,  k  

Boltzman sabitidir = 1.38x10-21 J K. T  Kelvin cinsinden sıcaklıktır. Ve n ideallik faktörüdür.( 
Not : oda sıcaklığında, T=300 K, kT/q ≅ 25 mV.) 
  

2)Difüzyon kapasitansı CD  doğrusal olmayan bir başka kapasitans ile değiştirilir. 

Böylece dt/]v)CC[(d Dje 2+  akımının yerine, dtvd e )( 2γ kapasiteli akıma sahibiz. 

dtve )( 2γ  
, v2 nin doğrusal olmayan bir fonksiyonudur. 
 

....)
32

()( 3
2

22
2

1
2022 v

K
v

K
CvCvCv DDjee +′++=γ                   (8.2) 

 
Burada 0DC , DC  eğimli noktasıdır, ve DC ′  de kendisinin türevidir. Burada gönderici şarj 

modelinin bir voltaj tarafından kontrol edilen doğrusal olmama olduğunu not edelim.  
 3)Toplayıcı köşeli kapasitans CC  doğrusal olmayan bir kapasitans ile yer 

değiştirilir, böylece artan akım dtvvCd C /)]([ 23 − , dtvvd C /)( 23 −γ  ile değiştirir. eγ  şarjı 

)( 23 vv − de doğrusal değildir. 

 
µ−−=−γ )vv(k)vv(C 2323                                               (8.3) 

 
Burada k bir sabittir ve µ dada köşeli kirlilik derecesine bağlıdır. 

 4)α  jeneratörü erv /2α  doğrusal olmayan akım kaynağı olan ve hem FEh  hem de 

çığ doğrusal olmamasını modelleyen ),( 132 vvvg −  le yer değiştirilir. Bu kaynak modellerde 

çok karmaşık bir nicelik olarak verilen  kapalı fonksiyon eşitliği ile aşağıdaki gibidir. 
 

  EC IMI α−=                                                                 (8.4) 

 
Burada ),( 132 vvvg − , CI  nin artan değeridir. M ise katlamalı çarpım faktörüdür, 13 vv − in 

bir fonksiyonudur, α , CI  ye bağlıdır ve EI  artan değeri )( 2vK  olan  gönderici akımdır. 

 Aletlerin ölçümlerinden model parametrelerinin çıkarımı bölüm [23] de detaylı bir 
şekilde bulunmaktadır. 
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 IX. DAR-BANT İŞARETLERİN  TOPLAMININ DOĞRUSAL OLMAYAN  TEPKİSİ 
 

Tipik iletişim alıcılarının amacı verilen bant genişliğinde sinyalleri yükseltmek ve 
giriş- gürültü karışımını ayırmaktır. İstenen giriş sinyali ve istenmeyen girişler merkez 
frekanslarına göre tipik dar banttır. Alıcılar frekans seçen devrelere sahiptirler. Bunlar 
çıkışta görünen bölgesel bantların sayısı ile sınırlıdır. Bu nedenle birçok durumda alıcının 
karşılığı bilindik  kesin giriş ve çıkış frekans bantları yöntemleriyle karakterize edilebilir . bu 
bölümde doğrusal olmayan transfer fonksiyon yaklaşımını dar bant bölgesel  sinyalin 
toplamının girişleri olduğu sistemlerin doğrusal olmayan karşılıklarının  türetilmesi için  
uygulayacağız.  
 Doğrusal sistemlerde dar bant sinyalin analizinde, sinyallerin karmaşık 
gösterimlerini koyulması ispatta düşük karmaşık zarf ve merkezi yada  “taşıyıcı” frekans 
bantta tüm pratik amaçlar için rasgele seçilen fazı için uygundur. )(tx  sistemine girişi kabul 
edilir, K dar bant sinyalinin toplamı olur. 
 

∑
=

=
K

k
k txtx

1
)()(       (9.1) 

 
Özel olarak bu sinyallerden birisi istenilen sinyal olabilir ve diğerleri karışımdır. 
 Sinyallerin dar bant tipinde olması düşük kosinüs ve sinüs bileşenlerini )(tck   ve 

)(tsk kapsar. Bir taşıyıcıyı bandın vk ile gösterilen  merkez frekansında modüle eder . 

 

tvsin)t(stvcos)t(c)t(x kkkkk π−π= 22                                   (9.2) 

 
)(tzk  yi tanımlamak, )(txk  nin karmaşık zarfı yavaş bir değişim gösterdiğinden 

uygulanabilir, öyle ki  
 

 )t(js)t(c)t(z kkk +=                                                       (9.3) 

 
Bu tanımlamalarla, )(txk nin standart karmaşık gösterimi şu şekildedir. 

 

{ })tvjexp()t(zRe)t(x kkk π= 2                 (9.4) 

 
Karmaşık değişkenin gerçek parçası ayrıca değişkenlerin ve karmaşık eşleniğinin  toplamının 
yarısına eşittir. Bundan dolayı  ayrıca şuna sahibiz : 
 

)]2exp()()2exp()([
2
1)( tvjtztvjtztx kkkkk ππ −+= ∗               (9.5) 

 
)(txk  nin tayfı  

 

)]()([
2
1)( kkkkk vfZvfZfX −−+−= ∗                        (9.6) 

 
Burada )(tzk  ve )( fZk  Fourier dönüşüm çiftidir. 



                                                                                                                                                   

35 

 

  

 ∫
∞

∞−
π−= dt)ftjexp()t(z)f(Z kk 2                                 (9.7) 

 
ve  
 

∫
∞

∞−
π= dt)ftjexp()f(Z)t(z kk 2                                (9.8) 

 

Şimdi 0)(0 =fZ  olsun ve )( tz k
∗ , )( fZ k −∗  ve kv−  , )(tz k− , )( fZ k −−  ve kv−  verilen 

sıraya göre gösterelim. Bu gösterimde giriş tayfı şu şekilde olur : 
 

∑
−

−=
K

K
kk )vf(Z)f(X

2

1
                                                         (9.9) 

 
Ve giriş kendiliğinden şu şekilde yazılır: 

∑
−

=
K

K
kk tvjtztx )2exp()(

2
1)( π                                               (9.10) 

 
Doğrusal olmayan sistemin çıktısı )(ty yi yeniden bir Volterra serisine genişletilebilir. 
 

  ∑
∞

=

=
1

)()(
n

n tyty                                                          (9.11) 

 
Burada )(tyn yi n.dereceden çıkış bileşeni yada n-derece çıktı olarak adlandırırız. 

  

∏∫∫
=

∞

∞−
=

n

i
iiinn dftfjfXffHty

1
1 )2exp()().,....,(...)( π            (9.12) 

 
Burada ),....,( 1 nn ffH  n.derecen doğrusal olmayan transfer fonksiyonudur. Bu gösterimle n 

giriş tayfının ürünü eşitlik (9.12) de şu şekilde olur. 
 

∏ ∏ ∑
= −= −=

−=
n

i

K

Kk

K

Kk
kikni vfZfX

1
)(

2

1)(                                               (9.13) 

 
Eşitliğin sağ tarafında formun farklı terimleri (2K)n in toplamını alırız. 
 

)()...()(
2211 nn knkkikkik vfZvfZvfZ −−−            (9.14) 

 

ik  , -K dan K ya kadardır. Böylece 
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∏

∫∫∑∑

=

∞

∞−−=

−

−=

−

=

n

i
iikik

nn

K

Kk

n
K

Kk
n

dtjvZ

Hty

ii

ni

1

1

)2exp()(

).,....,(..2....)(

ξπξξ

ξξ

                               (9.15) 

 
Eşitlik (9.15) de bulunan aynı {ki} kümesine sahip integraller, aynı değere sahiptir. Çünkü 

),....,( 1 nnH ξξ  argümanların yerini değiştirmesi ile simetrik olarak belirtilirler. Şimdi mi 

zamanın sayısı olsun, her bir ki ,{ki} kümesinde bulunur, mi = 0,1,….,n, böylece 
 

 ∑
−=

=
K

Ki
i nm                                                                  (9.16) 

 
 Burada )!!...../(! KK mmn −  kimlikli integraller her bir ayrı {ki} kümesinin içindedir. Bu 
integralleri toparlarsak, 
 

∏∫∫∑
=

∞

∞−−

−
−=

n

i
iikiknn

k KK

n

n dtjvZH
mm

n
ty

ii
1

1 )2exp()().,....,(..
!!....

2!
)( ξπξξξξ        (9.17) 

 
Buradaki toplam işareti altındaki k, toplam sadece tüm ayrı {ki…………. kn } kümelerini 
gösterir. Şimdi eşitlik (9.17) de iki eşlenik bileşenin toplamını nvy ile gösterelim. 

 














++







=

∏∫∫
=

∞

∞−

∑

−

−

n

i
iiiiknmkn

tvj

KK

n

env

dtjZvvH

e
mm

n
Rty

i

n

ik

1
1

2

)2exp()().,....,(..

!!....
2!)( 1

ξπξξξξ

π

                         (9.18) 

 
Böylece 
 

 ∑=
k

nvn tyty )()(                                                          (9.19) 

 
Eşitlik (9.18) deki integralin yorumu şu şekildedir. Sabit durumda bir, girişi gibi olan 
bölgesel bileşenler dar-bant frekansın toplamına sahip doğrusal olmayan sistem, çıkışta tüm 
taşıyıcı intermodülasyon frekanslarının merkezinde yeni bir dar bant bölgesel sinyal 
oluşturur. Dalga biçimi )(tynv  tanımlandığı gibidir ve frekans bölgesindeki dalga biçimini 

belirtir. 
 

∑=
n

ki
vv

1
 

 

nkk vv ,....,
1

 de merkezli giriş bileşenlerinin intermodülasyona bağlanabilir. Eğer bu dalga 

şeklinin bir karmaşık zarfını )(tqnv  ile gösterirsek, böylece 
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



















= ∑

n

knvnv tvjtqty
i

1
2exp)(Re)( π                                                   (9.20) 

 

∏

∫∫

=

∞

∞−−

+−
++==

n

i
iiii

knnkn
KK

n

kknnv

dtjZ

vvH
mm

nvvtqtq
in

1

1

1

)2exp()(

),....,(..
!!...

2!),....,;()(
1

ξπξξ

ξξ
        (9.21) 

 

nkk vv ,....,
1

 de merkezli giriş bölgelerine göre )(tynv  yi intermodülasyon bileşeni olarak 

adlandırırız. n çıktısının derecesi, intermodilasyon giriş bölgelerinin sayısına karşılık gelir, 
bu bileşeni üretebilir ve ayrıca n. dereceden intermodülasyon olarak da adlandırılabilir. 
Bölgelerin bazıları  kendi kendilerine harmanikler olarak  intermodüle olabilirler ve n, K dan 
büyük olabilir. 
 V’nin 

nkk vv ,....,
1

 bileşen frekansının permütasyonunun derecesi önemsidir taki 

intermodülasyon şekli olan )(tynv  yi etkilemediğinde. Eğer kümede bulunanlar sadece 

bileşenin derecesi ile ayrılırsa, her iki v kümesi ayırt edilemez. Eşitlik (9.18) ve (9.21) de 
bulunan integrallerin karşısında kombinasyonel katsayı, v’nin tüm (2K)n kümeleri arasında 
böyle ayırt  edilemez kümelerin sayısını alır. Her iki v kümesi ayırt edilemezdir eğer en az bir 
bileşende ayrılıyorlarsa. Ayırt edilebilir kümelerin sayısı  n intermodülasyon bölgesi için her 
biri  2K giriş bileşeninden toplanabilir. 








 −+

n

nK 12
                                                    (9.22) 

 
Şimdi )(tyv , v frekans toplamında merkezli frekans bölgesinde )(ty  nin bileşenidir. 

∑ ∑
= −=

==
n

i

K

Kk
kkk vmvv

i
1

                                             (9.23) 

Ve şimdi )(tqv , karmaşık zarfı olsun, 

 )}vtjexp()t(qRe{)t(y vv π= 2                                        (9.24) 

 
İntermodülasyon ürünleri sınırsız çok dereceleri ve çok farklı  bölgesel bileşen kümeleri ile 
yanındaki bir taşıyıcı frekansa katkıda bulunabilir. Bundan dolayı, )(tyv , tüm )(tynv ve 

)(tqv nin toplamıdır. 

 ∑
∞

=

=
1n,v

nvv )t(q)t(q                                                       (9.25) 

Pratikte sadece ilgili toplamın ilk bazı bileşenidir. Örneğin, v1 ve v2 de iki dar bant 
bileşenlerinin girişini içeren doğrusal olmayan bir sistem düşünelim ve  v = 2 v1 +  v2 merkezli 
bölge içerisinde çıktının gözden geçirmesini düzelesin. Daha sonra şuna sahibiz : 
 

.....)()()()( 553 +++= tytytyty cbav                                (9.26) 

 
Burada v = 2v1 + v2, a = (v1, v1, v2),b=(- v1, v1, v1, v1, v2) ve c = (-v2 , v1, v1, v2, v2).  

)()( 55 tveyty cb  yi incelersek, beşinci dereceden aynı frekans bölgesine düşen iki farklı katkıyı 
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ifade eder. Bu örnek, çıktının sadece n ve v den çok )(tynv  bileşeninin indisinde bütün v 

vektörünü taşımanın önemi belirtilmiştir. 
 11 fv =  ve 22 fv =  de iki tonlu girişi içeren açık örnekle daha öğretici olacaktır. 
 

))2exp()2exp()2exp()2exp((
2
1)( 22221111 tfjAtfjAtfjAtfjAtx ππππ −++−+= ∗∗         (9.27) 

 
Böylece giriş bileşenlerinin iki bölgesinin karmaşık zarflarının tayfı: 
 

 )()( 11 fAfZ δ=    ve   )()( 22 fAfZ δ=                                         (9.28) 

İki- tonlu giriş genellikle doğrusal olmayan sistemleri test için kullanılır. n. dereceden 
intermodülasyon bileşeninin 

nkk ff ,....,
1

 üstel girişlerinin karmaşık genliği ),....,(
1 nkk ffB  

tarafından gösterilir. bu genlik eşitlik (9.21) den bulunabilir.  
 

2,1
2112

1
,....,),,....,(

!!!!2

.....!
),....,(

11

21

1 ±=
−−−

−
= mnn

n

n kkkknn

kkk
kk ffH

mmmm

AAAn
ffB              (9.29) 

 
TABLO II   BİRİNCİ VE İKİNCİ DERECE DOĞRUSAL OLMAYAN KARŞILIKLAR 

Kombinasyon Kombinasyon 
No m1 m2 m3 m4 

Karşılık 
frekansı 

Karşılık genliği Karşılık tipi 

n=1       
1 1 0 0 0 f1 A1 H1(f1) 
2 0 1 0 0 f2 A2 H1(f2) 
3 0 0 1 0 - f1 A1 H1(-f1) 
4 0 0 0 1 - f2 A2 H1(-f2) 










doğrusal 

       
n=2       
1 1 1 0 0 f1+ f2 A1A2  H2(f1, f2) 
2 0 1 1 0 f2 – f1 A*2A*1  H2(f2, -f1) 
3 0 0 1 1 - f2 – f1 A1A2  H2(-f1, -f2) 
4 1 0 0 1 f1- f2 A1A*2  H2(f1, -f2) 
5 1 0 1 0 f1- f1=0 |A1|

2 H2(f1, -f1) 
6 0 1 0 1 f2 – f2=0 |A2|

2 H2(f2, -f2) 










ikinci derece 

intermodülasyon 
7 2 0 0 0 2 f1 )f ,(fH A

2

1
112

2
1

 

8 0 2 0 0 2 f2 )f ,(fH A
2

1
222

2
2  

9 0 0 2 0 -2 f1 )f- ,(fH A
2

1
112

2*
1

 

10 0 0 0 2 -2 f2 )f- ,(-fH A
2

1
222

2*
2  











ikinci 

harmonik 
 
 
Birinci dereceden giriş ve çıkış bileşenleri harici olarak tablo II de listelenmiştir ve üçüncü 
dereceden bileşenlerde tablo III dedir.  Bundan dolayı tüm olası kümelerin toplamı, her bir 
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},....,,{

21 nkkk fff −−  kümesi, karmaşık eşlenik genliği ile kendi eşleniğine sahip olmak 

zorundadır ve listede sunulur, sadece aşağıdaki durum hariç: 
     

.f
n

i 0
1

=∑  

 
Bu )(tyn nin gerçek olmasıyla uyumludur. Doğrusal olmayan karşılıkların her bir tipinin 

ismi, karışım çalışmalarına etkisinden ötürü etiketlendirilir, son kolonda belirtilmiştir. n=1 
terimi doğrusal karşılıklar oluşturur. n=2 teriminin dördü ikinci harmoniktir ve kalan altı 
terimde ikinci derece intermodülasyon terimleridir. 1f  ve 2f  de yirmi dördüncü derece 

terimleri vardır, bunlar sıkıştırma olarak yorumlanabilir, 3 1f  ve 3 2f  de üçüncü derece 
harmoniklerdir.  Diğerleri uygun intermodülasyon ürünleridir. 
 

.....),,(
4
3

),,(
2
3

)()(

1113
2

11

2123
2

211111

+−

+−+=

fffHAA

fffHAAfHAtq nf       (9.30) 

Birinci terim doğrusal karşılıktır. İkinci terim, f2, nin sebep olduğu f1 ‘de desensitization 
olarak adlandırılır. Üçüncü terim f1 de doğrusal terimin compression olarak adlandırılır ve 
A1 genliğinde ortaya çıkan etkiyi belirtir ve artar. 
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10. ÇOKLU İŞARETLERİN  ÖLÇÜMÜ 

 

Bu bölümde önceki bölümdeki analitik sunumu örnek devre ve alıcı safhalarındaki 

ölçümlerle ilişkilendireceğiz. Burada doğrusal olmayan devrelerin iki sinyalli test metodu 

üzerine yoğunlaşıyoruz. Bu sayede ölçülen doğrusal olmayan parametrelere bağlı doğrusal 

olmayan devre modellerinin hesaplanan analitik tahminleri ile karşılaştırabiliriz. 

 İlk olarak şekil 8 de kaynak önleyici sz  ve yük önleyici lz  ile yükselteç blok 

diyagramında belirtilen fi frekansında güç ilişkilerini sorgulayacağız. Varsayalım ki fi 

frekansında Thevenin  kaynak voltajı )( tv s  k tane sinüs dalgasının toplamı olsun ve karışık 

genişliği iA  olsun. Mevcut giren güç )( iA fP ile belirtilir. Bu güç iç engelleyici sz  

kaynak tarafından yükün terminallerinden geçerek yüke verilebilecek en yüksek güçtür. En 

fazla durum kaynak dış engelleyici ile yüklendiğinde olur.  

 

{ }
,....2,1,

)(Re8
1)(

2

== i
fZ

A
fP

is

i
iA   (10.1) 

 

YÜKSELTEÇ ZL(t)VL(t)
Vs(t)

Zs(t)

 

                                      Şekil 8 yükseltici blok diyagramı 

 

Çıkan voltaj )( tv L farklı iç hafiflemelerine bağlı sinüs dalga bileşenlerinin 

toplamıdır. Varsayalım ki iç hafiflemelere bağlı giren frekans { }
lkf  setine bağlı )( tv L  

nin karışık genişlik bileşeni ),...,(
1 nkk ffB olsun fi frekansında yük engelleyicisine 

verilen çıktı gücü. 

 

{ }
2

2
1

1
)(

)(
)(Re

2
1)(

iL

i
iLi

fZ

fB
fZfP =    (10.2) 
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f  frekansındaki yükselteçlerin dönüşüm kazancını şöyle tanımlıyoruz. 

 

)(/)()( 1 fpfpfg AT =                                          (10.3) 

 

ama formül (9.29) dan  

 

2
1

22
)()( iii fHAfB =                   (10.4) 

 

böylece formül (10.1) ve (10.2) yi formül (10.3) ün içine koyarsak  

  

{ } { } 2
12

4
)f(H

)f(Z

)f(ZRe)f(ZRe
)f(g

L

Ls
T =    (10.5) 

 

i elde ederiz ki ),...,( 1 nn ffH  yük Lz ve kaynak engelleyici sz  nin olduğu devre için 

tanımlanmıştır. 

 

Yükseltecin doğrusal olmayan dönüşüm fonksiyon analizinden kazancını doğru tahmin 

edebilmek için kayna ve yük engelleyicileri de uygun frekanslarda göz önüne alınmalıdır. 

Daha genel olarak 
nkk ff ,...,

1
deki giren işaretlerin iç hafiflemeden kaynaklı dönüşüm 

kazanımları )f,...,f(g
nkkT 1

ile tanımlanmıştır.  
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111 nnn kAkAkknkkT fpfpffpffg =            (10.6) 
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buna göre iki-ton  işaret girişi  için  

 



                                                                                                                                                   

42 

 

 

( ) { }
2

1

11

2
2112

221 (ReRe

)!!!!(

),...,(!2
),...,(

1

1































=

∑

∏∑

=

==

−−

+

n

i
ks

n

i
ks

n

i
kL

kkn
n

kkT

i

ii
n

n

fZ

fZfZ

mmmm

ffHn
ffg

             (10.8) 

 

gücü büyük harfle 1 mW la ilişkili desibel biçiminde belirtiyoruz. 

 

[ ]mW/)f(Plog)f(P AA 110 10=  

 

[ ]mW/)f(Plog)f(P LL 110 10=                     (10.9) 

 

benzer olarak bu gösterimde de 

 

  [ ]mWfpfP 1/)(log10)( 1101 =     (10.10) 

 

genellikle kaynak ve yük engelleyicileri 50 Ω  olarak genellendirilebilir. Her işaret eşit 

mevcut güç AA PfP =)( ve Ω50)()( == fZfZ Ls olarak varsayılırsa da son ilişki  

 

dBmfHPfP A 6)(log20)( 1101 ++=                                  (10.11) 

 

dBmffHPffP kkAkk 04.2),(log202),(
2121 2102 ++=              (10.12) 

 

dBmfffHPfffP kkkAkkk 44.4),,(log203),,(
321321 2103 −+=         (10.13) 

 

Eğer bu üç güç bileşeninden herhangi biri tek başına çıkarsa desibel ölçeğinde düz çizgiler 

halinde mevcut güç AP ya karşı çizilir. Bu demektir ki doğrusal çıktı bileşeni birleşik bir 

eğime sahiptir. Gerçek devreler de yükten geçen güç )( fPL yi özel bir frekansta (f) ölçebiliriz. 

Bu güç o frekansta ki iç hafifleme ürünlerinin bütün bileşenlerine bağlıdır. Örneğin f 

frekansındaki bileşen  
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).5(0...),;(),;();( 2231131 +−+−+ ffftqffftqftq           10.14) 

 

Bununla beraber işaretler küçük olduğunda küçük bir doğrusal olmayan çarpıtma oluşur ve 

yüksek dereceli bileşenler önemsizleşir. Küçük işaretler için en küçük dereceli bileşen 

neredeyse bütün gücü içerir.  

 

..2,1),()( 1 =≅ ifPfP iiL        (10.15) 

 

213212 2121
±±=≅+ ,k,k,k),f,f(P)ff(P kkkkL         (10.16) 

 

),,()(
321221 3 kkkkkkL fffPfffP ≅++                       (10.17) 

 

Parazit çalışmalarında )( 12 ffPL − AP ya karşı çizilmesi ve bu eğrilerin eğimlerinin düşük 

küçük işaret bölgeleri içerisinde )( 1fPL  nin eğimlerinin de kendi sinyal bölgeleri içersinde ki 

kesişmelerinin denetlenmesi alışa gelmiştir. )( fPL  nin eğiliminin )( 1fPL  nin eğilimi ile her 

ikisi de düşük işaret bölgesinde çizilmiştir. Kesiştiği yerde çıkan gücü nI  in n. kesişmesi 

denir. 

Tahmini olarak işaret bölgelerin de bulunan kesişmelerin yüksek işaret bölgesinde de 

bulanabileceği vurgulanmalıdır. Tahmin edilen bir kesişme ölçülen bir kesişme ile aynı 

sonucu vermeyebilir. Formül (10.11), (10.13), (10.15) ve formül (10.17) de açık bir şekilde bu 

tanımdan yola çıkarak kesişme noktalarını öngörebiliriz. 
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ve 
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Bu gösterimlerden n. kesişmenin ),...,( 1 nn ffH  nin 
n

fH )( 11 le bağıntılı 

büyüklüğüne etkisini ölçtüğü sonucunu çıkarabiliriz. Kesişme üzerine bilgiler çoğunlukla 

geniş bantlı sistemlerde uygulanır. 

 

)()()( 12111 fHfHfH ==      

 (10.20) 

ve 

{ } icinkbütünsabitffH ikn
nk

,),...,(
1

=    (10.21) 

 

İki yorumda sıralıdır. Birincisi n , dereceli kesişme noktasının değeri büyüdükçe özel devrenin 

n derecedeki yanıtı önemsizleşir. İkincisi eğer sistem formül (10.20) ve formül (10.21) 

dekilere dayalı olarak geniş bantlı değilse n derecesinde birçok kesişme noktası bulunur ve bu 

kesişme noktasının sonucu belirsiz olur.  

 

11 ÖRNEKLER 

 

Örnek1 : Tek sayfalı dönüştürücü yükselteç  

Bu bölümde tek safhalı dönüşüm yükselticiler için önceki bölümlerde sunulmuş 

analizlere dayalı ölçüm ve öngörüleri karşılaştırıyoruz. 

Şekil 9 devrenin şemasını göstermektedir. Dönüştürücü bir 2N2950 bipolar 

dönüştürücü olup bölüm 9 daki metotlara göre modellenmiştir. Yükseltecin düşük işaret 

ekleme kazanımları frekans bandına göre ölçülür ve formül (10.5) kullanılarak yapılan 

hesaplarla karşılaştırılır. Şekil 10 da verilen sonuçlar 100 kHz den 100 mHz kadar olan geniş 

frekans aralığında iyi bir uyuşma göstermektedir. 

 

Tekli işaret ölçümünü ikili işaret ölçümü izlemektedir. Birinci olarak işaretlerin ikisi 

de2,5 ve 3 mHz frekansta uygulanmaktadır. Enerji çıktıları AP nın fonksiyonları gibi ölçülür. 

Sonuçlar şekil 11 de )( 11 fP , )( 122 ffP −  ve ),( 1223 fffP −  düzgün çizgilerin üst üste 

konulması ile çizilmiştir.  
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 Yaklaşık giren güç seviyesi AP  nın -16 dBm veya en fazla büyüklüğü 

mVAA 2521 == mV’ a kadar çok iyi bir uyuşma olduğu görülmektedir. Benzer sonuçlarda 

iki bant dışı sinyal (fi=-30, ,f2=51,4 Mhz) içinde belirtilmiştir. Şekil 12 de gösterildiği gibi iç 

hafifleme eğrileri tekrar 25 mv tepe büyüklüğünde düz çizgilerden sapmaktadır. 25 mV 

oluşum yaklaşık kT/q nun oda sıcaklığındaki değerine eşittir ki bu değer bizim modelimizdeki 

tabandan yayılımlı artık birleşme voltajının geçerlilik aralığını kısıtlamaktadır. 

  

İkinci ve üçüncü dereceden iç hafifleme çarpıklığı düşük işaret seviyelerinde 

sabitlenmiş frekans denkleştirilmesi 0,5 Mhz ‘e ölçülmüştür. 

 

Sonuçlar bilgisayar analizlerinden elde edilen düzgün olmayan 2. ve 3. dereceden 

dönüşüm fonksiyonları ile karşılaştırılmıştır. Şekil 13 ve 14 te de gösterildiği gibi uyuşma her 

iki durumda da oldukça iyidir. Bu bize düşük işaret seviyesinde dördüncü beşinci ve yüksek 

derecelilerin dikkate alınmasına gerek olmadığını ve 3. dereceden modelin o girdi aralığın da 

yeterli olduğunu göstermektedir.  

 

Örnek 2: Bir VHF iletişim alıcısı 

 

 Diğer örnekse şekil 15 de çizilen bütün bir AM/FM alıcısıdır. Alıcı özel katı 

bileşenler kullanır. 30-100 Mhz RF akort edicisi RF yükselteci karıştırıcı ve yerel salınımcı 

içerir. Alıcının diğer başlıca parçaları şekil 15 de gösterilen Vtf ön yükselteci ve IF yükselteci 

söylendiği gibi RF/IF işaret işlemci yolu içinde 12 dönüştürücü bulunmaktadır. Alıcı RF den 

21,4 Mhz IF e tek frekans dönüştürücüsüne sahiptir. Bu heterodyning nin etkisiyle istene tepki 

2. dereceden olanlardır. Ve en büyük istenmeyen tepki ise 4. derecedendir.  

  

Şekil 16 da istenen tepkilerin ölçülen değerleri düzgün olmayan devre analizleri ile 

hesaplanmış ),( 12 LOffH −
la karşılaştırılmaktadır. Teori ile ölçme arasında gizli bir uyuşma 

vardır. Her ne kadar ikisi de 65 dB lik bir farklılık yaşasa da işaret seviyelerinde istenen ve 

yansıma tepkilerinde eşit derecede iyi sonuçlar elde edilmiştir. Buna göre ölçüm ve analiz 

120 dB büyüklük aralığında 3:1 frekans aralığı içermektedir. İki girdi yerel salınım işareti ile 

iç hafifleme için benzer sonuçlar elde edilmiştir. Örneğin 4. dereceden tepki şekil 17 de 

çizilmiştir. Analizlerde yer almış bir kişinin düşüncesini aktarırsak dağıtımcının özellikleri 

içinde olmayan aktif alet değerleri doğrusal olmayan model alet değerleri gibi ölçülmelidir. 
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Safhalar arası engelleyici çiftleri de taşırma analizindeki sebepler nedeniyle dikkatlice 

ölçülmelidir. 

  

Spina, Lexa ve Weiner in raporuna göre bilgisayar programı yalnızca önemsiz 

bileşenlerle devre değişken değerleri ve safhalar arası engelleyici çiftine ait ölçüm 

olmadığında doğrusal olmayan devre analizinin tipi bize kullanışlı sonuçlar verdiği olarak 

tanımlanmıştır.  
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12.  ARDIŞIK MODEL  FREKANS GÜÇ SERİSİ 

  

 Bu araştırma raporunun başında genel olarak iki işaret girdili ve çoklu işaret girdili 

iç hafiflemeleri tartıştık. Bu durumlar da doğrusal olmayan dönüşüm fonksiyonlarının 

yalnızca özel frekanslarda noktasal değerlere göre sistem tepkisi karakterize edilir. Girdi 

bileşenleri ayarlandığında her işaret taşıyıcı frekansında belirli bir bant genişliği kapsar. 

 Doğrusal olmayan dönüşüm fonksiyonları her iç hafifleme bileşenin bant genişliği 

boyunca sabit olana kadar alanların ortasındaki nokta değerleri doğrusal olmayan dönüşüm 

fonksiyonların hareketini açıklamak için yetersizdir. Öyle bile olmasa bütün doğrusal 

olmayan dönüşümleri her durum için özelleştirmek gereksizdir. İletişim kanalları ve 

alıcılarının doğrusal analizlerinde ki duruma kıyasla kesin kanonik modellerinin kullanımıyla 

karakterizasyonunun etkisini artırır. Bir kanonik modeli bütün doğrusal olmayan dönüşüm 

fonksiyonun özel girdiye uygunluğu ile yaklaşık olarak ortaya çıkmaktadır.  
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acıklamayı 
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acıklama 


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
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        (12.3) 

acıklama 
         

{ })tvjexp()t(sRe)t(x 111 2π=  

                                        { })tvjexp()t(iRe)t(x 222 2π=                                  (12.4) 

{ })tvjexp()t(iRe)t(x 333 2π=  

 

Bu örnek için bazı önemli bileşenler formül (12.1) ile özelleştirilmiştir ve tablo 4 de 

gösterilmektedir. Bu tablonun ilk üç kolonu parazit çalışmalarında da kendi frekans 

bölgesinde ve karışık örtüsünde kullanıldığı gibi bileşenlerin adını vermektedir. 

),...,(
1 nkkn vvH

 sabitleri her sonucun önündeki genellikle karışıktır ve farklı iletişimli frekans 

setleri içinde farklıdır. Bu geleneksel yaklaşımla üç işaretli girdi arasında bir zıtlık yaratır ki 

biri aynı derecenin gerçek sabitleri ile aynı dereceden çıktının bileşenleri için olan güç 

serisiyle doğrusal olmayan tepkiyi modeller. 

 

 

{ }[ ]
n

n
n tvjAtvjAtvjAaty ∑

∞

=

++=
1

332211 )2exp()2exp()2exp(Re)( πππ              (12.5) 

 

Üç işaretin büyüklüğü 1A , 2A ve 3A  3a  sabiti ise tipik olarak 1a  in ters işaretlisidir ki basınç 

terimi buradan gelir. Tablo 4 deki son kolon ise sabit doğrusal olamayan dönüşüm 

fonksiyonlu frekans güç serisini basit durumunun karşılaştırılmasını gösterir ve bu serilerdeki 

fark frekans bileşenlerinin genişliğini göstermektedir. 

 

 Daha genel olarak ),...,( 1 nfff = için )( fH n Taylor serisi içinde 

genişletilebilir.  



                                                                                                                                                   

49 

 

 
 

...
)(

)()(
1

+
∂

∂
+=

==
∑

vf

n

i i

n
inn f

fH
fvHfH                             (12.6) 

 

Çoklu değişimli Taylor serisi açılımında ki p ninci derecedeki terim )( fH n  için kısaltılmış 

halde şöyle gösterilir. 
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bu operasyonlar yapıldığında yalnız terimler  
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Pi bütün tamsayılarda 0 dan p ye aralıklı  

 

pp...pp n =+++ 21                                (12.9) 

 

)( fH n  nin bütün çoklu değişimli Taylor seri açılımı çarpımlı toplamı 
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p bütün permitasyonların toplamını göstermektedir ki formül (12.9) u sağlasın. Bu 

permütasyonların toplam sayısı n tane hücrenin p tane maddeden ayrılmasının yolunun 

toplam sayısıdır. Ve 







 −+

n

pn 1

 

 Bu demektir ki üç tane doğrusal ve 4 tane de ikinci dereceden terimler üçüncü 

dereceden doğrusal olmayan tepkinin içinde bulunmaktadır. (p=2,n=3) 
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 Eğer )( fH n formül (9.21) in içine koyarsak onun bütün çoklu değişimli Taylor 

seri açılımlı formül (12.10) özelleşmekte girdiye bağımlı iç hafifleme bileşenleri karışık 

örtüde V, )( tqnv de takip etmektedir. Eğer Fourier değişimi için bilinen bir ilişkiyi fark 

edersek terimi basitleştirmek mümkün olur. 
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( ) )( tz p  )( tz nin p ninci  türevi için kullanılır. 
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acıklama 
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çoklu bir integrasyon yerine formül (9.21) ile ilişkili büyük bir basitleşme oluşur. İç hafifleme 

dalga formunu )( ty nv  karışık örtüsü )( tq nv girdi bileşenlerinin çeşitli türevlerinin 

ağırlıklı ürünlerinin toplamına neden olur. Ağırlıklar girdi alanlarının merkez frekanslarında 

değerlendirilen zamandan bağımsız sabitlerdir. 
nkk vv ,...,

1
. Bu tipteki açılım yapıları 

toplamdaki her terim için seri diferansiyeli ve çarpıcısı olarak bir sistemdir. 

 Frekans güç seri açılımının faydası P nin içindeki terimlerin yakınsaklığını 

doğrulamak bu yüzden de açılımın ilk birkaç terimi yeterli bir yaklaşım oluşturmakta, yeterli 

gelmektedir. Örneğin iki işaretli üçüncü dereceden çıktı için frekans güç seri kanonik model 

yapısı ve )(vH n açılımını kullanarak iki terimli doğrusal olmayan tepki düşünün. Daha da 

basitleştirmek için birinci türevi dz(t)/dt=z(t)  z(t) yle gösterilir. 

Bu örnek için eğer her girdi frekans bölge yaklaşımı )(3 vH doğrusal bağımlılığa yeterince 

sahipse girdi bileşenlerinin iç hafiflemesine bağlı çıktı bileşenlerinin üçüncü derece karışık 

örtüsünde  v de  
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acıklama 

 

 

Bu 3 ürün tasarlanmış ¾ ile çarpılmış 212 vv +  intermodülasyon frekansı ile ötelenmiş ve 

gerçek parçası form oluşturmak için alınmıştır. Kanonik model işlemleri 9.21 deki 3’lü 

integral incelenirse doğru yönlü giden işlemlerde 12,14 ün canlandırılmasında karışık 

katsayılarıyla intermoülasyonu ilk terimi bozulan eklentisini gösterir.  Bu bozulan 

terimler )(1 tz  ve )(2 tz  işaret cevaplarının sabit olmadığını çoklu değerler alabildiğini kabul 

eder. Kanonik uygulamanın özü, v de merkezlenmiş her bir intermodülasyon bölgenin 

uygulamasıdır. Bizim burada sadece ihtiyacımız olan doğrusal olmayan dönüşüm fonksiyonu 

ve parçalı doğrusal olmayan devrenin etkisini modellemek için ilk türevinin devrenin kendi 

yapısını gösteren karışık katsayılar. İlk fizibilite doğrulamalarında genişleyen tip kanonik 

modellin aracı tabiî ki tahmin edilmiş. Bundan daha fazla olarak  kanonik model analitik 
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anlatımı diferansiyel    edilebilen fonksiyon olduğu zaman ki fonksiyonun türevinin 

değeridir. Piers gerçek bilgisayar hesaplamaları nokta değerlerinin örgüsünün bu frekanstaki 

doğrusal olmayan dönüşüm fonksiyonlarını gösterdiğini söylemiştir. 

 

 

13.TAPPED  GEÇİKMELİ  ARDIŞIK BAĞLI  SİSTEM MODELİ  
 

Doğrusal olmayan fonksiyon kullanışlı bir yaklaşık değer elde etmek için Taylor serisi 

denklemlerinin ilk terimleri için sinyalin bant genişliğini gösteren bölge frekans ile birlikte 

çok fazla değişebilir. Bu koşullarda periyodik aralıklarla çoklu değerli örnek fonksiyonu 

kullanılarak doğrusal olmayan işaret cevabı uygulamasına dayanarak diğer kanonik modeli 

örnek gösterebiliriz. Bu model tavsiye edilmiş ….tarafından  ve buna aralıklı gecikmeli çizgi 

kanonim modeli denmiş ve bu bölümde açıklanmıştır. Bu modelin adı türevi alınan aşağıdaki 

matematiksel fonksiyonun sinyal işleme yapısında gösterilmiştir. Karmaşık zarfı 

tanımlamayla başlar ( )
nkk vvv ,...,

1
=  

 

( )[ ]{ }nkknvn tv...tvjexp)t(gRe)t(h
n

++π= 11
2                (13.1) 

 

eşitlik (13.1)’deki frekans setinin dar bantlı uygulaması bunun cevabı )( tg nv  nin doğrusal 

olmayan işaret cevabı olduğu zaman )( tH n doğrusal olmayan işaret cevabıdır. 

 ( )ntt ,...,1 nin kısaltmasında T olarak alınmıştır. )(tgnv nin indeksini v olarak 

kullanırız bu uygulamanın merkez frekansını doğrulamak için. Doğrusal olmayan )( fHn  

transfer fonksiyonu v ve  –v de merkezlenmiş temel bant spektrumunun toplamı aşağıdaki 

formüldeki gibi belirtilebilir. 

 

( )[ ]vfGvfGfH nvnvn −−+−= *)(
2
1)(                         (13.2) 

 

Burada )( fGnv asıl bant spektrumudur ve )(tgnv  nin çoklu değişkenli fourier 

fonksiyonudur. Ve 
( )

nknk vfvfvf −−=− ,...,
11  düşünün ki her zkt bant limitli olsun böylelikle 
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karışık zarfın spektrumu giriş elemanın karışık zarfının spektrumu -2v de merkezlenmen 

doğrusal olmayan dönüşüm fonksiyonun asıl bant spektrumunun kuyruğu ile örtüşmez 

böylelikle; 

 

( ) ( )∏
=

=−−
n

i
iknv

* fzvfG
i

1

02              (13.3) 

 

intermodilasyonun elemanın karışık zarfı aşağıda 13.4 fonksiyonu gibi yazılır. 
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mm

ntq
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                       (13.4) 

 

Düşünün ki 
2/Bf <

 [f] bölgesinde )(1 tg v  bant limitimiz var. Dalga formu ve karışık 

dalga formu )(~
1 tg v ile sonuç veren sınırlı genişlikli dalga formu ayrık serilerle örnekleme 

teorimi kullanarak gösterilebilir  

 

( )
( )∑

∞

∞− −π

−π
=

rTtB

rTtBsin
)rT(g~)t(g~ vv 11                  (13.5) 

 

tr=t  için )(~
1 rTg v  )(~

1 tg v  nin değeri olduğu zaman genelde bilinen  örnekleme 

değer T=1/B dir. 13.5 deki Kesişim fonksiyonunu ( )rTtBc −sin  yani 

( ) yyyc ππ /sinsin ≡               (13.6) 

Fourier fonksiyonu  acıklama YAP 










≥

<
≡

2

1
0

2

1
1

x,

x,
xctRe                                                                       (13.7) 

Genellikle biz tilde işareti kullanırız fonksiyonun bant limitli versiyonu için 
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∏
=

=
n

i
iinvnv )B/f(ctRe)f(G)f(G

~

1

                      (13.8) 

 

Bu anlaşmayla çoklu değerli bant limitli fonksiyon her bir if  ordinat frekansı Bi bant 

genişliği için bant limitlidir. Bant limitli karışık zarf )(~ tg nv ve )(
~

fG nv  Fourier 

dönüşümüdür.  

 

( )[ ] .dftf...tfiexp)f(G
~

...)t(g~ nnnvnv ∫ ∫
∞

∞−
++π−= 112             (13.9) 

 

Eşitlik (13.5) formülüne benzer olarak çoklu değişkenli bant genişliğinde sınırlı her 

koordinat boyunca n boyutlu örnekleme teoremini tartışabiliriz.  

 

( )

( )[ ]∏

∑ ∑

=

−

=

n

i
iiii

r r
nnnvnv

TrtBcsin.

Tr,...,Trg~...)t,...,t(g~
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1

1121
1

                                          (13.10) 

 

Her iT  her tam sayı değeri ve ir  örnekleme aralığı için i. Koordinat daki Bi bant 

genişliğinin tersi olarak düşünülür. Örneğin ii BT /1= yi ),...,(~
11 nnnv TrTrg ,

 111 Trt = , 222 Trt = de n. dereceden işaret cevabının n boyutlu örnek değeridir. Gnvt nin 

açılımın bütünlüğü bu durumda çekirdek olarak gözüken herhangi bir n katlı 

integrasyonudur. Çekirdek bölünebilir ve n. İntegrasyonu ayrı ayrı taşınabilir. Eşitlik (13,10) 

daki denklemin her iki taraflı Çoklu boyutlu foruer fonksiyonunu almakla 13,11 deki denklemi 

elde ederiz  

 

)fTrjexp(
B

f
ctRe

B
)rT(g~)f(G

~
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i
nvnv π








= ∑ ∏

=

2
1

1

            (13.11) 

 

( )nff ,...,1 , ),...,( 11 nnTrTr   f ve rT olarak yazıldığında. 
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ir ler bütün tam sayıları kapsamasıyla toplamdan r tek parça olarak çıkarılırsa çoklu 

toplamlı nrrr ...,, 21  üzerinde tek bir değer oluşur. Çoklu değişkenli örnek değerler 

)( rTg nv  t den bağımsız değerlerdir. Her giriş eleman zarfı )( tz i  bir bant genişliği için 

bant sınırlı olduğu idea edildiğinde  

( ) ( )∏∏
==

==
n

i
iknv

n

i
iknv fZ)f(G

~
fZ)f(G

ii
11

  (13.12) 

 

eşitlikler (13.12) den ( 13.11) i hesaba alarak (13.13) formülünü elde ederiz. 
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B
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B
iik

i
nvnnv

i
i

∑ ∏ −=
1

2

1
                            (13.13) 

 

Belirli bir frekans için v yi öyle atayalım ki    
KKKK vv mmv ++=

−−
...  olsun. 

İntermodüle edilmiş elemanın karışık zarfı v deki giriş bölgesine dayanarak 13,14 deki formül 

gibi yazılabilir.  

( )∏∑
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−=
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ntq k1
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)(~

...2
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1!!

          (13.14) 

Tekrar büyük bir basitleştirmeyle bir diğerine göre bir çok yer değiştirmeyle 

intermodüle edilen giriş elemanın ağırlıklı toplamının formül 9,21 deki çoklu integralin yerine 

konulması ile basitleştirilebilir. Son denklem boşluklu gecikme çizgisinin kanonik modelinin 

çizgisine yayılır. Bu modelde n. Derecen cevap Bi i. Giriş elemanın bant genişliği olduğu 

yerde 1/Bi aralıklarında boşluklu gecikme çizgisinin tek düze sıralanmış boşluklar ile dar 

bant elemanlarının girişinin her karışık zarfı geçişiyle belirlemiştir. bu tip gecikmiş zarfların 

her çeşit ürünleri uygun karışık eşdeğeri ile şekillenmiş ve sonra v frekans setinin n.  Sıralı 

çıkışının karışık zarf formuna eklenmiştir. Açıkça bu tip modellerin araçları 13.14 deki çoklu 

toplamın koveryansına dayanır. Böylelikle sadece belirli sayıdaki boşluklar kullanılmalıdır. 

Başka bir değişle ),...,(~
11 nnnv TrTrg çabucak düşürülmeli her ri değeri için r inin mutlak 

değerleri uzun gecikmelere sebep olacağından sistemi pratik yapmaz ihtiyaçları yükseltir. Bu 

eşdeğer frekans bağımsız ve sadece ayrık örnek noktalarla hesaplanmıştır. Kanonik model 

boşluklu gecikme çizgisini gösteren en basit örnek tabiî ki v frekans setindeki n. dereceden 

doğrusal olmayan işaret cevabı sadece tek boşluk ile etkili bir şekilde modellenebilir. Bu 
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sadece sistem dağınık olmadığında oluşur ki frekans cevabı sabittir. Bu durumda giriş 

bölgesinin n. Dereceden intermodülasyonunun karışık zarfı 13,15 verildiği gibi v de 

merkezlenmiştir. Şimdi n. Dereceden doğrusal olmayan işaret cevabının zarfı her boyutta 

sabit ve bant limitliyse çoklu boyutlu Fourier fonksiyonu aşağıdaki formüldeki gibi olur  
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K

Kk
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m
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nnv Trtz

BBBB

q

mm
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            (13.15) 

 

2/)0()( nvn GvH = olduğu yerde 
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)0(....)(
~

...)0(~
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nvnnvnv
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== ∫ ∫
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∞−                      (13.16) 

 

Spektrumun negatif tarafının kuyruğu 2v civarındaki frekans bölgesine uzamaz. böylelikle 

nnvnv BBgH .../)0(~
2
1

)0( 1= dır. Karşılaştırılan denklem formül 13,15 deki n. 

Dereceden çıkış için tek boşluklu formül12,1 deki denklemden sabit dönüşüm fonksiyonu için 

tek boşluklu gecikmeli çizgi model devam eder. Frekans güç seviyesi modelindeki terimlere 

özdeştir. 
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Bu 3 ürün tasarlanmış ¾ ile çarpılmış 212 vv +  intermodülasyon frekansı ile ötelenmiş ve 

gerçek parçası form oluşturmak için alınmıştır. Kanonik model işlemleri 9.21 deki 3’lü 

integral incelenirse doğru yönlü giden işlemlerde 12,14 ün canlandırılmasında karışık 

katsayılarıyla intermoülasyonu ilk terimi bozulan eklentisini gösterir.  Bu bozulan terimler 

)(1 tz  ve )(2 tz  işaret cevaplarının sabit olmadığını çoklu değerler alabildiğini kabul eder. 

Kanonik uygulamanın özü, v de merkezlenmiş her bir intermodülasyon bölgenin 

uygulamasıdır. Bizim burada sadece ihtiyacımız olan doğrusal olmayan dönüşüm fonksiyonu 

ve parçalı doğrusal olmayan devrenin etkisini modellemek için ilk türevinin devrenin kendi 

yapısını gösteren karışık katsayılar. İlk fizibilite doğrulamalarında genişleyen tip kanonik 

modellin aracı tabiî ki tahmin edilmiş. Bundan daha fazla olarak  kanonik model analitik 

anlatımı difransiyelenebilen bir fonksiyon olduğu zaman ki fonksiyonun türevinin değeridir. 

Piers gerçek bilgisayar hesaplamaları nokta değerlerinin örgüsünün bu frekanstaki doğrusal 

olmayan dönüşüm fonksiyonlarını gösterdiğini söylemiştir. 

 

 

 
Şekil. 19  Gecikme sıralı kanonik modelin örneği:  
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15) tek musluklu modeldeki ifadeler (12.1) ve sabit transfer fonksiyon modeli bizi su sonuca 

götürür ki, tek musluklu gecikme sıralı model, e-term frekans güç serileri modeline benzer. 

Her ikisi de uygulanabilirdir ve lineer olmayan tepki girdi sinyallerinin bant aralıkları 

üzerinde frekans-bağımlı değildir. genelde, modeldeki her bir gecikme sırası 1 den fazlaya 

sahip olabilir. Musluk sayılarını zk ve Nk ile gösterdik,  

( );,, 321 νννν =   ( )212 ννν +=  için üçüncü derece 2 musluklu bir kanonik 

model sekil 19 da gösterilmektedir. Eşit aralığı olduğunu farz ettik B1 = B2 ve kesme 

aralığı T1 = T2 = T bu durum için üçüncü derece çıktı: 

[
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            (13.17) 

 

n = 3 ve N1 = N2 = 2 , üçlü toplamda karşılanması gereken 23 = 8 terim var fakat bazıları 

benzer. Z i ( t )  urunde iki defa olusuyor. (kl = 2). Bu durum suna benziyor: iki tane benzer ve 

bir tane farkli bozuk parayi havaya atiyor ve ayirt edilebilir duzenlemeleri sayiyoruz ve bu 

sayi 6  dir. 

burada görülebilir ki bu modeller gerekli muslukların şayisi arttıkça hızlı bir şekilde daha 

karmaşık hale gelebilirler. Genelde, eğer zk  . için gecikme sırası Nf kadar muşluğa sahipse, 

(13.14) deki her bir  /•/  1 den  Nf  ye kadar değişir. Dahası, gnv(rT) kapsamındaki 

permütasyonlar değerini etkilemediğinden dolayı, (13.14) de bulunan çoklu toplamdaki bazı 

terimler ayni değere sahiptir. mk yi ayırt edilemez faktörlerini )(tzk  Nk musluk 

pozisyonlarından birine yerleştirmenin yollarından biri şöyledir: 
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Dolayısıyla eğer )(tzk ötelenmiş üründe  mk  kere olursa (13.14) deki ayırt edilebilir 

terimlerin sayısı:  

∏
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


 −+K
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kk

N

mN 1

    (13.19) 
 

Bu örnek sayesinde, VHP alicisinin tuner bölümündeki geniş bant çapraz modülasyon 

durumunu inceledik. Laboratuar ölçümleri yapıldı ve musluklu gecikme kanonik model ile 

yapılan tahminlerle karsılaştırıldı. Bu örnekteki seçilen sinyal FM modülasyonlu 50 MHZ 

taşıyıcılı 5 Khz oranında ve 1 MHZ lik zirve dağılımındaydı. Arzu edilen sinyal tunerin 

modellendigi nominal frekanstaydi ve 45 Mhz di. Şekil . 20. ilk çapraz modülasyon yan 

bantları için tahmin edilen ve ölçülen seviyeler.Lineer olmayan transfer fonksiyonu ile 

başlıyoruz. 

)ff,f,v(H LO,3214 −                      (13.20) 

 

f1 = 1/1 = 45 MHz, f2 = 50 MHz + kifm(kl integer), f3 = 50 MHz + k2fm(k2 integer), f3= 5 

kHz,  ve f4 = v4 = fLO = 45MHz + fIF. 

İncelenecek  çapraz modülasyon ürünleri su frekanslarda oluşur: 

    ,....,kkHz.,fkffkfkf FmmF 21331211 =±=++            (13.21) 

 

ilk yan bant çiftiyle birlikte  Ff1  ± 5 kHz. 

Türevin dördüncü derece transfer fonksiyonu 64 puan da hesaplandı. Bu iki boyutlu frekans 

alanında ve 1.4 Mhz de frekansın her iki tarafında oldu. DFT dördüncü derece reaksiyonu 

yarattı ve buda dördüncü derece (sıralı) musluklu gecikme modelinde olduğu gibi kullanıldı. 

(13.17). bu modelden, ilk 4 çapraz modülasyon yan bant seviyeleri k3 = 1, 2, 3, 4 olarak 

hesap edildi. 

İlk 2 yan bant için ölçülen karışım giriş seviyelerinde sinyal  -50 dBm de sabit tutuldu. Birinci 

derece yan bantlar için olan sonuçlar sekil 20 de karsılaştırılıyor. Mevcut karışım sevileri 

için  -45 dBm den düşük  durumda,  ölçülen yan bant seviyeleri  ikinci derece  eğriye 

sahiptir.. bu da çapraz modülasyon için doğru eğridir. -45 dBm den büyük girdi sinyalleri 

için , eğriler değişir, düşük ve yüksek yan bantlarda büyük ayrımlar oluşur.  -45 dBm girdi 

gücünün önemi su değerler referans yapılarak açıklanabilir. -45 dBm, -40 dBm, ve  -35 dBm, 

ölçülen ve istenen 45 MHz lik sinyal 50 MHz karışım  0.1 dB, 0.3 dB, ve 0.8 dB, kadardır.. 

dolayısıyla,  çapraz Modülasyon büyük sinyal etkileriyle ilgilidir. Üçüncü ve daha yüksek 
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sıralı yan bantlar için musluklu gecikme sıralı kanonik model için yapılan yazılım 

hesaplaması yetersizdi. Yan bandın sırası arttıkça, hesaplama transfer fonksiyonu için daha 

iyi bir frekans girdi ister,daha iyi bir musluk aralığı ister daha fazla musluk sayısı ister. 

Örneklerin frekans girdi yeterince yoğun değilse, onu karşılamak için musluk şayisi 

artırılabilir. Bütün durumlarda, model sadece devreler küçük sinyal alanında çalıştırıldığı 

durumda çapraz modülasyon için doğru tahminler sağlar. 

 

 

XIV. SIKIŞTIRMA, DESENSİTİZATİON, ÇAPRAZ  MODÜLASYON 

 

Bölgesel girdileri ortalama analizleri ve lineer olmayan transferin Taylor serisi genişletilmesi 

bize gerekli analitik araçları sağlar. Bu analitik araçlar lineer olmayan etkilerin 

değerlendirilmesi ve açığa kavuşturulması içindir. Bu etkiler iletişim alıcılarında 

sıkıştırma,ve çapraz modülasyondur. Bu analitik sonuçlar deneysel ölçümlerle yakın neticeler 

verdi ve  küçük sinyal alanında teorinin pratik kullanımını gösterdi. 

)(11 tzz = ve )(22 tzz = , Vi ve V2,de merkezlensin ve  istenen frekansların  zarfları olsun. 

(9.25) den hatırlayabileceğimiz gibi frekans alanındaki çıktı sinyalinin complex zarfı tüm 

complex zarflarin toplamiyla verilmistir. Bu zarflar girdi alanında   v1, ve v2   da dir.  

Intermodulasyonla azaldıkları için daha yüksek sıra terimleri küçük sinyaller için göz ardı 
edilebilir.  
 

)....,,;(
2
3),,;(

4
3);();( 2213111311 vvvtqvvvtqvtqvtq −+−+=   (14.1) 

deki her bir parça terimi  uygun lineer olmayan transfer fonksiyonundaki bilinen bir yola 

bağımlıdır. )(1 tz ve )(2 tz  her bir lineer olmayan transfer fonksiyonunun merkezi frekansları 

hakkında  Taylor serilerinin genişletilmişinin önde gelen terimlerini listeleyerek şunları elde 

ederiz; 

...)();( 11111 += zvHvtq           (14.2) 

 

...)()(),,(),,;( 1
2

111111113 +−=− tztzvvvHvvvtq              (14.3) 
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su durumda  ),( 221 vvvv −= , ve lfvH ∂∂ /)(3 sunu belirtir: lffH ∂∂ /)(  

),(),,( 221321 vvvffff −== de değerlendirilir. 

Sıkıştırma girdinin arzu edilen )(1 tz işaretin artırıldığı zaman gözlenen doğrusal  olmayan 

etkidir. Eşitlik (14.2) de gösterilen şekilde  lineer bir tarzda artırmanın yerine alici çıktısı 

girdi ile orantılı bir yol takip etmez. Bu etkinin başlamasından sorumlu olan terim 

),;( 1113 vvvtq −  dedir, eşitlik (14.1) dedir ve  ayni zamanda  Vi dedir. 

doğrusallık oranı düşünerek incelenebilir. 
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  (14.5) 

{ })(/)(Re 113 vHvH  deki terim genellikle negatiftir. 

Bu iyi bilinen bir gerçektir. Ancak girdi frekansı bantta supuruldukce sikistirma teriminin 

aşaması değişebilir. Bazı frekanslarda lineer kazançtan fazla olduğu gözlenebilir yani 

sıkıştırmadan ziyade küçük bir genişleme olur.  

sekil 21 2N2950 transistor un 4 MHz de tek basamaklı sıkıştırma eğrisini göstermektedir.  

Burada görülebilir ki (14.5) deki teorik tahmin ölçümle uyuşmaktadır bandın diğer noktaları 

için benzer sonuçlar elde edilmiştir. Su not edilmelidir ki ),,( 1113 vvvH −  parçası )( 11 vH ile 

surecin tamamen dışında kaldığında alicinin lineer menzili suni olarak belirecektir. İki tonlu 

intermodulasyon olcumu ayni girdi güç alanında alicinin zaten lineer olduğunu gösterebilir. 

Bu sunu gösterir,  sıkıştırma olcumu güvenilir bir gösterge değildir. 

Desensitization alıcıda gözlenen lineer olmayan bir etkidir. Gözlenen şey sudur: 

pifrekansinda arzu edilen sinyalde alıcı çıktısında i de bir azalma. (14.3) de belirtilen etkinin 

sorumlusu çıktı zarfının terimi yine  (14.2) de verilmiştir. Analizin tahmin ettiği gibi 
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lineerlikten uzaklaşma ortalama olarak takip edecektir, (tartışılan sıkıştırma terimi gözardı 

edilerek) 

 


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
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+≈
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Rez

)v;t(q
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3
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Sekil 16 da ki iki aşamalı yükselteç kullanılarak bir deney yapıldı. Arzu edilen işaret    -55 

dBm de ve 19.75 MHz de modüle olmayan  bir tondu, ve karışım yapan sinyalde modüle 

değildi ve güç ve frekans olarak farklılık gösteriyordu. Sonuçlar sekil 22 de gösterilmektedir. 

Su not edilmelidir ki; model hangi sinyal seviyelerinde desensitization baslar onu tahmin 

ediyor ancak ne kadar desensitization oluyor onu tahminde muhafazakar ve temkinli 

davranıyor çünkü lineer olmayan etkiler, yüksek karışım girdisi seviyelerinde, daha yüksek 

sıralı terimlerin oyuna dahil olmasını sağlayacak kadar güçlü oluyor.  

Çapraz modülasyon bir alıcıdaki daha ciddi lineer olmayan etkilerden biridir. Bu,  2v   

taşıma frekansındaki arzu edilmeyen karışım sinyalinin modülasyonunun 1v taşıma 

frekansındaki arzu edilen sinyaline transfer edildiği durumlarda oluşur ve rahatsız edici 

çapraz konuşmaya neden olur. Çapraz modülasyon sadece )(2 tz  deki terimlerden ortaya 

çıkar. Mekanizması AM ve FM işaretleri için farklıdır. AM karışımı karışık bir zarfa sahip 

olsun: 

)tcosm(B)t(z 222 21 πµ+=    (14.7) 

 

burada  B, karışım taşıyıcısının karışık genliğidir, 2m  modülasyon indeksidir, ve 2µ  

modülasyon frekansıdır.Eşitlik  (14.2) deki  1z  den sadece önde gelen terimi koruyarak sunu 

buluruz: 2z   deki çıktı sinyalinin karışık zarfı küçük  B için ortalanabilir. 
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22132
21111 2cos
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2
31)()();( πµ          (14.8) 

eğer )(1 tz sabitse, arzu edilen sinyalin modüle olmadığı durumda olduğu gibi, analiz, çapraz 

modülasyon yan bant taşıyıcı oranını şu şekilde modeller:    

 

)(

),,(

2
3mod

11

22132
2 vH

vvvH
Bm

litudecarrieramp
ulationcross −

≅                         (14.9) 
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tipik bir olcum seti yaygın ton yükselteç için şunlarla yapıldı: 1v = 19.75 MHz, 2v = 25 MHz, 

2m  = 0.3. üçüncü derece-sıralı lineer olmayan transfer fonksiyonun büyüklüğü 

),,( 2213 vvvH − , (14.9) dan anlaşılacağı gibi, ölçülen çapraz modülasyon yan bant-taşıyıcı 

oranından, devre modelinden bu fonksiyonun değerleriyle karsılaştırıldı.  sekil 23 de 

gösterilen sonuçlar sunu gösterir: bant arasında genel bir görüş birliği vardı, bu suna işaret 

ediyor; uygulanan düşük seviyelerde küçük sinyal teorisi geçerliydi, ve devre modelleri 

çalışıyordu. Eğer istenen sinyal sadece bir ton değil kendisi AM ise; 

 

)tcosm(A)t(z 111 21 πµ+=   (14.10) 

 

öyleyse, AM den detektörünün çıktısı söyle modellenebilir: );( 1vtq  dalgalar içerir 21 µµ +  

21 µµ −  (14.8) den görülür, küçük modülasyon için  ve 2m , iki parçanın genliği 21 µµ −  ve 

onlar göz ardı edilebilir. Bir AM detektörünün bu yüzden yaklaşık olarak şuna orantılıdır: 

 

)t(stcosm α+πµ+ 11 21   (14.11) 

 

şu durumda )(ts , 1)(
2

=ts , bu çapraz modülasyon dalga formudur, ve α  komplekstir 1<α  

için , bu çıktı ortalama olarak taşıyıcı ile birlikte modülasyon  parçasıdır.  

 

 

{ })t(sRetcosm α+πµ11 2   (14.12) 
 

 

 

Şekil. 22. ölçülen ve tahmin edilen desensitization  (14.8) ve (14.12) den,  deteksiyon sonrası 

çapraz modülasyon istenen sinyal genlik oranı öyleyse yaklaşık;  
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FM karışımı için, karışık zarfımız var; 









πλ

λ

∆
= tsin

f
jexpB)t(z 2

2

2
2 2   (14.14) 
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öyle ki; 2λ en fazla frekans dağılımıdır, ve 2f∆  modülasyon frekansıdır. 

22

2 Bz = simdi 

modüle olmadığından dolayı, Taylor serileri genişlemesinden ilk modüle terimler kare 

parantez  içindekilerdir  (14.4). çıktı sinyalinin karışık zarfı simdi küçük B için ortalanabilir: 
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eğer istenen karışık zarf FM ise; 
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karışık bir zarfla çalışan FM deteksiyonunun çıktısını bulabiliriz; 

 

[ ])(1)(1 tstz α+=    (14.17) 

 
veya 1<<α , FM deteksiyonunun çıktısı yaklaşık olarak 

 

{ } { })t(sIm
dt

d
)t(zarg

dt

d
α+1    (14.18) 

 

(14.2) ve (14.8) uygun olduğu yerde. Çapraz modülasyonda veya modülasyon transferinde 

küçük sinyal ortalamalarını özetleyebiliriz; bir   AM veya  J karışımı veya )(2 tz  karışım 

sinyali göreceli olarak istenen ya da  FM sinyal )(1 tz  ine neden olur. Analizler sadece çapraz 

modülasyon –işaret oranını değil ayni zamanda çıktı dalga formlarının  çapraz 

modülasyondan dolayı gerçek çarpıtılmasını da modeller.   

 

Şekil. 23. hesaplanmış üçüncü derece transfer fonksiyonu ve ölçülmüş çapraz modülasyondan 

alınan değerler. 

 

Farz edelim, 

)t(sm)t(z 111 1 +=    (14.19) 

ve 

[ ])t(smB)t(z 222 1 +=     (14.20) 

şuna sahibiz; 
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farz edelim ki;  )(1 ts  kare bir dalgadır ve  +1 ve -1 arasında değişmektedir ve )(2 ts birleşik 

sin dalgasının genliğidir. Çapraz modülasyon )(2 ts yüzünden çapraz modüle çıktı formu hala 

bir kare dalga olacaktır. Çıktıdaki AM detektördeki zirve yükselteç seviyeleri şekil 24 dedir, 

öyle ki; 
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25.  Senkronize edilmemiş kros modülasyon çıkış dalga şekli görülmektedir. 
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görülebilir ki ,genlik oranları: )1/()1()/()( 111 mmSRQPr −+=−−=  karışım 

parametrelerinden bağımsızdır. Bu oran lineer olmayan modülasyon transferinin 

asimetrisinin bir olcusudur. Benzer olarak, bu oran 
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bilinen parametrelere bağlıdır |£|2 ve m2, ve doğrusal olmayan transfer fonksiyon oranının 

gerçek bölümündedir. oran r2 çapraz modülasyondan dolayı kare dalga formlarının 

modülasyon indeki olarak yorumlanabilir. IF genlikleri için, m L = -5 ile bir deney, r1 = 2 ve 

r2 = 0.18, genlik için hesaplanmış değer r1= 2.0 ve r2 = 0.192. şekil 24  ile kıyaslanmak 

üzere çıktı dalga formunun bir fotoğrafı şekil 25 de gösterilmiştir. 

 

 

EK-A    DOĞRUSAL OLMAYAN AKIMIN TEKRARLAMASI 

Bu  ekte, eşitlik (5.15) in bir ispatini veriyoruz.. Bu kabul   )( tvz s
s  toplamının n. gücü z 

nin gücüne nmv , ile mz  nin katsayısı olarak yeniden derecelenebilir.: 
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problem (A.I) ile tanımlanan nmv , için eşitliği bulmaktır 
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(A.I) deki orijinal farz edişimizle şu da olmalı   

∑
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mvz)z(B                          (A.4) 

dolayısıyla (A.I) şu şekilde  yazılabilir: 
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=
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m )z(B)z(Avz                                         (A.5) 

iki fonksiyonun ürününün /n-katlı  farklılaşması için  

Leibnitz's teoremini  hatırlayalım; 
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(A.5) in her iki tarafını m defa farklılaştırarak z ye göre  (A.6) ve  sonuçta z = 0  yaparak 

sunu elde ederiz; 
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bu durumda (5.15) söyle kurulur 

 

∑
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i
n,imin,m v)t(vv                   (A.8) 

 
alçak sinir )(tvi nin sıfır olmaması sadece İ > 1 olmasının bir sonucudur. Aşağı limit takip 

eder çünkü (A.I) da m > n, dolayısıyla (A.8) da suna sahip olmalıyız 
 

1−≥− nim       (A.9) 
 
s /, nin en büyük kabul edilebilir değeridir yani  sunun üstündeki üst limit 

  1+−= nmi                                                               (A.10) 
 
tanım (A.I), n = 1 için; 

)t(vv m,m =1                                             (A.11) 

 

ispati tamamlar. (A.8), ve(A.ll) ve doğrusal olmama durumunun bir güç serisi olduğu 

durumlarda (5.1) mevcut lineer olmama durumunu ölçmekte bir metottur.  
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,– 1 e kadar olan lineer olmayan reaksiyonlar acısından. Benzer bir işlem (5.4) de belirtilen 

bağımlı lineer olmama durumu ile takip edilebilir. Söyle ki; 
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burada u = u(t) ve u = v(t) devredeki iki değişik noktadaki voltajlardır. Daha önce olduğu 

gibi, 
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burada u = u(t) ve u = v(t) devredeki iki değişik noktadaki voltajlardır. Daha önce olduğu 
gibi 
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lnm ,,Φ  fonksiyonunu tanımlayalım, şunla ilgili olarak, mu  nv  
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Toplamların sırasını değiştirerek lz  nin katsayısını bulmak için, sunu elde ederiz 
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Formül (A.15) den mevcut terim sırası i in / )(tiDNL  
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öyle ki 
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ve, (A.8) e benzer olarak, mju , takip eder, 
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Öyle ki; 

)t(uu j,j =1       (A.19) 

 
doğrusal olmayan / )(tiNCL  (5.3) de belirtilen kapasitans hafıza bağımsız doğrusal olmama 

durumu ile üretilmiştir, su formdadır, 
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acık bir şekilde dttdvu /)(=  ile (A. 12) nin özel bir durumudur, Doğrusal olmayan üretim de 

bu metoda düşer, Çünkü; 
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son olarak, ayni metot genellenmiş lineer olmayan bir kabule uygulanabilir, öyle ki,  
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bir genişletme v(t - r/) bir ikili değişken ile değişik voltajların toplamı, r nin izini sürmek için,  

sunu elde ederiz: 
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Leibnitz's farklılaşma formülünü uygulayarak,  ispatlayabiliriz, m söyle verilmiştir, 
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örneğin, eğer n = 2, kanıtlayabiliriz, 
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 toplamların sırasını değiştirerek,  (A.25)’ i  (A.24) de yerine koyarak 
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elde edilir,  
             

Kilo         103 Mili      10-3 
Mega       106 Mikro   10-6 
Giga        109 Nano    10-9 
Tera        1012 Piko     10-12 
Peta        1015 Femto   10-15     

Atto      10-18 
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