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VOLTERRA SERİSi 
İLE DOĞRUSAL OLMAYAN OSİLASYON 

 
 
1.GİRİŞ 
 

Zayıf doğrusal olmayan salınımın genlik A ve frekans ω’sine karar verme problemi Van der 
Pol’a göre. Bundan sonra,  birçok metot geliştirildi: frekans metodu[2]nin, harmonik balans 
metodunun[3], Krylov, Bogoliubov ve Mitropolsky’ye[4][5] mal olan aşırılma metodunun 
tanımlarını içerirler. 

 
Fonksiyon tanımı ve harmonik balans metotları salınımın şekilde gösterildiği gibi basit bir 

bağ geribildirim sistemi tarafından modellendiği zaman tasarım problemlerinde geniş çapta 
kullanılırlar. Burada, G(s) doğrusal zaman-değişik elementlerden yapılmış basit bir giriş 
sinyali-çıkış doğrusal sistemi transfer fonksiyonu anlamına gelir ve (.)f bir skaler doğrusal 
olmayan fonksiyon anlamına gelir. Bu metotların esas frekans ω’nin tüm harmoniklerini ihmal 
ettiklerinden beri, G(s) esasen bir “düşük geçiş” filtresi gibi davrandığı zaman sadece geçerli 
olurlar. Buna rağmen, kesin matematik teoremleri bu metotların geçerliliğini kontrol için 
kullanılabilirler, genellikle uygulanmak için saçma olurlar. Bu metotların önceden bildirmek, 
sistemdeki yanlışlık, salınımlar için bilindiğinden beri cevaplar dikkatli kesin olmayan 
konumlarda kontrol edilmeli. 

 
Ortalama metodu ∈’nin küçük bir parametre olduğu aşağıdaki eşitlik ile tanımlanmış 

sistemler için uygulanabilir; 
nRxtxfx ∈=∈ ),,(  

 
Sarkaçların durumunda, bu metot, prensipte, denklemlere karar vermenin uygun bir sırasını 
seçmek sayesinde istenen kesinliği elde etmek için A ve ω’yi hesaplamak için birine izin  

Şekil1. tek bir bağ doğrusal olmayan geri bildirim sistemi 
 

verebilir. Aslında, bu denklemler ikinci sıra ilerisine son derece karmaşık olurlar. 
 
Daha yakın zamanlarda, Hopf bifurcarion teoremi salınımın frekans ω’sini tahmin etmek 

için başka bir araç önerir, genlik A’nın yeterli derecede küçük olmasını sağlar. Maalesef, 
küçük nasıl “küçük” olduğunu belirlemek için basit bir meselenin ana noktası yoktur.  

Bu notta bizim nesnemiz önceki metotların çoğu istenilir özelliklerini örnek almış 
tamamiyle yeni bir yaklaşım geliştirmek içindir. Bu yeni yaklaşımın bazı ilginç özellikleri: 

1. harmonik balans ve tanımlama fonksiyon metotları gibi, bizim yaklaşımımız basit bir-
bağ doğrusal olmayan geri bildirim sisteminin terimlerinde formüle edilir .))(2.( 2aşekil  
Bizim sadece üzerinde durduğumuz birleştirilmiş açık-bağ sistemidir. 
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Tanımlama fonksiyon metodundan farklı olarak, bizimkiler daha yüksek harmoniklerle 
önemli efektler katkılarını içerirler. 

 
2. Ortalama metoduna benzer olarak, bizim yaklaşım bir çift cebirsel belirlenmiş 

denklemleri çözmek için azaltır. Bu durumda, denklemler aşağıdaki biçimi farz ederler. 
3.  
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),( ωAdn ’nin karmaşık sayıları içeren A’nın ve ω’nin bir cebirsel fonksiyonu olduğu yerde, ve       

)Re(⋅ ve )Im(⋅ ’nin anılan sıraya göre gerçek ve sanal kısımları belirttiği yerde. Ortamla 
metoduna benzer olarak, bizim yaklaşımımız herhangi istenen doğruluk için, prensipte, A ve 
ω’yi bulmada yeteneklidir. 
 
Ortalama metodundan farkı, bizim metot 2>n  ile birlikte n.dizi diferansiyel denklemlere 
uygulanabilir ve bir “küçük parametre”nin varlığını istemez. 
 

4. Hopf bifurcation teoremden farkı, bizim metot “A”’nın yeteri kadar küçük olup 
olmayacağına karar vermemize izin verir. 

 
Sırada bu notu uzman olmayanlar için kolay bulunur yapmak için, bir el kitabı biçimini 

kullanarak bölüm 2’de ilk önce tanımlama fonksiyonlarını göstereceğiz. Şekil 1’deki özel geri 
bildirim yapılarıyla modellenebilen salınımlar için, ilk-sıra tanımlama fonksiyonları son derece 
basittir. Aslında, okuyucu Volterra serileri ile aşina olmak zorunda değildir. Biz bölüm 3’de 
birçok pratik örnekler resimlerle açıklanacak. 

 
Çoğu genel sistemler için, Volterra serilerinin sadece temelleri tanımlama 

fonksiyonlarından elde edilmişlerde ihtiyacı yoktur. İhtiyaç duyulan her türlü arka plan bölüm 
4’te ve Ek A’da verildi. 

 
Sonuçta, bizim yaklaşımımızın matematiksel gerçeklemesi tüm teoremlerin çatısını 

tamamlamak ile birlikte bölüm 5’te verildi. 
 
 
II. GENLİK-FREKANS TANIMLAMA DENKLEMİ 
 
Bu notun ana sonucu n.dizi cebirsel tanımlama denklemi oluşturmak için sistematik bir 

metot geliştirmek(1.2) böylece çözümü doğruluk isteği için sinüzoidal salınımın genlik A ve 
frekans ω’yi verir. 

Bu bölümde, çatısız çeşitli durumlar için tanımlama denklemini vereceğiz, böylece 
kullanıcı bölüm 5’te verilen olmak için daha çok karmaşık matematiksel gerçeklemeler ile 
kafası karışmış olmaksızın direk ekleyebilir. 

 
 
A.İlk-Dizi Karar Denklemi 
 
İlk-dizi karar denklemi aşağıdaki ile verilir; 
 
   01)()(),( 2

111 =−Ω+≅ AjjHAd ωωω    (2.1) 
 
)(1 ωjH ve )(1 ωjΩ ’nin aşağıda verilecek biçimde açık olan ω’nin fonksiyonları oldukları 

yerde. 



Eşitlik (2.1)’in iki kenarındaki gerçek ve sanal kısımlarını sıfıra eşitlemek, iki eşdeğer 
denklemi elde ederiz: 
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A² için (2.1b)nin çözümü ve sonucu (2.1a)’nın yerine koymak, aşağıdaki elde ederiz: 
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Şekil 2. (a) Bir kapalı-bağ doğrusal olmayan geri bildirim sistemi 

  (b)Açık-bağ doğrusal olmayan sistem 
(2.2)’in ω’de bir skaler denklem olduğundan beri, kolaylıkla çözülmüş ya grafiksel ya da 

standart numaralı teknikler olabilir. (2.2)’nin her iωω = çözümü için, (2.1a)ya da (2.1b)’de 
direk yerine koymakla uygun genlik iA hesaplayabiliriz. Şimdi )(1 ωjH ve )(1 ωjΩ ’yi 
tanımlayalım: 

 
 
A.1.Özel Durum: Şekil 1’de Geri bildirim Bağ (f(0)=0 
 
Şekil 1’in tek-bağ geri bildirim sistemindeki doğrusal olmayan fonksiyonun bir polinomial 

tarafından gösterildiğini farzedelim; 
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2
21 ⋅⋅⋅+++= uauauauf (2.3) 

 
Bu durumda, basitçe aşağıdakini elde ederiz; 
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A.2. Genel Durum: Şekil 2’deki Geri bildirim Bağ 
 
Bu durumda, şekil 2(b)’deki ℑ açık-bağ sisteminin bir yakınsak Volterra serileri tarafından 

tanımlandığını farzederiz. Eğer üslülerin bir toplamından oluşan bir giriş u(t) ekleriz, sonra 
şekil 2(b)’deki y(t) yanıtının .),...,,,(),,(),( 321321211 vbsssHssHsH daha yüksek sıra transfer 
fonksiyonlarının terimlerindeki frekans domain’inde hesaplanabildiği bölüm 4’te gösterilir. Bu 
transfer fonksiyonları doğrusal sistem teorisinden bildik transfer fonksiyonlarına tamamen 
benzerdirler. Doğrusal sistemlerin bir sırasını çözmeyi içeren Ek A’da tanımlanan tekrarlamalı 
bir algoritma kullanarak oluşturulabilirler. Burada, bu daha yüksek dizi transfer 
fonksiyonlarının bulunduğunu ve .),...,,,(),,(),( 321321211 vbsssHssHsH ’nin terimlerindeki 
karar verme denklemlerinin basitçe sunulduğunu farzedeceğiz. Özellikle, bizde aşağıdaki var; 
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aşağıdakinin olduğu yerde; 
 

 
 

)(1 ωjH  ve )(1 ωjΩ ℑ nin ),,(),(),( 321321211 sssveHssHsH ’leri gibi yazılabildiğine dikkat 
edin.  

Elde edilmiş bu yüksek sıra transfer fonksiyonları için dostdoğru metotlar [10]’da ve Ek 
A’da verildi. Örneğin, [10]’u şekil-1’deki sisteme eklemekle, aşağıdakini elde ederiz: 

 
)()( 1111 sGasH =      (2.9a) 

 
     )(),( 212212 ssGassH +=      (2.9b) 
 

)(),,( 32133213 sssGasssH ++=     (2.9c) 
 

(2.9)’u (2.6)-(2.8)’in yerine koymakla ve sadeleştirmekle, (2.4) ve (2.5)’i elde ederiz. 
 
 
 
B. İkinci-sıra Karar Verme Denklemi 
İkinci-sıra karar verme denklemi şöyle bulunur: 
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ya da eşitiyle: 
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Ya (2.10) ya da (2.10b)A²için çözülebilir ve sadece ω’nin terimlerinde basit bir denklem 

elde etmek için diğerinin yerine konulabilir. Örneğin, eğer 0)(Im 2 ≠Ω ωj ise, sonuç şöyledir: 
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şöyle olduğu yerde: 
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Şimdi )(1 ωjH , )(1 ωjΩ ve )(2 ωjΩ ’yi tanımlayalım. 
 
 



B.1.Özel kullanım: şekil-1 ))()(( ufuf −−=  ’deki Geri bildirim 
 
 
Farzedelim ki, doğrusal olmayan fonksiyon bir “tek” polinom ile gösterilsin: 
 

.)( 5
5

3
31 ⋅⋅⋅+++= uauauauf     (2.12) 

 
Bu durumda, basitçe aşağıdaki elde edilir: 
 

)()( 11 ωω jGajH =      (2.13) 
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B.2. Genel Durum: Şekil-2’deki Geri bildirim Bağ 
 
Bu durumda, )(1 ωjH  ve )(1 ωjΩ  (2.6) ve (2.7) tarafından verilir, sıraya göre, şöyle iken: 
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İfade tanımlama ),,,,( 543215 sssssℑ , tamamen karmaşıktır ve Ek A’da anlatılan tekrarlamalı 
algoritma kullanımını gerektirdi. Yine de, ℑ ’in tek simetrik olduğu özel 
durumda tümniçinsssH nn ,0),,,( 2212 =⋅⋅⋅ , aşağıdaki elde ederiz: 
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),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ       (2.17b)  
  

),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ                                 (2.17c) 
 

),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ     (2.17d) 



),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ     (2.17e) 
 

),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ      (2.17f) 
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(2.17g) 

 
),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ    (2.17h) 

 
),,,,(),,,,( 55 ωωωωωωωωωω jjjjjHjjjjj −−=−−ℵ     (2.17i) 
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            (2.17j)    
 
                                                   

C.N.-sıra Karar Verme Denklemi 
 
 

 
 
Burada, önce )(1 ωjH ve )(1 ωjΩ (2.6)ve (2.7) tarafından verilir, 
)(1 ωjΩ , )(2 ωjΩ ,…, )( ωjnΩ bölüm-4’de ve Ek A’da anlatıldığı gibi oluşturulabilirken. 

Denklemler )(1 ωjH , )(1 ωjΩ ,…, )(1 ωjn−Ω  (N-1)inci sıra tanımlama denklemindeki uygun 
tanımlara benzerdirler. her bir ilave terim N

n Aj 2)( ωΩ  “büyüklük”ün genellikle en azından bir 
daha küçük büyüklüğün sırası olacağından beri, bu ilave terimi ortalama metot[4] tanımlamaya 
benzer düzeltme “daha yüksek sıra” gibi yorumlayabiliriz. 

 
 
III. AÇIKLAYICI ÖRNEKLER 
 
Birçok uygulamada, tasarımcı, sadece bir devre ya da sistemin salınıp salınmayacağını 

bilmekle ilgilidir ve eğer böyleyse, “yaklaşık” frekans ω’si ve Ek A’sıdır. Böyle durumlarda, 
sadeliğinin görünüşündeki ilk-sıra tanımlama denklemini seçmek için tamamen yeterlidir. Eğer 
)(⋅f bir tek fonksiyonsa, sonra çok küçük ek iş ile ikinci-sıra tanımlama denklemi ile artmış 

doğruluk elde edilebilirdi. 
 
 



 
Şekil-3.(a).iki terminal doğrusal olmayan rezistör içeren devre(b) voltaj kontrollü rezistör için denk geri bildirim 
sistemi  (c)kontrolü rezistör için denk geri bildirim sistemi 

 
Eğer biri ω ve A’nın “yakın” tam değeriyle ilgili olduğunda, biri daima bir önceki 

durumdaki gibi yukarıdaki “yaklaşık” ω ve A kullanan daha hızlı bir bilgisayar simülasyon 
algoritmasından[11] yararlanır. Aslında, son derece basit ilk-sıra tanımlama denkleminin 
önemli bir uygulaması alt dizi “yakın” tam bilgisayar simülasyonunun hızlı bir noktada 
birleşmesinin esası olan iyi bir “önceki durum” tam olarak hesaplamak içindir. 

 
Bu bölümde bizim nesnemiz, bazı tipik doğrusal olmayan devreler için bu tanımlama 

denklemlerinin uygulamalarını açıklamaktır. 
 
Örnek 1. Doğrusal Olmayan Bir Rezistörde Doğrusal Bir-Port Sona Erdirme 
N’nin bir empedans Z(s) ya da kabul Y(s) tarafından tanımlanmış rasgele seçilmiş doğrusal 

zaman-sabit bir-portu gösterdiği Şekil-3’de gösterilen devreyi dikkate alın. 
 
Eğer doğrusal olmayan rezistör voltaj-kontrollü(i=f(υ)) ise, sonra eşdeğer geri bildirim 

simgesi G(s)=-Z(s) olduğu yerde, Şekil-3(b)de gösterildi. 
 
Eğer doğrusal olmayan rezistör genel-kontrollü(υ=f(i)) ise, sonra eşdeğer geri bildirim 

simgesi G(s)=-Y(s) olduğu yerde, Şekil-3(c)de gösterildi. 
 
Her iki durumda, önceki bölümdeki açık formülleri salınımın frekans ω ve ek A’yı 

hesaplamak için ekleyebiliriz, devre salınımlarını farzetmek. 
 
Örnek 2. Doğrusal Olmayan Bir İndüktördeki Doğrusal Bir-Port Sona Erdirme 
£’nin  Ya bir doğrusal olmayan değişken-kontrollü ))(( φfi = ya da genel-kontrollü 

))(( if=φ indüktörü gösterdiği yerde  Şekil-4(a)’da gösterilen devreyi göz önünde tutun. 
Uygun eşdeğer geri bildirim sistemi şekil-4(b)’de sıraya göre gösterilir, G(s)=-Z(s)/s ve şekil-
4(c)’de, G(s)=-sY(s) ile. 

 

    
Şekil-4.(a) iki terminal doğrusal olmayan indüktör içeren devre  (b)  değişken-kontrollü indüktör için denk 

geri bildirim sistemi  (c) genel-kontrolü indüktör için denk geri bildirim sistemi 
 
 



 
Şekil-5.(a) iki-terminal doğrusal olmayan kapasitör içeren devre  (b)  değişken-kontrollü 
kapasitör için denk geri bildirim sistemi  (c) voltaj- kontrolü  kapasitör için denk geri bildirim 
sistemi 

 
 
Şekil-6. van der Pol denklemi tarafından tanımlanmış doğrusal olmayan RLC devre 

 
Örnek 3. Doğrusal Olmayan Bir Kapasitördeki Doğrusal Bir-Port Sona Erdirme 

 ’nin  ya bir doğrusal olmayan şarj-kontrollü ))(( qf=υ ya da voltaj-kontrollü 
))(( υfq = kapasitörü gösterdiği yerde  Şekil-5(a)’da gösterilen devreyi göz önünde tutun. 

Uygun eşdeğer geri bildirim sistemi, G(s)=--Y (s)/s ile şekil-5(b)’de ve, G(s)=-Y(s)/s ile şekil-
5(c)’de sıraya göre gösterilir. 

 
Örnek 4. van der Pol Salınım 
 
Şekil-6’da gösterilen devre aşağıdaki ile tanımlanır: 
 

    01)1(1
.

2
..

=+−+ υυυυ
LCRC

     (3.1)

  
Eğer R=1 ve 1/C=L=-є olduğunu farzedersek, iyi bilinen van der Pol denklemi [3]-[5] için eşitlik (3.1) 
azaltır. 

    0)1(
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2
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=+−− υυυευ      (3.2) 
 
Bu meşhur denklem kapsamlı çalışılmış ve çözümünün çoğu özellikleri şimdi iyi biliniyor. Özellikle, 
elimizde şunlar var: 
 

1) Küçük pozitif є için, (3.2)’de frekans ω≈1 ve genlik A≈2’nin sabit olmayan bir “sinüzoidal” 
çözümü vardır. Bu, faz seviyesindeki yarıçap 2’nin sabit bir “dairesel” tur limitine uygundur. 

2) Küçük negatif є için, (3.2)’de frekans ω≈1 ve genlik A≈2’nin sabit bir “sinüzoidal” çözümü 
vardır. Bu, faz seviyesindeki yarıçap 2’nin sabit olmayan bir “dairesel” tur limitine uygundur. 

İlk-sıra tanımlama denklemi (2.1)’i kullanarak van der Pol denklemi (3.2)’yi analiz edelim. Şekil–6 
ve şekil–3(a)’yı karşılaştırmakla,  aşağıdakini tanırız: 

 

    
)1(

)(

s
s

sG
++−

=
ε

ε
      

 (3.3) 
ƒ(υ)=-(1/3)υ³ olduğundan beri, tüm 3≠i ve 3/13 −=a için 0=ia ’mız var. Sonuç olarak, (2.4) ve 

(2.5) bize aşağıdakini verir: 



     (3.4) 
 
(3.4)’ü (2.1)’in yerine koymak, ilk-sıra tanımlama denklemini elde ederiz: 
 

     (3.5) 
 
(3.5)’yı sadeleştirmekle, aşağıdakini elde ederiz: 
 

    0)1(
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ω

ωεε jA       (3.5a) 

 
(3.5a)’yı çözmekle, ilk-sıra çözümünü elde ederiz: 
 
 
            (3.6) 
 

Sonuç olarak, bizim ilk-sıra tanımlama denklemimiz, ortalama[4]’nın metodundan elde edilmiş 
benzer bir ilk-sıra denklemin çözümünden elde edilmiş gibi olan tamamiyle aynı cevabı verir. Bu 
duurmdaki ya A yada ω’nin є’ye dayandığından beri, (3.6)’nın sadece yaklaşık bir çözüm olduğu 
açıktır. 

A ve ω üzerinde parametre є’nin etkisine karar vermek için, aşağıdaki ikinci-sıra tanımlama 
denklemini yazalım. ƒ(υ)nin υ’nin tek bir fonksiyonu olduğundan beri, Aşağıdakini elde etmek için, 
(2.15)’i kullanırız: 

 

   (3.7) 
 
Eşitlik (3.4) ve eşitlik(3.7)’yi (2.10)’un yerine koymakla, aşağıdaki eşitliği elde ederiz: 
 

  (3.8) 
 
(3.8)’i sadeleştirmek ve kendi gerçek ve sanal kısımlarını 0’a eşitlemekle, aşağıdaki eşitliği elde ederiz: 

  (3.8a) 

  (3.8b) 
 
Є=0.2 ile (3.8)’i sayısal olarak çözmekle, aşağıdaki eşitliği çözeriz: 
 

   (3.9) 
 
İkinci-Sıra Çözümü: 
İlk-sıra analizden meydana gelen hata, “esnek” denklemi elde etmek için (3.6)’yı (3.8a)’nın yerine 
koymakla analiz edilebilir: 

ω=1 A=2 
 



    (3.10) 
 
Şimdi eğer ω=1+δω yaparsak ve yaklaşık kullanımını yaparsak: 
 

      (3.11) 
aşağıdaki eşitliği elde ederiz: 
 

18δω-2δω+є²=0.       (3.12) 
 

Bundan dolayı δω=-(1/16)є² ve ikinci-sıra çözümü aşağıdaki gibi yazabiliriz:  
2

16
11 εω −=         (3.13) 

 
Bu cevap ortalama[4] metodundan türetilmiş bir analog ikinci-sıra denklem çözümünden elde edilmiş 
ile hemen hemen aynıdır. Diğer bir deyişle, bizim ikinci- sıra tanımlama denkleminden türemiş çözüm, 
aynı sıranın eklenmiş ortalama metodundan türetilmiş olan gibi aynı doğruluk derecesine sahiptir 

 
Eğer analizimizi üçüncü-sıra tanımlama denklemi kullanarak tekrar edersek, 4ε  ile orantılı olan bir 

düzeltme teriminin (3.13)ten çıkarılmak zorunda olacağını göreceğiz. Bu analizi yeterli yüksek sıranın 
bir tanımlama denklemini kullanarak tekrar edersek, prensipte, ω’yi є’nin bir fonksiyonu gibi veren bir 
analitik ifade oluşturabiliriz ki bu ifade, herhangi istenilen doğruluğu düzeltir. 

 
Örnek 5. Zayıflatılmış Duffing’in Denklemi 
Şekil 7’de gösterilen devre aşağıdaki eşitlik tarafından tanımlanır: 

         (3.14) 
 
Eğer R=1 ve 1/C=L=є olduğunu farzedersek, eşitlik (3.14), iyi bilinen “zayıflatılmış” Duffing’in 

denklemini azaltır.: 
 

 
 

Şekil 7. Duffing’in denklemi ile tanımlanan Doğrusal olmayan RLC devre 
 

03 =+++ εφφεφφ      (3.15) 
 

Bu denklemin global sonuşur kararlı[5] olduğu, [13] ve böylece salınımın olmadığı iyi 
bilinir. Bu tanımlama denklemimizin bir çözümü olamayacağı anlamına gelir. Bu sonucu 
doğrulayalım. 

 
Şekil 7’yi Şekil 4(b) ile karşılaştırmakla aşağıdaki eşitliği tanırız: 
 

     (3.16) 



3)( φφ =f  olduğundan beri, tüm 3≠i ve 13 =a için 0=ia ’ımız var. Sonuç olarak, (2.4) ve 
(2.5) aşağıdaki eşitliği verir: 

    (3.17) 
 

(3.17)’yi (2.1)’in yerine koymakla, aşağıdaki, ilk-sıra tanımlama denklemini elde ederiz: 

       (3.18) 
 
Gerçek bir çözüm A ve ω’yi elde etmek için (3.18)için sırada, A≠0 ve є+j(ω-(1/ω))’nin 
tamamen sanal olması gereklidir. Fakat, sadece, eğer є=0 ise mümkündür. Bu nedenle, ilk-sıra 
tanımlama denklemi (3.18)’nin beklenildiği gibi bir sonucu yoktur.  

 
ƒ(ф)’nin tek simetrik olduğundan beri, aşağıdaki eşitliği elde etmek için (2.15)’i 

kullanabiliriz: 

    (3.19) 
 
Eşitlik (3.17) ve eşitlik (3.19)’u eşitlik (2.10)’un yerine koymakla aşağıdaki eşitliği elde ederiz: 

    (3.20) 
 

 
Şekil 8. (a)Wien-köprü sarkaç devre. (b)Wien-köprü sarkaçının kontrollü-kaynak devre 
modeli.(c)eşit geri bildirim sistemi. 
 
Bu denklemi sadeleştirmek ve kendi sanal ve gerçek kısımlarını sıfıra eşitlemekle aşağıdaki 
eşitliği elde ederiz: 

  
 
      

   
  

Eşitlik(3.20a)’yı aşağıdaki eşitlik gibi yani bir biçime sokabiliriz: 



  
    

Eşitlik (3.21)’i eşitlik (3.20b)’nin yerine koymakla ve sadeleştirmekle aşağıdaki eşitliği elde ederiz: 
 

       (3.22) 
 
İlk terimin negatif olmadığı ve (3.22)’deki son iki terim pozitif olduğundan beri, (3.22)’yi izler, bu 
nedenle, ikinci-sıra tanımlama denkleminin beklenildiği gibi bir çözümü yoktur. 

 
Örnek 6. Tünel Diyot Sarkaç 
 
Şekil-6’da gösterilen devreyi, yeni bir parametreler kümesi ile tekrar göz önünde tutun: 

R=250Ω L=200nH C=500pF. 
 
Doğrusal olmayan rezistör karakteristik şekilde bir tünel diyot tarafından tanımlansın: 
 

i=ƒ(υ)=-0.0108υ-0.003υ²+0.1υ³      (3.23) 
 
Bu durumdaki empedans aşağıdaki eşitlik ile verilir: 
 

     
ve ia katsayıları şöyledir: 
 
    0108.01 −=a    003.02 −=a     1.03 =a    (3.24b) 
 
Eşitlik(3.24)’ü eşitlik(2.4) ve eşitlik(2.5)’in yerine koymakla aşağıdaki eşitliği elde ederiz: 
 

       (3.25) 
 

 

 (3.26) 
 
Eşitlik(3.25) ve eşitlik(3.26)’yı eşitlik(2.1)’in yerine koymakla aşağıdaki eşitliği elde ederiz: 
 

 
(3.27) 

 
(3.27)’yi sayısal olarak çözmekle aşağıdaki eşitliği buluruz: 
 

A=0.301 610*99.99=ω      (3.28) 
 
Örnek 7. Wien-köprü Sarkaç 



Son örneğimiz gibi, şekil-8(a)’da gösterilen 121 == RR ve 121 ==CC olduğu Wien-köprü sarkaç 
devresini göz önünde tutun. Doğrusal olmayan bir voltaj-kontrollü voltaj kaynağı ve şekil-8(b)’de 
gösterilen sonuçlandırılmış devre tarafından op amp modellenir, aşağıdaki eşitliğin olduğu yerlerde: 

 
53 666.0195.2234.3)( υυυυ +−=f     (3.29) 

 
Dönüşteki bu devre, şekil-8(c)’de gösterilen eşdeğer tek-bağ geri bildirim sistemi tarafından 
tanımlanabilir, aşağıdaki eşitliğin olduğu yerde: 
 

         (3.30a) 
ve katsayı ia  şöyledir: 

234..31 −=a   195.23 −=a   666.05 =a    (3.30b) 
 
Eşitlik (3.30)’u eşitlik(2.13), eşitlik(2.14) ve eşitlik(2.15)’in yerine koymakla, aşağıdaki eşitliği elde 
ederiz: 
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Eşitlik(3.31), eşitlik(3.32) ve eşitlik(3.33)’ü eşitlik(2.10)’un yerine koymakla, aşağıdaki eşitliği elde 
ederiz: 
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(3.34) 

 
Eşitlik(3.34)’ü sayısal olarak çözmekle, aşağıdaki denklemi elde ederiz: 
 
 
    A=0.384 ω=0.996   (3.35) 
 
 

 
IV. TANIMLAMA DENKLEMLERİNİ TÜRETMEK:SEZME 

YAKLAŞIMI 
 
Bu bölümdeki amacımız, mühendislik için bir sezme “frekans-domain” yaklaşım benzerliğini 

kullanan bölüm-II’ de verilen formülleri türetmek. Bu yaklaşımın doğruluğunun matematiksel 
gerçeklemesi bölüm V’de verilecek. 



Frekans-domain yaklaşımında, şekil–2(a)’deki sistemin, tüm dalgaformlarının, değişik parça 
frekanslarının sinüzoidal sinyallerinin bir toplamı gibi belirtilebileceği anlayıştaki “hazır-durum”da 
olduğunu farzederiz. Özellikle, sistem ℑ için giriş aşağıdaki gibi olsun: 
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  (4.1) 
Eşitlik(4.1)’i Volterra serileri eşitlik(1.1)’in yerine koymakla, aşağıdaki ile elde edilen ℑ ’in çıkışını 
buluruz: 

   (4.2) 
 
Eşitlik(4.2)’deki parantez içindeki denklemi rakamlar ve işaretler sistemini tanıtmakla sadeleştirebiliriz: 
 

   (4.3) 
 

),,,( 21 nn sssH ⋅⋅⋅ ’nin bu dökümandaki esas önemli olduğundan beri ve aynı roldeki 
****************. Bu rakamlar ve işaretler sistemini kullanmak, eşitlik(4.2) aşağıdaki gibi olur: 
 

 
 (4.4) 

Aşağıdaki eşitliğin 
niniii pspsps =⋅⋅⋅== ,.,

22 ’de değerlendirilen  n’inci-sıra transfer fonksiyonunu 

belirttiği yerde ve eşitlik(4.4)’deki ikinci simülasyon indeks’in sırayla ),,,( 21 nppp ⋅⋅⋅ üzerine giden 

is ’nin her tartışması gibi ),,,( 21 nsss ⋅⋅⋅ ’nin tüm mümkün kombinasyonlarını içerdiği yerde: 

 
     (4.5) 
 
 



 
 
Şekil-9. (a)Şekil-2(a)’daki tek-bağ geri bildirim sisteminin eşitlik simgesi (b) birleştirilmiş 
açık-bağ sistem iki alt sistemin 1δ ve 2δ taşan bağlantısından oluşur. 

 
Denklem (4.4)  eğer giriş u(t) ),,,( 21 nppp ⋅⋅⋅ üslerle birlikte üslülerin bir toplamı ise ℑ ’in 

çıkış y(t)’sinin 
nii pp +⋅⋅⋅+

1
üslerle birlikte üslülerin bir toplamıda olduğu, n’inci-sıra transfer 

fonksiyonu ),,,(
21 niiin pppH ⋅⋅⋅ tarafından her birine avantaj sağlanmış olduğunu gösterir. Bu 

nedenle, ℑ ’in bir kez transfer fonksiyonları ⋅⋅⋅⋅⋅⋅⋅⋅⋅ ),,,,(,),,(),( 2121211 nn sssHssHsH  bilinirler, 
ℑ ’in u(t)’ye yanıtı eşitlik(4.4)kullanılarak açıkça yazılabilir. Aslında, bu daha yüksek sıra 
transfer fonksiyonları doğrusal olmayan devreler için [10]’da verilen tekrarlamalı bir algoritma 
ile ya da doğrusal olmayan sistemler için Ek A’da verilen analog algoritma ile 
değerlendirilebilirler. 

 
Şimdi, eğer şekil-2’deki sistemin frekans ω’nin periyodik bir çözümü varsa, genelde, u(t) 

ve y(t)’nin Fourier tayfı, frekans ω’nin temelinde tüm kω harmoniklerini içerecek. Şimdi, ideal 
bir filtre P  kullanan y(t)’den esas frekans parçalarını ayıralım ve diğer bir ideal filtre I- P  
ile kalan parçaları ayıralım. P ‘yi bir operatör gibi  ve I ‘yıda bir “kimlik” operatörü gibi 
düşünmek için uygundur, böylece I- P  esas sinyal parçasının çıkarılmasından sonra her 
türlü kalanlar anlamına gelir. Bu iki operatörü kullanmak, şekil-2(a)’yı şekil-9(a)’da gösterilen 
eşit sistemin içine dönüştürebiliriz. 

 
P’’nin tanımı ile, aşağıdaki eşitliği yazabiliriz: 

! (4.6) 
AjeAA ∠

Δ
= || ’nin karmaşık bir phasor olduğu ve 

_
A ’nın A’nın karmaşık eşleniği anlamına 

geldiği yerde. 
Şimdi, şekil-9(a)’daki bağı keselim ve şekil-9(b)’deki sonuç sistemini tekrar çizelim. Eğer 

eşitlik(4.6) tarafından verilen u(t)’yi eklersek, sonra, “ideal” filtre P’nin yüzünden, çıkış şöyle 
olur: 

    (4.7) 
 

AAz = olan frekans ω’nin bir periyodik çözümünü elde etmek için Şekil-2(a)’daki sistem için 
gerekli ve yeterli bir durumdaki Şekil-9(a) ve (b)’yi takip eder, zA ’nın, genelde Ave ω’nin 
ikisine de bağlı olmasından beri, sonraki fonksiyon ),( ωAAA zz = ’yi tanımlayalım. 
 
Şekil-9(b)’deki sistem , 1 ve 2 iki alt sisteminin bir taşmasını içerir. Ek A’da, ℑ ’nin 

verilen transfer fonksiyonları ⋅⋅⋅⋅⋅⋅⋅⋅⋅ ),,,,(,),,(),( 2121211 nn sssHssHsH ’yi gösteririz,  için z(t) 
ve u(t) arasında bir “formal” Volterra serileri oluşturabiliriz. Özellikle, 

⋅⋅⋅⋅⋅⋅⋅⋅⋅ ),,,,(,),,(),( 2121211 nn sssHssHsH  gibilerinin terimlerinde 
⋅⋅⋅⋅⋅⋅ℵ⋅⋅⋅ℵℵ ),,,,(,),,(),( 2121211 nn ssssss  oluşturma için bir kurtarma algoritması veririz. Üstelik, 

Macsyma yazılım sistemi kullanan, eşitlik(2.17) gibi sembolik bir biçimde nasıl daha yüksek 



sıra transfer fonksiyonlarının oluşturulabildiğini gösteririz. Alternatif olarak, verilen herhangi 
),,,(),,,( 2121 ωωω nn jkjkjksss ⋅⋅⋅=⋅⋅⋅ ’den, bizim kurtarma algoritmamız, 

),,,( 21 ωωω nn jkjkjk ⋅⋅⋅ℵ ’nin sayısal değerini hesaplamak için bize izin verir. 

zA ’yi, A ve ω’nin bir fonksiyonu gibi, elde etmek için (4.6) ve (4.1)’i karşılaştıralım ve 
ωjpAAAAM ==== 121 ,2/,2/,2  ve ωjp −=2 ’yi tanıyalım. Eşitlik(4.4)’ü takip eder(y, z 

ile, nnH ℵ, ile yer değiştirmesiyle) 
 

    
     (4.8) 

2/AA
ki
= ya da 2/

_
A ve “± ” işaretlerinin tüm mümkün kombinasyonları anlamına geldiği 

yerde. 

      
     (4.9) 
Eşitlik(4.9)’un tatmin edici olamamasından eğer n çift ise, aşağıdaki eşitliği takip eder: 
 

0),,,( 21 ≡⋅⋅⋅ℵ nn sss ,n=çift tamsayı için  
   (4.10) 

Üstelik aşağıdaki olduğundan beri, 
 

  ),,,(),,,( 21

_

21 ωωωωωω nnnn jkjkjkjkjkjk −⋅⋅⋅−−ℵ≡⋅⋅⋅ℵ  
    (4.11) 
k=±1olduğu yerde, tj

z eA ω)2/( ’ye katkıda bulunan eşitlik(4.8)’deki terimleri toplamak için 
yeterlidir; yani,  

 
 
 

üçüncü-sıra terimler 
 
 



        
 
 



beşinci-sıra terimler 

    (4.12) 
 
 

 
 

Şekil-9(a)’daki şeklin özerk olmasından beri, salınım durumunun AAz = ’nin gerçek bir 
sayı olması gibi bizim zamanın orjinini seçmek için genellikte gevşeklik yoktur. AAz = ’yi 

0=∠A ’la birlikte eşitlik (4.12)’nin yerine koymakla ve tjA ω)2/( her iki taraftan iptal etmekle, 
aşağıdakini elde ederiz: 

 

  
 (4.13) 

 
 (4.14a) 

 

     
   (4.16b) 
 
olduğu yerde ve böyle. 



n>N için 0)( =Ω ωjn  farzedelim ve )()( 11 ωω jHj =ℵ nin eşitlik (4.13)’ün yerine 
koymakla, aşağıdaki tanımlama denklemini elde ederiz: 

 

 
     (4.15) 

 
kesinlikle eşitlik (2.18) olan. Özel durumlarda N=1 ve N=2, eşitlik(2.1) ve eşitlik(2.10)’u elde 
ederiz, sıraya göre 
 
 
V. MATEMATİKSEL GERÇEKLEMELER 
 

Bu bölümde, bölüm-5’dw tanımlama denklemini tanımlamak için kullanılan ”sezme 
yaklaşımı”nın doğruluğunu kanıtlayan dikkatli matematiksel ispatı vereceğiz. Özellikle, 
tanımlama denkleminin bir çözümünün, bir genlik A ve çözüme kapalı frekans ω’si olan bir 
periyodik çözümün varlığını gerçekten kapsayıp kapsamayacağını test etmek için bir metot 
sunacağız. Ek olarak, testimiz, yaklaşık hatalar üzerinde sınır getirir. 

 

 
 

Şekil-11.N.sıra tanımlama denklemini tanımlamak için kullanılan sembolik model  
 

Tanımlama denklemi 0),( =ωAdN ’nin bir çözümü 0),(Re =ωAdN ve 
0),(Im =ωadN arasındaki bir kesişmeye uygundur. 

 
Bizim testimiz, tam çözüm (ω,A)’yı kapsayan Q hakkında küçük bir Δyapısını içerir. 

Bizim temel stratejimiz, derece teorisini, dikdörtgen Δ ’i bırakmak için kesişme yüzünden 
olmayan eşitlik (4.15)’e ulaşmak için sıradaki eşitlik (4.13)’de ihmal edilmiş daha yüksek 
terimler (k>N) göstermek için kullanmaktır. 

 
 
A. Tanımlama Denklemi Modelleme 

 
Denklem (4.13), şekil-9(b)’den elde edilir ve eğer ∞→n ise doğrudur. Eşitlik (4.15)’in 

n>N ile birlikte tüm terimler ihmal etmesinden beri, eşitlik(4.15) tarafından kesin olarak 
tanımlanan “sembolik bir model” elde eder. 

 
Dikkat edelim ki, eşitlik(4.13)deki )( ωjnΩ her katsayısı ek A’daki kurtarma algoritması ile 

oluşturulmuş iyi tanımlanmış cebirsel deyimdir. Ayrıca birde, eşitlik(4.13)’de )( ωjnΩ bir 
genlik nA2 ile birleştirilmiştir. Ayrıca, n>N için )( ωjnΩ ihmal etme )2(2)1(2 , ++ NN AA içeren 
eşitlik(4.13)deki gizlenmiş tüm cebirsel terimlere eşdeğerdir. Ek A’da kurtarma algoritmasının 
bir eleştirisi NT2 2in 2n>2N ile birlikte nA2  içeren tüm cebirsel terimleri saklı tutan bir 



“sembolik” operatör olduğu eşitlik(4.15)de tam olarak verilen şekil-11’de gösterilen “sembolik 
model”i kurtarma algoritmasını gösterir. Biz P ‘ve I- P  operatörlere benzemeyen 
üzerinde durmak için bu “sembolik” operatörü çağırırız, NT2  eşitlik(4.14) gibi bir cebirsel 
ifadeleri işletir ve ⋅⋅⋅++ ,, 2212 NN AA daha yüksek sıra terimlerinin çıkış yoksununu bir cebirsel 
ifade üretir. Benzer olarak, operatör 12 +NT , vbAA NN ⋅⋅⋅++ ,, 3222 lerini içeren tüm terimleri saklı 
tutar. 

 
Şekil-11’deki sembolik model,  eşitlik(4.15)’ katkıda bulunan otomatik olarak daha yüksek 

sıra terimleri gizleyen tanımlanmış denklemlerde bir kavramsal yardım gibi burada çoğunlukla 
ortaya çıkartılır. Bir bilgisayar-simülasyon modeli değildir. 

 
Sembolik model 122 +NN yadaAA ’daki sadece daha düşük sıra terimlerini tutmadan 

sonuçlandığından beri, şekil-11’de gösterildiği gibi değişkenler x,y ve z için bir altscript “χ” 
ekleriz. 
Şuna da dikkat edelim: 

 
     (5.1) 

altscript “h”in ihma edilmiş daha yüksek sıra terimlerine gerekli olan yardımlar anlamına 
geldiğinde. Ek A’da kurtarma algoritmasını kullanmak, giriş u(t)nin terimlerindeki 

)(),( tytx nn ve )(tzn için bir “formal” Volterra serileri oluşturabiliriz. Bizim sunduğumuz amaç, 
bununla birlikte, -tanımlama eşitlik(4.13) ve eşitlik(4.15)’de kullanılan aynı giriş- giriş 

tjtj eAeAtu ωω −+= )2/()2/()(
_

’e gerekli x(t) ile ilgiliyizdir: 
 

 

 

(5.2) 
 
 
Dikkat etmek için önemlidir ki, daha yüksek sıra transfer fonksiyonları, 

),,,(,),,,(),,( 22123213212 NN sssXsssXssX ⋅⋅⋅⋅⋅⋅ , ),,,( 122112 ++ ⋅⋅⋅ℵ NN sss oluşturma işlemdeki ek 
A’daki kurtarma algoritması tarafından otomatik olarak oluşturulur. Bu nedenle, )(txx ’yi 
eşitlik(5.2)’yi kullanarak ya sembolik olarak ya da sayısal olarak hesaplayabiliriz. 

Dikkat edilmeli ki, eğer eşitlik(5.2)’yi giriş gibi şekil-11’deki F’ye eklersek ve NT2 ( I- 
P  ) ))(( txxℑ uygun deyimi elde edersek, aşağıdaki benzerliği elde ederiz: 

 
xx =u+ NT2 ( I- P  ) )( xxℑ   (5.3) 

 
 

Genelde, ))(( txxℑ  tje ω ’nin tüm harmoniklerini ve A/2’deki tüm daha yüksek sıra terimleri 
kapsayacak. İşlem (I- P  ) ))(( txxℑ sonraki işlem NT2 ( I- P  ) )( xxℑ  

vbAA NN ,,, 2212 ⋅⋅⋅++ içeren tüm terimleri saklı tutar iken esas bileşenleri saklı tutar. 



Giriş tjtj eAeAtu ωω −+= )2/()2/()(
_

’ye uygun olan, x(t)’deki ihmal edilmiş terimler 
aşağıdaki eşitliğindirler: 

    (5.4) 
NT2 , )(txg ’ye uygun tüm yardımları saklı tuttuğundan beri, biz aşağıdakine sahibiz: 

 

  (5.5) 
 
Diğer elde, şekil-9(b) şunu gösterir: 
 

   
 (5.6) 

 
gx ’yi çözmek ve eşitlik(5.3) ve eşitlik(5.6)’yı yapmakla, şunu elde ederiz: 

 

     (5.7)
  
I’nın bir “cebirsel” uygun işlem anlamına geldiği yerde, herhangi cebirsel denklemi kendisine 
dönüştürür. 
Şimdi, şekil-11’deki F’yi doğrusal ve doğrusal olmayan bir parçaya ayrıştıralım: 

    

NLL ℑ+ℑ=ℑ    (5.8) 
Eşitlik(5.8)’i eşitlik(5.7)’nin yerine koymakla ve Lℑ ’nin paylaştırılmış özelliğinin kullanımını 
yapmakla, aşağıdakini elde ederiz: 
 
   

   (5.9) 
 
xx ’in A’daki daha düşük sıra terimleri içerdiğinden beri, 

      (5.10) 
 
Operatör I- P ‘nin ilk harmonik parçaları saklı tuttuğundan beri, eşitlik(5.7)’deki gx , 
herhangi ilk-harmonik parça içermez, bu yüzden biz aşağıdaki eşitliği yazabiliriz: 
 
        (5.11) 
 
Eşitlik(5.10) ve eşitlik(5.11)’i eşitlik(5.9)’un yerine koymakla, aşağıdakini elde ederiz: 
 
       (5.12) 
 

Lℑ ’nin doğrusal bir operatör olduğundan beri, )( 11 sH ’in ℑ ’in Volterra serileri 
genleşmesinde ilk terim olduğu yerde tjktjk

L ejkAHAe ωω ω)()( 1=ℑ ’dir. Farz edelim ki: 
 



         
   (5.13) 

 
Operatör LI ℑ− esas harmonik parça sayılmayan alt boşlukta tersyüz edilebilsin, böylece 

gx için eşitlik(5.12) çözülebilir: 
 

    
    (5.14) 

Şimdi herhangi A ve ω için, giriş tjtj eAeAtu ωω −+= )2/()2/()(
_

’ye uygun şekil-11’den 
)(txx ’yi hesaplayabiliriz. A ve ω ‘ye bağlı olan )(txx gibi herhangi biri için eşitlik(5.14), 

çözüm )(txg ’nin ihmal edilmiş daha yüksek sıra terimlere uygun “düzeltme” verdiği ”doğrusal 
olmayan bir operatör denklemi değildir. Diğer bir deyişle, herhangi A ve ω için, şekil-2(b)deki 
açık-bağ sisteminin tam çözümü ya da şekil-9(b)’e benzer olarak,  )()()( txtxtx gx += ile 
verilir. Bundan böyle, eşitlik(5.14)’e doğrulayıcı eşitlik diyeceğiz. 

 
 
B. Periyodik Çözümün Var Oluşu 
 
Şekil-2(a)’daki kapalı-bağ sisteminin frekans ω ve esas parçası genlik A’nın bir periyodik 

çözümü olduğunu ve kanıtlamak için, aşağıdakini kanıtlamak yeterlidir. 

 1) Herhangi A ve ω için, şekil-9(b)’deki açık-bağ sistemi giriş tjtj eAeAtu ωω −+= )2/()2/()(
_

   
‘e uygun bir çözümü vardır. 

2) ’nin tjtj eAeAtu ωω −+= )2/()2/()(
_

’uygun olan şekil-9(b)nin tam çözümü anlamına 
geldiği yerde  gibi özel bir Â ve ώ vardır. 

Takip eden teoremlerde, F’nin na  ve ω’ye devamlı olarak dayanan aşağıdaki eşitliğe uygun 
olan F(x(t))’nin Fourier katsayıları gibi anlayışta devam eden işlem olduğunu farzedelim. 

Ayrıca, farzedelim ki, tjtj eAeAtu ωω −+= )2/()2/()(
_

’e uygun olan dalga biçimi )(txx ’nin 
Fourier katsayısının devamlı olarak A ve ω’ye bağlı olsun. 

 
 
Teorem 1. Tanımlama Denkleminin Doğruluğu 
 
Hipotezler: Aşağıdaki durumlara sahip olunduğunu farzetmek: 
1) Tanımlama denklemi (4.15)’in bir ),( QQ Aω çözümü vardır. Bundan başka,  

 

 
     (5.15) 

2)  
3) Aşağıdaki durumları karşılayan ),( QQ Aω ’i içeren bir kapalı dikdörtgen Δ vardır. 
a) ),( QQ Aω , Δ ‘de sadece tanımlama denklemi (4.15)’in çözümüdür. 
b) Tüm Δ∈),( Aω  için, doğrulayıcı denklem(5.14) devamlı olarak A ve ω’ye dayanan 

),( ωAxg  bir çözümü vardır 



c) dikdörtgen Δ’nin sınırındaki tüm (ω,A) için,  
 

 
     (5.16) 

 
Sonuç: 
Şekil-1’deki tek-bağ geribildirim sisteminin frekans ω ve Δ’nin yerine esas parça genlik A 

ile birlikte bir periyodik çözümü vardır 
İspat: Hipotez 2(b) şekil-9(b)’nin açık-bağ sisteminin A ve ω üzerine devamlı olarak 

dayanan tüm Δ∈),( Aω için bir tam çözüm )()()( txtxtx gx +=  olduğunu garanti eder. Kalır ki, 
bu nedenle, sadece aşağıdaki tam denklemi kanıtlamak için bizim için 

 

        (5.17) 
 
Şekil-9(a)’daki kapalı-bağ sisteminin tarifinin bir çözümü vardır. Bunu yapmak için, 

eşitlik(5.17)’yi aşağıdaki gibi yeni bir biçime sokalım: 
 

      
(5.18) 

 
Eşitlik(5.18)’deki ),( ωAAdN ’e uygun olan ilk iki terim 12 +NT ’nin yüzünden gx tarafından 

katkıda bulunulan tüm terimleri ihmal edilir. Eşitlik(5.18)’deki üçüncü terime uygun olan dalga 
biçimi aşağıdaki tarafından anlamlandırılsın: 

 
 

     
 
 
Sonra eşitlik(5.18)’in çözümü doğrusal olmayan denklem çözümü tarafından elde edilmişe 
denktir 

      
   (5.19) 
 
)(⋅f ’nin A ve ω’nin bir devam fonksiyonu olduğu yerde. sıfırın ±1’e uyması ile birlikte Δ’deki 

tasarlanmış )(⋅Nd ’nin derecesi olan Hipotez 1 ve 2(a)’dan gelir. Bundan başka, Hipotez 2(c) 
“tedirginliğin”  AABN /),( ω ’nın dereceyi değiştirmemesine uygun olduğunu böylece 
ƒ(A,ω)’in ±1 olduğunu garanti eder. Bundan dolayı eşitlik(5.19) Δ’de bir çözümü var. Bu 
şekil-9(a)’daki geri bildirim sisteminin frekans ω’nın ve  Δ∈),( Aω gibi genlik A esasının bir 
periyodik çözümüne sahip olduğunu söylemeye denktir. 

Öneriler: 1) Geometrik olarak söylemek, derece teorisine uygun olan yukarıdaki kanıt 
anlatılan denklemi içerir. 

 
 

      
     

(5.20) 



Dikkat edilmeli ki, 0),(0 =ωAf ’ın tam olarak tanımlama denklemi(4.15) olduğu ve 
0),(1 =ωAf ’in tam olarak eşitlik(5.19)’dur. 0 ve 1 arasındaki Є gibi değerler, şekil-10’daki iki 

eğri devamlı değişken olacaktır. Sonra hipotez 2(c) kesişme Q’nun є’nin 0’dan 1’e değiştirmesi 
gibi dikdörtgen Δ’yı bırakacağını garanti eder. 

 
2) Teorem 1 bölüm II’de tanımlanan metodun doğruluğu için yeterli durum sağlar. Hipotez 

2(b) ve 2(c, aslında, daha doğrusu kontrol için karışıktırlar. Teorem 1’in önemi, bu yüzden, 
başlıca teoriktir-bölüm II’deki metot için bir temel gibi çalışır. 

 
3) Pratikte biri sadece cevap kuşkulu olduğunda Teorem I’i kullanacaktır. Bu gibi 

durumlarda, aşağıdaki iki teorem, hipotez 2(b) ve 2(c)’nin kontrolü için daha fazla pratik 
şartlar sağlar. 

 
 
Teorem 2: Hipotez 2(b)’yi kontrol etme 
 
Her Δ∈),( 00 Aω için, doğrulama denklemi(5.14), eğer aşağıdaki gibi gerçek bir 0>γ sabiti 

bulmak mümkünse, devamlı olarak A ve ω’ye dayanan bir ),( 00 ωAxg çözümüne sahiptir: 

(1)    
     (5.21) 

(2)  
      (5.22) 

 
 
 
şöyle olduğu yerde 
   0<α<1        (5.23a) 
 

       (5.23b) 
 
  

   (5.23c) 

ve ⎟
⎠
⎞⎜

⎝
⎛ ni binomial katsayılar anlamına gelir. Üstelik, eğer (1) ve (2) tatmin ederse, çözüm γ 

tarafından bağlanır: 

      γω <100 ||),(|| Axg    
   (5.24) 

İspat: herhangi gx xxx +=
Δ

1  ve gx xxx +=
Δ

2 hesaba katın, γ<1||||
1g

x ve γ<12 |||| gx gibi. 1x ve 

2x ’yi doğrulama denklemi (5.14)’deki gx xx + ’nin yerine koymakla, aşağıdakini elde ederiz: 



 
    (5.25) 

 
n

gx xx )(
1

+ ve n
gx xx )( + ’yi genişletmekle aşağıdakini elde ederiz: 

       
   (5.26) 
Dikkat edilmeli ki: 

    
     (5.27) 
 
Eşitlik(5.26)-(5.27)’yi eşitlik(5.25)’in yerine koymakla ve eşitlik(5.21)’i kullanmakla, 
aşağıdakini elde ederiz: 
 

     
     (5.28) 
Üstelik,  

    (5.29) 
 
 
Denklemler (5.28) ve (5.29) işlem ’nin kendi içine olan küre yarıçapı γ’den bir küçülme 
haritası olduğu ve böylece, sabitleşmiş bir ),( 00 ωAxh noktasına sahip olduğu anlamına 

gelir. ),( 00
* ωAxx hh

Δ
= ’nin (A,ω)’ya devamlı olarak dayandığını göstermek için, *

hx ’nin devamlı 
olarak xx ve ω’ye bağlı olduğunu göstermek yeterlidir. Verilen 

1x
x ve 1ω , *

1h
x ’i uygun 

belirlenmiş nokta olsun. *
2h
x de xxx xx δ+=

12
ve ωδωω += 12 ’e uygun olan belirlenmiş nokta 

olsun. Biz xδ gibi **
12 hh xx → ve 0→ωδ olduğunu göstermek istiyoruz. 1ωω = ve 

1xx xx =  ile 

birlikte haritalama ’yi göstermek için işaretler sistemini kullanacağız. Ayrıca, 



haritalama tartışmasın Fourier katsayıları üzerinde bir harita olması için hesaba katılır.  ’nin 
devamlı olarak xx ve ω’ye dayandığından beri,  
 

      (5.30) 
0→xδ ve 0→ωδ gibi. 

 

Fakat *
1h
x ’in ’in belirlenmiş bir noktası olduğundan beri; 

 

        (5.31) 
 

’nin küre yarıçapı γ’de küçülme haritalama olduğundan beri, süreklilikle, , 
yeterli olarak küçük xδ  ve ωδ için γδγ + küre yarıçapında ayrıca bir küçülme haritalamadır. 

Üstelik, 0→γδ , xδ ve 0→ωδ gibi. Bu nedenle, yeterli olarak küçük xδ  ve ωδ için, ’nin 

belirlenmiş nokta *
2h
x aşağıdakini karşılar: 

 

        (5.32) 
 

2α ’nin ’nin Lipschitz sabiti olduğu yerde. Bu nedenle, **
12 hh xx → ’nin 0→cδ gibi ya 

da  xδ ve 0→ωδ gibi sürekliliği sağlayandır. 
 
 
Teorem 3. Hipotez 2(c)’yi Kontrol Etmek 
 
 
Verilen herhangi (ω,A) ve βω <1

* ||),(|| Axh , 

  (5.33) 

olduğu yerde.    
  (5.34) 
 
İspat: Ek B’ye bakın 
 
 
C. Teorem 2 ve 3 ile ilgili Görüşler 

 

1) Teorem 2’ye ekleme sırasında, ve ’yi her Δ∈),( 00 Aω  
için hesaplamak gereklidir. Ayrıca prensipte, eşitlik(5.23c)’yi tüm mümkün 

121 ±≠+⋅⋅⋅++ nkkk için kontrol etmek zorundayız, en büyük pratik sarkaçlarda, || nH , büyük 

ik için önemsizdir. Bu nedenle, `|||| ∞nH  genellikle “küçük” nkkk ,,, 21 ⋅⋅⋅ ’nin sadece biraz sayısı 
için || nH ’yi kontrol etmekle hesaplanmış olabilir.  

2) p’nin değeri aynı prosedür ile hesaplanmış olabilir. 



3) 1|||| xx ’in değeri, ek A’daki kurtarma algoritması kullanarak oluşturulmuş dönüşteki 
eşitlik(5.2)’den hesaplanabilir. 

 
4) ’yi hesaplamak için, ilk olarak için cebirsel ifade 

oluştururuz, sonra onu eşitlik(5.14)’ün yerine koyarız. Bu en fazla zaman-tüketme 
kısmı. 

 
5) Bir sonraki adım, eşitlik(5.21) ve eşitlik(5.22)’yi doyuran “en küçük” γ>0’ı bulmaktır. 

Bu bir doğru-arama prosedürü ile bulunabilir. γ için bir önceki tahminle başlamak, onu azaltır, 
eğer eşitlik(5.21)-(5.22) tutarsa(α=1 sayalım). Diğer yandan, onu artırır. Bizim tecrübemiz, 
γ’nin genellikle eşitlik(5.21) değilde eşitlik(5.22)’yi gerçekleştirmede başarısız olduğunu 
gösteriyor. 

 
6) Yukarıdaki gibi analog prosedürleri kullanmakla, teorem 3 için ∞|||| nH ’u da tahmin 

edebiliriz. 
 
D. Dikdörtgen Δ Nasıl Bulunur 
 
Teorem 2 ve 3’ün yardımları ile, teorem 1’i gerçekleştiren aşağıdaki gibi bir dikdörtgen Δ 
bulabiliriz: 
(1) ),( QQ Aω hakkında Δ’nin önceki bir tahminini yapmak. 
(2) Δ∈),( Aω örnek noktalarının makul bir sayısı için Hipotez 2(b)’yi kontrol etmek için 

Teorem 2’yi kullanmak. 
(3) Δ’nin sınırında bulunan ),( Aω örnek noktalarının makul bir sayısı için Hipotez 2(c)’yi 

kontrol etmek için Teorem 3’yi kullanmak. Dikkat edelim ki, |),(| ωAAdN bilinir ve teorem 3, 
böylece, eşitlik(5.16)nın sağ tarafı için bir sınır sağlar. 

 
 

 
 
Aşağıdaki prosedür, Δ için bir makul önceki örnek elde etmek için kullanılabilir: 
(a) QAA >1 olduğu yerde ),( 1AQω ’i dene. Eğer teorem 2-3 başarılı olursa, 1A ’i azalt, diğer 
türlü arttır. 
(b) QAA >2 olduğu yerde ),( 2AQω ’i dene. Eğer teorem 2-3 başarılı olursa, 2A ’i azalt, diğer 
türlü arttır. 
(c) Qωω >1 olduğu yerde ),( 1 QAω ’i dene. Eğer teorem 2-3 başarılı olursa, 1ω ’i azalt, diğer 
türlü arttır. 
(d) Qωω >2 olduğu yerde ),( 2 QAω ’i dene. Eğer teorem 2-3 başarılı olursa, 2ω ’i azalt, 
diğer türlü arttır. 
(e) Önceki dikdörtgen Δ gibi 12 AAA ≤≤ ve 12 ωωω ≤≤ ’yi seç. Bizim deneyimimiz, 

genellikle uygun bir 1A bulmanın Δ tanımlayan diğer üç noktadan çok daha zor olduğunu 
gösterir.  



 
E. Örnekler 
 
Önceki prosedürü birleştirilmiş tanımlama denkleminin çözüm ),( QQ Aω ile ilgili küçük bir 

dikdörtgen Δ elde edilmiş her durumdaki çoğu örneğe eklemiştik. Sonra biz sonuçları sayısal 
simülasyon tarafından elde edilmişler ile karşılaştırırız. Tablo 1 Örnek 4, Örnek 6 ve Örnek 7 
ile elde edilmiş sonuçların bir özetini verir. 

 
 
VI. DÜŞÜNCELERİ BİTİRMEK 
 
Doğrusal olmayan salınım için Volterra serilerinin ilk titiz uygulamasını gösteren 

anlayıştaki açıklama olan bu notta, tanımlama denklemi sunuma yakınlaşır. Herhangi sıranın 
dinamikleri ile birlikte herhangi tek-bağ zaman-sabit doğrusal olmayan geri bildirim sistemine 
uygulanabilir olan bir frekans-domain yaklaşımıdır. Hatta sınıflandırılmış elementler bırakılır. 
Sadece üzerine alma, birleştirilmiş açık-bağ sisteminin bir aynı yerde birleştirilmiş Volterra 
serilerine sahip olduğudur. Aslında, bizim yaklaşımımızı onaylamak için matematiksel ispat, 
bazı gelişmiş matematikleri içerir, kendi metodu basittir ve sadece cebir içerir. 

 
Krylov, Bogoliubov ve Mitropolsky’ın ortamla metodu gibi, ana harmoniğin frekans ve 

genliği prensipte tanımlama denklemi için yeterli yüksek bir sıra seçmekle istenmiş doğruluk 
için hesaplanabilir. Aslında, bu yaklaşımın en güçlü yanı, sadece ir ilk-sıra tanımlama 
denklemi kullanarak sık ortaya çıkarılmasıdır. Daha yüksek tanımlama denklemi son derece 
karmaşıktır ve sadece eğer bir bilgisayar kullanılıyorsa pratiktir. 

 

     
 
 
Üzerinde durulmalıdır, bununla birlikte, ortalama metodu gibi, bizim metot bir geribildirim 

sisteminin salınıp salınmayacağının doğrusunu bulmak için ve eğer böyleyse yaklaşık frekans 
ve genliği tanımlamak için en avantajlı şekilde kullanılır. Böyle bilgi bir ilk-sıra tanımlama 
denklemi ile en kolay şekilde elde edilir. Sonuçta, daha fazla doğruluk istenilir, önceki tahmin 
gibi yukarıdaki yaklaşık frekans ve genliği kullanan bir bilgisayar simülasyon metoduna 
başvurmak daha iyidir. 

 
Sonuç olarak, dikkat edelim ki, cevaplar, sık sık harmonik balans ya da aynı sıranın 

yaklaşımının tanımı ile elde edilmişlerden daha doğru olan bizim yaklaşımımız kullanılarak 
elde edilmişlerdir. Bunun sebebi her şeye rağmen bizim yaklaşımımız tüm harmoniklerin 
katkılarını ihmal etmesidir. Sonuç olarak, bizim yaklaşımımız hangi parçaların ihmal 
edileceğine bakmak ile seçici bir şeydir.  

 
Ayrıca şunu belirtmek önemlidir ki, bizim tanımlama denklem yaklaşımı bir analitik 

yaklaşımdır-sayısal teknolojilere zıttır. Tanımlama denkleminin sembolik biçimde 
tanımlandığından beri, siste parametrelerinin terimlerindeki tasarım kıstasını elde etmek 
mümkündür. Özel olarak, çeşitli devre parametreleri için frekans ve genlik hassasiyeti, analitik 
biçimde elde edilir.  

 
Sonuç olarak, bizim tanımlama denklem yaklaşımının tamamıyla genel ve doğrusal 

olmayan mekaniklerdeki çoğu ilgili problemlere uygulanabilir olduğunu belirtelim. 
EK 



A. Daha Yüksek Transfer Fonksiyonlarının Kurtarma Nesli 
Bir sistemdeki her elementin verilen daha yüksek sıra transfer fonksiyonları, o sistemin 

ayrıntılı daha yüksek sıra transfer fonksiyonlarını biçimsel olarak oluşturabiliriz. Doğrusal 
olmayan devreler için bu transfer fonksiyonlarını oluşturmak için bir kurtarma algoritması 
[10]’da verilir. Bu Ekte, bu algoritmayı tanımlama denkleminin kökeninde kullanılan doğrusal 
olmayan geri bildirim sistemine ekleyeceğiz. İki doğrusal olmayan sistemin bağlantı taşmasıyla 
başlayacağız. 

 
A.1.Transfer Fonksiyonlarının Düzenlemesi 
Girişi başka bir doğrusal olmayan sistemin çıkışı olan bir doğrusal olmayan sistemin daha 

yüksek çıkış parçalarını tanımlayalım ve böylece, daha yüksek bileşenleri içerir. Özellikle, 
şekil-12’de gösterildiği gibi iki doğrusal olmayan sistemin bağlantı taşmasını hesaba katalım. 
ƒ’yi aşağıdaki gibi farzedelim: 

 

     
    (A.2) 

Bu, h’nin bir ilk-sıra terimini )( 1
1

tpeA  ve bir ikinci-sıra terimini içeren giriştir 

     
 
ƒ’nin giriş u’sunun eşitlik(A.1) tarafından verildiği yerde. 
  

          
   (A.3) 

Eşitlik(A.2)’yi eşitlik(A.3)’ün yerine koymakla, aşağıdakini elde ederiz: 
 
   

   
    

(A.4) 
 
Denklem(A.4) bir parça ikinci-sıra transfer fonksiyonu )),(( 21212 ssssH += tarafından 

desteklenmiş bir doğrusal olmayan sistemin daha yüksek sıra çıkışlarıyla ilgili olan çoğu 
etkileri örneklerle açıklar. Bu etkileri aşağıdaki gibi olan n’inci-sıra transfer fonksiyonları 

2≥n için genelleştirebiliriz: 
 
(a) Bir n’inci-sıra transfer fonksiyonu tarafından oluşturulmuş çıkış en küçük n’inci-sırada 

olacak. Böylece, eşitlik(A.4)’deki her terim en küçük ikinci sırada olacak.  
 
(b) Bir sistemin doğrusal olmayan kısmı ile oluşturulmuş her n’inci-sıra çıkış terimi n’den 

daha az sıra ile giriş terimlerinin ürünü yapılır. Bunun sebebi iki girişin herhangi ürünün en 
azından biri tarafından sırayı yükselteceğidir. Böylece eşitlik(A.4)’de, ikinci-sıra terimi 



 iki ilk-sıra teriminin ürününün sonucudur, ikinci-sıra transfer fonksiyonu 
 tarafından çoğaltılır.  

 
(c) n’inci-sıra çıkışın m’inci-sıra transfer fonksiyonunun katkısı aşağıdaki biçimin tüm 

mümkün ürünlerinin toplamını içerir 

     
     (A.5) 

nkkk m =+⋅⋅⋅++ 21 ve 
mkkk XXX ,,,

21
⋅⋅⋅ ’nin girişin thkthkthk m,,, 21 ⋅⋅⋅ ’inci-sıra terimi 

olduğu yerde. Denklem(A.5) bir n’inci-sıra çıkış teriminin mkkk ,,, 21 ⋅⋅⋅ sırası ile m girişinin 
ürünü ile elde edildiği anlamına gelir. 

 
Eşitlik(A.4)’de, iki üçüncü-sıra terimleri 

))()(( )(
121121

)(
211211

121211 tppptppp epppAAveAepppAAA ++++ ++++ , bir ilk-sıra terimi tpeA 1
1 ve 

bir ikinci-sıra terimi )( )(
21

21 tppeAA + ’nin iki mümkün üründür, ikinci-sıra transfer fonksiyonu 
tarafından çoğaltılır. Eşitlik(A.5)in işaretler sistemini kullanarak, iki üçüncü-sıra terimler 
aşağıdaki gibi belirtilebilir: 

 

   
     (A.6a) 

ve   
     (A.6b) 

 
eşitlik(A.6)’dan olan aşağıdaki terimleri eşitlik(A.4)’den uygun terimlerle  tanımlayabiliriz: 

    
 
 
X(t)’de sadece bir ilk-sıra terimi tpeA 1

1  ve bir ikinci-sıra terimi tppeAA )(
21

21+ olduğundan beri, 

11 ps = olduğu zaman 0)( 11 =sX ayrı tuttuğunu ve 11 ps = ve 22 ps = olduğu zaman 
0),( 212 =ssX ayrı tuttuğunu görebiliriz. Bundan dolayı, sadece sıfır olmayan 1

3Y ve 2
3Y , 

),,( 321
1
3 pppY ve ),,( 321

2
3 pppY ’dir, tam olarak, 

))()(( )(
121121

)(
211211

121211 tppptppp epppAAveAepppAAA ++++ ++++ olduğu yerde. 
 
Genelde, tüm mümkün ürünleri eşitlik(A.2)ve eşitlik(A.3)’de tanımlanmış basit sistem için 

eşitlik(A.6a) ve eşitlik(A.6b)’de yaptığımız gibi belirtmek belli değildir. Sonraki bölümde bu 
gibi ürünleri bulmak için bir kurtarma algoritması verilecek. 

 
 
A.2.Daha Yüksek Sıra Çıkış Terimlerinin Nesli 
(a) Rakamlar sistemi 



Bir S listesi, ),,,( 21 nsss ⋅⋅⋅ tarafından anlamlandırılmış, bir sonlu sayıdaki nesnenin 
sıralanmış bir koleksiyonudur. Bir S listesinin bitişik kısmı, kendi kendisinin listesi olan bir 
listenin S.A. segmentinin bir segmenti olarak adlandırılır. 

),...,1(,),,,(),,,(
121211 ...11 nkkkkkkk ssssss

n
+⋅⋅⋅⋅⋅⋅⋅⋅⋅

−+++++ biçiminin bir segmenti listesi, 
),,,( 21 nsss ⋅⋅⋅ listesinin bir bölümü olarak adlandırılır. Örneğin, ),,,( 4321 ssssS = olsun, sonra 
),(),( 211 sss ve ),,( 432 sss , S’nin segmentidirler ve )(),,(),(( 4321 ssss , S’nin bir bölümüdür. 

İndeksler sağa doğru artar ve her tamsayı tam olarak meydana gelir.  
 
 
(b) Temel Yaklaşım 
 

),,,( 21 nsssS ⋅⋅⋅= olsun. Eğer S’nin bölümlerini eşitlik(A.5) ile karşılaştırırsak, 
eşitlik(A.5)’in tüm mümkün biçimleri ve S’nin tüm mümkün bölümleri arasında birebir 
uygunluk olduğunu not ederiz. Örneğin, eğer ),,,( 4321 ssssS = ise, sonra, ürün 

)(),()(),,( 413221143213 sXssXsXssssH + , )(),,(),(( 4321 ssss ’e uygun olur. Bu, verilen bir 
),,,( 21 nsssS ⋅⋅⋅= listesi, m segmentleri içeren S’nin tüm bölümlerini bulur.  

 
 
(c) Bölümleme Prosedürü 
 
M=1 olduğu zaman sadece mümkün bölümlerin )),,,(( 21 nsss ⋅⋅⋅ olduğu açıktır. m>1 için, 

bölümlemenin benzer problem serilerini çözmeyle edileceğini aşağıda göstereceğiz fakat m’nin 
m-1’e azalmasıyla. Bu bölümleme prosedürü m=1 oluncaya kadar tekrarlamalı olmayı 
isteyecek. 

 
Bir bölümdeki ilk segmentin tüm mümkün seçimlerini hesaba katalım. Belki 

),...,,( 121 +−mnsss 'e doğru )...,,(),( 321 sss ’nin biri olabilir. Sebep,  
 
İlk segment ),,,( 211 isssS ⋅⋅⋅= ’nin bir bölüm seçimi için, kalan liste )),,( 1 ni ss ⋅⋅⋅+ ’nin m-1 

segmentlerini içeren bulunan tüm bölümlerinden oluşan bir azaltma problemini çözeriz. Bu 
azalma problemi, m-1’e eşit segmentlerin numarası ile birlikte aynı bölümleme prosedürü 
tarafından çözülür. Azalma problemini çözmek, msS ,,2 ⋅⋅⋅ ’nin segmentler olduğu yerde 

),,,( 32 msss ⋅⋅⋅ biçiminin çoğu bölümlerini elde ederiz. 1S ’i bölümlerin her birine yerleştirmekle, 

1S ’e eşit olan ilk segment ile birlikte orjinal listenin bölümlerini elde ederiz.  
 
1S ’nin tüm mümkün seçimleri için yukarıdaki işlemi tekrarlama, tüm mümkün bölümleri 

elde ederiz.  
 
 
(d) Açıklayıcı Örnek 
 
Bir örnek olarak, ),,,( 4321 ssssS = ve m=3 olsun. Bölümleme prosedürünü eklemekle, ilk 

segment, 3
1S tarafından )( 1s ya da ),( 21 ss anlamlandırılır.  

 
(1) )( 1

3
1 sS = olsun, sonra azaltma problemi 2 ),,( 432 sss ’nin 2 segmentle birlikte tüm 

bulunan mümkün bölümlerinden oluşur. Aynı bölümleme prosedürünü istemekle, ilk segment 
2
1S ’nin tüm mümkün seçimlerinin )( 2s ve ),( 32 ss olduğunu buluruz. 



(1.1) )( 2
2
1 sS = için, azalma problemi 1, bir segment ile birlikte ),( 43 ss ’ün bulunan 

bölümlerini içerir. Sonuç )),(( 43 ss olduğu bellidir. 2
1S ’i )),(( 43 ss ’in yerine koymakla, 

)),(),(( 432 sss elde ederiz. 
 
(1.2) ),( 32

2
1 ssS = için, azaltma problemi 1’in çözümü ))(( 4s olur. 2

1S ’i onun yerine 
koymakla, )),(),(( 432 sss elde ederiz.  

 
)( 2s ve ),( 32 ss ’nin 2

1S ’nin tüm mümkün seçenekleri olduklarından beri, azaltma problemi 
2’yi kendi çözümü gibi )),(),(( 432 sss ve ))(,,(( 432 sss bölüm çiftleriyle çözdük.  

 
(2) 3

1S ’ü eşitlik(1.1) ve eşitlik(1.2) ile elde edilmiş her bölümüne yerleştirirsek 
)),(),(),(( 4321 ssss  ve ))(,,(),(( 4321 ssss ’i )( 1s ilk segment ile birlikte iki mümkün bölüm olarak 

elde ederiz. 
 
(3) diğer mümkün 3

1S için (1)ve (2)’yi tekrarlamakla, azaltma problemi 2 iki segment ile 
birlikte ),( 43 ss ’ün bulunan bölümleri olur. Sadece mümkün 2

1S , )( 3s ’dür, böylece, tek çözüm, 
))(),(( 43 ss olur. 

 
Tümü birlikte, üç mümkün bölüm olarak )),(),(),(( 4321 ssss , ))(,,(),(( 4321 ssss ve 

))(),(,,(( 4321 ssss elde ederiz. 
 
 
A.3. Geri bildirim Sistemleri 
 
Şekil-9(a)ve 9(b)’deki sistemi hesaba katalım. U’dan z’ye Elde edilmiş sıra transfer 

fonksiyonları için bir algoritma vereceğiz. P’’nin sadece ideal bir filtre olduğundan beri, şekil-
9(b)’deki γ’de n’inci-sıra çıkışı ),...,( 1 nn ssY bulmaya yeter. Birleştirilmiş daha yüksek sıra 
transfer fonksiyonları, ideal filtre tarafından geri çevrilmiş tüm terimleri saklı tutarak 
önemsizce elde edilebilir. 

 
   Şekil-13. bir doğrusal ve doğrusal olmayan alt sisteme ayrışan sistem 
 
 
Kolaylık için, bir birim giriş genliği tjtj eetu ωω −+=)( farzetme yoluyla daha yüksek sıra 

çıkışları bulacağız. Böylece, n’inci-sıra çıkışı, n’inci sıra transfer fonksiyonu ile çatışacak. 
Biz ilk önce ℑ ’yi doğrusal ve doğrusal olmayan parçalar olan Lℑ ve NLℑ ’ye ayıracağız. 

Sistemi, nW ’in NLℑ tarafından oluşturulmuş n’inci-sıra çıkışı olduğu şekil-13’deki gibi tekrar 
çizeceğiz. Bölüm A.1’in (a) ve (b) etkileriyle, nW ’nin ikinci-sıradan n’inci-sıra transfer 
fonksiyonlarına ve nW de efekte sahip olana n’den daha az sırayla sadece giriş terimleri 
tarafından oluşturulduğunu biliyoruz. Böylece, nW bölüm A.2’deki prosedür tarafından 



hesaplanabilir, eğer tüm 121 ,,, −⋅⋅⋅ nXXX bilinirlerse. Doğrusal kısım Lℑ terimlerin sıralarını 
değiştiremediğinden, nX , şekil-13’ün üzerinde durulan kutularındaki doğrusal alt sisteme 
uymalı. NLℑ ’nin çıkışı en küçük ikinci sıra olduğundan beri, elimizde 01 =W var. Ayrıca, 
u(t)’deki tüm terimler ilk sırayı hesaba katılırlar. Bundan dolayı, nX , U’nun u(t)’nin frekans-
domain temsili olduğu yerde aşağıdaki denkleme uymalı: 

 
 
     1X =U+(I-P) Lℑ ( 1X )    

  (A.8a) 
     nX =(I-P)( nW + Lℑ ( nX )) 2≥n    

  (A.8b) 
Bölüm A.2’deki prosedür ile, 1X ’i (A.8a)’dan ve nW , nX ’yi (A.8b)’den tekrarlamalı olarak 
çözebiliriz. nW ve nX ’i elde etmekle nℵ aşağıdaki tarafından kolaylıkla bulunur: 
      nℵ = P ( nW + Lℑ nX )   
   (A.9) 
nx için gerekli olan daha yüksek sıra transfer fonksiyonlarının 12 +ℵ n ’in oluştuğu işlemde 

otomatik olarak oluşturulduğunu not edelim. 
 

Bu algoritma bir dijital bilgisayarda yerine getirilebilir, ya bir n’inci-sıra transfer 
fonksiyonunun değerini hesaplayan bir “sayısal” fonksiyon gibi ya da Macsyma[12] gibi bazı 
sembolik cebirsel yönetim sistemi yardımı ile transfer fonksiyonu için açık “sembolik” 
ifadeleri oluşturan bir “operatör” gibi. Her iki durumda da, transfer fonksiyonlarının tümünün 
oluşumu için sadece bir programın gerekli olduğuna dikkat edilmeli. Hali hazırdaki veri temsil 
tekniği ile birlikte algoritma, bir doğru tarzda yerine getirilebilir. Hızlıca geliştirmek için, bazı 
ad hoc teknikleri, bazı operasyonları tekrarlamaktan kurtulmak için dahil olabilirler.  

 
 
A.4. Bazı Daha Yüksek Sıra Transfer Fonksiyonları İçin Açık İfadeler 
 
Bu bölümde, bölüm-A.3 için bir örnek olarak, bu notta verildiği gibi  3ℵ ve 5ℵ için ifade 

tanımlayacağız. 5ℵ için bir tek-simetrik doğrusal olmayanlık farzedilir.  
 
 
(1) Üçüncü-Sıra Transfer Fonksiyonları 

 
Bölüm-A.3’deki algoritmadan, 3X ’ün herhangi bir ilk-harmonik parça içermediğinden 

beri, aşağıdaki eşitliği elde ederiz: 
 
   ),,(),,( 33 ωωωωωω jjjWjjj −=−=ℵ .    

           (A.10a) 
 
Bölüm-A.2’deki prosedürü ekleyerek aşağıdaki eşitliği elde ederiz: 
 

)()(),,(
),()()0,()(),(),2(),,(

113

2121223

ωωωωω
ωωωωωωωωωωωω

jXjXjjjH
jjXjXjHjXjjXjjHjjjW

−−+
−+−−=−

          

(A.10b) 
 
Doğrusal sistemi çözmekle aşağıdaki eşitliği elde ederiz: 



     
 
Bölüm-A.2’yi eklemekle, 

   
 (A.10e) 

  
 (A.10f) 

 
 

tjtj eetu ωω −+=)(  farzettiğimizden ve I-P ‘nin harmonik parçaları reddettiğinden beri, 
)(1 ωjX ve )(1 ωjX − ’nin ikisinin de 1’e eşit olduğunu izler. Eşitlik(A.10a) ve eşitlik(A.10f)’yi 

birleştirmekle aşağıdaki eşitliği elde ederiz: 
 
 

    
             (A.10g) 
Benzer olarak,  
 

)()()(),,(
),()()0,()(),(),0(),,(),,(

1113

21212233

ωωωωωω
ωωωωωωωωωωωωωω

jXjXjXjjjH
jjXjXjHjXjjXjHjjjWjjj

−−+
−+−=−=−ℵ

   (A.11a) 

)0(1
),(),(

1

2
2 H

jjWjjX
−
−=− ωωωω     

          (A.11b) 

)()(),(),( 1122 ωωωωωω jXjXjjHjjW −−=−
          (A.11c)  

 
Eşitlik(A.10a) ve eşitlik(A.11)’yi birleştirmekle aşağıdaki eşitliği elde ederiz: 
 
 

     
           (A.11d) 
  



     
         (A.12) 
 
 
 

(2) Beşinci-Sıra Transfer Fonksiyonu 
 
Şekil-9(b)’deki F’nin tek simetrik olduğunu, 420 ,, HHH tümünün sıfır olduğunu 

farzetmekle, çift-sıra terimleri olamayacak. Ayrıca dikkat edelim ki, 5X ilk-harmonik terimleri 
içermez, böylece, beşinci-sıra denklemi şöyle olur: 

  
   (A.13) 

 
 
 

1,,,, 54321 ±=kkkkk ve 154321 =++++ kkkkk olduğu yerde 
 
 

     (A.14) 
 
 

321 ,, lll ’nin 321 ,, kkk ya da 432 ,, kkk ya da 543 ,, kkk  anlamına geldiği yerde. 
 



    
 
Eşitlik(A.13), eşitlik(A.14) ve eşitlik(A.15)’i birleştirmekle, eşitlik(A.13)’ün ilk 3 teriminin 
eşitlik(2.17a), eşitlik(2.17g), eşitlik(2.17j)’deki gibi üç ardışık jω’nin olduğu zaman ayrı 
tutulmasının gözden kaçırılmış olduğunu görürüz. Eşitlik(A.14) biçiminin bir ilave terimi bu üç 
durumdaki eşitlik(A.13)’ün beşinci terimlerine eklenir. Bu bize eşitlik(2.17a)-(2.17j)’yi verir. 
 
 

B.Teorem-3’ün İspatı 
 
 

 
     (B.1) 

 
 
 

*
gx ’nin herhangi ilk-harmonik parçayı içermediğinden beri, ve xx ’in daha düşük sıra terimleri 

içermediğinden beri, 121 +− NT P tarafından yok edilecekler. Böylece eşitlik(B.1) şöyle olur: 
 
 

     
 
 
 
Bu Teorem-3’ü kanıtlar. 
 
 

C. Teorem2 ve 3’ün Uygulamaları 
 

Bu ek’te ikinci-sıra tanımlama denkleminin çözümünün doğruluğunu kanıtlamak için 
Teorem-2 ve 3’ün uygulamasını örneklemek için van der Pol salınımını bir örnek gibi 
kullanacağız. 



3)3/1()( υυ −=f olduğundan beri, elimizde aşağıdaki olur: 
     0)( 11 =ωjkH      

   (C.1a) 

    
    (C.1b) 

 

    0),,,,( 543215 =ωωωωω jkjkjkjkjkH  
    (C.1c) 
 
 

54321 ,,,, kkkkk ’lerin tamsayı oldukları yerde. 
 
 
C.1. Teorem-2’nin Uygulaması 
 
A ve ω’nin verilmesiyle, p ve '|||| ∞nH bulmaya ihtiyacımız var. 51 ,, kk ⋅⋅⋅ için biraz küçük sayı 
seçmekle genellikle bulunurlar. Ven der Pol salınımının bu durumunda, p=1, 0|||| '

1 =∞H ve 
0|||| '

5 =∞H olduğu kesindir. Ayrıca, '
3 |||| ∞H  en küçük mümkün 321 kkk ++  ‘de meydana 

gelmeli. Bu durumda, ikinci harmonik parça olmadığından beri, o 3’tür. Böylece,  
 
 

       
    (C.2) 
 
Ek A’yı uygulamakla ve 01 =H olduğuna dikkat etmekle, sadece sıfır olmayan üçüncü-sıra 
transfer fonksiyonunun aşağıdaki gibi olduğunu buluruz ve karmaşıktır. 
 
     ),,(),,( 33 ωωωωωω jjjHjjjX    
  (C.3) 
 
Böylece eşitlik(C.3) ve eşitlik(5.2)’den aşağıdaki eşitliği elde ederiz: 
 

     
    (C.4) 
 
 

AA =1 olduğu ve aşağıdakinin olduğu yerde 
 

     



Açıkça, elimizde aşağıdaki var 
 
 

    |||||||| 311 AAxx +=  
 
 
Bulmak için son terim ’dır. Bu durumda,   4’den daha yüksek sıra ile 3H  ile 
oluşturulmuş terimleri içerir ve ilk-harmonik parçayı içeri alır. Dikkat edelim ki, 3A ’ün sıra 
3’ündür. (C.4)’den aşağıdaki eşitliklerle verilen bu terimler ve karmaşık çekimleri görülebilir: 

    
 
 
Her terimin önündeki sabit katsayı, 3H ’ün tartışmalı tüm mümkün permutasyonlarınından 
meydana gelir. 
 

Tüm bu terimlerle, doğru bir yolla Teorem-2’nin durumlarını kontrol edebiliriz.  
 
 
C.3. Teorem-3’ün Uygulamaları 
İlk önce ∞|||| nH ’yi buluruz. Bu durumda, sadece ∞|||| 3H sıfır olmaz ve 1321 =++ kkk ’de 

meydana gelir,  

        
   (C.6) 

 
Sonra  || 121 +− NT PF 1||)( xx , direkt xx ’in yerine koymakla bulunabilir. Bu durumda, 

121 +− NT PF )( xx 5’den daha yüksek sıra ile birlikte tüm terimleri içerir ve ilk-harmonik 
parçaya uyar. Aşağıdaki eşitlikle verilir ve onun karmaşık çekmesiyle. 

 

     
    (C.7) 

1|||| xx ve β, bölüm-C.2 bitirildiğinde zaten bulunduklarından beri eşitlik(5.33)’ü direk 
olarak kontrol edebiliriz. 



Kalan işler, bu notun Bölüm-5.D’sinde tanımlanan prosedürü içerir. Bu genellikle 
bilgisayarın yardımıyla sayısal olarak yapılır. 
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