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ILE DOGRUSAL OLMAYAN OSILASYON

1.GIRIS

Zay1f dogrusal olmayan salinimin genlik A ve frekans ®’sine karar verme problemi Van der
Pol’a gore. Bundan sonra, bir¢ok metot gelistirildi: frekans metodu[2]nin, harmonik balans
metodunun[3], Krylov, Bogoliubov ve Mitropolsky’ye[4][5] mal olan asirilma metodunun
tanimlarini igerirler.

Fonksiyon tanimi ve harmonik balans metotlar: salimmin sekilde gosterildigi gibi basit bir
bag geribildirim sistemi tarafindan modellendigi zaman tasarim problemlerinde genis ¢apta
kullanilirlar. Burada, G(s) dogrusal zaman-degisik elementlerden yapilmig basit bir giris
sinyali-cikis dogrusal sistemi transfer fonksiyonu anlamma gelir ve f(.)bir skaler dogrusal

olmayan fonksiyon anlamina gelir. Bu metotlarin esas frekans o’nin tiim harmoniklerini ihmal
ettiklerinden beri, G(s) esasen bir “diisiik gegis” filtresi gibi davrandig1 zaman sadece gecerli
olurlar. Buna ragmen, kesin matematik teoremleri bu metotlarin gegerliligini kontrol i¢in
kullanilabilirler, genellikle uygulanmak i¢in sagma olurlar. Bu metotlarin 6nceden bildirmek,
sistemdeki yanlighk, salimimlar ic¢in bilindiginden beri cevaplar dikkatli kesin olmayan
konumlarda kontrol edilmeli.

Ortalama metodu € ’nin kiiciik bir parametre oldugu asagidaki esitlik ile tanimlanmig
sistemler i¢in uygulanabilir;

x=€ f(x,t),xe R"

Sarkaglarin durumunda, bu metot, prensipte, denklemlere karar vermenin uygun bir sirasini
se¢mek sayesinde istenen kesinligi elde etmek i¢in 4 ve ®’yi hesaplamak i¢in birine izin

f ()

G (s}

Sekill. tek bir bag dogrusal olmayan geri bildirim sistemi
verebilir. Aslinda, bu denklemler ikinci sira ilerisine son derece karmasik olurlar.

Daha yakin zamanlarda, Hopf bifurcarion teoremi salimimin frekans o’sini tahmin etmek
icin bagka bir ara¢ Onerir, genlik A’nin yeterli derecede kiicliik olmasini saglar. Maalesef,
kiigiik nasil “kii¢lik” oldugunu belirlemek icin basit bir meselenin ana noktast yoktur.

Bu notta bizim nesnemiz Onceki metotlarin c¢ogu istenilir 6zelliklerini 6rnek almis
tamamiyle yeni bir yaklasim gelistirmek i¢indir. Bu yeni yaklasimin baz ilging 6zellikleri:

1. harmonik balans ve tanimlama fonksiyon metotlar1 gibi, bizim yaklagimimiz basit bir-
bag dogrusal olmayan geri bildirim sisteminin terimlerinde formiile edilir (sekil.2(a))’.

Bizim sadece iizerinde durdugumuz birlestirilmis agik-bag sistemidir.

y(t)=i j"; j‘: K h(T,,Ty,T,)

) (1.1)
[T u@—7)az.



Tanimlama fonksiyon metodundan farkli olarak, bizimkiler daha yiliksek harmoniklerle
onemli efektler katkilarini igerirler.

2. Ortalama metoduna benzer olarak, bizim yaklasim bir ¢ift cebirsel belirlenmis
denklemleri ¢6zmek i¢in azaltir. Bu durumda, denklemler asagidaki bi¢imi farz ederler.
3.
Red (A,w)=0
(4,@) (1.2a)(1.2b)
Imd, (A,w)=0
d (A, w)’nin karmagik sayilar1 iceren A’nin ve o’nin bir cebirsel fonksiyonu oldugu yerde, ve
Re(-)veIm(-) ’nin amilan siraya gore ger¢ek ve sanal kisimlari belirttigi yerde. Ortamla

metoduna benzer olarak, bizim yaklagimimiz herhangi istenen dogruluk i¢in, prensipte, A ve
®’yi bulmada yeteneklidir.

Ortalama metodundan farki, bizim metot n>2 ile birlikte n.dizi diferansiyel denklemlere
uygulanabilir ve bir “kii¢iik parametre”nin varligini istemez.

4. Hopf bifurcation teoremden farki, bizim metot “A”’nin yeteri kadar kiigciik olup
olmayacagina karar vermemize izin verir.

Sirada bu notu uzman olmayanlar i¢in kolay bulunur yapmak igin, bir el kitab1 bi¢imini
kullanarak boliim 2’de ilk dnce tanimlama fonksiyonlarini gosterecegiz. Sekil 1°deki 6zel geri
bildirim yapilariyla modellenebilen salinimlar i¢in, ilk-sira tanimlama fonksiyonlar1 son derece
basittir. Aslinda, okuyucu Volterra serileri ile asina olmak zorunda degildir. Biz bdliim 3°de
bir¢ok pratik 6rnekler resimlerle agiklanacak.

Cogu genel sistemler icin, Volterra serilerinin sadece temelleri tanimlama
fonksiyonlarindan elde edilmislerde ihtiyaci yoktur. Thtiya¢ duyulan her tiirlii arka plan béliim
4’te ve Ek A’da verildi.

Sonugta, bizim yaklasgimimmizin matematiksel gergeklemesi tiim teoremlerin catisini
tamamlamak ile birlikte boliim 5°te verildi.

II. GENLIK-FREKANS TANIMLAMA DENKLEMI

Bu notun ana sonucu n.dizi cebirsel tanimlama denklemi olusturmak icin sistematik bir
metot gelistirmek(1.2) boylece ¢ozliimii dogruluk istegi i¢in siniizoidal salinimin genlik A ve
frekans ®’yi verir.

Bu boliimde, catisiz c¢esitli durumlar i¢in tanimlama denklemini verecegiz, bdylece
kullanict boliim 5°te verilen olmak i¢in daha ¢ok karmagik matematiksel gergeklemeler ile
kafas1 karigsmis olmaksizin direk ekleyebilir.

A.IIk-Dizi Karar Denklemi
[lk-dizi karar denklemi asagidaki ile verilir;
d(4,0)=H,(jo)+Q,(jw)A* —1=0 2.1)

H, (jo)ve Q,(jw)’nin asagida verilecek bigimde agik olan w’nin fonksiyonlar1 olduklar
yerde.



Esitlik (2.1)’in iki kenarindaki gercek ve sanal kisimlarini sifira esitlemek, iki esdeger
denklemi elde ederiz:

Red, (A,a))iRe{Hl (jo)+Q, (jw)A* —11=0

A
Imd, (4,w)=Im{H,(jw)+Q, (jw)4> -1} =0
(2.1a, 2.1b)

A?i¢in (2.1b)nin ¢6ziimii ve sonucu (2.1a) nin yerine koymak, asagidaki elde ederiz:

do(w)iReH,(jw)—{M}ReQ, (jw)—-1=0. (2.2)
ImQ, (jw)
u E r’ u 42 ¥
(a) ' (b)

Sekil 2. (a) Bir kapali-bag dogrusal olmayan geri bildirim sistemi
(b)Acik-bag dogrusal olmayan sistem
(2.2)’in ’de bir skaler denklem oldugundan beri, kolaylikla ¢6zlilmiis ya grafiksel ya da
standart numarali teknikler olabilir. (2.2)’nin her w = @, ¢6ziimii i¢in, (2.1a)ya da (2.1b)’de

dirck yerine koymakla uygun genlik 4, hesaplayabiliriz. Simdi H,(jw)ve Q,(jw)’yi
tanimlayalim:
A.1.0zel Durum: Sekil 1’de Geri bildirim Bag (f(0)=0

Sekil 1’in tek-bag geri bildirim sistemindeki dogrusal olmayan fonksiyonun bir polinomial
tarafindan gosterildigini farzedelim;

fwy=au+au’ +au’ +--.(2.3)
Bu durumda, basitge asagidakini elde ederiz;

H (jo)=aG(jw)

1 {2a22G(ja))G(j2a)) N 4a;G(0)G(jw)

U= 0,G(j2) 1—a,G(0)

+3a,G( ja))}. (2-3)

A.2. Genel Durum: Sekil 2°deki Geri bildirim Bag

Bu durumda, sekil 2(b)’deki 3 agik-bag sisteminin bir yakinsak Volterra serileri tarafindan
tanimlandigini farzederiz. Eger isliilerin bir toplamindan olusan bir giris u(t) ekleriz, sonra
sekil 2(b)’deki y(t) yamtinin H,(s,),H,(s,,5,),H;(8,,5,,8;)s....vb.daha yiiksek sira transfer
fonksiyonlarimin terimlerindeki frekans domain’inde hesaplanabildigi boliim 4°te gosterilir. Bu
transfer fonksiyonlar1 dogrusal sistem teorisinden bildik transfer fonksiyonlarina tamamen
benzerdirler. Dogrusal sistemlerin bir sirasin1 ¢dzmeyi igeren Ek A’da tanimlanan tekrarlamali
bir algoritma kullanarak olusturulabilirler. Burada, bu daha yiiksek dizi transfer
fonksiyonlarmm bulundugunu ve H,(s,),H,(s,,S,),H;(s,,5,,83),...,vb.’nin terimlerindeki

karar verme denklemlerinin basitce sunuldugunu farzedecegiz. Ozellikle, bizde asagidaki var;



A
Hl(jw):Hl(Sl)Lvl:jw

e . Q (ja&ii){&(ja),ja),—jwﬂN3(ja),_jw,]‘w)+ R, (—jo, jo, jo)}
asagidakinin oldugu yerde; 4

o . . | Hy(je, je) (e, — jw)
e — jo)2H _ iyl je) | e, — jw) by g — g
Ia( e, jw, — jw)=Hy( j2w, = jw) ) H,y( jw,0) |—H,00) + Hy(jo, jw,— jw)  (2.8a)
o oya L Hy(— jw, jw) o Hy(jw, jw) L,
E]{:S( Ju, jur, J”}_HZ(UT _}W] 1— fﬂl:ﬂ:l +H2[ J"":Jrzw} l—Hl{jZM] +H3(_J""J| jw,jﬂ)) {28'})
o - Hy(je, — jw) o Hy(— e, ju L
%3(’"‘”_"“”*"")éHzm’f“’)WJ'Hz("”‘n} EI—HJD] ) Py jeo, — ju, jw). (2.8¢)

H, (jw) ve Q (jw) Snin H (s,),H,(s,,s,)veH,(s,,s,,s;) leri gibi yazilabildigine dikkat
edin.

Elde edilmis bu yiiksek sira transfer fonksiyonlar: i¢in dostdogru metotlar [10]’da ve Ek
A’da verildi. Ornegin, [10]’u sekil-1deki sisteme eklemekle, asagidakini elde ederiz:

H (s))=a,G(s)) (2.9a)
H,(s,,s,)=a,G(s, +5,) (2.9b)
H,(s,,8,,8,) =a,G(s, +s, +5;) (2.9¢)

(2.9)’u (2.6)-(2.8)’in yerine koymakla ve sadelestirmekle, (2.4) ve (2.5)’i elde ederiz.

B. ikinci-sira Karar Verme Denklemi
Ikinci-sira karar verme denklemi sdyle bulunur:
A
d,(4,0)=H,(jo)+Q,(jw)A* +Q,(jw)A* -1=0 (2.10)
ya da esitiyle:

Red,(4,w)=Re{H,(jo)+Q, (jo)4* +Q,(jw) A" =1} =0 (2.10a) (2.10b)

A
Imd,(4,0)=Im{H,(jo)+Q, (jo)A* +Q,(jw)A* -1} =0

Ya (2.10) ya da (2.10b)A?¢in ¢oziilebilir ve sadece ®’nin terimlerinde basit bir denklem
elde etmek igin digerinin yerine konulabilir. Ornegin, eger Im Q, (jw) # Oise, sonug sdyledir:

d,(w) ZRe H,(jw)+ReQ, (jo)A*(w)+Re Q,(jw)[4* (@) —=1=0 (2.11a)
sOyle oldugu yerde:
Az(w)i ~ImQ, (jo) £ [ImQ, (jo) —%[Imﬂz(jw)][ImHl (Jo)] (2.11b)
2ImQ, (jw)

Simdi H,(jw),Q, (jw)ve Q,(jw)’yi tanimlayalim.



B.1.0zel kullanim: sekil-1 ( f(«) = — f(—u)) *deki Geri bildirim

Farzedelim ki, dogrusal olmayan fonksiyon bir “tek” polinom ile gdsterilsin:
fw)=a,u+au’ +au’+--. (2.12)
Bu durumda, basitge asagidaki elde edilir:

H (jo)=a6(jo) (2.13)

Q,(jo) = a,G(jo) (2.14)

0, (o) = 1 {3a§G( j)G(j3w)

_ : 2.15
16| 1-4,G(j30) HO"SG(M)} @)

B.2. Genel Durum: Sekil-2’deki Geri bildirim Bag

Bu durumda, H,(jw) ve Q, (jw) (2.6) ve (2.7) tarafindan verilir, siraya gore, sdyle iken:
Q,(jo)= - 1K, (j0. /0, jor j0r o)
+R,(jo, jo,—-jo, jo,—jo)
+R,(jo, jo,—jo,—jo, jo)
+R,(jo,~jo, jo, jo,—jo)
+R,(Jo,—jo, jo-jo, o) (2.16)
+R,(jo,~jo,~jo, jo, jo)
+R(—jo,jo, jo, jo,-jo)
R (—Jjo, jo, jo-jo, jo)
+R(—jo, jo—-jo,jo, o)
R (—jo—jo,jo,jo, jo)}

Ifade tammlama 3 s(8,,5,,85,5,,85), tamamen karmagiktir ve Ek A’da anlatilan tekrarlamali

algoritma  kullanimin1  gerektirdi. Yine de, S’in  tek simetrik oldugu &zel
durumda H,,(s,,s,, -, 5,,) = 0, tiimni¢cin,, asagidaki elde ederiz:

R.(jo, jo, jo,—jo,—jw) = 3 3

+ HS (](0, jw7ja):_jw:_ja))

1-H,(j3w)
(2.17a)
NS (Jwa jwa_ja)aja)a_jw) = HS (]CU, ja)a_ja)e_ja)a Ja)) (2 17b)
R;(Jo,jo—jo—jo,jo)=H(jo,jo—jo—jo, o) (2.17¢)

R,(Jo—jo,jo, jo—jo)=H(jo—jo,jo-jo, o) (2.17d)



R (Jo—jo,jo—jo,jo)=H(jo—jo,jo—jo, o) (2.17¢)
NS (jwa_jwa_jwajwajw) = HS (ja)a_ja)a_jwaja)ajw) (217D

. . H.(-jo, j3o—-jo)H,(jo, jo, jo
R, (—jo, jo, jo, jojo) = TR/ CI3O"OH, (0, j0,j0)

+H5(_ja)ajw7jw5jwa_jw)

1-H,(j3w)
(2.17g)
R.(—jo,jo,jo—~jo,jo)=H,(-jo, jo, jo,—jo, jo) (2.17h)
R.(—jo,jo—jo,jo, jo)=H,(-jo, jo—jo, jo, jo) (2.171)

H3(_ja)a_jwaj3a))H3(.jwo.jwa.ja))

NS(_jw,_jwaja)aja)’ja)): +H5(_ja)a_jw’jw>jwajw)

1-H,(j3w)
(2.17p)

C.N.-sira Karar Verme Denklemi

The Nth-order determining equation is given by
dy(A,©)= Hy( jo)+ 0, (jo)A? + @y jw)d* + - + Qy(jo)A2¥ —1=0 (2.18)
or equivalently,
Red, (A, 0)2 Re{Hy ju)+ @, jo)d® + @y jo)d*+ - - + Qo)A =1} =0 (2.18a)
Imdy( A, w)=Tm{H( jw) | n,{jw},ﬂ FQ(ju)Adt+ - + 0y ju)dN =1} =0. (2.18b)

Burada, once H,(jw)ve Q,(jw)(2.6)ve (2.7) tarafindan verilir,
Q (jw),Q,(jw),...,Q,(jw)bolim-4’de ve Ek A’da anlatildig1 gibi olusturulabilirken.

Denklemler H, (jw),Q, (jw),...,Q, (j®) (N-1)inci sira tanimlama denklemindeki uygun
tanimlara benzerdirler. her bir ilave terim Q (jw)A4*" “biiyiikliik’iin genellikle en azindan bir

daha kiictlik biiyiikliiglin siras1 olacagindan beri, bu ilave terimi ortalama metot[4] tanimlamaya
benzer diizeltme “daha yiiksek sira” gibi yorumlayabiliriz.

II1. ACIKLAYICI ORNEKLER

Bir¢cok uygulamada, tasarimci, sadece bir devre ya da sistemin salinip salinmayacagini
bilmekle ilgilidir ve eger boyleyse, “yaklasik” frekans ®’si ve Ek A’sidir. Boyle durumlarda,
sadeliginin goriiniistindeki ilk-sira tanimlama denklemini se¢gmek igin tamamen yeterlidir. Eger
f(-)bir tek fonksiyonsa, sonra ¢ok kiigiik ek is ile ikinci-sira tanimlama denklemi ile artmis
dogruluk elde edilebilirdi.
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Sekil-3.(a).iki terminal dogrusal olmayan rezistor iceren devre(b) voltaj kontrollii rezistér i¢in denk geri bildirim
sistemi (c)kontrolii rezistor i¢in denk geri bildirim sistemi

Eger biri ® ve A’nin “yakin” tam degeriyle ilgili oldugunda, biri daima bir onceki
durumdaki gibi yukaridaki “yaklagik” » ve A kullanan daha hizli bir bilgisayar simiilasyon
algoritmasindan[11] yararlanir. Aslinda, son derece basit ilk-sira tanimlama denkleminin
onemli bir uygulamasi alt dizi “yakin” tam bilgisayar simiilasyonunun hizli bir noktada
birlesmesinin esas1 olan iyi bir “Onceki durum” tam olarak hesaplamak ig¢indir.

Bu bdliimde bizim nesnemiz, bazi tipik dogrusal olmayan devreler i¢in bu tanimlama
denklemlerinin uygulamalarini agiklamaktir.

Ornek 1. Dogrusal Olmayan Bir Rezistorde Dogrusal Bir-Port Sona Erdirme
N’nin bir empedans Z(s) ya da kabul Y(s) tarafindan tanimlanmis rasgele se¢ilmis dogrusal
zaman-sabit bir-portu gosterdigi Sekil-3’de gosterilen devreyi dikkate alin.

Eger dogrusal olmayan rezistdr voltaj-kontrollii(i=f(v)) ise, sonra esdeger geri bildirim
simgesi G(s)=-Z(s) oldugu yerde, Sekil-3(b)de gosterildi.

Eger dogrusal olmayan rezistor genel-kontrollii(v=f(i)) ise, sonra esdeger geri bildirim
simgesi G(s)=-Y(s) oldugu yerde, Sekil-3(c)de gosterildi.

Her iki durumda, onceki bolimdeki agik formiilleri salinimin frekans @ ve ek A’y1
hesaplamak i¢in ekleyebiliriz, devre salinimlarini farzetmek.

Ornek 2. Dogrusal Olmayan Bir Indiiktérdeki Dogrusal Bir-Port Sona Erdirme
£nin  Ya bir dogrusal olmayan degisken-kontrollii(i = f(¢))ya da genel-kontrollii

(¢ = f(i))indiiktorii gosterdigi yerde Sekil-4(a)’da gosterilen devreyi goz Oniinde tutun.
Uygun esdeger geri bildirim sistemi sekil-4(b)’de siraya gore gosterilir, G(s)=-Z(s)/s ve sekil-
4(c)’de, G(s)=-sY(s) ile.

Sekil-4.(a) iki terminal dogrusal olmayan indiiktor igeren devre (b) degisken-kontrollii indiiktor i¢in denk
geri bildirim sistemi (c) genel-kontrolii indiiktor i¢in denk geri bildirim sistemi
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Sekil-5.(a) iki-terminal dogrusal olmayan kapasitor igeren devre (b) degisken-kontrollii
kapasitor i¢in denk geri bildirim sistemi (c) voltaj- kontrolii kapasitor i¢in denk geri bildirim
sistemi
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Sekil-6. van der Pol denklemi tarafindan tanimlanmis dogrusal olmayan RLC devre

Ornek 3. Dogrusal Olmayan Bir Kapasitordeki Dogrusal Bir-Port Sona Erdirme
@ ’nin  ya bir dogrusal olmayan sarj-kontrolli(v= f(g))ya da voltaj-kontrollii

(¢ = f(v))kapasitorii gosterdigi yerde Sekil-5(a)’da gosterilen devreyi goz Oniinde tutun.
Uygun esdeger geri bildirim sistemi, G(s)=--Y (s)/s ile sekil-5(b)’de ve, G(s)=-Y(s)/s ile sekil-
5(c)’de siraya gore gosterilir.

Ornek 4. van der Pol Salimim

Sekil-6’da gosterilen devre asagidaki ile tanimlanir:

C(——v )v+%v 0 (3.1)

Eger R=1 ve 1/C=L=-¢ oldugunu farzedersek, iyi bilinen van der Pol denklemi [3]-[5] i¢in esitlik (3.1)
azaltir.

v—e(1-v*)v+0=0 (3.2)

Bu meshur denklem kapsamli ¢alisiimis ve ¢dziimiiniin ¢ogu dzellikleri simdi iyi biliniyor. Ozellikle,
elimizde sunlar var:

1) Kiigiik pozitif € i¢in, (3.2)’de frekans w=1 ve genlik A=2’nin sabit olmayan bir “siniizoidal”
¢Oziimii vardir. Bu, faz seviyesindeki yarigap 2’nin sabit bir “dairesel” tur limitine uygundur.
2) Kiigiik negatif € i¢in, (3.2)’de frekans w=1 ve genlik A=2’nin sabit bir “siniizoidal” ¢oziimii
vardir. Bu, faz seviyesindeki yarigap 2’nin sabit olmayan bir “dairesel” tur limitine uygundur.
[lk-sira tanimlama denklemi (2.1)’i kullanarak van der Pol denklemi (3.2)’yi analiz edelim. Sekil-6
ve sekil-3(a)’y1 karsilagtirmakla, asagidakini taniriz:

E
G(s)=
—E+(s+-)
)
(3.3)
f(v)=-(1/3)v* oldugundan beri, tiim i # 3ve a, =—1/3i¢in @, = 0 miz var. Sonug olarak, (2.4) ve
(2.5) bize asagidakini verir:



H(jw)=0 @(je)= _T{ _J:j_—_l)]

3.4)
(3.4)’1 (2.1)’in yerine koymak, ilk-sira tanimlama denklemini elde ederiz:
=< ] AP —1=0
dL(A""‘:'—_E 1 —-1=0.
—e+ _j'[ w—— ]
w 3.5)
(3.5)’y1 sadelestirmekle, asagidakini elde ederiz:
g ) 1
—— A +e-j(w——)=0 (3.5a)
4 w
(3.52)’y1 ¢ozmekle, ilk-sira ¢oziimiinii elde ederiz:
o=1 A=2
(3.6)

Sonu¢ olarak, bizim ilk-sira tanimlama denklemimiz, ortalama[4]’nin metodundan elde edilmis
benzer bir ilk-sira denklemin ¢oziimiinden elde edilmis gibi olan tamamiyle ayn: cevabi verir. Bu
duurmdaki ya A yada o’nin €’ye dayandigindan beri, (3.6)’nin sadece yaklasik bir ¢6ziim oldugu
aciktir.

A ve o lzerinde parametre €’nin etkisine karar vermek i¢in, asagidaki ikinci-sira tanimlama
denklemini yazalim. f(v)nin v’nin tek bir fonksiyonu oldugundan beri, Asagidakini elde etmek igin,
(2.15)’1 kullaniriz:

@ [E+j(“_$]”_c+jbm_3%]]. (3.7)

Esitlik (3.4) ve esitlik(3.7)’yi (2.10)’un yerine koymakla, asagidaki esitligi elde ederiz:

Qy(jw)=

waori| g S e

(3.8)’1 sadelestirmek ve kendi gercek ve sanal kisimlarini 0’a esitlemekle, asagidaki esitligi elde ederiz:

Red,(A,w)=e'd* +126%4* —48¢* + 144 + ]—g 160=0
@ (3.82)

Imd, (A, @)= —36e0A? +deA /0 +192ew —6de /o =0°.

(3.8)

(3.8b)

€=0.2 ile (3.8)’i sayisal olarak ¢ozmekle, asagidaki esitligi ¢ozeriz:

w=09975~1 A4=1998~2.
— (3.9)

Ikinci-Sira Coziimii:
[Ik-sira analizden meydana gelen hata, “esnek” denklemi elde etmek icin (3.6)’y1 (3.8a)’nin yerine
koymakla analiz edilebilir:



Rc&z[-?-s"’)_ 2 2 L_,
—-Tﬁ——{ + 9w +m1 10

w?

=9(w1—1]+{L—l}+tl

=9(m+1)(w—1)+'[£+1](%—1)+c1=0.

(3.10)
Simdi eger ®=1+0w yaparsak ve yaklasik kullanimin1 yaparsak:
1
wtl=2, —+1=2
i
l—l: ! —l=(l—8w)—1=—8w
w 1+ 8w G.11)
asagidaki esitligi elde ederiz:
183w-206m+€*=0. (3.12)
Bundan dolay1 dw=-(1/16)€? ve ikinci-sira ¢oziimii asagidaki gibi yazabiliriz:
1 5
w=1-—e¢ (3.13)
16

Bu cevap ortalama[4] metodundan tiiretilmis bir analog ikinci-sira denklem ¢oziimiinden elde edilmis
ile hemen hemen aynidir. Diger bir deyisle, bizim ikinci- sira tanimlama denkleminden tliremis ¢6ziim,
ayni siranin eklenmis ortalama metodundan tiiretilmis olan gibi ayn1 dogruluk derecesine sahiptir

Eger analizimizi iiglincii-sira tanimlama denklemi kullanarak tekrar edersek, &" ile orantili olan bir
diizeltme teriminin (3.13)ten ¢ikarilmak zorunda olacagini gorecegiz. Bu analizi yeterli yiiksek siranin
bir tanimlama denklemini kullanarak tekrar edersek, prensipte, ®’yi €’nin bir fonksiyonu gibi veren bir
analitik ifade olusturabiliriz ki bu ifade, herhangi istenilen dogrulugu diizeltir.

Ornek 5. Zayiflatilmis Duffing’in Denklemi
Sekil 7°de gosterilen devre asagidaki esitlik tarafindan tanimlanir:

L1 1,
PRI e T (3.14)

Eger R=1 ve 1/C=L=e oldugunu farzedersek, esitlik (3.14), iyi bilinen “zayiflatilmis” Duffing’in
denklemini azaltir.:

ol

Zis)
Sekil 7. Duffing’in denklemi ile tanimlanan Dogrusal olmayan RLC devre
p+ep+o+ep’ =0 (3.15)
Bu denklemin global sonusur kararh[5] oldugu, [13] ve boylece salinimin olmadig1 iyi
bilinir. Bu tanimlama denklemimizin bir ¢6zimii olamayacagi anlamina gelir. Bu sonucu

dogrulayalim.

Sekil 7°yi Sekil 4(b) ile karsilastirmakla asagidaki esitligi taniriz:

_Z(-‘):_{E} 1

G(s)=

(3.16)



f(@)=¢’ oldugundan beri, tim i#3ve a, =ligin a, =0’1miz var. Sonug olarak, (2.4) ve
(2.5) asagidaki esitligi verir:

H(jw)=0 Sl](ju)=—(}i%) __]]_)l
ooy (3.17)
(3.17)’yi (2.1)’in yerine koymakla, asagidaki, ilk-sira tammlama denklemini elde ederiz:
AI
dl{AsW): - (ji—:}) _"_1— —1=0.
c+j[w——)
“ (3.18)

Gergek bir ¢oziim A ve ®’yi elde etmek i¢in (3.18)i¢in sirada, A#0 ve e+j(w-(1/®))’ nin
tamamen sanal olmasi1 gereklidir. Fakat, sadece, eger =0 ise miimkiindiir. Bu nedenle, ilk-sira
tanimlama denklemi (3.18)’nin beklenildigi gibi bir sonucu yoktur.

f(d)'nin tek simetrik oldugundan beri, asagidaki esitligi elde etmek igin (2.15)’i
kullanabiliriz:

szzuw)=(%][_;‘im)( " -’3_6‘“)‘:(1—1—)

1
(+j(3w—E)]' (3.19)

Esitlik (3.17) ve esitlik (3.19)’u esitlik (_2. 10)’un yerine koymakla asagidaki esitligi elde ederiz:

== (55)| A |- )

JAe (o-1)
‘c-lr—;«a "

(3.20)

(a) (b) (©
Sekil 8. (a)Wien-koprii sarka¢g devre. (b)Wien-koprii sarkacinin kontrollii-kaynak devre
modeli.(c)esit geri bildirim sistemi.

Bu denklemi sadelestirmek ve kendi sanal ve gercek kisimlarii sifira esitlemekle asagidaki
esitligi elde ederiz:

Reﬁ'z(A,w)=—§-E2A2+£m(4w— é - ﬁ =1
(3.20a)
3 1 2
Im&;(){,u]=—ic(3n}—- 3—“,],42—%%_44

3
— el ——— —_—|=
we +w(w = o 3o 0. (3.20b)

Esitlik(3.20a)’y1 asagidaki esitlik gibi yani bir bicime sokabiliriz:



o= (o-2)e(s0- 1)) G2

Esitlik (3.21)’1 esitlik (3.20b)’nin yerine koymakla ve sadelestirmekle asagidaki esitligi elde ederiz:
1y 1 €
m(Sw——) + = A+ wet =0.
Jw 16 w (3.22)

Ik terimin negatif olmadig1 ve (3.22)’deki son iki terim pozitif oldugundan beri, (3.22)’yi izler, bu
nedenle, ikinci-sira tamimlama denkleminin beklenildigi gibi bir ¢6ziimi yoktur.

Ornek 6. Tiinel Diyot Sarkag

Sekil-6’da gosterilen devreyi, yeni bir parametreler kiimesi ile tekrar goz 6niinde tutun:
R=250Q L=200nH C=500pF.

Dogrusal olmayan rezistor karakteristik sekilde bir tiinel diyot tarafindan tanimlansin:
i=f(v)=-0.0108v-0.003v*+0.1v* (3.23)
Bu durumdaki empedans asagidaki esitlik ile verilir:

Zle)= (1,/250)+(5x10%/5) +5x 10719

ve a,;katsayilar1 s0yledir:

(3.24a)

a, =—0.0108 a,=-0.003 a,=0.1 (3.24b)

Esitlik(3.24)’1 esitlik(2.4) ve esitlik(2.5)’in yerine koymakla asagidaki esitligi elde ederiz:

H,(jw)=0,0108 — ! _'
5% 107 %0 —5X10%/w +1 /250 (3.25)

1.8x10°°2

1
Q,(jw)=
A 4 0.0108

10~ %e — 2.5 10% /0 +0.004

(X107 Y —5x10% /e +0.004) (10~ %jw — 2.5 10% /e +0.004}(1 -

0.3
5% 107 Yjw —5X10% /w+0.004

(3.26)

Esitlik(3.25) ve esitlik(3.26)’y1 esitlik(2.1)’in yerine koymakla asagidaki esitligi elde ederiz:

et}
d.[»‘.ﬁ)i% 1.8x10 — —
5107 W —5x10% /w0 +0.004)( 10 % = 2.5 X 10% /w2 + 0.004 (1~ .
( _ Je ie (1075 ife ) 107 %w —2.5x10% /0 +0.004
B 0.3 }A2+ 0.0108 i
5% 107 e — 5% 10% /o +0.004 5%107 Wjw — 5% 10% /w +0.004
(3.27)
(3.27)’yi sayisal olarak ¢6zmekle asagidaki esitligi buluruz:
A=0.301 \a)=99.99*106 (3.28)

Ornek 7. Wien-koprii Sarkag



Son &rnegimiz gibi, sekil-8(a)’da gosterilen R, =R, =1ve C, =C, =1oldugu Wien-képrii sarkag
devresini gz Onilinde tutun. Dogrusal olmayan bir voltaj-kontrollii voltaj kaynag: ve sekil-8(b)’de
gosterilen sonuglandirilmis devre tarafindan op amp modellenir, asagidaki esitligin oldugu yerlerde:

£(v)=3.2340-2.1950° +0.6660° (3.29)

Doniisteki bu devre, sekil-8(c)’de gosterilen esdeger tek-bag geri bildirim sistemi tarafindan
tanimlanabilir, asagidaki esitligin oldugu yerde:

G(s)=
> (S l ‘:) (3.30a)

ve katsay1 a, soyledir:
a, =-3.234 a, =-2.195 as; =0.666 (3.30b)

Esitlik (3.30)’u esitlik(2.13), esitlik(2.14) ve esitlik(2.15)’in yerine koymakla, asagidaki esitligi elde
ederiz:

3.234

H (jw)=

(Jo) o w3 (3.31)
—1.646

Q (jw)=

(Jo) ol o+3 (3.32)

Q,(jw)=0.0625 1445 1334 +— 6'36 3 (3.33)
(jo—jlo+3)3jo-j/3w+3)(1-— " JO= ]l O+

3jo—j/3w+3

Esitlik(3.31), esitlik(3.32) ve esitlik(3.33)’i esitlik(2.10)’un yerine koymakla, asagidaki esitligi elde
ederiz:

d, (4, ®)=0.0625 14.45 3334 - 6'_6/6 3 At —— 1‘6,‘/‘6 3A2+, 3'?74 3—1:0
(o= j] @+3)0jo-j30+3)1- == Jo= ot Jo—jrat Jo=jl o+
Jjw—j/l 3w+
(3.34)

Esitlik(3.34)’i sayisal olarak ¢6zmekle, asagidaki denklemi elde ederiz:

1A=0.384 ©=0.996| (3.35)

IV. TANIMLAMA DENKLEMLERINI TURETMEK:SEZME
YAKLASIMI

Bu boliimdeki amacimiz, miihendislik i¢in bir sezme “frekans-domain” yaklasim benzerligini
kullanan boliim-II’ de verilen formiilleri tiiretmek. Bu yaklagimm dogrulugunun matematiksel
gerceklemesi boliim V’de verilecek.



Frekans-domain yaklagiminda, sekil-2(a)’deki sistemin, tiim dalgaformlarinin, degisik parga
frekanslarinin siniizoidal sinyallerinin bir toplami gibi belirtilebilecegi anlayistaki “hazir-durum”da
oldugunu farzederiz. Ozellikle, sistem 3 igin giris asagidaki gibi olsun:

M
u(t) = ZAl.ep"t
i=1

4.1
Esitlik(4.1)’1 Volterra serileri esitlik(1.1)’in yerine koymakla, asagidaki ile elde edilen 3 ’in ¢ikisini
buluruz

y(1)= 2 f f f B (7.1, ( EIAe"“ "’](rEAe”’ 'zl) ( T Aenir ”)drld'rz dr,

=" =~ =1
MM M .
E f f f Thfl? ! ,'1'") 2 2 e E {AJ}Aif v Ai’.)ep;'"_flj+ ...P"U_")d'r] eedm,
n=1"—c0 i=1i=1 ip=1
W
B { I f f“ ho(Ty, 7y, oo, e Pan Pt TPt drydy- - - dT"]
n=1|i=1i;=1 =I —a0
A A, .A!'e(p.-,-i'.v.-l-'---- "p.-,)r}‘ (4.2)

4.2)

Esitlik(4.2)’deki parantez i¢indeki denklemi rakamlar ve isaretler sistemini tanitmakla sadelestirebiliriz:

A o [ 2] o _ B _
HH(S|1-§21."'1.3"]=I f +-rf IIH(T]EITZ:"."!TN}E L L T L "nrudq—ld-]—z...d.‘—"‘
—aY — e — a0
(4.3)

H (s,,8,,,s,)’nin bu dokiimandaki esas Onemli oldugundan beri ve aym roldeki

wekrckck ok ekl x| Bu rakamlar ve igaretler sistemini kullanmak, esitlik(4.2) asagidaki gibi olur:

a0 A

}-‘(f): E E Hm{PJ’,?pr'll”'fPr',,}

=| ii.l-;:."'.r.=|

- P {pr +.p|+'-'+.p]...:"
A':A": Af'ne e

4.4
Asagidaki esitligin s, =( D; ,) S, =P S, =Dy ’de degerlendirilen n’inci-sira transfer fonksiyonunu
belirttigi yerde ve esitlik(4.4)’deki ikinci simiilasyon indeks’in sirayla(p,, p,, -, p,)izerine giden
s, ’nin her tartismasi gibi (s, s, , -+, s, ) 'nin tiim miimkiin kombinasyonlarin igerdigi yerde:
H(p, P,
= H, (5,85, !"5"!1') |,.1 =P S 1Py S =P,

(4.5)



Sekil-9. (a)Sekil-2(a)’daki tek-bag geri bildirim sisteminin esitlik simgesi (b) birlestirilmis
agik-bag sistem iki alt sistemin 0, ve 9, tasan baglantisindan olusur.

Denklem (4.4) eger giris u(t) (p,, p,, - p,)uslerle birlikte iisliilerin bir toplami ise 3 ’in
¢ikis y(t)’sinin p, +---+ p, Uslerle birlikte Uslilerin bir toplamuida oldugu, n’inci-sira transfer
fonksiyonu H,(p,,p, ,,p, Jtarafindan her birine avantaj saglanmis oldugunu gosterir. Bu

nedenle, 3 ’in bir kez transfer fonksiyonlar1 H,(s,),H,(s,,$,)s - H, (s,,8,, S, ), - bilinirler,
3 ’in u(t)’ye yanitt esitlik(4.4)kullanilarak agik¢a yazilabilir. Aslinda, bu daha yiiksek sira
transfer fonksiyonlar1 dogrusal olmayan devreler i¢in [10]’da verilen tekrarlamal1 bir algoritma
ile ya da dogrusal olmayan sistemler i¢in Ek A’da verilen analog algoritma ile
degerlendirilebilirler.

Simdi, eger sekil-2’deki sistemin frekans ®’nin periyodik bir ¢oziimii varsa, genelde, u(t)
ve y(t)'nin Fourier tayfi, frekans ®’nin temelinde tiim ko harmoniklerini i¢erecek. Simdi, ideal
bir filtre P kullanan y(t)’den esas frekans pargalarini ayiralim ve diger bir ideal filtre I- P
ile kalan parcalar1 ayiralim. P ‘yi bir operator gibi ve I ‘yida bir “kimlik” operatorii gibi
diisiinmek i¢cin uygundur, boylece T- P esas sinyal pargasinin ¢ikarilmasindan sonra her
tiirlii kalanlar anlamina gelir. Bu iki operatorii kullanmak, sekil-2(a)’y1 sekil-9(a)’da gosterilen
esit sistemin igine doniistiirebiliriz.

P’ ' nin tanimi ile, asagidaki esitligi yazabiliriz:

u(t)=P(y(r))=|A|cos(wt + ﬁA}:%qu_

A — it
—€
2 (4.6)
A ) _

A=| A|e’*"’nin karmagik bir phasor oldugu ve A’nin A’min karmagik eslenigi anlamina
geldigi yerde.

Simdi, sekil-9(a)’daki bagi keselim ve sekil-9(b)’deki sonug sistemini tekrar ¢izelim. Eger
esitlik(4.6) tarafindan verilen u(t)’yi eklersek, sonra, “ideal” filtre P’nin yiiziinden, ¢ikis soyle
olur:

A A,
(1) =|A4,|cos{wr+ £A4,) = T’E"‘” + 1"6‘-"“’.
4.7)

A_ = Aolan frekans w’nin bir periyodik ¢éziimiinii elde etmek igin Sekil-2(a)’daki sistem igin
gerekli ve yeterli bir durumdaki Sekil-9(a) ve (b)’yi takip eder, A4_’nin, genelde Ave ®’nin
ikisine de bagh olmasindan beri, sonraki fonksiyon 4. = A_(A,®)’yi tammlayalim.

Sekil-9(b)’deki sistem &, 31 ve 92 iki alt sisteminin bir tagsmasini icerir. Ek A’da, 3 ’nin
verilen transfer fonksiyonlart H,(s,),H,(s,,8,)s H, (8,85, S, ), yi gosteririz, D icin z(t)
ve u(t) arasinda  bir  “formal”  Volterra  serileri  olusturabiliriz.  Ozellikle,
H\(s,),H,(8,,8,)sH, (8,8, 5,) gibilerinin terimlerinde
R, (5,),R,(5,,8,); R (5,,8,,85,), olusturma i¢in bir kurtarma algoritmasi veririz. Ustelik,
Macsyma yazilim sistemi kullanan, esitlik(2.17) gibi sembolik bir bicimde nasil daha yiiksek



sira transfer fonksiyonlarinin olusturulabildigini gdsteririz. Alternatif olarak, verilen herhangi
(858,58, ) =(jk, jk,@, -, jk @) den, bizim kurtarma algoritmamiz,
X (Jko, jk,o, -, jk,w) nin sayisal degerini hesaplamak i¢in bize izin verir.

A_.’yi, A ve o’nin bir fonksiyonu gibi, elde etmek i¢in (4.6) ve (4.1)’1 karsilagtiralim ve
M=2,4=A4/2,4,=A4/2,p, = jo ve p,=—j@’yi tantyalm. Esitlik(4.4)’li takip eder(y, z
ile, H ,X ile yer degistirmesiyle)

n=1

()= % { é %H{P.,sﬁff“':.ﬂen)

s, " iy =1

HAEwZwX - Xl
A A A e n terms

(4.8)
A4, =A/2ya da A/2ve “£” isaretlerinin tiim miimkiin kombinasyonlar1 anlamma geldigi
yerde.

::m+m—|—_-r1 i{ﬁj:i“;

n terms
(4.9)
Esitlik(4.9)’un tatmin edici olamamasindan eger n ¢ift ise, asagidaki esitligi takip eder:

N " (S1 585, S, ) =0 ,n=¢ift tamsay1 i¢in
) (4.10)
Ustelik agagidaki oldugundan beri,

R, ko, jk,0; -, jk,0)= R, (- jko—jkao, - —jk,0)
4.11)
k=+loldugu yerde, (A4./2)e’*’ye katkida bulunan esitlik(4.8)’deki terimleri toplamak igin
yeterlidir; yani,

'}EM = ‘J‘C!EJM}%“ “! (first-order term)

"

AAA _
+30,(jo, jo, — jo) 5 7 5T
4144
+ Wy — jw, ju, jm]% 5 EEJ[—_u+u+uyL
AAA r
+5£3U“’s_fﬂ-‘d'm}igieﬁ” w+ )

ticlincii-sira terimler



+€}{:5{_}'m,j‘w, jn.'r, jm!jm}

+ Wy (e, = juo, jeo, jeo, —JWJ——EET

e dle—

+ o (jw, — jw, jw,— jw, ju}————.—

+ 3o jw, — jw, — jw, jo, ju) A A A A A

—_— e —— —

+ W5 (= Jo, jo, jo, jo, = jw)=
+ Ho(— jw, ju, jw, — jw, ;m} ——————

— — i —

+Hs (= Jo, jo, = ju, jo, jo) 7

+ 3~ jo, — jw, jw, jo, J”} - 5T

cpfleTutetwsw)




besinci-sira terimler _
+ IE}ET[JIW* Jw, jw, jw, — jw, — ju,— j”)
AAAAAAA

22222122
+ - -+ higher order terms.

Hutwtwtw—w—o—wl

4 A Re dy (A wle0

Im dy, [ =0

Fig. 10, Each intersection {0 berween the two curves Re dy{ A, w)=0
and Imdy(A4,w)=0 gives a solution of the delermining equation
dp(A, w)=0.

(4.12)

Sekil-9(a)’daki seklin 6zerk olmasindan beri, salimm durumunun 4. = A4’nin gergek bir

say1 olmasi gibi bizim zamanin orjinini se¢gmek i¢in genellikte gevseklik yoktur. 4 = A4’yi
ZA = 0’la birlikte esitlik (4.12)’nin yerine koymakla ve (A/2)’“ her iki taraftan iptal etmekle,

asagidakini elde ederiz:

1=9C,(jo)+ 2,(jo)4* +Q,(jo)a* + - +Q,(jo)d*"+ -
(4.13)

@,(jw) = H{Hy(jw, jo, = jo)+ (= ju, jo, jo) +I(je, = jo, jw))

(4.14a)

@,(jo) =4 {Ws (o, jo, jo, — ju, — jo)
+ 3. jw, jw, — ju, ju,— ju)
+Ws(Jw, jw, — jo, = jw, jw)
+ 3w, — jw, jw, jo,— jw)
+ 3o jo, — jw, jw, — jo, jo)
+ 3 (Jw, — juw, = jo, jo, jo)
+ 3o — Jw, jw, jo, jo,— jo)
+ Wi — jw, jo, ju, — jw, jo)
+Hs(— jw, jw, — jo, jo, jo)
+Xs(— jw, = jo, jo, ju, ju)).

(4.16b)

oldugu yerde ve boyle.



>N igin Q (jw)=0 farzedelim ve X (jw)=H, (jw)nin esitlik (4.13)ln yerine
koymakla, asagidaki tanimlama denklemini elde ederiz:

dnr':-“l- W}'—QHIUN}"' ﬁ1{f“’}-“12 + EE(JIW}AA

+ -+ Qy(Ju)AN—1=0
(4.15)

kesinlikle esitlik (2.18) olan. Ozel durumlarda N=1 ve N=2, esitlik(2.1) ve esitlik(2.10)’u elde
ederiz, siraya gore

V. MATEMATIKSEL GERCEKLEMELER

Bu boliimde, bolim-5’dw tanimlama denklemini tanimlamak ic¢in kullanilan “sezme
yaklasimi”nmin  dogrulugunu kanitlayan dikkatli matematiksel ispat1 verecegiz. Ozellikle,
tanimlama denkleminin bir ¢ézlimiiniin, bir genlik A ve ¢dziime kapali frekans ®’si olan bir
periyodik ¢ozliimiin varligim1 gercekten kapsayip kapsamayacagini test etmek icin bir metot
sunacagiz. Ek olarak, testimiz, yaklasik hatalar tizerinde sinir getirir.

T led 20|
- ...{éi - d . - -{;5;;-

Sekil-11.N.sira tanimlama denklemini tanimlamak i¢in kullanilan sembolik model

Tanimlama denklemi dy(A,w)=0nin  bir  ¢Oziimii Red, (4,w)=0ve
Imd,, (a,w) = 0arasindaki bir kesismeye uygundur.

Bizim testimiz, tam ¢6ziim (®,A)’y1 kapsayan Q hakkinda kii¢iik bir Ayapisini igerir.
Bizim temel stratejimiz, derece teorisini, dikdortgen A’i birakmak i¢in kesigme yiiziinden
olmayan esitlik (4.15)’e ulasmak i¢in siradaki esitlik (4.13)’de ihmal edilmis daha yiiksek
terimler (k>N) gostermek i¢in kullanmaktir.

A. Tanimlama Denklemi Modelleme

Denklem (4.13), sekil-9(b)’den elde edilir ve eger n — ise dogrudur. Esitlik (4.15)’in
n>N ile birlikte tiim terimler ihmal etmesinden beri, esitlik(4.15) tarafindan kesin olarak
tanimlanan “sembolik bir model” elde eder.

Dikkat edelim ki, esitlik(4.13)deki Q (jw)her katsayisi ek A’daki kurtarma algoritmasi ile
olusturulmus iyi tammmlanmis cebirsel deyimdir. Ayrica birde, esitlik(4.13)’de Q (jw)bir
genlik A*"ile birlestirilmistir. Ayrica, n>N i¢in Q (jw)ihmal etme 4> A*V*?igeren
esitlik(4.13)deki gizlenmis tiim cebirsel terimlere esdegerdir. Ek A’da kurtarma algoritmasinin
bir elestirisi 7,,2in 2n>2N ile birlikte 4*" igeren tiim cebirsel terimleri sakli tutan bir



“sembolik” operator oldugu esitlik(4.15)de tam olarak verilen sekil-11’de gosterilen “sembolik
model”i kurtarma algoritmasini gosterir. Biz P ‘ve I- P operatdrlere benzemeyen

tizerinde durmak i¢in bu “sembolik” operatorii ¢agiriniz, 7,, esitlik(4.14) gibi bir cebirsel

ifadeleri isletir ve A*"*', 4*"* ...daha yiiksek sira terimlerinin ¢ikis yoksununu bir cebirsel

A2N+2 A2N+3
o

ifade iretir. Benzer olarak, operator 7,,.,, ,---vblerini igeren tiim terimleri sakli

tutar.

Sekil-11"deki sembolik model, esitlik(4.15)’ katkida bulunan otomatik olarak daha yiiksek
stra terimleri gizleyen tanimlanmis denklemlerde bir kavramsal yardim gibi burada ¢ogunlukla
ortaya cikartilir. Bir bilgisayar-simiilasyon modeli degildir.

Sembolik model A4*"yadad®"*'’daki sadece daha diisiik sira terimlerini tutmadan

(X794

sonuglandigindan beri, sekil-11’de gosterildigi gibi degiskenler x,y ve z i¢in bir altscript “y
ekleriz.
Suna da dikkat edelim:

x(r)=x(t)+xp(1), ple)=ple)+ yul1),

)=z (t)+z,(¢t)
.D
altscript “h”in ihma edilmis daha yiiksek sira terimlerine gerekli olan yardimlar anlamina
geldiginde. Ek A’da kurtarma algoritmasim1 kullanmak, giris u(t)nin terimlerindeki
x,(1),y,(t)ve z,(t)i¢in bir “formal” Volterra serileri olusturabiliriz. Bizim sundugumuz amag,
bununla birlikte, -tanimlama esitlik(4.13) ve esitlik(4.15)’de kullanilan ayn1 girig- giris

w(t) = (A/2)e’™ + (4 2)e™" e gerekli x(t) ile ilgiliyizdir:
A A A\- -
x {t)= Eef"”’-k ( 5 )E'J"‘” i (— ) X juw, jw)e 2w

+(-E) X(;m Jw, jw)el 4 ..

A .
(5.2)

Dikkat etmek i¢in Onemlidir ki, daha yiliksek sira transfer fonksiyonlari,
X,(81585), X5(81585,85 )y Xy (8158555850 ) Ry (8158, 8,5, ) Olusturma  islemdeki ek
A’daki kurtarma algoritmasi tarafindan otomatik olarak olusturulur. Bu nedenle, x (¢)’yi
esitlik(5.2)’yi kullanarak ya sembolik olarak ya da sayisal olarak hesaplayabiliriz.

Dikkat edilmeli ki, eger esitlik(5.2)’yi giris gibi sekil-11°deki F’ ye eklersek ve T,,( I-
P )3(x (¢))uygun deyimi elde edersek, asagidaki benzerligi elde ederiz:

x.=utT, ( I- P )S3(x,) (5.3)

Genelde, 3(x (f)) ¢’“’nin tim harmoniklerini ve A/2’deki tim daha yiiksek sira terimleri
kapsayacak. Islem (I- P ) S(x (t))sonraki islem 7,,( I- P )3(x,)

AN 4PN ... ybigeren tiim terimleri sakl tutar iken esas bilesenleri sakl tutar.



Giris  u(t)=(A4/2)e’™ +(A4/2)e”’*’ye uygun olan, x(t)’deki ihmal edilmis terimler
asagidaki esitligindirler:

x(0)= X B

n=—
(5.4)

T,y x,(¢) ye uygun tim yardimlari sakl tuttugundan beri, biz asagidakine sahibiz:
Ty (3= 9)F(x,) = To(§ = 9)F(x, +x,). 5

Diger elde, sekil-9(b) sunu gosterir:

x=x_+x,=u+{I—9F)F(x_+xy).
(5.6)

x,’yi ¢ozmek ve esitlik(5.3) ve esitlik(5.6)’y1 yapmakla, sunu elde ederiz:

X, =(I =T (94— P)F(x_ +Ii.}(5.7)

I'nin bir “cebirsel” uygun islem anlamia geldigi yerde, herhangi cebirsel denklemi kendisine
dontistiiriir.
Simdi, sekil-11’deki F’yi dogrusal ve dogrusal olmayan bir pargaya ayristiralim:

S:SL +SNL (5.8)

Esitlik(5.8)’1 esitlik(5.7)’nin yerine koymakla ve J, 'nin paylagtirilmis 6zelliginin kullanimin
yapmakla, asagidakini elde ederiz:

xg =(1 =T )(9— @}{gf_(-x.] + G (o) + Ty (x, + xﬁ}}~ (5.9)
x_’in A’daki daha diisiik sira terimleri icerdiginden beri,

(I =T (5 —F)F,(x,)=0. (5.10)

Operatér I- P ‘nin i/k harmonik parcalar1 sakli tuttugundan beri, esitlik(5.7)’deki x

g b
herhangi ilk-harmonik par¢a icermez, bu ylizden biz asagidaki esitligi yazabiliriz:

(I =Ty (3~ F)F,(x)=Fplx,). (5.11)
Esitlik(5.10) ve esitlik(5.11)’1 esitlik(5.9)’un yerine koymakla, asagidakini elde ederiz:
(1= F e =(1 = L) (F = F)Fy (x, + x,). (5]2)

3, ’nin  dogrusal bir operatér oldugundan beri, H,(s,)’in 3’in Volterra serileri
genlesmesinde ilk terim oldugu yerde 3, (4e’*) = AH,(jkw)e’** dir. Farz edelim ki:



inf |1— H,( jke)| =0
k=]

(5.13)

Operator [ —S, esas harmonik parca sayilmayan alt boslukta tersyliz edilebilsin, bdylece
x, i¢in esitlik(5.12) ¢oziilebilir:

X =(I1=5,) " (I=T)(§ = D)Fy,(x, +x) ZC(x,).
(5.14)
Simdi herhangi A ve o i¢in, giris u(t)=(A4/2)e’” +(A/2)e”’™ ye uygun sekil-11’den
x_(¢)’yi hesaplayabiliriz. A ve o ‘ye bagh olan x (¢)gibi herhangi biri igin esitlik(5.14),
¢ozlim x (¢) 'nin ithmal edilmis daha yiiksek sira terimlere uygun “diizeltme” verdigi “dogrusal

olmayan bir operatér denklemi degildir. Diger bir deyisle, herhangi A ve o i¢in, sekil-2(b)deki
agik-bag sisteminin tam ¢ozimi ya da sekil-9(b)’e benzer olarak, x(r)=x (¢)+x,(?)ile

verilir. Bundan boyle, esitlik(5.14)’e dogrulayici esitlik diyecegiz.

B. Periyodik Coziimiin Var Olusu

Sekil-2(a)’daki kapali-bag sisteminin frekans o ve esas parcasi genlik A’nin bir periyodik

¢oziimii oldugunu ve kanitlamak icin, asagidakini kanitlamak yeterlidir.
1) Herhangi A ve o igin, sekil-9(b)’deki agik-bag sistemi girisu(z) = (A/2)e’™ +(A/2)e '™

‘e uygun bir ¢éziimii vardir.

2) X1 nin w(t) =(4/2)e’™ +(4/2)e”’ uygun olan sekil-9(b)nin tam ¢dziimii anlamna
geldigi yerde TF((1)= @(1) gibi 6zel bir A ve ¢ vardir.

Takip eden teoremlerde, F’nin a, ve ®’ye devaml olarak dayanan asagidaki esitlige uygun
olan F(x(t))’nin Fourier katsayilar1 gibi anlayista devam eden islem oldugunu farzedelim.

Ayrica, farzedelim ki, u(t)=(A4/2)e’” +(A4/2)e”’™’e uygun olan dalga bi¢cimi x_(¢)’ nin
Fourier katsayisinin devamli olarak A ve ’ye bagli olsun.

Teorem 1. Tanimlama Denkleminin Dogrulugu

Hipotezler: Asagidaki durumlara sahip olundugunu farzetmek:
1) Tammlama denklemi (4.15)’in bir (@,, 4, ) ¢6ziimii vardir. Bundan baska,

dRed,(Ad,w) 0Redy(A,w)
.04 Jew
dImd,(A,0) dlmdy(A4,w)
0.4 diw o= o, A= An
(5.15)

#0.

2)

3) Asagidaki durumlan karsilayan (@, , 4,) 1 igeren bir kapali dikdortgen A vardir.

a) (w,,4,), A ‘de sadece tamimlama denklemi (4.15)’in ¢6ziimiidir.

b) Tim (w,A4)e A i¢in, dogrulayict denklem(5.14) devamli olarak A ve ®’ye dayanan

x, (A4, ) bir ¢dziimi vardir



¢) dikdortgen A’nin sinirindaki tiim (®,A) i¢in,

|Ady(4, )| > |{I_T1H+|)@E?{I. T x{[*‘ls“-‘})” I
(5.16)

Sonuc:

Sekil-1"deki tek-bag geribildirim sisteminin frekans @ ve A’nin yerine esas parga genlik A
ile birlikte bir periyodik ¢6ziimii vardir

Ispat: Hipotez 2(b) sekil-9(b)’nin agik-bag sisteminin A ve o iizerine devamli olarak
dayanan tim (@, A)€ Aigin bir tam ¢dziim x(¢) = x,(¢) + x, (¢) oldugunu garanti eder. Kalir ki,

bu nedenle, sadece asagidaki tam denklemi kanitlamak i¢in bizim i¢in

u=95(x, +x,)

(5.17)

Sekil-9(a)’daki kapali-bag sisteminin tarifinin bir ¢oziimii vardir. Bunu yapmak igin,
esitlik(5.17)’yi asagidaki gibi yeni bir bigime sokalim:

= u+ Ty PFH(x, + xg )+ (1= Doy )P F(x, + xg)=0.
(5.18)

Esitlik(5.18)’deki Ad  (A4,®)’e uygun olan ilk iki terim T,  ’'nin yiziinden x, tarafindan

katkida bulunulan tiim terimleri ihmal edilir. Esitlik(5.18)’deki tigiincii terime uygun olan dalga
bicimi asagidaki tarafindan anlamlandirilsin:

Bo0) oy Eliéf_*%-m,

Sonra esitlik(5.18)’in ¢6ziimii dogrusal olmayan denklem ¢oziimii tarafindan elde edilmige
denktir

By(A,w) _

f(Ad,w)=d, (A, 0)+ y =0

(5.19)

f(-)’nin A ve @’nin bir devam fonksiyonu oldugu yerde. sifirin +1°e uymast ile birlikte A’deki
tasarlanmis d, (-) nin derecesi olan Hipotez 1 ve 2(a)’dan gelir. Bundan bagka, Hipotez 2(c)
“tedirginligin” B,(4,w)/ A’nin  dereceyi degistirmemesine uygun oldugunu bdylece
f(A,®)’in £1 oldugunu garanti eder. Bundan dolay1 esitlik(5.19) A’de bir ¢oziimii var. Bu
sekil-9(a)’daki geri bildirim sisteminin frekans ®’nin ve (w, A)e Agibi genlik A esasinin bir

periyodik ¢oziimiine sahip oldugunu sdylemeye denktir.
Oneriler: 1) Geometrik olarak sdylemek, derece teorisine uygun olan yukaridaki kanit
anlatilan denklemi igerir.

Bu(40))

f;(ff}i.-«"}éd”(d.w]-i-c(

(5.20)



Dikkat edilmeli ki, f,(4,w)=0’1n tam olarak tanimlama denklemi(4.15) oldugu ve

f,(4,w) =0’in tam olarak esitlik(5.19)’dur. 0 ve 1 arasindaki € gibi degerler, sekil-10’daki iki

egri devaml degisken olacaktir. Sonra hipotez 2(c) kesisme Q’nun €’nin 0’dan 1’e degistirmesi
gibi dikdortgen A’y1 birakacagini garanti eder.

2) Teorem 1 boliim II’de tanimlanan metodun dogrulugu i¢in yeterli durum saglar. Hipotez
2(b) ve 2(c, aslinda, daha dogrusu kontrol i¢in karigiktirlar. Teorem 1’in 6nemi, bu yiizden,
baslica teoriktir-boliim II’deki metot icin bir temel gibi calisir.

3) Pratikte biri sadece cevap kuskulu oldugunda Teorem I’i kullanacaktir. Bu gibi
durumlarda, asagidaki iki teorem, hipotez 2(b) ve 2(c)’nin kontrolii icin daha fazla pratik
sartlar saglar.

Teorem 2: Hipotez 2(b)’yi kontrol etme

Her(w,, 4,) € Aigin, dogrulama denklemi(5.14), eger asagidaki gibi gercek bir y > Osabiti

bulmak miimkiinse, devamli olarak A ve @’ye dayanan bir x, (4,,®, ) ¢dziimiine sahiptir:
o0 A
- A - r—
p 3 {IIH,,MW- Sl ) [en] l}w
n=2 [
(5.21)

. N [+ 9] =[x ] " F e, <y
2) n=2

=

(1

(5.22)
sOyle oldugu yerde

0<o<1 (5.23a)
p= sup :

v | I_Hl“l,f”“a]‘ (5.23b)

P = : ; ]
I H I, sup | H(Jlywys fhywy, - - k)]

kg + -k, #=1 (5.23¢)

ve [ijbinomial katsayilar anlamina gelir. Ustelik, eger (1) ve (2) tatmin ederse, ¢ziim y

tarafindan baglanir:

I ‘xg(A09a)O) <y
(5.24)

. . A o e
Ispat: herhangi x,=x_+x, ve x,=x_ +x_ hesaba katin, || x, [|,<yve | x,, |, <ygibl x,ve

x, 'yi dogrulama denklemi (5.14)’deki x, +x, ’nin yerine koymakla, asagidakini elde ederiz:



||e(xp,1}_ (?.(xh}ll 1 EQ"_‘“.Iﬂ” _TIN)(Q - GJj}
[T () — Ty ()]

oo
sp 3 IH W I =T, W2 —x2 ),
="
(5.25)

(x,+x,)'ve (x, +x_, )" ’yi genisletmekle asagidakini elde ederiz:

xf—x5'=(xh+xtl}"—(x,_-i-xh)"

(5.26)
Dikkat edilmeli ki:

H_j'x:},, — I"d_ixz;_ Ix“i ” '

- 1

e ixg, = x""xi Il <l x

= =

n—i _i—2_12

+ §|xf_ix£|_'xgl— X, Xy, IHT”  + ”x:hijI_EXEI_ e "]
ol g xi X

E-_“_x: i—xil I|F|"xg,l_xg,1”1+“-x: '-XE’ zxi',llll”-rﬂl_xﬁ,&.”[

+ el rf_'x,iz—'lhllxﬁl - xy, Iy
E;jllxtll?_r-'}"-_lil-xgq ‘-JCH".. _ (527)
(5.27)

Esitlik(5.26)-(5.27)’yi esitlik(5.25)’in  yerine koymakla ve esitlik(5.21)’1  kullanmakla,
asagidakini elde ederiz:

”E[xﬂ,]'_ E{ILE}”] {:ﬂ”IL, = X, -

(5.28)
Ustelik,
1 Cxe M =11 = F,) ™' (1 =Ty )(5 = )Ty, (x, +x, )1,

"

<p E {I; H,I., 2'(?)ilxyll"_fllxgll'}+I|{9{IJ)||1
n=2

i=l1

> {1HIL[(x 0+ v) = (e )7] )+ 1), <v.
ﬁpugz{ﬂ [ 11 +v)" = (L) ]} +1e o, <v 5.29)

Denklemler (5.28) ve (5.29) islem ©()’nin kendi igine olan kiire yarigap1 y’den bir kiigiilme

haritas1 oldugu ve bdylece, sabitlesmis bir x,(4,,®,)noktasma sahip oldugu anlamina
A

gelir. xZ =x,(A4,,®,) nin (A,m)’ya devaml olarak dayandigin1 gostermek igin, x, 'nin devamh

olarak x ve ®’ye bagli oldugunu gostermek yeterlidir. Verilen x ve @, le I uygun

belirlenmis nokta olsun. x;:z de x, =x, +0,ve @, =@ +3, e uygun olan belirlenmis nokta

olsun. Biz o, gibi x;; %le ve J, — 0oldugunu gostermek istiyoruz. w=awmve x, =x, i

birlikte haritalama c2 i gostermek icin  F=12.%1 isaretler sistemini kullanacagiz. Ayrica,
yr g ¢ $ g y



haritalama tartigmasin Fourier katsayilar1 iizerinde bir harita olmasi i¢in hesaba katilir. CJf’nin
devamli olarak x ve ’ye dayandigindan beri,

x-

2 _— -
8:'_ I qu,m(xa) C ls"’l(le )”] 0 (5.30)

0, —>0veo, —0gibi.

X

Fakat le in - =1 “1’in belirlenmis bir noktasi oldugundan beri;

”@x.z’a!z(le)_xa "] :8‘" (5.31)

Yo ®1’nin kiire yarigapr y’de kiiglilme haritalama oldugundan beri, sireklilikle, @’I-rﬂz ,
yeterli olarak kiigiik &, ve J, i¢in y+ é}kﬁre yarigapinda ayrica bir kiigiilme haritalamadir.

Ustelik, d,—0, 6,ve 8, — 0gibi. Bu nedenle, yeterli olarak kii¢iik &, ve J,,icin, Cs...0; *nin

belirlenmis nokta sz asagidakini karsilar:

d

LS

¥ ___ *
g, =2 <35
z (5.32)

o, 'nin Gx-rﬂ: ‘nin Lipschitz sabiti oldugu yerde. Bu nedenle, sz - x;:l ‘nin ¢, — 0gibi ya

da o,ve o, — 0gibi siirekliligi saglayandir.
Teorem 3. Hipotez 2(c)’yi Kontrol Etmek

Verilen herhangi (w,A) ve | x, (4, ®)|,< 3,

(T =T )FF (x, + )N, < gznﬂunm[ﬂix.u,wr-(u.x_,n.)"]+||(I—:’5~+.)%P@'(x,,)||l .

(5.33)

IH,ll o= sup [H,(jkw, jkyw, - jk,o).
klrkE" " hkn Oldugu yerde.
(5.34)

Ispat: Ek B’ye bakin

C. Teorem 2 ve 3 ile ilgili Goriisler

1) Teorem 2’ye ekleme sirasinda, "Hn ”;n: P, "x..ulve Ife(ﬂ)”‘ ’yi her (@,,A4,)e A
icin  hesaplamak  gereklidir.  Ayrica  prensipte, esitlik(5.23¢)’yi  tim  miimkiin
k,+k,+---+k, #=xlicin kontrol etmek zorundayiz, en bilyiik pratik sarkaglarda, | H |, biiyiik
k,i¢in dnemsizdir. Bu nedenle, || H, || genellikle “kii¢ik” k,,k,, --,k, nin sadece biraz say1s
icin | H | yi kontrol etmekle hesaplanmig olabilir.

2) p’nin degeri ayn1 prosediir ile hesaplanmis olabilir.



3) || x, |l,’in degeri, ek A’daki kurtarma algoritmasi kullanarak olusturulmus doniisteki
esitlik(5.2)’den hesaplanabilir.

4) ”ew)”"yi hesaplamak icin, ilk olarak =Ty ).(g._@)@ﬂ(xv}igin cebirsel ifade
olustururuz, sonra onu esitlik(5.14)’in yerine koyariz. Bu en fazla zaman-tiikketme
kismu.

5) Bir sonraki adim, esitlik(5.21) ve esitlik(5.22)’yi doyuran “en kii¢lik” y>0’1 bulmaktir.
Bu bir dogru-arama prosediirii ile bulunabilir. y i¢in bir 6nceki tahminle baglamak, onu azaltir,
eger esitlik(5.21)-(5.22) tutarsa(a=1 sayalim). Diger yandan, onu artirir. Bizim tecriibemiz,
v’nin genellikle esitlik(5.21) degilde esitlik(5.22)’yi gerceklestirmede basarisiz oldugunu
gosteriyor.

6) Yukaridaki gibi analog prosediirleri kullanmakla, teorem 3 igin || H, ||, ’u da tahmin
edebiliriz.

D. Dikdortgen A Nasil Bulunur

Teorem 2 ve 3’lin yardimlari ile, teorem 1’1 gergeklestiren asagidaki gibi bir dikdortgen A
bulabiliriz:

(1) (@,, 4,)hakkinda A’nin dnceki bir tahminini yapmak.

(2) (w, A)e Adrnek noktalarmin makul bir sayis: i¢in Hipotez 2(b)’yi kontrol etmek i¢in

Teorem 2’yi kullanmak.
(3) A’nin smirmda bulunan (@, A) 6rnek noktalarinin makul bir sayis1 i¢in Hipotez 2(c)’yi

kontrol etmek i¢in Teorem 3’yi kullanmak. Dikkat edelim ki, | Ad (4, @) |bilinir ve teorem 3,
boylece, esitlik(5.16)n1n sag tarafi igin bir sinir saglar.

TABLE1
STMMARY OF SOLTUITIONS

van der Pal Tunnel-diode Wien-bridge

oscillator oscillator oscillator
splution of the An = 1,938 A, = 0.301 A, = 0,384
getermining = 0.9975 - 99,95x10% ! 0.9%
equation g . 1} . bl .
| the rectangle 1.95 < A < 2.056 0.28 < A < 0,335 0.37 < A < 042
1
I A 0.592 < < 1.005 98x10° fuws 10.1%10% 0.985 < o< 1.008
Classical salution
or numerical A=t A=0.3 & A=0.335
simulatfon result w = 0.9975 w = 99.7x10 w = 0.987

Asagidaki prosediir, A i¢in bir makul dnceki 6rnek elde etmek i¢in kullanilabilir:

(a) 4, > A,oldugu yerde (@,,4,)’1 dene. Eger teorem 2-3 basarili olursa, 4,1 azalt, diger

tiirld arttar.

(b) 4, > A,0ldugu yerde (@), 4,)’1 dene. Eger teorem 2-3 basarili olursa, A,’i azalt, diger

tiirld arttar.

(¢) @ > w,oldugu yerde (@, 4,)’1 dene. Eger teorem 2-3 basarili olursa, @i azalt, diger

tiirld arttar.

(d) @, > w,oldugu yerde (@w,,A4,)’1 dene. Eger teorem 2-3 basarili olursa, @,’1 azalt,

diger tiirlii arttir.

(e) Onceki dikdortgen A gibi 4, <A< Ave @, <@<@®’yi se¢. Bizim deneyimimiz,
genellikle uygun bir 4 bulmanin A tanimlayan diger ii¢ noktadan ¢ok daha zor oldugunu
gosterir.



E. Ornekler

Onceki prosediirii birlestirilmis tanimlama denkleminin ¢dziim (@,, Ay)ile ilgili kugik bir

dikdortgen A elde edilmis her durumdaki ¢ogu 6rnege eklemistik. Sonra biz sonuglar sayisal
simiilasyon tarafindan elde edilmisler ile karsilastiririz. Tablo 1 Ornek 4, Ornek 6 ve Ornek 7
ile elde edilmis sonuglarin bir 6zetini verir.

VI. DUSUNCELERI BITIRMEK

Dogrusal olmayan salinim igin Volterra serilerinin ilk titiz uygulamasini gdsteren
anlayistaki aciklama olan bu notta, tanimlama denklemi sunuma yakinlasir. Herhangi siranin
dinamikleri ile birlikte herhangi tek-bag zaman-sabit dogrusal olmayan geri bildirim sistemine
uygulanabilir olan bir frekans-domain yaklagimidir. Hatta siniflandirilmig elementler birakilir.
Sadece lizerine alma, birlestirilmis agik-bag sisteminin bir ayn1 yerde birlestirilmis Volterra
serilerine sahip oldugudur. Aslinda, bizim yaklasimimizi onaylamak i¢in matematiksel ispat,
baz1 gelismis matematikleri igerir, kendi metodu basittir ve sadece cebir igerir.

Krylov, Bogoliubov ve Mitropolsky’in ortamla metodu gibi, ana harmonigin frekans ve
genligi prensipte tanimlama denklemi i¢in yeterli yiliksek bir sira se¢gmekle istenmis dogruluk
icin hesaplanabilir. Aslinda, bu yaklasimin en giiglii yani, sadece ir ilk-sira tanimlama
denklemi kullanarak sik ortaya ¢ikarilmasidir. Daha yiiksek tanimlama denklemi son derece
karmasiktir ve sadece eger bir bilgisayar kullaniliyorsa pratiktir.

...._.IIL._.-! L] h' __ll'

Fig. 12. Cascade connection of two systems.

Uzerinde durulmalidir, bununla birlikte, ortalama metodu gibi, bizim metot bir geribildirim
sisteminin salinip salinmayacaginin dogrusunu bulmak icin ve eger boyleyse yaklasik frekans
ve genligi tanimlamak i¢in en avantajli sekilde kullanilir. Boyle bilgi bir ilk-sira tanimlama
denklemi ile en kolay sekilde elde edilir. Sonucta, daha fazla dogruluk istenilir, 6nceki tahmin
gibi yukaridaki yaklasik frekans ve genligi kullanan bir bilgisayar simiilasyon metoduna
bagvurmak daha iyidir.

Sonug olarak, dikkat edelim ki, cevaplar, sik sik harmonik balans ya da aym siranin
yaklagiminin tanimi ile elde edilmislerden daha dogru olan bizim yaklasimimiz kullanilarak
elde edilmislerdir. Bunun sebebi her seye ragmen bizim yaklasimimiz tiim harmoniklerin
katkilarin1 ihmal etmesidir. Sonug¢ olarak, bizim yaklagimimiz hangi parcalarin ihmal
edilecegine bakmak ile segici bir seydir.

Ayrica sunu belirtmek Onemlidir ki, bizim tanimlama denklem yaklasimi bir analitik
yaklagimdir-sayisal teknolojilere  zittir. Tanimlama denkleminin sembolik  bicimde
tanimlandigindan beri, siste parametrelerinin terimlerindeki tasarim kistasini elde etmek
miimkiindiir. Ozel olarak, gesitli devre parametreleri igin frekans ve genlik hassasiyeti, analitik
bigimde elde edilir.

Sonu¢ olarak, bizim tanimlama denklem yaklagimmin tamamiyla genel ve dogrusal
olmayan mekaniklerdeki ¢cogu ilgili problemlere uygulanabilir oldugunu belirtelim.
EK



A. Dabha Yiiksek Transfer Fonksiyonlarinin Kurtarma Nesli

Bir sistemdeki her elementin verilen daha yiiksek sira transfer fonksiyonlari, o sistemin
ayrintili daha yliksek sira transfer fonksiyonlarini bi¢imsel olarak olusturabiliriz. Dogrusal
olmayan devreler i¢in bu transfer fonksiyonlarini olusturmak igin bir kurtarma algoritmasi
[10]°da verilir. Bu Ekte, bu algoritmay1 tanimlama denkleminin kdkeninde kullanilan dogrusal
olmayan geri bildirim sistemine ekleyecegiz. ki dogrusal olmayan sistemin baglant1 tasmastyla
baslayacagiz.

A.l.Transfer Fonksiyonlarinin Diizenlemesi

Girisi bagka bir dogrusal olmayan sistemin ¢ikisi olan bir dogrusal olmayan sistemin daha
yiiksek ¢ikis parcalarmi tammlayalim ve boylece, daha yiiksek bilesenleri icerir. Ozellikle,
sekil-12°de gosterildigi gibi iki dogrusal olmayan sistemin baglant1 tagmasini hesaba katalim.
f’yi asagidaki gibi farzedelim:

x(1)=flu(t))=A,eP"+ A Ae'Frirl
(A.2)
Bu, h’nin bir ilk-sira terimini (4,e”") ve bir ikinci-sira terimini igeren giristir

f’nin giris u’sunun esitlik(A.1) tarafindan verildigi yerde.

h(x)= 2 (x?)
(A3)

Esitlik(A.2)’yi esitlik(A.3)’iin yerine koymakla, agagidakini elde ederiz:

hx)=h(f(u(1)) = 5 (Aent+ A, aetrr o)’

- % (Ale‘“f_.l:lleﬁ" + A ePVA, A elPrpan

+ A A, PP e P+ 4 A PITPA A e (PP
— Ay Ay(pyt pr)et P T A A A pytp tpa)

e PTIEID A Ay A\(py - py - py el PRI

+ A A A A py+ py+ pyt+ py)etPiTRIT R RN

(A4)

Denklem(A.4) bir parca ikinci-sira transfer fonksiyonu (H,(s,,s,)=s,+s,)tarafindan
desteklenmis bir dogrusal olmayan sistemin daha yliksek sira ¢ikislariyla ilgili olan ¢ogu
etkileri orneklerle agiklar. Bu etkileri asagidaki gibi olan n’inci-sira transfer fonksiyonlar
n > 2 i¢in genellestirebiliriz:

(a) Bir n’inci-sira transfer fonksiyonu tarafindan olusturulmus ¢ikis en kiiciik n’inci-sirada
olacak. Boylece, esitlik(A.4)’deki her terim en kiigiik ikinci sirada olacak.

(b) Bir sistemin dogrusal olmayan kism1 ile olusturulmus her n’inci-sira ¢ikig terimi n’den
daha az sira ile girig terimlerinin {iriinii yapilir. Bunun sebebi iki girisin herhangi iirliniin en
azindan biri tarafindan sirayr yiikseltecegidir. Boylece esitlik(A.4)’de, ikinci-sira terimi



(A (py+ p)e” ™77) jkj jlk-sira teriminin tiriiniiniin sonucudur, ikinci-sira transfer fonksiyonu
(Hy(py, 1) = P17 P1) tarafindan gogaltilir.

(c) n’inci-sira ¢ikisin m’inci-sira transfer fonksiyonunun katkisi agagidaki bigimin tiim
miimk{in tirlinlerinin toplamini igerir

Hy((s;+ - +s)0 0,

{Sk,+----—km_,+l+ +jk,+---+km)}
'Xk,[*!"l" ”J‘s.k,)xkg(jh—] " "T.t|+j:1}

: Xk,,,[fk.+k1+ ek +1,--- T kgt "‘..)
(A.5)
kitk,+-+k,=nve X, X, X, 'nin girisin kth,k,th, - k,th’inci-sira  terimi
oldugu yerde. Denklem(A.5) bir n’inci-sira ¢ikis teriminin k,,k,, --,k, siras1 ile m girisinin
iriinii ile elde edildigi anlamina gelir.

Esitlik(A.4)’de, iki ii¢lincii-sira terimleri
(AAA (P +p, +p,)e™ 7 ved A, A (p, + p, + p)e” ™), bir ilk-sira terimi 4,e”" ve
bir ikinci-sira terimi (4, 4,e”*"?")’nin iki miimkiin {iriindiir, ikinci-sira transfer fonksiyonu

tarafindan c¢ogaltilir. Esitlik(A.5)in isaretler sistemini kullanarak, iki tgilincii-sira terimler
asagidaki gibi belirtilebilir:

ﬁ(su-.--'*":nh]: H?.["!"Ir'-""? +31)X1[-5'|}Iz(5?= 31}

(A.6a)
2 —
ve Y¥(5), 82,53 ) = Hy(s) + 55, 53) Xy (5, 5,) X (53).
(A.6b)
esitlik(A.6)’dan olan asagidaki terimleri esitlik(A.4)’den uygun terimlerle tanimlayabiliriz:
X(s5,)=A,e" . (A.7a)
Xy(5),5,)= A, At (A.7b)
Hy(sy,5,)=5,+5,. (A.7c)

X(t)’de sadece bir ilk-sira terimi 4, e”" ve bir ikinci-sira terimi 4, 4,e'”***" oldugundan beri,
s, = p,0ldugu zaman X, (s,)=0ayrt tuttuunu ve s =p,ve s, =p,oldugu zaman

X,(s,,5,)=0ayn tuttudunu gorebiliriz. Bundan dolayi, sadece sifir olmayan Y, ve Yf,

Y} (py, Py, p3)Ve Y (py, pys py) dir, tam olarak,
(4,A4,4,(p, + p, + p, )e(pl+pl+p2)tve’41 A, A4, (p +p,+p, )e(p] prpt )oldugu yerde.

Genelde, tiim miimkiin {iriinleri esitlik(A.2)ve esitlik(A.3)’de tanimlanmig basit sistem igin
esitlik(A.6a) ve esitlik(A.6b)’de yaptigimiz gibi belirtmek belli degildir. Sonraki boliimde bu
gibi iirlinleri bulmak i¢in bir kurtarma algoritmasi verilecek.

A.2.Daha Yiiksek Stra Cikis Terimlerinin Nesli
(a) Rakamlar sistemi



Bir S listesi, (s,,s,,,s,)tarafindan anlamlandirilmis, bir sonlu sayidaki nesnenin
siralanmig bir koleksiyonudur. Bir S listesinin bitisik kismi, kendi kendisinin listesi olan bir
listenin S.A. segmentinin bir segmenti olarak adlandirilir.
(815585 s (S0 58k x> (St sasan,, F Leees s, ) DiGIMINIn bir segmenti listesi,
(5,,5,, s, )listesinin bir bdliimii olarak adlandirilir. Ornegin, S =(s,,s,,s,,s,)olsun, sonra
(5,),(s,,8,)ve (s,,85,5,), S'nin segmentidirler ve ((s,),(s,,s;),(s,), S’nin bir bolimiidiir.
Indeksler saga dogru artar ve her tamsay1 tam olarak meydana gelir.

(b) Temel Yaklagim

S=(s,,8,,,5,)olsun. Eger S’nin boliimlerini esitlik(A.5) ile karsilastirirsak,
esitlik(A.5)’in tim miimkiin bi¢gimleri ve S’nin tiim mimkiin bdliimleri arasinda birebir
uygunluk oldugunu not ederiz. Ornegin, eger S=(s,,8,,8;,5,)ise, sonra, riin
H,(s,,8, +5,5,)X,(5)X,(8,5,5)X,(5,)> ((s5,),(5,,5;),(s,)’¢ uygun olur. Bu, verilen bir

S =(s,,8,,,s,)listesi, m segmentleri igeren S’nin tiim boliimlerini bulur.

(c) Béliimleme Prosediirii

M=1 oldugu zaman sadece miimkiin boliimlerin ((s,,s,, -, s,))oldugu agiktir. m>1 i¢in,

boliimlemenin benzer problem serilerini ¢cozmeyle edilecegini asagida gosterecegiz fakat m’nin
m-1’e azalmasiyla. Bu boliimleme prosediirii m=1 oluncaya kadar tekrarlamali olmay1
isteyecek.

Bir boliimdeki ilk segmentin tiim miimkiin se¢imlerini hesaba katalim. Belki
(85850058, .)€ dogru (s,),(s,,S;)..., nin biri olabilir. Sebep,

[k segment S, =(s,,s,,-s,) nin bir bolim se¢imi i¢in, kalan liste (s,,,--,s,)) nin m-1

i+l
segmentlerini iceren bulunan tiim boliimlerinden olusan bir azaltma problemini ¢dzeriz. Bu
azalma problemi, m-1’e esit segmentlerin numarasi ile birlikte ayn1 boliimleme prosediirii
tarafindan ¢oziiliir. Azalma problemini ¢dzmek, S,,--s, ’nin segmentler oldugu yerde

(8,,85, -8, )bigiminin ¢ogu boliimlerini elde ederiz. §,’1 boliimlerin her birine yerlestirmekle,

S, ’e esit olan ilk segment ile birlikte orjinal listenin boliimlerini elde ederiz.

S, ’nin tim miimkiin se¢imleri i¢in yukaridaki islemi tekrarlama, tiim miimkiin boliimleri
elde ederiz.

(d) Agiklayic1 Ornek

Bir ornek olarak, S =(s,,s,,s;,s,)ve m=3 olsun. Béliimleme prosediiriinii eklemekle, ilk

segment, S tarafindan (s,)yada (s,,s,)anlamlandirilir.

(1) S} =(s,)olsun, sonra azaltma problemi 2 (s,,s,,s,) nin 2 segmentle birlikte tim
bulunan miimkiin boliimlerinden olusur. Ayn1 boliimleme prosediiriinii istemekle, ilk segment
S ’nin tim miimkiin segimlerinin (s, )ve (s,,s,)oldugunu buluruz.



(1.1) S =(s,)i¢in, azalma problemi 1, bir segment ile birlikte (s;,s,)’tiin bulunan
bolimlerini igerir. Sonug ((s;,s,))oldugu bellidir. S7’i ((s,,s,))’in yerine koymakla,
((s,),(s;,5,))elde ederiz.

(12) S} =(s,,s,)icin, azaltma problemi 1’in ¢dziimii ((s,))olur. S2’i onun yerine

koymakla, ((s,),(s;,s,))elde ederiz.

(s,)ve (s,,s,) nin S nin tiim miimkiin se¢enekleri olduklarindan beri, azaltma problemi

2’yi kendi ¢oziimii gibi ((s,),(s5,5,))ve ((s,,5;,(s,))bolim ¢iftleriyle ¢ozdiik.

(2) S’u esitlik(1.1) ve esitlik(1.2) ile elde edilmis her bdliimiine yerlestirirsek
((51),(8,),(85,5)) ve ((s,),(5,,85,(5,))’1 (5,)ilk segment ile birlikte iki miimkiin bdliim olarak
elde ederiz.

(3) diger miimkiin S;igin (1)ve (2)’yi tekrarlamakla, azaltma problemi 2 iki segment ile

birlikte (s,,s,) lin bulunan boliimleri olur. Sadece miimkiin Sf, (s,) diir, boylece, tek ¢oziim,

((s;),(s,))olur.

Timi birlikte, ti¢ miimkiin boéliim olarak  ((s)),(s,),(85,5,)),((5,),(s,,5;,(s,)) ve
((sy5,,(55),(s,))elde ederiz.

A.3. Geri bildirim Sistemleri

Sekil-9(a)ve 9(b)’deki sistemi hesaba katalim. U’dan z’ye Elde edilmis sira transfer
fonksiyonlart i¢in bir algoritma verecegiz. P’’nin sadece ideal bir filtre oldugundan beri, sekil-

9(b)’deki y’de n’inci-sira ¢ikisiY, (s,,...,s, )bulmaya yeter. Birlestirilmis daha yiiksek sira
transfer fonksiyonlari, ideal filtre tarafindan geri cevrilmis tiim terimleri sakli tutarak
onemsizce elde edilebilir.

Lo s o e o

Sekil-13. bir dogrusal ve dogrusal olmayan alt sisteme ayrisan sistem

Kolaylik i¢in, bir birim girig genligi wu(t)=e’” +e/“ farzetme yoluyla daha yiiksek sira
cikislar1 bulacagiz. Boylece, n’inci-sira ¢ikisi, n’inci sira transfer fonksiyonu ile ¢atisacak.
Biz ilk 6nce 3 ’yi dogrusal ve dogrusal olmayan pargalar olan 3, ve 3, ye ayiracagiz.

Sistemi, W ’in 3, tarafindan olusturulmus n’inci-sira ¢ikist oldugu sekil-13’deki gibi tekrar
cizecegiz. Bolim A.l’in (a) ve (b) etkileriyle, W ’'nin ikinci-siradan n’inci-sira transfer
fonksiyonlarma ve W de efekte sahip olana n’den daha az sirayla sadece giris terimleri

tarafindan olusturuldugunu biliyoruz. Bdylece, W bolim A.2’deki prosediir tarafindan



hesaplanabilir, eger tiim X, X,, X,  bilinirlerse. Dogrusal kisim $, terimlerin siralarini
degistiremediginden, X, sekil-13’iin {izerinde durulan kutularindaki dogrusal alt sisteme
uymali. 3, 'nin ¢ikist en kiigiik ikinci sira oldugundan beri, elimizde W, =Qvar. Ayrica,
u(t)’deki tiim terimler ilk siray1 hesaba katilirlar. Bundan dolay1, X', U'nun u(t)’nin frekans-
domain temsili oldugu yerde asagidaki denkleme uymali:

X,=UHI-P) 3, (X))
(A.8a)
X =1-PY( W +3,(X,) nz2
(A.8b)
Bolim A.2°deki prosediir ile, X,’i (A.8a)’dan ve W , X, ’yi (A.8b)’den tekrarlamali olarak
¢Ozebiliriz. W ve X, ’ielde etmekle X asagidaki tarafindan kolaylikla bulunur:
R=P (W+3,X)
(A.9)

x,icin gerekli olan daha yiiksek sira transfer fonksiyonlarmm®, ’in olustugu islemde

2n+l1
otomatik olarak olusturuldugunu not edelim.

Bu algoritma bir dijital bilgisayarda yerine getirilebilir, ya bir n’inci-sira transfer
fonksiyonunun degerini hesaplayan bir “sayisal” fonksiyon gibi ya da Macsyma[12] gibi bazi
sembolik cebirsel yoOnetim sistemi yardimi ile transfer fonksiyonu icin agik “sembolik”
ifadeleri olusturan bir “operatdr” gibi. Her iki durumda da, transfer fonksiyonlarinin tiimiiniin
olusumu i¢in sadece bir programin gerekli olduguna dikkat edilmeli. Hali hazirdaki veri temsil
teknigi ile birlikte algoritma, bir dogru tarzda yerine getirilebilir. Hizlica gelistirmek i¢in, bazi
ad hoc teknikleri, baz1 operasyonlari tekrarlamaktan kurtulmak i¢in dahil olabilirler.

A.4. Bazi Daha Yiiksek Swra Transfer Fonksiyonlar: Igin Acik Ifadeler

Bu béliimde, boliim-A.3 i¢in bir 6rnek olarak, bu notta verildigi gibi X,ve Kjicin ifade

tanimlayacagiz. X,icin bir tek-simetrik dogrusal olmayanlik farzedilir.

(1) Ugiincii-Sira Transfer Fonksiyonlari

Boliim-A.3’deki algoritmadan, X,’iin herhangi bir ilk-harmonik par¢a igermediginden
beri, asagidaki esitligi elde ederiz:

N3 = (]wajwa_]w) = M(]wa]a)a_.]a))
(A.10a)

Boliim-A.2’deki prosediirii ekleyerek asagidaki esitligi elde ederiz:

W,(jo,jo—~jo)=H,2jo—-jo)X,(jo,jo)X,(-jo)+H,(jo0)X,(jo)X,(jo,—jo)
+H,(jo,jo—jo)X,(jo)X,(-jo)
(A.10b)

Dogrusal sistemi ¢ozmekle asagidaki esitligi elde ederiz:



w‘!(jw' .-”"J)

Xy(je, jw)= - H (2 a) (A.10¢)
X,(Je, = jw)= sziw,;;oj}'w) (A.10d)

Bolim-A.2’yi eklemekle,
Wo(jw, jo)=H,( jo, jo)X,(jo)X,(jo)
(A.10e)
Wy(Jjw, — jw)=H,( jw, — jw)X,( jo)X (- juw).
(A.101)

u(t)=e’” +e ' farzettigimizden ve I-P ‘nin harmonik pargalari reddettiginden beri,
X,(jw)ve X,(—jw)’ nin ikisinin de 1’¢ esit oldugunu izler. Esitlik(A.10a) ve esitlik(A.10f)’yi
birlestirmekle asagidaki esitligi elde ederiz:

','EI{JI'“:': jw)

|

H’I[Jlm'r _ er}
1= Hl(ﬁ]

+HZ[J’“"'{}} +H3(jfl.:|, jm:_—jm)'

(A.10g)
Benzer olarak,

N3(]a),—]a),]w)=M(]w,—]w,]w):HZ(O,]a))Xz(]a),—Ja))Xl(Ja))+Hz(]a),O)Xl(]a))Xz(—Ja),ja))
+(b£3(1)1@)_]a)a]w)X1(]w)Xl(_]w)Xl(Jw)

o W,(—jw, jw

X,(—jo, jo)= /@ /0)

I_HI(O)

(A.11b)
(=0, ) = (=0 Jo)X, (~j) X, ()

Esitlik(A.10a) ve esitlik(A.11)’yi birlestirmekle asagidaki esitligi elde ederiz:

Hﬁ( jm:_ .lr"“")

1

(_ Je, _‘,i'ﬂ}) 4

. H . o
+H2(j¢J,U} 21"‘H{n} S(JF"‘}&_JU'.I{""]
. 1

(A.11d)



Ha(— Jo, jw, juw)= Hy(0, ju)Xy(— jw, ju)X,(jw)
+ Hy(— jw,2 je) X (= ju )Xol je, jo)
+ HH(_ jw, jw, ju)X,(— f”]xlff“)xl(ilw}

. Hz(f”*_.f"-")
=0, jo) =770
1

H:(J'ﬂmfﬂ‘]

1

+ Hy(— jo, jw, jw).
(A.12)

(2) Besinci-Sira Transfer Fonksiyonu

Sekil-9(b)’deki F’nin tek simetrik oldugunu, H ,H,,H timinin sifir oldugunu
farzetmekle, ¢ift-sira terimleri olamayacak. Ayrica dikkat edelim ki, X, ilk-harmonik terimleri

icermez, boylece, besinci-sira denklemi gdyle olur:
l--‘ll[--’j { fk k) jk:i’.ﬂ, _"kgh}, jkq“‘, jki el ]

=Wl jkw, jkyw, jkyw, jkaw, jksw)

= Hy( j(k, + ky T ky)w, jkaw, jksw)
- Xy ko, fkqw, fhaw)X\(Jkaw)X(jksw)
+ Ha( jkyw, jlky +ky+ kg)w, jksw)
Xy (k) Xy (ke yw, fyw, jqgw) X, jksw)
+ Hy( jkyw, jkyw, jlks+ke+ks)o)
Xy (k) X, (ke p0 ) Xa( kg, jhye, jksw)
+ Hs(jkyw, jkaw, jkyw, jkaw, jksw)

'Xt{ﬂ‘I“’)Xl{szw}xl(.fkj‘*’}xl{fh“]xl[fksﬂ}
(A.13)

ky,k,,ky,ky, kg =%1ve k +k, +k;, +k, +k; =1oldugu yerde

Xl jlw, jlyw, jlaw)
Wil w, jlw, jlw)
={ 1=H (Lt +15)e)’
0, L +i,+il,==1
(A.14)

L+ b+l =1

l,,1,,l;’nin k ,k,,k;yada k,,k,,k,yada k;,k,,k, anlamina geldigi yerde.



Wj{ Jha, jlye, ..HJM}; Hj(j'i';“! i, ﬂs"-‘-‘}xl(ﬂlw}
X (Jhw) X\ (flw). (A.15)

Esitlik(A.13), esitlik(A.14) ve esitlik(A.15)’1 birlestirmekle, esitlik(A.13)’lin ilk 3 teriminin
esitlik(2.17a), esitlik(2.17g), esitlik(2.17j)’deki gibi ii¢ ardisik jo’nin oldugu zaman ayri
tutulmasinin gézden kacirilmis oldugunu goriiriiz. Esitlik(A.14) bi¢iminin bir ilave terimi bu ii¢
durumdaki esitlik(A.13)’lin besinci terimlerine eklenir. Bu bize esitlik(2.17a)-(2.17j)’yi verir.

B.Teorem-3iin Ispati

11{ I— Tmr+ I ]‘?%—{_x" + xﬂ“]

E'i{I—TzNH}@“ Y H(x +xt)"+Hx +Hxe(l."
n=21
(B.1)

x; ‘nin herhangi ilk-harmonik par¢ay: icermediginden beri, ve x_’in daha diisiik sira terimleri

icermediginden beri, 1-7,,, P tarafindan yok edilecekler. Boylece esitlik(B.1) sdyle olur:

(T = Type  JPF(x, +x3)II,

| & )
<1009 3 w4’

i n=3 i

< (I—TM_H)@{ EZH,,[{J:_&J:;)" . +x:]”

ﬂ"(!—i}m.)@{ S HN (e, +x21"—Nx I7)

+“J(x_)Hl
|

< 3 WA, [ (x4 8)" —ix 1]

I
n=2
L= Ty, )FFC,. (B.2)

Bu Teorem-3’1 kanitlar.

C. Teorem2 ve 3’iin Uygulamalari

Bu ek’te ikinci-sira tanimlama denkleminin ¢ézliimiiniin dogrulugunu kanitlamak igin
Teorem-2 ve 3’lin uygulamasmi Orneklemek i¢in van der Pol salinimini bir 6rnek gibi
kullanacagiz.



f(v) =—(1/3)v’oldugundan beri, elimizde asagidaki olur:

H,(jko)=0
(C.1a)
Hl(jk]w" Jk o, fkawl
1 €
-3 1

— ik, + Kk, +
e +(Jlk +ky ks )e ke, + ko + kq)w

(C.1b)

H(jko, jk,o, jko, jk,0, jko)=0
(C.1c)

k. k,,k;,k,, ks lerin tamsay1 olduklar yerde.

C.1. Teorem-2’nin Uygulamasi

A ve o’nin verilmesiyle, p ve || H, || bulmaya ihtiyacimiz var. k,, - k,igin biraz kiigiik say1
segmekle genellikle bulunurlar. Ven der Pol salinimmim bu durumunda, p=1, || H, |.=0ve
| H ||.=0o0ldugu kesindir. Ayrica, || H, | en kiigiik miimkiin k, +k,+k, ‘de meydana
gelmeli. Bu durumda, ikinci harmonik par¢a olmadigindan beri, o 3’tiir. Boylece,

. _| ¢
| Hy k= 5

1
—€+ jlw+ —
d J3w
(C.2)
Ek A’y1 uygulamakla ve H, =0olduguna dikkat etmekle, sadece sifir olmayan iiglincii-sira
transfer fonksiyonunun asagidaki gibi oldugunu buluruz ve karmasiktir.

X (o, jo, jo)H,(jo, jo, jo)
(C.3)

Boylece esitlik(C.3) ve esitlik(5.2)’den asagidaki esitligi elde ederiz:

A o A o Ay .o A
x =_€;ur+_le—;u.r_|_ _3E3;mt+ 3 — 3 et
-7 2 2 2 2 €
(C4)

A, = Aoldugu ve asagidakinin oldugu yerde

1 L.
Ay = EH:i(jw! Ju, j“]“ll T

T
— 5
€+ ;3m+},—3m



Agikga, elimizde asagidaki var
[, =4 | +] 4 |

Bulmak igin son terim C(0Vdir. Bu durumda, G(0)  4’den daha yiiksek sira ile H, ile
olusturulmus terimleri igerir ve ilk-harmonik par¢ay: igeri alir. Dikkat edelim ki, A, ’{in sira
3’iindiir. (C.4)’den asagidaki esitliklerle verilen bu terimler ve karmasik ¢cekimleri goriilebilir:

S

6H,( o, — ju, j30)( 5.
3H( jo, jw, J:ha}(

3H(— jw, j3w, ij)(

SENEC SRS

3H,( jw, jiw, J.’iw)(

3H,(— j3w, jIw, jIw)

—————
m|7—'~|

(C.5e)

Ha(jaa,jam,_;am}(%](T)[T)eﬁ‘“f (C.56)

Her terimin Oniindeki sabit katsayi, /H,’lin tartigmali tiim miimkiin permutasyonlarinindan
meydana gelir.

Tiim bu terimlerle, dogru bir yolla Teorem-2’nin durumlarini kontrol edebiliriz.

C.3. Teorem-3’iin Uygulamalari
[lk énce || H, ||.. yi buluruz. Bu durumda, sadece || H, || sifir olmaz ve k, +k, +k, =1"de
meydana gelir,
IH, Il == < 1 I
—_— + ' I N
€+ jw P [

B || =

(C.6)

Sonra ||1-T7,,,,PF (x.)],, direkt x ’in yerine koymakla bulunabilir. Bu durumda,
1-T.

sva PE o (x,)5’den daha yiiksek sira ile birlikte tiim terimleri igerir ve ilk-harmonik

parcaya uyar. Asagidaki esitlikle verilir ve onun karmagsik ¢ekmesiyle.

oo = 3o, 30 ) (33
(C.7)

| x, |,ve B, bolim-C.2 bitirildiginde zaten bulunduklarindan beri esitlik(5.33)’i direk
olarak kontrol edebiliriz.



Kalan isler, bu notun BOlim-5.D’sinde tanimlanan prosediirii igerir. Bu genellikle
bilgisayarin yardimiyla sayisal olarak yapilir.
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