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ONSOz

Bir dogrusal olmayan sistem muhendisligi problemi ile karsi karsiya kaldigimizda, ilk
yaklasim genellikle dogrusallastirmaktir. Bagka bir deyisle; sorunun dogrusal olmayan
yonlerini yapmaktan kaginmaktir. Gergekten uygun bir ¢6zim bu sekilde elde edilir. Sorun
giderilmedigi zaman egilim tamamen bu durumu Onlemek igin galigsmaktir. Bu sekilde
ilerleyen muhendisler genellikle mantiksiz olarak gozukir. Dogrusal olmayan sistem
muhendisligi genellikle zor ve kafa karistirici olarak bilinir. Bu konu Uzerinde uzun suredir

calisanlar bu konuyu genellikle tehlikeli olarak gorurler.

Bu suphecilik bir dlgude hakhdir. Dogrusal sistem teorisi mevcut olan tekniklerin
cesitliligi ile karsilastirnldiginda, dogrusal olmayan sistemlerin tasarimi ve analizi igin
kullanilan araclar bir takim dzel kategoriler ile sinirhdir. ilk olarak dogasinda sekilci ve
sinirll olan faz-duzlem analizi gibi nispeten basit teknikler vardir. Sonra diferansiyel
denklemler, fonksiyonel analiz teorisi, ve operator teorisi gibi oldukgca ¢6zUmu zor ve
genel teknikler vardir. Bu bir dil, bir ¢cerceve ve varolan/egsiz deliller ama genellikle bu
temellerin 6tesinde kuguk bir problem veya 6zel bilgiler saglar. Son olarak ise bilgisayarlar

uzerindeki bir simulasyon olarak adlandirilabilir.

Bu teknikler veya yaklagimlarin yararsiz oldugunu soOylemiyorum. Faz-duzlem
analizi, sinir donguleri ve ikinci dereceden sistemlerin birden fazla dengelerini iceren
dogrusal olmayan olaylari anlatmaktadir. Diferansiyel denklemler teorisi dogrusal olmayan
sistemlerin bazi siniflari igin oldukga gelismis bir istikrar teorisine yol agmistir. Fonksiyonel
analiz ve operator teorik bakis acilari felsefi agidan gekicidir ve hig kuskusuz gelecekte gok
daha fazla uygulama alani bulacaktir. Sonunda herkes yerel bilgisayar merkezi kaynakl
basari dykusunun farkinda olacaktir.

Soylemek istedigim teorinin genellik ve uygulanabilirlik ihtiyact oldugudur. Boyle bir
teorinin, matematiksel ¢aligmalar ve muhendislik tekniklerinin geligsimi igin bir baglangig
noktasi olarak hizmet verebilmesi agisindan buyuk énemi vardir. Aslinda bir kdpruyu ya da

bu iki faaliyetin arasinda iletisim baglantisi iglevi gorebilir.



1970lerin basinda zamanin dogrusal olmayan sistem teorisi i¢in bir orta yol formali
oldugu elde edildi. Boyle bir formulasyonun diferansiyel denklemlerin bazi yonlerini
kullandigi ve sembollerin yani sira operator- teorik tanimlamalara donusturdugu
gorulmektedir. Asil soru her nasilsa, yapisal varsayimlar yaparak ve patolojileri redderek,
oldukga basit ve oldukga genel olan dogrusal olmayan sistem teorisinin nasil gelistigidir.
Bu bakis acisi ile dogrusal sistemler icin yaklagimlarin dogrusal olmayan teoriye
genigletilebilir olmasi gerektigini hissettirmektedir. Bu teorinin uygulamacilar kadar

arastirmacilar tarafindan da kullaniimasi 6nemli bir noktadir.

Bu degerlendirmeler beni dogrusal olmayan sistemler igin Volterra/Wiener
tasarimina goturdd.1950’den beri yayinlanan makaleler muhendislik literatirinde duzenli
bir sekilde bu konunun goérulmesine yol agti. Arastirmalar Oyle gosteriyor ki son yillarda
dogrusal sistem teorisi ¢ok basarili oldu. ilk sorun bazi terminolojik karakterize
belirsizlikleri onlemek ve dogrusal sistem teknikleri uzantisini kolaylagtirmak konularinda
uzmanlagmakti. Benim yaklagimim geri beslemesiz dogrusal dinamik sistemlerin
baglantilarindan olugmus sistemleri ve basit statik dogrusal olmayan elemanlar
degerlendirmek yonundeydi.

Tabii ki bir ¢ok insan yukarida Ozetlenen bir takim ihtiyaglarin farkinda. Ayni
zamanda ben Volterra/Wiener serileriyle calismaya basladim ve digerleri dogrusal
olmayan diferansiyel denklemlerin yapisinda uzmanlasmak suretiyle kayda deger basari
elde ettiler. Bilinear durum denklemlerinin, dogrusal durum denklemleri ile ilgili bircok
analiz araglarini kullanarak yapilan analizlerle uyumlu oldugu gozlenmistir. Ayrica bilinear

durum denklemleriyle ilgili gozumleri Volterra/Wiener serileri oldukga basitlestirecektir.

Bilinear durum denklemleri,yapisal ara baglanti sistemleri, Volterra / Wiener serileri
bu kitapta anlatilan konular arasindadir. Bu konularin dogrusal olmayan sistemlerle ilgili
muhendislik Grunlerine katkida bulunacagina inaniyorum. Belirtmekte yarar var, dogrusal
olmayan sistemleri analiz etmek g¢ok da verimli olmayabilir. Ozellikle analitk metot
verildiginde belirsiz sistemleri bulmak hi¢ de zor degildir. isin kétlisi Volterra / Wiener
serilerinin ne zaman kullanilacagini kestirmekte gic. Genel kani eger dogrusal olmayishk

az ise; Volterra / Wiener serileri kullaniimakta.



Okuyucudan biraz yardim talep ediyorum. Benim tek tavsiyem tum metotlari
aklinizda tutmanizdir. Sorular genellikle diferansiyel denklemleri temel alan metotlarin
uygulanmasi konusunda olmugtur. Zaman duzlem ve bilgisayar merkezli yontemlerin yeri
geldiginde kullanigh oldugunu unutmayin. Buradan anlatilan konularin okuyucular
tarafindan sorgulanmasini ve tartisiimasini istiyorum. Teori tamamlanmadi ve daha da
gelistirilebilinir. Tum rizgarlara ve dalgalara ragmen engin denizlere acilan bir yelkenliye
benzeyen dogrusal olmayan denklemler teorisinin katkilariyla olusturulacak muhendislik

icatlari tim bu zahmetlere deger gibi gérinuyor.

Basit fiziksel ornekler icin yapilan arastirmalarin daha verimli oldugu kanitlamistir.
Sonug olarak, kitapta uygulamalardan hesaplamalar veya teknik 6zellikler gostermektedir.
Her bolim igin ayni durumdan soz edilebilinir. Sorunlari aydinlatmak ve bu konuya asinalik
kazandirmak hedeflenmigtir. Her ne kadar kavramlar Volterra / Wiener serilerine yer verse
de ve. formulleri oldukga uzun olur ve bilinmeyen 6zelliklere sahip olma egilimi gosterse de
bu yaklagsim hi¢ de zor degildir. Kanimca g¢aligkan bir okuyucu bu sorunlarin Ustesinden
cabucak gelecektir.



BOLUM 1

Girig/Cikisin Zaman Duzleminde Gosterimi

Volterra/Wiener Serileri; Dogrusal olmayan sistemler igin Volterra
fonksiyonlarinin matematiksel gosterimidir. Yani matematiksel bir ara¢ gibidir,
sistem girig/cikigindaki bu gosterim matematiksel olmadigi surece
tartisilamaz. Bende bu durumu; bilinen dogrusal sistemlerden basglayip,
dogrusal olmayan sistemlerin basit 6rnekleri dogrultusunda ele alacagim.
Oncelikle bizler daha alisila gelen dogrusal sistemleri tekrar gbzden
gegirecegiz, daha sonrasinda ise homojen dogrusal olmayan sistemler (birinci
derece Volterra serileri), Cok terimli sistemler (sinirh Volterra serileri), ve

Volterra sistemlerini (Sinirsiz seriler) sirasiyla gorecegiz.

Bu bolim buydk oOlgclide terminolojiye ayrilmis olup; sistemlerin nasil
formUlize edilecegi ile dogrusal olmayan sistemlerdeki temel iglemler ile
ilgilidir. Volterra/Wiener serilerinin yazimi ile ilgili olarak farkl birkag yol
incelenecek ve bunlar arasindaki iligkiler kurulacaktir.Ozellikle ayrintili olarak
ele alinacak olan g gdsterim formu vardir, bunlar: Simetrik Form, Uggensel
Form ve Normal Formdur.Bu formlarin hepsinin kendilerine gore avantajlari ve
dezavantajlari olmasina ragmen, hepsi kitabin sonraki boéliumlerinde
kullanilacaktir.  Birinci  boliumin sonuna geldigimizde ise Sistemlerin

goOsteriminde kullanilan Volterra serilerinin kokenini tartisacagiz.



1.1 Dogrusal Sistemler
Tek girigli,Tek ¢ikigl,dogrusal,duragan ve nedensel olarak tanimlanan
bir sistemin Girig/Cikigini dugundugumde, okuyucunu bu tarz bir gosterime

asina oldugunu degerlendiriyorum;

)

yv(t)= [ h(o) (i—0) do )

—e

Formulde bulunan u(t): girig sinyalini

y(t): cikis sinyalini
h(t): durtl cevabini gosterir,

h(tf) bundan dolay! c¢ekirdek olarak adlandirilir ve t<0 oldugu durumlarda
h(t)=0 varsayilir.

Bununla (1) birlikte birka¢g teknik varsayim daha bulunmaktadir.
Genellikte varsayilanlar ise; t&(—,~) i¢in h(t)'nin gercek degerli bir fonksiyon
olarak tanimlanmasi ve t=0 ani hari¢ genellikle kesikli surekli bir durti
fonksiyonunun olugmasidir. Bunun yaninda t€(—«,«) icin girig sinyali gercek
degerli bir fonksiyon olarak tanimlanabilir ve genellikle de kesikli surekli
oldugu varsayilir, buna ragmen durtuleri de igerebilir. Sonug¢ olarak, durti
meselesi bir yana, bu durumlar t€(—«~,«~) icin ¢ikis sinyalinin surekli, gercek
degerli bir fonksiyon olarak tanimlandigini ima eder.

Tabiki daha genel varsayimlarda tanimlanabilir ancak suan burada
varmak istedigimiz sonug igin bunlar gereksiz olur. Aslinda, bu varsayimlari
sonuca varana kadar tekrarlamak sikici olacaktir. Bundan dolayi, bende bu
konuyu anlasiilmig olarak degerlendiriyorum.Sistem tanimlayicilar igin
yukarida kullanilan varsayimlarin gegerli oldugunu dogrulamanin okuyucular

icin faydali olabilecegini dusuntyorum.



Tabii ki dogrusallik kavrami integral (1) Ozellikleriyle i¢ icedir. Bu
h(t)'nin tek tarafli varsayimina nedensellik ilkesiyle karsilik geldigini gérmek
cokta zor degildir. Ayrica sistemin belirli bir zamandaki ¢ikisi, girisin gelecek
degerlerine bagh dedgildir.

Daha da dogru sekliyle belirtmek gerekirse, eger u(t)'nin yaniti y(t) ise,
u(t-T)'nin herhangi bir T = 0 ani igin yaniti y(t-T)dir. Dolayisiyla sistem
duragandir.

Tek tarafli bir varsayim olan h(t); (1).denklemdeki sonsuz alt sinirin O’la
degistirilebilecegini gosterir.Sadece giris sinyalleri dikkate alindiginda t=0 ve
(1).denklemdeki ust limit ise genellikle t olacaktir.

Sinirlari sonsuz olan bir ifadenin igindeki fonksiyonun degiskenlerinin
bircok degigikligine ragmen sinirlarinin degigtiriimesine nadiren ihtiyag
duyulmasi gibi bir avantaji vardir.Bunun yaninda yapilan bazi iglemlerde,
islemin oldugundan daha zor gorulmesi gibi bir dezavantaji da vardir.

Ornegin, (1).denklemdeki herhangi bir degisken degisikligi asagidaki
gibi yazilabilir:

o0

v() = | ht-o)u(o)do 2)

—00

Bu denklemde(2) tek tarafli bir varsayim olarak h(t); u(t)'nin alt limitinin
0 oldugu durumlarda ust limitinin de t olabilecegini gosterir. (1).gosterim
genellikle dogrusal sistemleri gostermek igin daha c¢ok kullanilir g¢unku
(2).g6sterime gore gekirdegin daha sade bir sekilde verilmis olmasidir.

Dogrusal sistemlerin girig/cikis noktalarinin gosterimi i¢in soyle bir
diyagram (Sekil 1.1) kullanilabilir.
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L h(f) —>

Sekil 1.1.Duragan bir dogrusal sistem

Eger Sistemin duragan ve tasinabilir oldugu varsayilirsa, girig/cikislar
su sekilde elde edilir ve gergcek zamanh bir fonksiyon olarak h(t,0); h(t,0)=0
icin  t&(—,»), 0€(—=,~) seklinde tanimlanir ve o > t oldugunda su sekilde

yazilr:

(=)

v(f) = [ h(t.o)u(o)do (

—00

L)
p——

Oncelikle, bu tip bir dogrusal sistem gdsterimlerinin kontrol ediimesi gok
kolaydir ve h(t,0) nedensel 6zel bir varsayimdir.Elbette o= t esitligi icin h(t,0)
durtuler icerir fakat 2020 i¢in bu durtuler kesikli surekli sekilde olur. Daha

oncede soylendigi gibi bu denkleminde(3) sinirlari degistirilerek daraltilabilir.

(2). Ve (3). Denklemlerin birlegtiriimesi sonucu duragan dogrusal
sistemlerin duragan olmayan dogrusal sistemlerin 6zel bir durumu oldugu

goOrulebilir.

Bundan dolay! (3).denklemde c¢ekirdek diye adlandirilan h(t,0), eger
asagidaki gibi bir g(f) gekirdegiyle olusturulursa;

g(t-0) =h(t.0) (4)

h(t,o)’ nin duraganhk kontrolinu kolayca yapmak i¢cin  h(0,0-t)=h(t, o)’
ye bakmak gerekir. Eger bu durum tatmin ediciyse, g(t—-0)=h(0,0-t)=h oldugu

stirece g(t)=h(0,—t) olarak kanitlanir.



L— i(1,0) —>

Sekil 1.2. Duragan olmayan bir dogrusal sistem

1.2 Benzer Dogrusal Olmayan Sistemler

Girig/Cikisin dogrusal olmayan sistemlerdeki gosterimi, Bolum 1.1°'de
s6zU gegen basit genellemeleri igerir. Daha zor olani ise belirtiimemis ve bu
gosterim icin sorulabilecek felsefi cogu soru ve gosterimin kullanilishgr daha
sonraya birakilmigtir. Su an da ise asagida yazacagim gosterimlerde dogrusal
olmayan sistemlerin bazi Ozelliklerini ve dikkat c¢ekici bazi Ornekleri

tartisacagiz.

tio(—=,~) icin tanimlanan h,(t,...,t,) gercek degerli fonksiyonlardaki n
degiskenleri; herhangi bir t;<0 zamaninda i=1,...,n ve hy(t4,...,t,)=0 esitligindeki
gibi girig/cikigla ilgilidir:

r(n)= | J (61, .0 u(~0y) - u(t-0,) doy - - do, (5

-
‘o
—o0 —o

-
e

Bundan oOnceki kisimda dogrusal sistemlerin  gosterimlerinin
aralarindaki benzerlikler gayet aciktir. Ayrica kullanilan dogrusal sistemlerin
gosterimlerin tumd burada da (1).denkleme uygundur. Aslinda (5).denklem
genel bir denklem olarak bilinir ancak ben bu terimi kullanmayacagim.

Konuyla ilgili olarak sorulacak olan ilk soru muhtemelen (5).denklemde
kullanilan ifadelerin neler oldugudur. Varsayimdaki hy(ts,...,tn); her degigken
icin tek tarafli nedenselligin karsihgi oldugu aciktir. Bu sistem dogrusal degildir
ancak duragandir.
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(5).denklemdeki sistem gosterimi n-dereceli bir benzer(homojen)
sistem gOsterimi olarak adlandirilir. Bu terminoloji a’nin sayisal oldugu her
degerde uygulama alani bulur ve y(f)'nin u(f)’'nin yansimasi oldugu durumlarda
a’nyt) cikigini saglar. Bu terminoloji, 1.dereceden dogrusal sistemlerin
nedenini igerir. Bu sistem ile, hp(ty,...,t;) dogrusal durumlarda kullanilan

cekirdek olarak adlandirilir.

Herhangi bir karisikligin ortada kalmamasi ve gosterim kolaylgi igin
(5).ifadeyi asagidaki gibi yazabiliriz.

v(f) = J h(o,.....0,)u(t—6,) - u(t—0,)do, - - -do, (6)

—0o0

Cekirdekle ilgili tek tarafli varsayimdan dolayr bu gosterimdeki alt
limitler O’a esitlenebilir. Eger giris sinyali tek tarafli bir varsayim olursa Ust
limit(ler) icin t kullanilabilir. Sonugta; (6).denklemdeki integralin tum
degiskenleri icin degisimler agagida yeniden yazilarak gosterilmistir.

.1"(?‘) = “[ h (T—Gl ..... f—{j”}f.l'((jl] cee (Gn) dﬁl . dﬁn (_)

Bu noktaya gelindiginde; n.dereceden benzer(homojen), duragan bir sistemin
diyagramda gosterimi Sekil 1.3’te yer almaktadir.  Sistem kutusu ¢ekirdegin
kendisidir.

> h(t,,...,1 ) F—>

Sekil 1.3. Duragan n.dereceden benzer(homojen) bir sistem

13



Ornek 1.1 Ug dogrusal sistemin garpimsal bagdlantisi Sekil 1.4’'te gésterilmistir.

h,(7) ﬁ

P ¥y
ho( 1) —H\M%n—b

v

u

'

—* h,(7)

Sekil 1.4. Yapilandirilmig bir baglanti sistemi

Dogrusal alt sistemler su sekilde tanimlanir:

(= )

(1) = [ h(Gwu(t—-c)do. i=1.2.3

—

Bundan dolayi da tum sistem ise soyle tanimlanabilir:

v(t) =v1([B)y2(t)ys(1)

o (= ] (= n]

= f hi(chu(t—-o)do J h>(0)u(t—o) do J h3(o)u(t—o) do

B —o

= f I (01 5(05)h3(63)u (t—0p )u (=05 )u (1—03) dG,d G, d 03

Acikcasi, 3.dereceden benzer(homojen) bir sistemin gekirdegi;

h (t1,t2,t3) = h1(t1 )hz(tz)h3(t3)

Dogrusal olmayan bir sistem taniminin, benzer(homojen) sistemlerle
olusturulmasinin ikinci bir yolu da vardir. Bu tanim igin; her degisken x(f)'nin
bir populasyonu gosterdigini dugunun; eger x;(f) degerindeki degismeler diger
xi(t) degerlerinin dogrusal degisimine bagli fakat bir skaler parametrik kontrol

sinyali ise xi(t), du(t)x;(t) nin her turlt formunu igerir. Dogrusal olmayan

14



modellerin bu sekildeki yazimina “bilinear durum denklemleri” denir.

x(t) = Ax(t) + Dx () () + bu (1)
y(£)=cx(f). £20.x(0)=x,

x(t) nx1 vektoru

u(t) ve y (t) skaler girig,cikis sinyalleri

Bu durum denklemlerinin ayrintii  olarak gosterimi daha sonra
yapilacaktir, simdiyse basitce benzer(homojen) sistemlerin gosterimini
belirtmek icin nasil kullanilacagi tartisilacaktir.

Ornek 1.2 Dogrusal olmayan sistemlerin diferansiyel denklemler ile

tanimlanmasi:
x(t) = Dx (Du(t) + bu (1)
v()=ecx(t), t=20, x(0)=0
x(t): 2x1 vektoru

u(t) ve y(t) skaler ve

D=[?ﬂ.b=[a.c=[ou

Kesikli surekli tum giris sinyalleri i¢cin 20 olan her durumda bu ifade su

sekilde yazilir: (Bunun ispatini ise bir gcalisma olarak sizlere birakiyorum.)

t DJ‘H(G;}#KI:
x(H)=Je ™ bu (G,) do,
0

Burada ki exp ifadesinin agihmi agagidaki gibi olur;
Djn (o1)doy [

i
e ™ =I+DJ u(oy) doy + %DE[J 1 (0,) d-:jl]2 4
0> = L5

15



D= 0 ézel durumu iginde;

D{;J;H{Ul}ﬂrﬁl B ] O
€ = t
J 1 (0, ]f?rﬁl |
L o, J

Buradan da giris / gikis iligkisi su sekilde yazilabilir:

DJ‘ u(0,)da,
ce ™ bu(0,) do,

v(r)

O e, L= et I

iy
I (G (G,) do;dc,

o

[

Bu gosterimden sistemin homojen ve 2.dereceden oldugu agikcga
gorulebilmektedir. Giris / ¢ikis gosterimini daha tanidik bir formda yazmak

igin, birim adim fonksiyonu;

Su seklinde yazilabilir: 5_1 (U _

v =

L=

I
J 0_1(01—02)u (6)u(0,) do,do,
0

Buradan da  cekirdek; hty.ty) = E._l(fl_,rgj seklinde olur.

16



Bu boélumden sonraki bolumlerde, homojen sistemlerin sabit
olmayabilecedi hususu dikkate alinmalidir.Asagida gosterilen bir sistemin
giris/gikig ifadesi gibi;

=]

v(r)= J h(t.o;..... o,)u(6;) - u(o,) do; - - - do, (8)

—o0

Her hangi bir o>t igin ¢ekirdegin h(t,0y,...,0,)=0 oldugunu varsayalim bu
durumda sistem nedensel olacaktir.Tabi ki,bunun olusmasi igin Ust limitlerin ¢
ile degistirilir. Eger tek tarafli bir giris dikkate alinmigsa; alt limitlerde O’a

esitlenmelidir.

Dogrusal olmayan benzer(homojen) sistemlere basit bir ornek olmasi
icin, okuyucular o6rnek 1.1'i dogrusal sistemlerin duragan olmadigi
varsayimiyla tekrar edebilirler. Ama ben burada duragan olmayan
gosterimlerin, duragan bir system yapisindan ileri geldigine deginecegim.

Ornek 1.3 Sekil 1.5'te gosterilen baglantilar Ornek 1.1’e gore biraz
daha karmagiktir. Oncelikle cekirdegi bulmanin kolaylagsmasi igin; girig
sinyalini ve tum sinyallerin gosterimini ve g¢ikigsa dogru nasil bir yol izlediklerini

bularak ise baslamanin ¢ok 6nemli oldugunu belirtmek istiyorum.

]

—T—P HT};(I) 1
> 1,0 |

M () —>

Sekil 1.5. Ornek 1.3'teki sistem
v(t) sinyali su sekilde yazilabilir;
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1'(f) = j ]I3(T—03)11(03)d03 u(r)

Benzer sekilde;

!‘;
w(t) =) hy(t—02)v(G2) doy u(t)

—

t 4!
= | hy(1—6,) [ I3(6,—03)u (G3) dG; u(G,) do, u(f)

L

= J N5 (1 =05 )h3(6,—03)1 (G3)1 (G,) dG3dG, 1 (f)

—00 —Oe

Cikis sinyali;
t
V() = J hy(t=6)w(0,) do,

—oT

i 01 G2

-

= J J [ h1(1=G1)h2(61-02)N3(0,—03 )1 (G4 )u (G2 )1 (03) d63dG,d G,

—O0 —OH —00

Boylece 3.dereceden bir sistem igin ¢ekirdek bu sekilde yazilir:
h(t.61.6,.03) = h1(=61)1,(61-02)h3(6,-063)0_ (6,-03)0_1(6,—02)

Dogrusal alt-sistem c¢ekirdekleri igin yapilan tek tarafli varsayimlarda,
adim fonksiyonlari fazlalik olarak dikkate alinabilir. Daha da 6nemlisi, Ornek
1.1 ve 1.3 Kkarsilastirilinca ¢ekirdeklerin farkli sistem vyapilari igin farkli
sekillerde oldugudur.
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Duragan olmayan sistemler icin (8).denklem ve duragan sistemler igin
(7).denklemin kargilastirimasiyla bir h(t,04,...,0,) ¢ekirdeginin duragan oldugu

gozukmektedir.
o(t—Gy..... —0,) =h(f.Gy.....0G,) (9)

Eger tum t,04,...,0, degerlerini igerirse, Genellikle duraganlik kontrolu

icin fonksiyonlarin iligkilerinin kontroli daha uygun olur.

h(0.0,—1.....0,—1) =h(t.Gy.....0,) (10)
Buradan da (9).denklem asagidaki gibi gOsterilebilir:
gty t,)=h(0—t..... —t,) (11)

(10).denklemide (8).denklemin icerisine yazarsak;
v(t) = [ g(t—0y..... t—G, u(Gy) - -u(c,)do, - do, (12)

Ornek 1.3 igin bu hesaplamalarin yapilmasi Sekil 1.5'teki sistem igin

degismeyen bir ¢ekirdegi verir:

g(t1.12.13) = hy(t )y (ta—11)h3(3—12)0_1 (F3~12)0_1 (2—11)

Bolum 1.1°de de belirtildigi Uzere dogrusal sistemler teorisi gekirdek igin
dirti fonksiyonlari olusumuna izin verir. Ornegin (1).denklem, g(t)'nin kesikli
surekli bir fonksiyon ve t=0 anindakiod o(t) durtusinun oldugu durumlarda

h(t)=g(t)+go o o(t) seklinde olur. Dolayisiyla giris u(t)'nin cevabi ise;
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MAUES do

h(t—o)ul(c
(

)
2(t=0)u(0) do + | @98y (t=0)u (6) do

—

!
!

— | g(t—0)u(0) do +ggu(?) (13)

—oa

Girisin ~ u(t)=0o(f) seklinde alinmasi  herhangi bir  sorun

yaratmayacaktir.Sonugta durtu cevabi:

[
-

(]
-

v = J g(t-0)dy(0) do + J 200y (1—0)dy(0) do

—o —o0

=g(1) +go0(1) (14)

Ne yazik ki bu konular n>1. dereceden olan benzer sistemler igin ¢ok

daha dolambachdir. Bu tur sistemler igin, iletim olustugunda durta girigleri

blayuk sorunlarin dogmasina sebep olur.

Ornegin 2.dereceden sistemlerin girigs/cikig iligkisi:

y(0)

= | | gtt-01.1-6,)u(0))u(6,) do,do,
+ fgl t—6,)u*(6,) o, +gou’(1) (15)
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Bu gosterim ise gekirdekteki durtulere izin verildigini gosterir.

oo

v(t) = fh(r —01.1-0)u (671 (6,) d6,do,

—00

ve

h(ty.1y) =g(t1.12) + &1(f1)B(f1—12) + g00o(f1)00(72) (16)
seklinde gosterilir.
1.3 Cok terimli Volterra Sistemleri
Sonlu bir toplamla tanimlanan sistem:
N
): J I, (6. ..., o, )u(t—0,) - u(t-0,)do; - - - do, (36)
cok terimli (polynomial) sistem olarak tanimlanir ve hy(ty, . . ., tv) # 0 oldugu

surece N.dereceden olur. EGer bir sistem sonsuz toplam geklindeyse Volterra

sistemi olarak isimlendirilir.

Ozel bir durumu gdéstermek gerekirse; Statik dogrusal

sistemlerin girisi, bir polinom ya da gug serisi ile tanimlanabilir

v(O)=au()+ - +ayu™(r)
v() =Y ayu”(t)
=1

olmayan

(37)

Volterra sistemi sonsuz bir dizi ile gosterildigi surece, anlamli oldugunu

garanti etmek i¢in yakinsama kosullari iligkilendirilmis olmasi gerekir. Genellikle

bu sartlari iceren bir zaman araligl ve buna bagh bir u(t) olarak gdsterilir. Bu
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genellikle birbirini Uzerine kabaca ters bir sekilde baghdir. Zaman araligini
daha buyuk oldugundan, girigin sinirlari daha kuguk olmalidir. Hesaplamalar

uygun sinirlari bulmak igin sik sik tekrarlanmasi zorunlu bir gerekliliktir.
1.4 Dogrusal Olmayan Sistemler Bagintisi

Dogrusal olmayan sistemlerin G¢ temel baglantisi dikkate
alinacaktir.Bunlar: Katki ve Carpimsal Paralel baglanti ve Cascade baglanti.
Elbette, Katki Paralel ve Kaskad baglantilari dogrusal sistemlerin teorisi ile,
tanidik gelecektir. Carpimsal paralel baglanti muhtemelen yabanci gelebilir,
ancak dogrusal olmayan bagintilar igin dogal bir sey gibi gérinuyor olmalidir.

Homojen sistemlerin bagintilarini ilk dnce ele alalim.

— h”(rl.....r‘n]j
u _ S Yy
"\;/J
e

Seklil 1.9. Bir katki paralel baglantisi

iki homojen sistemlerin temel katki baglantisi Sekil 1,9 gésterilir. Genel
bir sistem su sekilde aciklanabilir:

y() = j ;‘JH(GI‘ O U(T=0y) - ”(I_Gn) dG] e 'dﬁn

T jgm(ﬁl- .o O (1=61) - u(t=0,) doy - - dG,, (38)

—oo

m = n acgikca belli oldugu zaman n.dereceden bir sistem oldugu sdylenebilir.

fa(ti, ... ta) = ha(ty, ..., b)) + gnl(ts, . . ., ) (39)
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Eger tum cekirdekler hy(t4,...,t,) ve gn(ts,...,tn) seklinde olursa, g¢ekirdek f,(t4,...,t,)
seklinde simetrik(triangular) olur. m#n oldugunda ise toplam sistem

N=max[n,m] dereceden bir ¢ok terimli(polynomial) sistem olur.

Carpimsal paralel baglantisi Sekil 1,10 da gosterilir. TUm bunlarin

matematiksel gosterimi;
v(1) = [J h,(0..... O, u(t—0y) - - u(t—0,) do, - - do,]
[Jgkn{ﬁl- C *UmJ“U_Gl) T ”(I_Gm}dgl T Iﬂ?ﬁm]

= J'[’?"n(ﬁl ----- Un)gm(ﬁn +1s- - -2 0y +m)]” U_Gl)

T ”“_Gnﬂn) dﬁl o 'dﬁn +m (40)
tﬁr+m(r1----*rn+m):hn“1 ----- 'rn)gm(rn+1--- -*rn+m) (4])
— N.(1,, ...,r”)j
u _ I.fl—i‘\. ¥V
Ry
—» g (1, ...,IM)J

Sekil 1.10. Bir Carpimsal paralel baglanti.

Genel olarak, simetri bu durumda korunmaz.

iki sistemin kaskad baglantisi Sekil 1,11°de gésterilir. Bu  baginti  su

sekilde yazilabilir:
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v(r) = fgm(m.- O W (1=C1) - - v(I=0,,) dGy - - - dCy,

J=1,...,m, oldugu yerler igin;
T(?_Gj) = J"an(ﬁm—[j—l}n +1- - - - -Gm+ﬁr)“ (I_Gj_ﬁm+(_j—l}}f+l)

ol (r_ﬁj_ﬁm +jn) f;"]I'jm'+(;;l'—lj]n=+l C {fﬁm +in

U 1 (1,,...,1 g, (1} s L f—>

Sekil 1.11. iki sistemin kaskad baglantisi

Bu verilmis olan (42). ve (43). denklemleri daha guzel bir ifadeyle yazarsak:

(] (]

.T(U - ng(ﬁl """ Gm)[ j. F"}r((jm +15--- -0y .|_”)H(f—61—0m +l)

—D —O

ce H(f—ﬁl—ﬁm—n)(?rﬁm+1 T dﬁm+n]

(]

o [J hn(ﬁm Hm-Dn+1- - ---Op - (r_ﬁm_ﬁm-l-(m—]}n +1)

—o

o ”(r_ﬁm_ﬁm+m}r) n]I'jm'+(m—1:|m +1 dﬁm +mn] dﬁl o dﬁm

ve buradan da;

(42)

(43)

(44)
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y(1) = T[ng(crl ..... G )i (T1=01. . . . . Ty—01)
Iy (Ton—1yn+1=Ome - - Tyun—Om) dCy - - d Gy Ju (1-71)
cu(t—T,,)dty - dT,,, (45)
seklinde elde edilir.
Jom(E1s - slym) = Tgm(ﬁl ----- O )iy (t1-01 - - . . 1,—01)
Iy (P n—1yn +1=Om- -+« < Bypy=COy) dGy -~ - d Gy, (46)

Bu baglantida simetrinin kaybedildigini sOylemeye gerek yok. Yani
fn(t1,...,tmn) @yrik bir operator gibi simetrilestiriimelidir.
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2.BOLUM

GiRIS/CIKISIN DONUSUM ALANINDA GOSTERIMI

Laplace  donusimu, genel olarak sabit dogrusal olmayan sistem teorisi
onemli dnemli bir aragtir. Dogrusal sistemlerde oldugu gibi ¢cok degigkenli gekirdegin
Laplace donugumune transfer fonksiyonu denir. Bu gosterim  her iki sistem
Ozelliklerini karakterize etmek ve sisteme giris / ¢ikis davranigi tarif igin yararlidir.
Ayrica, sistemleri baglantilarini tanimlamaya yonelik kurallar transfer fonksiyonlar
cinsinden ifade edilebilir. Tum bu o6zelliklerin temel sebebi, belirli Cok degiskenli

Laplace dontigumu drunleri agisindan, tek degisken durumunda da temsil edilebilir.

Her homojen sisteminin ¢ekirdegi igcin 0zel formlara karsilik, transfer
fonksiyonun 6Ozel bir seklidir. Polinom ve Volterra sistemleri transfer fonksiyonlarina
karsilik gelen

homojen alt sistemler olarak tanimlanabilir. Tim bu gosterimler kapsamh bir

sekilde anlatilacaktir.
2.1 Laplace Donusiimu

Laplace tanimi i¢in bir donisuimu gozden gegirerek baslayalim, gergek degerli
fonksiyon f(t):

F(s) =LIFO] = | f (e~ dr D
0

Genellikle, fonksiyonlarin Ustel formlari ile kargilagilir, bagka bir deyigle sonlu
lineer kombinasyonlar " ¢* seklinde ifade edilir. 4 karmasik olabilir fakat eglenik
ciftlerin sartlari nedeniyle, fonksiyon gergek olur. Bu tur integral fonksiyonlari(1) ”s”

leri kompleks duzleme yakinsar ve ¢ikan donusumun "s”in gercek katsayisi rasyonel



iglevi oldugu kesinlikle dogrudur. Bu gozlemlerin sonucu olarak fonksiyonlarin sinirli
siniflarinin dizenlenmesinde kullanilan Laplace donlusumundn cebirsel bakis agisi

igin uygun oldugudur.

Ters laplace donusumu hesaplamasi f(f) den F(s)’e:

GTieo
FO=L7'F(s)] = Lﬂ | F(s)e* ds (2)

= g—ice

Burada o, F(s) yakinsama bolgesi icerisinde secilir. Rasyonel Laplace
donusumleri igin kismi kesir genisletme yontemi kullanilir ve hesaplamalar sorunsuz

oldugu kadar yakinsama ilgili sorunlarda vardir.

n degiskenlerin bir fonksiyonu g6z 6nune alindiginda f (4, . . . ,fy), her
degiskenin tek tarafli oldugunu, Laplace donusumu su sekilde tanimlanir:

F(sy, ... su) =L[f(ty. ... .1)]

=) fty. ..., e e gy -t (3)
0
Bu tanim da yakinsama degerlendirmelerine baghdir. f (¢, . . . ,f,) bu formlarin
dogrusal kombinasyonlaridir.
rrln]e/.]r; r):)l:e/‘.:fg L T::l""eh""!" T1 ?,; >0

integral(2) ve integral(1) bir toplami olarak yazilmis olabilir. Bu yakinsama
bolgelerinin her zaman var oldugunu gosterir. Entegrasyonlar yurutmek, Laplace
donusumlerinin  bir degigskenden daha fazla rasyonel fonksiyondan olustugunu

gosterir. Ustel formlarin Uggen etki alaninda benzer arastirmalar ve simetrik Ustel



formlar benzer sonuglara yol agar. Ancak yakinsama bolgelerin genel olarak daha
karmasik geometrisi vardir.

Ornek 2.1 Laplace déniisiimiini hesaplamak igin

r

ftit))=t; —t1e . t;.t,20

Tanima gore(3):

8
8

F(sy.50) =) | (t,—t,e7)e™ e ™" dtdt,

|- ) T—

o0

Q

o

Tlé?—“rle_::!: dtydt, — J
0

-t

tie e e grydty

D e, § D
o
Qo

O o,
[ S—

1 T —52l> 1 T —fx =532
= | e dty—— | e e dty
ST 0 ST 0
_ 1
e -
5152(s7+1)

Cok degiskenli Laplace donusumu ve oOzelliklerini sonradan tanimlamak
ve kanitlamak oldukga basit. Bu ¢ok degiskenli donusum kullanarak yapilan
hesaplamalarin tek degisken donusumu ile ilgili olarak yapilan hesaplamalar kadar
basit oldugunu ima etmemek lazim.

Asagidaki liste ve devami boyunca teoremler tek tarafli kabul edilir ve harf
donusumleri igin harf gosterimi kullanilir.

Teorem 2.1 Laplace donusumu islemi dogrusaldir:



Lif(ty.....t) + gty .. . t)]=F(sy... .. Sp) +G(sy. ... Sn)

Llof (ty, ..., W] =0F(sy. ..., S5,). forscalar o (4)
Teorem 2.2 f(t4, . . . ,t,) iki faktorun bir Grinu olarak yazilabilir
fltw....t)=h(t,....t)g(t.1...., 1) (5)
F(sy....5)=H(5n....5)G(s.1,...,5) (6)
Teorem 2.3 f(t4, ... ,t;) formun bir konvolusyonu sekilde yazilabilir
fltn....t)=+h(Dg@l (,....e10Hdfl (7)
0
F(s1,...,8)=H(s1+...+5,)G(S1,..., Sn) (8)
Teorem 2.4 f(ty, ... ,tn) n-form konvolusyonun bir formu olarak
yazilabilir
fty, ..., t) =) h(ti—o1. .. .. ty—Gn)g(C1. ....0,) doy - - - do, (9)
0

F(sq.....85,)=H(sq,....5,)G(sy,.... 5,) (10)



Teorem 2.5 T4, ...,T, negatif olmayan birer sabitse

L[f(t,=Ty..... =T =F(sy..... sp)e v

Teorem 2.6 f(ty, . .. ,t,) sonug tarafindan verildiyse

F(ts, ..., t)=h(t, ..., t)g(t, ..., )

(12)
1 G~ieo
F(sq,..., Sy) = o J H(s{—wy, .. .. Sp—Wn)G(wy, . ... wy) dwy
(_'TU) g—ioo
Ornek 2.2 ) i
f(t,t) = e‘-’]‘-‘f: - é_r:_.":. f1.520

(11

- dw, (13)

Laplace donusumu igin tanim(3) uygulanirsa, su sekilde yazilabilir

V4.

flnt) =e e —e7")

Teorem 2.2'yi uygularsak, ikinci yaklasim secgersek tek degisken

durumunda sonuglari gosterir ki:

1 1 1 1

F(s1.52) = [ - 1=

. - ) L -
sp+l Csy+2 s)+3 5155453 +55157+651+552+6



Eger numarator polinomunun derecesi sj her j icin denominator polinom
derecesi sj ‘den daha az ise rasyonel , ¢cok degdiskenli laplace transformu kesinlikle

uygundur.

Bugune kadar ¢ok degiskenli durumda Laplace da Ustel form karsilik olan
tartisma, kesinlikle dogru olan rasyonel fonksiyonlarin ustel formlara karsilik geldigidir

Ornek 2.3

f(t1.t2) =84 (t2-211), t1,220

2t1= b ilgili Laplace donusimu :



Ornek 2.4 Diirtii fonksiyonu igin

f(t1.t2) = 0g(t1—12)

Laplace donusumu dogrudan tanimindan hesaplanabilir

o0 00

F(sy.57)= J J 80(?1—&)6?_5:;:8_::?: dt 1dt

00

= | [) 8o(t1=t2)e " dryJe " dty
N

— J e—:;."_ve—ﬁ:f: dr:
0

= 1 —
S1+5>

Temel iligki tek tarafli iglevini belirlemek igin kullanilir f (fi,...,t;) karsilik gelen

F(s1,...,Sn) bir formun bir gok satirli entegrasyonudur.

fty, ... fh) = Lt [F(sy..... Sp)]
1 O
=— | F(sy..... spe’ e dsy - - - ds, (14)
(znj)'l O—ico

0 ’nun degeri her integralde farklilik gosterir. Genelde uygun yakinsama zorluklari
onlemek icin secilmelidir. Uygun tekniklerin varsayimlari altinda dogrusal integraller,
bromvich es yukselti edrisi integralleri ile degistirilebilinir. n = 1 i¢in ters donusum
fonksiyonu, kismi kesir genigleme yonteminden sonra bahsedilmistir.Rasyonel ve tek
degiskenli laplace donusumu dogrusal integrasyonda uygulanabilir degildir. Cok
degiskenli laplace donusumu igin inversiyon proseduru uygun degildir. Ama daha duz
basit bir 6rnek(14) kullanim hakkinda konusmak i¢in gok daha eglenceli olabilir.



Ornek 2.5 Ters Laplace déniisimii hesaplamak igin

1
s15z(s1+s3)

F(sy.s3) =

+ioe

1 1
{Em‘}z G—iee 152 (s1+52)

st 53l
e e dsydssy

f(t1.t2) =

O-+foo 0o

:L J Lesy‘z[ 1 J 1 e ds1] ds;
2mi 57 21 4, S1(51+52)

G—ieo

Parantez igindeki s¢ ve spa sabiti tek degisken ters Laplace donigumu olarak
kabul edilebilir.

I T R
Ftnt) =5 | =™ ()~ =8 (0)
O—ioo
O +ico O+ oo
1 1 Sats 1 ) 1 —53t; Sata
=— — e " dsy B - ——e e dsy d gt
ZTIZf F—ieo 5% © > 1{{1] 2th {F—Jh-: S% c c > 1{ 1]

ilk terimin tek degiskenli ters Laplace déniisimi olan 1/(s%), yani t, ise ikinci

terim ile benzer t1 birimlerinden bir sire belirtilir.

ft1,t2) = t26_1(¢1)8_1 (t2) — (t2—t1)0_1 (£2—11)0_1 (£1)

f(ty.t) =minfty, 6], £, 6,20



Hisy +s5) = 11 > h() =8.4(9

Clsy.sy) = — gley.tp) =61 (21)81(t)
5152
Sonug:
f(ty.t2) h(o)g(t1—0,t,—0) do

min [¢,t5]

1
=]8.4(h-0)8.1(t,0)ds = | do

= Ij.
9
| 8.1(0)8_1(£1—0)8_1 (t2-0) do
]
_ |
] 1]

=min(ty, ;]

Okuyucu bu o6rnegin ne kadar basit oldugunu dusunebilir. F (s1,s2)in
paydasinin ana 6zelligi basit faktorlerin Griini olmasidir. Oyle ki egrisel integraller,
kalinti hesaplamalar veya kismi kesir acilimlari tarafindan kolayca degerlendirilir.

Carpanlarina ayirmadan tek degisken ters dizisini gergeklestirmek igin ¢ok degiskenli
ters donusimu imkansiz olur.

Ters donistirme islemi gok nadiren sonradan gereklidir. Oyleki faktoring
sorunu baska baglamlarda ortaya gikacak ve diger bolumde anlatilacaktir.

2.2 Homojen Sistemlerde Laplace Donlisiumii Gosterimi



Sabit bir dogrusal sistem i¢in gekirdek h (t), sistemin Laplace transfer
donusumu fonksiyonu h (t):

H(s) = | h(oe™ dt (15)
0

Tek tarafli giris sinyallerde dikkat sinirlandiriimasi ve Laplace donusumu ile

kivrim 6zelligini kullanarak, girig / ¢ikis iligkisi

t

y(0) = | h(o)ult-0) do =| h(0)ult-o0) do (16)
—e 0

Bu sekilde yapilabilir

Y(s) =H(s)U(s) (17)

Eger bir sistem transfer fonksiyonu ve ilgi girig sinyali bilinen bir basit U (s)

donusumda, sonra gelen ¢ikis sinyali igslem icin bu gosterimin yarari agiktir. Transfer

fonksiyonunun 6nemini bir diger nedeni de bir¢ok sistem Ozellikleri degil ifade olabilir

basit olarak H (s) 6zellikleridir.

Ayrica, dogrusal sistemlerin bir "dogrusal" arabaglanti ve transfer fonksiyonu

kolayca alt sistemi transferi fonksiyonlardan hesaplanir. Bir n.derece homojen sistemi

bir giris sinyalleri tarafli olarak temsil edilebilir.

..... o, ul(t-0,) - - - u(t—0,) do, - - - do,,

-
—
~
S—
I
L R
3
o>
—
Q
s

=|h(o,..... o, )u(t-0,) - - - u(t-o0,) do, - - - do, (18)
0



Cok degigkenli Laplace donusumu dogrudan bir sekilde sonuglanir form (17)ye

benzer bicimde sonuglanir.

I8 [
Valt1. ..., tp) = |- h(oy, ..., o, ult;—0y) - - - ult,—c,) do, - - - do,
0 0
‘(1) =_,Vn([| ..... [,,) | fy=--- =t,=t =_.-‘"}1(t ----- [) (19)

ilk denklemi Laplace donusumu 2,4 ve 2,2 teoremleri kullanarak (19) ile

arasinda bir iligki olarak yazilabilir

Yolsio..., Sa) = H(sy. ..., sn)Ulsy) - Ulsy) (20)

H(sy, ..., s,) =L[h(ty,..., t,)] (21)

homojen sisteminin gokdegiskenli transfer fonksiyonu.

Yanit hesaplanmasinda c¢okdegiskenli transfer fonksiyonunun programini bu
noktada ¢ok net. Ancak, y (t ) Oncesi ters Laplace donusumu gerekir (19) ikinci
denklemi adresinden bulunabilir ve hesaplanabilir. genellikle bu kolay degildir. Yanit
hesaplama daha da sorusturmaya devam etmeden 6nce, sistemlerin ara baglant
konusunda cokdegigkenli transfer fonksiyonu goOsteriminin bazi basit ozelliklerini
tartisacagiz. Bunu donusumu etki sistemi diyagrami Sekil 2.1 'de gosterildigi gibi
kullanilacaktir.

v
PI)J(SI’ ""Sn)

Sekil 2.1
Cok degigkenli transfer fonksiyonu gosteriminin belki de en belirgin 6zelligi
ayni derecede homojen sistemlerin paralel baglanti igermesidir. genel transfer
fonksiyonu da alt sistem transfer fonksiyonlarinin denetimi tarafindan yazilmis

olabilir.



n.dereceden homojen sistemin kaskat baglantisi olarak takip eden dogrusal
bir sistem Sekil 2,2 gosterilmektedir.

(ty ... t)= | g,(©)h,(t,~0. . ... t,—0) do (22)

—C0

Boylece Teorem 2.3, bir sistem transfer fonksiyonu:

=
&
L
Y
@
@
-

Sekil 2.3’te dogrusal bir sistemin, n.dereceden homojen sistemi takip eden bir

baglantisi gosterildi. Bolum 1.4, ¢ekirdek tarafindan verilen komple bir sistem

Fu(sy,.... Sp) =H(sq) - - Hi(s,) Galsy, ..., Sy) (25)

A4

T HO [ GG s

2.3 Yanit Hesaplama ve iligkili Doniisiim

Cok degigkenli ters Laplace donusumu gerceklestirmek igin, tepki hesaplama
prosedirii Ornek 2.8 kullanilir. Bundan Laplace ¢ikis sinyal déniisiminin analiz
fikrine dayanan alternatif bir yontem, Y(Is) Yn (S4, ..., Sn). Y (s) ye birlesmis donigum
denir. Notasyonu soyledir:



Y(s)=AdlYn(s1, ..., sn)l

Gosterim degiskenlerdeki operasyonlari belirtmek igin kullanilir.

Teorem 2.7
1 G+ oo
Y(s) =— Y,(5s—s,,55) ds 32
(s) Zmﬁ_fw J(5—55,5,) ds, (32)
ispat
G +foo
yalty,t2) = ) Yy(s1,52)e’ " €™ dsyds;
)" G-t
t1=t2=t
1 G+ioo 1 G+foo
” R - Y ) Slld ngd
y(1) P (,_J;mlznl G_J;m 2(s1.52)e”" dsile™ ds;

s =s1tsy  degiskenleri degistirirsek

G+ioo G+foo

L 1 _ (s—s2)¢ Sat
.}(t)—ZM I l 0 | Yals—sz.sz)e dsle™ ds,

G—{oo G—foo

integresyon diizeni degistirerek



Y (s)=L][y(f)] ispat tamam.bu farkli formuller integrallerin farkl

duzenlerinden kaynaklanabilir.

G+l
Ys) =5~ | Yalsi.s—s1) ds) (33)

4

iki form asagida verilmistir.

1 O+foa
Y(s) = —{ETI:f]”_l Y, (5—57,52—53,...,5,_1—53.5,;) ds; - - - dsz
g—lwe
1 O+ioa
F{S] - {ETE”.IT—l }.:7(‘5_‘5 1—52— """ —85-1:51:52, . .. ;Sn—[}dsl . d.sﬂ_l
g—lve

Bu hesaplari kurmak (34) ve (35) detaylari da bir dizi olarak kabul edilebilir.

Teorem 2.8 eger F (s4, . . ., Sp) in formu olarak yazilirsa F (s1,...,Sn) = H
(S1,...,Sk)G(Sk+1,...,Sn)

G+ioo

1
F() =AlF(s1,...os)l =5 — | Hls=s)G(s1) dsy (38)
G—foo
Sonug 2.1.
1
F(Sl,...,sﬁ}l:—G(Sl,...,Sg_[.slgf,;l,...,.'jn}l

(34)

(35)



Fls) = LV 4L o (40)

q! ds9
Sonug 2.2.
o
Flsy,....5,) = > 7 Gt Se-1.5 41, - -, Sn) (41)
Sk-H].
Fls) = % G (s—10) — G (s +10)] (42)
Sonug 2.3.
Sk
F{.’Sl, 5513}_ ? 2 G(.’Sl,...,5.#_[4.'5'{;4.1,...,5”} {43]
S+
Fls) = %[G(s—lo&) + G (s +10)] (44)
Teorem 2.9 F (s1, ..., sn) asagidaki formda yazilabilir
F(s1,...,8)=H(s1+...+48,) G(S1,...,Sn)

F(s)=H(s)G(s)

Teorem 2.10 n homojen sistemi formunun bir uygun, rasyonel duzenli transfer

fonksiyonu tarafindan agiklanan varsayimi:

(53)



Qi(s)) tek degigkenli polinom ise, girig sinyali su sekilde ifade edilir:

dy
Uls) = (54)

{ jgll 5 +Tf
Yoo, Yr farkl oldugundan sistemin cevabi agagidaki gibidir:

r r
),(S) — Z ‘e Z 3!1 e 3!,,,1 Hf(:;,’(s +Y!1 PRI +Y/,,,1'

/;=l ln,l-:l

SHY L+ Y e s+, S U(s+y,+-+y.,) (55

Kanit: (52) deki integraller degerlendirilerek ve tek tek kalinti hesabi kullanilarak
kanitlandi

G+ioo

ol G_J.!m Hipp(S—51—" " " —S;_1,5—S2— """ —Sp_1, .- .. 5—S;-1.5)
Ul(s—s1— " =s,-1)Ul(s-1) dsp
1 “Tm P(s—s;— " —=Sp_1...., 5—S,-1.5)
C2mt . Qils—si— =spm1) 0 Quot1(5—Sa-1) Qn(5)
Uls=s1—" - =sp_1)U(sy-1) ds,y

Buradaki onemli olan nokta 1/Qn(s ) integralin paydasinda F(s-s,-1)G(sn-1)’in

diginda ayri olarak hesaplanabilir.

r

Z dy ng{-s_-s 1— """ —Sp-27+Yy, 5 52— """ —Sp_2+Yy .
In1 =]

S, S Uls—s1— - —sp2 Y, )

Bu sekilde yazilabilir:



O+

Y(s) = a H (s—s\— =S, 2+, 5—S3— =S, 2+Y, .,
;n§|=1 fe1 {ZTH}”_E e g 1 n=27T 1 2 n—27 i,
s, SWUs—s = - =s, 0+, WU(sy) -~ Ulsyp)ds,_ - - - ds)
Kalinti hesab yapilarak:
()= 3 3 LY
Y(s) = a a ——— Hpols—s1— = +Y, ., +Y ..
2 ety T
v, S U(s—s1— 0 =sp 3+, #Y, ) U(s1) -+ - Ulsy—3)ds,—3 - -~ dsy

2.4. Ustel Biiyiime Yaklagimi

Homojen sistemlerin donigumunun gosterimi dogru bir bakis agisi oldugunu

dogrusal sistemlerin agagidaki 6zelliginden kaynaklanir.

yl = T hio)u(t—o) do (56)

u(t) =e™, & >0, tiim t'ler icin tanimhdir.

v = | k(o) "9 do

| h(o)e™ do e (57)
0



h (t)'nin tek taraflihigindan gorugle alt limit O a yukselirse ve h (t) ransfer fonksiyonu

ise:

() =HMeM, te(eo,00) (58)

Aslinda buyuyen bir Ustel giris sinyali sadece ¢ikis sinyali Uretmek icin bir dogrusal
sistem tarafindan 6lgeklendirilir bazen dogrusal sistemlerin Oz fonksiyon 6zelligi
denir. Ayrica, buyluyen ekspolensiyel bir dogrusal kombinasyonu igin lineer sistemin

yaniti:

P
u() =S oy e, Ay, >0 (59)

vy = | b0y, ....0)ult—0,) - ult—o,) do, - - - do, (61)

Okuyucu sistemin cevabini su sekilde gorecektir. g (f) =™, & > 0, t € (—eo,0)

() =Hylh, ... 0)e™ (62)
Hn(s4, . . . ,sn) transfer fonksiyonu oldugunda, Hn(sq, ... ,sn)Cok degiskenli
fonksiyonun tam karakterizasyonu Hn(A4, . .., 1) fonksiyonunun tek degiskenli

fonksiyonunu igermez.



u() =age™™ +oge™™, Ay >0, te (—o,00) (63)

Hn(s1, . . . ,Sn) sistem transfer fonksiyonudur. Anlagiliyor ki cokdegiskenli fonksiyonu
tam bir karakterizasyonu Hy(s1,.. . ,Sn) :

Bu 6nemli 6zelligin devami olarak:

= a ;
j"{ﬂ = J h, (o, . ... Tpl j];l1 [{I].'EIM (t—a) +azflets-*ﬁ_f]] do, - - do,,
?; 2 2 n
= o100 T+ ¥ (Moy) expl ¥ 4y (t=0))] doy -+ - dos,
—oo L=l k=1 471 =
2 2 m
=% Y (ITog)
k=1 k=1 J=
= i
J ha(G1. . ... 0,) exp( E A 0)) doy -+ - dOy, exp( ¥ lkjt}
0 J=1 J=1
2 2 n n
:E...Z{ﬂlu;&}lHE{lkl,..., & Jexp( Z (64)

Bu cikig ifadesi agisindan bir ¢ok esitlik vardir.

of af ™ Gy ,—i (A, A2)expl(kh; + (n—k)Ay)t] (65)
2 2
Gro-ihihg) = 3 - ¥ Hplhg. ..., Ai) (66)
b=l k-l
ky -:L oo rhp=2n—k

Sitemin cevabli bu sekilde yazilabilir:

n -
= ¥ of 057 Gipalha.hg) &7 (67)
k=0



Sistemin derecesi n=2 ise soyle ifade edilir:

Gia-k(A1.hp) = [’;J Hugym(, - - A5 A, oL Rg) (68)

2.4 Polinom ve Volterra Sistemleri

Sabit polinom veya Volterra sistemlerinin temelde homojen alt sistemi transfer
fonksiyonlarinin donuasumunu  igerir. Volterra sistemler igin bu toplam islevlerin
sonsuz serilerinin yakinsaklik Ozelliklerine dikkat edilmesini gerektirir. Yakinsama
giris 6zelliklerine baghdir, 6rnegin, giris sinyalinin genligi uzerinde sinirlari gibi.

Artan Ustel yaklasim transfer-fonksiyonu sabit polinom ve Volterra sistemleri
icin ¢cok uygun bir aragtir. N Ustel fonksiyonunu incelerken giris sinyallerini toplaminin
N ustel ayrik ayrik fonksiyonu oldugunu kabul etmek gerekir. Cikis artan Ustel
fonksiyonlarin toplamiysa e' ™ ¢ " ”1”“ ; N Hpsym( A1, ..., An) n=1,2,3...... N

hesaba katilir.



BOLUM 3

FARKA BAGLI-DENKLEM TANIMLAMALARINDAN
GIRDIi/CIKTI TEMSILLERINI ELDE ETMEK

Sistemler cogunlukla, bir vektor bakimindan tanimlanir, ilk-emir farkh olan denklemi,
resmi denklemi ¢agirdi. Bu yolda bir sistemin giris ¢ikti davraniginin, tanimladig zaman,
ilgiden midir, bir temsil, resmi denklemin ¢6zimu, ihtiya¢ duyuldugu igin. Bu boélimde,
cekirdekler veya transferi kararlastirmak igin birka¢ prosedir, verilmis resmi bir denkleme
uyuyor olan bir Volterra Wiener temsilinde is gorur, tartisilacak. Genelde, sinirsiz bir Volterra
dizisi, gerektirilir, ve bu, yeniden bir noktada birlesmenin ¢ikisini kaldirir. Genel bir noktada
birlesme sonuglarinin, bahsedilecek olmasina ragmen, tartismanin ¢ogu, dolu Volterra
sisteminin derece N polynomial-sistem budamalarini bulmak bakimindan soézcik gruplu

olacak. (Bir genel bir noktada birlesme sonucunun bir kaniti, ek 3.1'de verilir.)

Gizgisel olmayan farka bagh denklemlerle ugragsmakta biyuk bir zorluk, o varlik ve veya
¢O6zimlerin benzersizligidir, yerel bir histe diizenli, bahsedilen igin alinamaz. Bazen meydana
gelen koti seyler, cok basit gosterilebilir, innocentappearing érnekleri, ve ben, okuyucunun,
durumdan iyi haberdar oldugunu varsayarim. Bitlin bundan kaginmak, o, kendisinin altinda
farka bagl denklemlerin, herkesin, ilginin, 6zel ilk durum veya (S6zde piecewise-devamli
olmayi farz etti) giris sinyali ne olursa olsun zaman arasinda benzersiz ¢éziimleri oldugunu
calistig farz edilecek. Bu, iyi buylimede kosullari bileni ifade eder, ve verilmis farka bagl bir
denklemde ¢izgisel olmayan gorevlerin dizginlik mallari, kontrol edilmeliydi, metotlar,
Volterra Wiener temsilinde temel almadan 6nce, kullanil. Aslinda, onlar, kontrol edilmeliydi,

herhangi bir metot, kullaniimadan énce.



)

Takip eden sayfalarda gelismenin blyik kismi, zaman-degisken parametrelerle farka bagh
denklemler bakimindandir, odur, duragan olmayan olay. Bu olayda ilgisiz okuyucu, isteyerek

gelisme uzmanlasabilir. Gergekten, ¢ok daha fazlasi, dogru vyerlerde distnceleri

T)

diisiirmekten gerektirilmez, ve degistirmek @ (t, 1) ile &4,

3.1. Giris

Konuya rahatlatmak, ben, bir teknigin bir incelemesiyle gizgisel resmi denkleme uyuyor

olan
() =A(x(t) +b(tu(t). 120
YO =c(tix(t), x(0)=x,

bir giris ¢ikti temsilini kararlastirmak icin baglarim. Bu ifadede x (t), n-boyutlu resmi

vektordir, u (t), yonsiz giristir, ve ¥ (t), yonsiz giktidir.

Tipik farzlar, [0,T] bazi sinirli zaman arasinda o olacakti, a (t), b (t), ve ¢ (t) devamlidir ve
giris sinyali, sinirlanir, ve devamli piecewise. Boyle farzlar, buttun tz[0,T] igin (1)'in benzersiz

bir ¢6ziminin varligina garanti vermek igin yeterlidir. Bu standart sonug genellikle, art arda
gelen tahminden turetilir, o buna ragmen, burada gosterilmeyecek. Benim baslica ilgim,
cizgisel olmayan resmi denklemlere bir yaklasima gore fikir veren bir yolda (1)'e ¢dzlimiin

formunu almaktir.
ilk olarak bitiin t = 0 icin w (t) = 0 ile (1)'in ¢dziimiini disiin. O taktirde, farka bagli
denklemin her iki kenari
x(f) =xg + | A(o1)x(0,) doy
0
elde etmek igin bdatinlestirilebilir. Bu ifadenin Uzerinde temel alinan, tekrarlayan yer

degistirmeler, yapilabilir. Ozellikle daha ¢ok,

AT

¥(61) =x0 + | 4(G2)x(0y) do
{



(4)

(2)

yazar, ve (2)'e elde etmek icin yerine koyar (6)
P i o
x(t) =xg + ) A(01) doyxg + | 4(61) | 4(62)x(02) d62d 04
0 0 Q

(4)'de x( ;) icin yerine koyarak (3) formun bir ifadesini kullanirken devam etmek, verir

i ) 0
x()=[+ |40 doy + | A(0,) ] 4(0,) dordo,] %,
) D iy

LE} o

) 4] LA
+ | 4(01)] 4(62)] 4(63)x(03) dosdordo
] ) ]

Belirsizce bu sireci tekrarlamak, ve son terimin, (Normda) diizenli bir yolda 0'a yaklastigini

gostermek,
x(1)=d(r.0)xp

gecis matrisinin oldugu @(t,t) formda bir ¢6zim verir [0,T] X [0, T] herhangi bir sinirli
karede diizenlice bir noktada birlesen Peano-Baker dizisi olarak bilinen dizi ile

I 01

DirT)=T+ J‘A (O1)doy + J‘A(Gﬂ] J‘Afﬁg}dﬁgdﬁ1

t ]| T
+o+]dop) Ay | A6 do;---doy + -
T T T

tanimlan.

Devaminda kullanilacak olan gegis matrisinin énemli bir mali kékenin faydasi olmadan,

carpim formilidur

bt o)b(o. 1) =Dd(r, 1)
@(t,7) her biri t 'de invertible ve T olan gergekle baglagta bu formul; Ver
®7(t,7) = ®(t,7). Sonunda, gercekte bir sabit matrisi 4 (t), ne zamandir, bir, ®(t,1)
kesinlikle matris tstel olan e® =i géstermek icin zor degildir. Sifir giris icin (1)'in ¢ézimii,

olabilir, bir temsili elde ederdi, keyfi bir giris sinyaliyle (1)'in ¢6zimi oldugu igin u (t).



)

(11)

()
4 (14
®(t,7), (T) her t ve T igin invertible oldugundan z(t) = d71(t, 0)x(t)'e degiskenleri

degistir, ve (1) 'i tekrar
) =bOu@). t20
y(®)=c()z(). z(0)=xg
gibi yaz,

b(t) = B (1. 0)b (1)

c(t) = c(1)d(t. 0)
oldugu yerde.
(8) resmi denklemde, A (t)z(t) formun hicbir terimi yoktur, hangisi degisken degisikligin
objektifiydi. Farka bagh denklemin her iki kenarini iceride batinlestirmek (8),

¢

() =xp + J E;{G}:u (0)do
0

orijinal degiskenler bakimindan, hangisinin oldugu

{.

x (1) = ®(r. Oy + | B, 6)b (0)u(0) do

0
'i verir. Boylece,

{.

¥ () = c(D(. 0)xg + | ¢ (ND(t.0)b (6)u (0) dO

0 .

x5 = 0'In oldugu olay igin, 1- derece homojen giris ¢ikti temsilinin
yv() =) h(t.0u(0)do
a

hit,g) =c()P(t,0)b(T)



(19

(15)
. T 0 - . . 131_8) ]
cekirdekle elde edilmistir. Ustelik, eger A (t), b (t) ve ¢ (t) gercekte, sabit matrislerse, sonra

@ (t,0) = e**=dir, ve (13), bir kivrim bitiini olur

h(t.0) =h(t—0) = cet-9p

Ben, bilinear durum denklemlerine bu ayni yer degistirme yaklagimini alarak gizgisel
olmayan olayin dikkatini baslatacagim. Bu baslayan nokta, kismen uygundur ¢inki bilinear
sinift durum denklemleri, kendisi igin ¢ekirdekler icin genel bir formun, elde edildigi gizgisel
olmayan denklemlerin ilk olarak genis siniflydi — ve kismen ¢linkii genel form, matematige
ait gizelligin bu kadar gérkemli érnegidir. Ustelik, o, bilinear olayinin davranisinin, daha

genel gelismelere bir haberci oldugu daha geg kisimlarda agik bir sekilde olacak.
Bir bilinear durum denklemi,
X)) =AU () +D(Ox(Ou ) +b(Hulr)
y)=c(x(), r20, x(0)=xq
formun bir vektor farkli olan denklemidir, nere, 6nce oldugu gibi, x(t), n x 1'dir, u(t)
olurken, ve ¥(t), yonsiz niceliklerdir. (16) igin tipik farzlar, aynen gizgisel olayda oldugu
gibidir. Problem 3.9'da, okuyucu, bu farzlarin, herhangi bir sinirli zaman arasinda benzersiz

bir ¢6zimin varligina garanti verdigini gdstermesi igin art arda gelen tahmin kanitinin oldugu

astandardi taklit etmek igin davet edilir.

z(t) = ®71(t,0)x(t) degisken degisikligi kullanmak, gecis matrisi ©(t,7), A (t)'e nereye

uyuyor (16):
2(6) = D)z (Ou (1) + b(e)u (1)
vy =c()z(t), 120, z(0)=zg
'in basitlestirilen bir formunu verir,
b(t) =D (. 0)b (£)

D) = & (t. 0)D (1)d(z. 0)

c(t) = c(n)d(t, 0)



(19)

oldugu yerde. Giris ¢ikti temsilinin formunu bulmak igin gizgisel olay, teknikte oldugu gibi

sadece, (17) farka bagli denklemin her iki kenarini iceride biitiinlestirmektir, ve sonra z(t)

icin tekrar yerine koyar. Prosediiriin ilk adimi, verir (20)

z(t)=z¢ + j‘ﬁ{glj: (G u(g,) da;, + jﬁi;(ﬁl}y (o) doy

(e} (e}

Bu ayni formun bir ifadesini kullanirken z(ay ) i¢in yerine koymak,

z(t)=zp + J‘ﬁl{-‘.}_ Jzou () doy

0
£ )
+ |} D(61)D(0,)z (62)u (6))u(6,) do,d o,
00
L9 ; i
+] ) D(61)b(02)u (61)u (02) d62d61 + | b(61)u(61) doy
00 0

(19) formun bir ifadesini kullanirken (20)'de z(o,) igin yerine koymak, ve bu bicimde devam

etmek, verir, N — 1 adimlardan sonra,

N Lo Ok ‘
Z(f) =z + E J J - J D(Gy)---D(Gp)zu(0y) - - - u(0;) do;. - - - d 0y
k=100 0
N LY Ol . .
+¥ 1) | Do) Dior-)blopu(or) - - u(oy) doy - - doy
k=100 0
(0 Owi :
+| |- | D(oy) - D(ow)z(On)u(ey) - u(Gy) doy - - - do,
00 0

Gergekte notasyon igeride (21)'dir, k = 1 igin birazcik yoksul, toplamalarda adlandirir. Daha

acik bir ifade, olacakti



(22)
z(t) =zp + J ﬁl{ﬁi Jzgu (o) doy
0

W Ry Tk-1 .

+ J J J D(o;) - - -b(ﬁk}:su (Gy) - -u(op) day. - - - do,
k=200

:
- J b u(oy) doy
0

+ ZJJ ] DGy DGy )b(0u(0y) - - u(Gy) do - - - do,
k=200 0

+J‘ .J-Diﬁl} - D(ON)z (01 (01) - - u(0y) doy - - doy
0o

Yine de, ekonominin sebepleri igin ben, ¢dken uyarlamayi igeride kullanmaya devam

edecegim (21).

Denklem (21), birgok yolda gizgisel olayda (5)'e benzerdir, ve o, o herhangi bir sinirh zaman
arasinda dizenli bir yolda (21) yaklasimlar Oi'nda son terime gosterilebilir. Herhangi bir sinirli
zaman arasinda bilinear durum denkleminin ¢6zimi bu yilzden, dizenlice bir noktada

birlesen (Vektor) Volterra dizisi ile temsil edilebilir:

E‘G‘:. |:Flur—_ X
z®)=zo+ X J J ' J D(UI} Doy )zou (o)) - ul(oy) doy. - - - daoy
F=10 0 0
w L0 Tl i X
+ Z J J J D(Gl} -D(G,_ )b(Gu(Gy) - - - ulo,) do; - - - doy
k=100 a

(3.12 ve 3.13 problemler, akillica bir noktada birlesme malini gosterir (22).)

Orijinal degiskenlere gikti denklemi ve arkada degistirmeyi birlestirmek,



T1 L

y () =c(D)d(z, Oxxp + E [T | et 00D 0)0(01.0, 1)
k=10 0 0

< Do )P0, O gu (G ) - - - ui(0y) doy - - - doy

-4

1 O

18]
| -+ | c(®®(r.61)D(6,)P(6;.02)D (0)
0

n
o

F.
[]

+
ANk

- DO PGy G)b (G i (G7) - - - u(0,) doy - - - doy

hem de diizenlice herhangi bir sinirli zaman arasinda bir noktada birlesen Volterra sistem

temsilini verir.

ilk duruma yalniz giivenen (23): onlarda kosullarin (¢ tiirii vardir, girise yalniz glivenenler, ve
onun, her ikisine giivendigi onlar. Odur, gizgisel olaydan farkl, yanit, basitce zorunlu ve
zorunlu olmayan yanitlarin toplami degildir. Eger her t = 0 i¢cin, u(t) =0 ise, bilinear
durum denklem bakislari, gizgisel resmi bir denklemi begenir, ve yanitin, uygun asina formu
var. Eger x, = 0 ise, giris ¢cikti davranisi, makulce basit bir Volterra sistemi ile tanimlanir.

Sonunda, eger x, = 0 ayarlanirsa, giris cikti davranigi yeniden, bir Volterra sistemi ile

tanimlanir, ama c¢ekirdekler, 6zel degere glivenir x,.

O, cizgisel olmayan bir sistemin giris ¢ikti davranisinin, sistemin ilk durumunda biraz
karisik bir yolda bagh oldugunu fazla sasirtiyor olmamaliydi. Tutturulmus ilk durumla, (23),
bir dereceyle bir Volterra sistem temsilidir, belirtilen bir zaman gorevi olan 0 terimdir, ve
daha yliksek-derece kosullarinin cekirdekleriyle tamamen belirtilen. Yine de, o genellikle,
yeni degiskenlerde sifir ilk durumun segenegine izin vermek igin bilinear durum denkleminde
degisken bir degisikligi tanistirmak icin en rahattir. Bu, daha genellikle beklemeksizin
tartisilacak, simdinin diginda basit 6rnekler, degisken-degisiklik fikirlerinin, nasil yerine

getirilebildigini gosterecek.

Ornek 3.1. Sikligi olusturmak igin direkt metot, ayarladi (FM) sinyaller, bir voltajin,
osilatoru kontrol ettigini kullanmaktir. Odur, bir armonik osilatérinin sikligl, bir mesaj sinyali

geregince degistirilir u(t). Temel farka bagl denklem modeli,
JO + [ +u@y@ =0, t20, y0)=0. ¥0)=1

v(t) nerede olusturulan FM sinyal oldugudur. Bu model,



= | YO
z (1) L}m]

elde etmeyi koyarak resmi denklem formunda yazilabilir
Sy — 0 1) _ .. |0 0]._
A1) = [4,:.3 u] 2(0) [_1 D] (O )
VO = _ ey — | O
yO=[1 0]z, z(0)= [1]

Simdi, kendisi igin ilk durumun, sifir giris yanitini gikararak 0 oldugu yeni resmi bir denklem

)

tanimlamasini tanistirir. w(t) = 0 igin,

cos(mr) 1 sin(er)
®

_ — Ao _
z(f)=e%zp = —@sin(or)  cos(or)

1 .
— s (0
= sin(or)

cos(t)
boylece izin ver
1
E s i)
x(O)=z(0)- cos(@r)

x(t) ‘nin terimlerinde diferansiyel denklem yazmak

0

—sin (mr)
)

() = [-Eﬁ é] x(f) + [ _*3'1 g Y (Oulr) + u (1)

y) =[1 G]x(z}+ésin{mr]_, x(0) =0

verir. Denklem (23)’seki sonuglari bu bilineer durum denklemine, ilk iki i¢ kdseli cekirdegin



—~ sin [0(t-01)] sin(©6,)8_,(1~01)

ht.oq) =

(L)

7 (t,01.02) = —5 sin [0(t-01)] sin[o(01-02)] sin(@0,)8_1 (-—61)5_1 (61-02)

L)

oldugu yerde, uygulamak

vin = % sinor) + J It oy u (o) doy
: 0

+

T2 e, ™

3
| h(t,61.00)u(0))u(0,) dordo; + - - -
0

uretir.

Ornek 3.2 bilinear durum denkleminin formiile etmesinin baska bir resimlemesi olarak,
yapar, ve ¢ekirdeklerin hesabi, ideali distnir, ayri olarak heyecanlandirdi, figlir 3.1'de direkt-

glncel motor diyagramli.

L, L, R,
Inductor Tnductor Resistar | 0+
5
R, | Resistor 1(1) +e, (1) v, (1)
O+ V(1) O L O
Sekil 3.1. Bir ideal DC motoru.

Alan devirinin farka bagh denklem tanimlamasi,
d . Ry 1
— Iy =———Idf) + — vdrl
dt "Ir{ ’ Lf "({ i Lf ‘f( :I .

Armatr devirinin temel karakteristikleri, daha fazla agiklamayi gerektirir. S6zde olusturulan

voltaj e (t), alan akimi ve motor hizinin Griiniine orantilidir:

eq(r) = K idr) (1) .

10



Motor ile olusturulan manyetik tork, alan ve armatir akimlarinin Grliniine benzer sekilde

orantihdir:
Tir) =K idr)i,(r)
Boylece, armatir deviri,

d . Ry | K 1
—— = —— —_— — ¥ + — £ I
dr Ea{r} Lﬂ }-a(ﬂ Lﬂ- ful'{ﬂ U(I} ..[.ﬂ 1L-.-‘.r'( }

ile tanimlanir, ve mekanik yik sistemi, TL'in, mekanik yik torku oldugu

| K . . 1
— )= —idt) i) ——=T
dr ': J“f{.cz':. T L

gecerek tanimlanir, ve J, ataletin anidir.

Hiz icin basit bir metot, kontrol eder, bir DC motorunda, armatir voltaj sabitini tutmaktir,

v (t) =V, ve i}.-(t) alan devirinde degisken bir direnc yoluyla ben alan akimini kontrol eder.

Ozel bir olayda bu plani temsil etmek, gevseten bir alet olarak motor yiik islerini varsayar.
Odur, T, = Bw(t)'i varsayar, B'in, nerede agdal gevseten katsayi oldugu. (Ornegin, motor,
bir akiskan maddeyi karistirtyor olabilirdi.) Sonra u(t) = i}.-(t) giris, v(t) = w(t) ckti ve

durum vektor

x(t) = EES
ile
x() = _Rf)iﬂ —Jg,{f x (1) + Kﬂﬂ _Kéia] x(Ou(r) + PESLH
yin=[0 1]x@. x@©)= Egg%

tarafindan tanimlanan sistemdir.

Bu bilinear durum denklemi, tamamen dogru tarafta sabit terimden dolayi (16)'in formunda

degildir. Bu terimi cikarmak, x(0) = 0'le farka bagh denklemin ¢éziimii x.(t) olmak ve izin

11



(24)

verir u(t). Sonra oldugu (Bir) isteyerek dogrulanandir. Simdi z(t) = x(t) — x_(t) izin ver, ve

z(t) icin farka bagl bir denklem : hesapla

Bu, (16) standart formda bir bilinear durum denklem tanimlamasidir, ve (23) yoluyla

¢6zimiin hesabi, aciktir. Ornegin, eger ilk kosullar, Osa, sonra ilk U, iic kdseli cekirdeklerin,

oldugu
“Ry/L, 0 0 -K/,
= | T O+ ey o | 2 Ou)
+ 0 1 u(t)
| (KVa/IR)(1-e &
0
yo=10 1:0. z0= |20
"dir.

3.2. Notasyonda bir uzaklagsma.

Daha genel cizgisel olmayan farka bagh denklemler olarak duslintl, notational
karmagsikhklar, goézikmeye baslar. Bunlar, birka¢ degisken ve onlarin gi¢ dizi
geniglemelerinin gorevleriyle yapmak zorunda. Zorluklar muhtemelen, alisiimamis degildir,
ama onlarin kararlihg (Tensor) Urinler burada Kronecker bakimindan, biraz nadirdir, bu

yuzden bu uzaklasma.
A = (a;;) ve B = (b;;) matrisler igin, sirasiyla boyut n_xm_ ve n,xm,, Kronecker Urin,

gecerek tanimlanir

anB - ay,B
A®B = : }
B

GW,IB T Qym,

12



{30)

(38)
(29)

Agik bir sekilde A®B'in, n n,xm_ m, boyutu oldugudur, ve herhangi bir iki matrisin, bu
Urline gobre itaatkar oldugu. Kronecker Urin, associative oyledir k(zﬁk@b’@c‘ belirsizlik

olmadan yazilir. Takip eden iliskiler, kolayca kanitlanmigtir, siradan matris toplamasi ve

¢arpima gore uyulabilirligi farz etmek.
A+B)B(CH+D)=ARBC)+(ABD)+(B®C)+ (BRD)
(AB)&(CD)=ABC)B&ED)

aslinda bu mallar, Kronecker Griiniiniin, matris toplamasi ve g¢arpimdan daha yiksek bir

oncelik verildiginden beri daha basit formlarda yazilabilir:
A+BIRC+D)=ABRC+ARD+BRC+B®D
(AB)®(CD)=A®RCB®D
Kanitlamak igin sert olmayan ekstra mallar, asagida listelenir.
Ozellik 1 Uriin A®B = 0, eger ve ancak, A =0ve B = 0.
Ozellik 2 Eger, A ve B, invertibledir, sonra A®B, invertible ve (ARB) ™ = A7'®B 1.
Ozellik 3 Eger A = 7, siraysa, ve B = 7, sayar, sonra sayar AQB = r,7,.

Kronecker Uriin notasyonu, polynomials icin kullanilacak, veya birka¢ degiskende gili¢ dizisi.

Ornegin, eger f: R™ — R™ ise, sonra f(x)'in glic-dizi genislemesi x = 0 etrafta,

fx)=Fg+Fix +Fyx®x +F;x®x®x +

her biri F;'nin, 6zel olmak, nerede uygun boyutun bir katsayi matrisi oldugu (m x n*) yazilr.
Ben genellikle, biraz x'? = x® ... ®x (i terimleri) koyarak notasyonu basitlestirecegim, ve

yazarak

flx)= i Fix®
i=0

Daha yakin bir bakisi almak, lizumsuzluklar oldugunu goésterir, bu notasyonda sakladi.

Ozellikle x**, bir n*x1 vektorudir, ama tek [n ; ] girisleri, ayridir.

Ornegin, yazmak, boslugu kurtarmayi yer degistirir, eger



(33)

@)
(36)

y =[xy x2x3] (34)

sonra
"

L2 — 2 . . . 2 . 2
x¥=[x] X1X72 X{X3 X2X{ X7 X7X3 X3X| X3¥Y> X3 |

l[Gzumsuzluk, tekrarlayan girisler ve kullanmayi silerek ¢ikarilabilseydi, de, kalan igin

emrederken bir lexicographic.

Sonug igin bir kare-parantez notasyonunu benimsemek, bu prosedir,

2] =42 ) 2 2
Pl =[x7 x;xy xyx3 ¥3 xv; x5 ]

verir, birgok maksat oldugu igin, bu azaltilan Kronecker Uriin(, tercih edilirdir ¢linkii boyutlar,

daha kiigiktir.

Yine de, bazi agiklik, genel hesaplarin, yapildigl zaman boyutun ekonomisi icin feda edilir.

Ornegin, varsay, n x nve ¥y = Ax m.

Sonra
7P =3 ®y = (4x) ® (4x)
= 4®A4xRx
— 4D,
Orada,

yI21 = 4121 2]

baska bir érnek olarak A.'in acik kosullarinda A™) yazmak igin zor oldugu bir (Daha kiigiik

boyut) matrisi A”) béyle var oldugu agik olurken,
x(t) =Ax(t), x(0) =x,

yeniden A bir n x n matrisiyle gizgisel farka bagl denklemi diigin.

14



(38)

(40)

% O] =5 ®x (1) + x (1) ®x(t)

x'? () igin farka bagl bir denklemin,

% P =4I +I,®A1xP®), xP(0) =x§’

n x n kimligidir formda yazilabildigi Gran kuralini dogrulamaktan sonra. Onun, x hem de

cizgisel farka baglh bir denklem, ve daha asagi boyutun birini tatmin eden gosterilebilmesine

ragmen, A. bakimindan agikga katsayr matrisini yazmasi igin hicbir acgik yol yoktur (Olmasi

beklenence, notasyon, ‘¥ (¢)'in, iyi sebep icin kaginmis oluyor oldugudur. (:5) [x2(t)]'in,

[(i)x(t)]m'den cok farkh oldugunu fark et, ve boylece nokta notasyonu, belirsizlige

yonelir.)

Bu farka bagli denklem 6rnegi, adil notational sebeplerinden daha ¢ogu igin ilgidendir. Ne
gosterildi ki eger x(t), cizgisel farka bagh bir denklemi tatmin ederse, sonra, bundan dolayi
yap x'2 (). Agika, bu dustnce, x'*(t) cizgisel farka bagl bir denklemi tatmin edeni
gostermek devam edilebilir k = 3,4, .... Cok benzer bir gbzlem, anahtar saglar, kisim 3.3'te

tartisilmasi igin metotlar oldugu igin. Bu dikkatlerin sonucu, benim, bu bdélimde genel
gelismeler igin Kronecker Uriin notasyonunu kullanacak oldugumdaur. Yine de, agik bir sekilde
daha tutumlu notasyonun, agiklikta birlikte olan bir kayipla yerine koyulabildigidir. Daha fazla
gitmek, basit 6rneklerde o muhtemelen, hem bu 6zel notasyonlari birakmak icin kazanghdir,

hem de serbest ¢alismak.
3.3. Carleman Linearization Yaklasimi

Cekirdekleri hesaplamak igin Carleman linearization metodu, ilk olarak
x(t)=ax(@).)+bx(@).Ou@), t=20

v(t)=cx().t). x(0)=x,

x(t)’'nin nx 1 resmi vektor ve u(t) giris ve v(t) ciktinin yonsiz sinyaller oldugu yerde

formun resmi denklemlerinin baglaminda distinilecek. Bu 6zel formla baslamak igin bir

15



sebep, uygun cekirdeklerin, uyarilari icermedigidir. Bu, onun oldugu gergegin direkt bir
sonucudur, giris iceride (40), cizgiselce gozukir. Kismin sonuna dogru ben, bu kisitlamayi

¢ikaracagim, ve kisaca daha genel bir olayi tartisacagim.

Form icin baska bir sebep iceride (40), bir noktada birlesen bir Volterra sistem temsilinin
varliginin, genel hipotezlerin altinda garanti verilebildigidir. a(x,t),b(x,t) ve c(x,t)
fonksiyonlarinin x 'de analitik ve t 'de devamli oldugunu varsay, (40) gizgisel-analitik resmi
bir denklem hangi olayda cagirilir. Sonra cesitli metotlar, olabilir, takip edeni kurardi, biraz
gevsekce belirtti, sonug verir. (Teknikleri kullaniyor olan bir kanit, tartisti, kisim 3.4'te, ek

3.1'de verilir.).

Teorem 3.1 Zorunlu olmayan gizgisel-analitik resmi denkleme bir ¢6ziimun, igin var oldugu
t[0, T]'i varsayar. Orada sonra, bir £ = 0 bdyle var olur ki orada |u(t)| < £i tatmin ediyor
olan butln girigler icin, Uzerinde bir noktada birlesen [0,T] resmi denklem igin bir Volterra

sistem temsilidir.

Uygun sonugla bunu kiyaslamak igin ilgingtir, bilinear durum denklemleri oldugu igin.
Cizgisel-analitik resmi denklemler igin, bir noktada birlesen bir Volterra sistem temsilinin
varligl, sadece garanti verilir, yeterince kiglk giris, isaret ettigi icin, bilinear durum

denklemleri igin giris sinyalleri, ihtiya¢ duyarken, sadece, sinirlan.

Cekirdekleri gercekte hesaplamakta ilk adim, daha basit bir forma resmi denklemi koymak
icin bazi degisken degisiklikleri yapmak olacak. Bunlar, zorunlu degildir, ama onlar, miteakip
kokeni daha az telasl yapar. Olmasi beklenence, agik bir sekilde bdyle degisken
degisikliklerin, her zaman buyulk bir fikir oldugu degildir. Ne zaman 6zel problemler veya
orneklerle ugrasmak, ©onemli Ozellikler, gizlenebilir. Ama ben, kokenlerin basitligini
surdirmeye veririm, Volterra sistem temsilinin formunun, degisken degisiklikler olmadan

turetilebildigi yorumla.

ilk basitlestirme, gorevin c¢(x,t) iceride (40), genelligin kiiciik kaybiyla x'de ¢izgisel olmak
alinabildigi odur. Kendisiyle c(x,t) devaml olarak ¥(t) igin t'te farkli olan farzin altinda gikti

denklemini ayirmak,

16



42

(41)

y(t) = [% c(x.0)]x(r) + % c(x.p)

= [ cenllaten) + beou(] + e

icin farka bagh bir denklemi verir ¥(0) = ¢(x,,0) ile. (41)'in dogru tarafindan cizgisel-analitik
forma sahip oldugu icin, ¥(t), x(t)'in altina yeni bir vektori olusturmak igin bitisik olmus

olabilir Z(t). Sonra resmi denklem,
x(t) =alx(@).0) + b(x(@O).0u(). x(0)=xg

vy =et)x(@). t=0
%(t) bir (n + 1) x 1 vektdridir formda yazilabilir. Bu olayda é(t) = [0---01]. Ben hem de,
onu farz edecegim, u(t) = 0'la farka bagl denklemin ¢éziimiiniin iceride (42) oldugu
%(t) = 0. Bunu géstermek, genelligin hicbir kaybini gerektirmez, onu varsayar, u(t) = 0 i¢in
yanit, x,(t)'dir. Sonra (t) = %(t) — x,(t) koyarken, (42), formda yazilabilir
X(1) =x(1) — ig(1)
= a((0).0) + b, () — aleo(£).0)
= A(E(F)+x g ().0) + bEE(D)+x (). 0u () — ax o (0).0)
=a(@(r),t) + b(D), NHu(r)
y () = c(e)x(r) + c(t)xg(r). ¥(0)=0.r=0

uygun tanimlariyla yazilabilir @(%,t) ve b(x,t). Bdylece, notasyonu basitlestirmek, formun

resmi denklemleri

x(t)=ax(@).t) +b(x(t).0u(t), t=0

y()=c(x (@) +yo(). x(0)=0

17



(664)

disiunilecek. x(t), nx 1 resmi bir vektér buradadir, u(t) =0, x(t) = 0 ve ¥(t) = y,(t)
ima eder, ve a(0,t) = 0 degisken degisiklikten dolayi, calistirdi. O, bu son degisken degisiklik
icin 6demesi igin bir bedel oldugu not edilmeliydi. Yani, zorunlu olmayan ¢ozim x,(t),
basitlestirilen farka bagl denklemin dogru tarafini igeride elde etmek igin hesaplanmalidir
(43). Bu, zorunlu olmayan sistemin, iceride x(t) cizgisel oldugu zaman sert bir problem
olamazken, agikca daha genel bir durumda x,(t)'in hesaplamasi, keyfi olarak zor olabilir.
Amag simdi, i¢cin derece boyunca kosullari bir polynomial giris c¢ikti ifadesinin N'ne
kararlagtirmaktir (43). Odur, formun bir giris ¢ikti temsilini kararlastirmak

=]
-

N
v(t) =yot) + E _l hit.oy.. ... o) u(oy) - u(op)doy - --doy
k=1 —=

Tabii, genelde orada, iceride gormezlikten gelmis olan (44) daha yiiksek derecenin kosullari
olacak. Resmi denklemin (43), bir noktada birlesen bir Volterra sistemi olarak (Kosullarin
altinda, daha 6nce belirtti) temsil edilebildiginden beri, dizinin bir polynomial budamasi,

yeterince kiiglik olan girisler icin dogru bir tahmin olacak.

Gergekte, polynomial sistem temsilini kararlagtirmak igin dusliniilmesi igin metot, igin bir

polynomial temsilini olusturur x(t). Odur, vektor cekirdeklerinin bir takimi, formun bir

ifadesi icin kararlastirilir

T L= =]
L

x(1) = }: J wi(t.Oy.....0pu(0y) - u(0p) doy - - - do;

k=1 —o
Sonra, o zamandan beri v(t), x(t)'in gizgisel bir gorevidir, cekirdekler, giris cikti temsili,
isteyerek hesaplanan oldugu igin.

Carleman linearization metodu, (43) resmi denklemin dogru tarafinin degistirmesiyle gii¢

dizi temsilleri ile baslar. Kronecker-{irlin notasyonunu benimsemek,

ﬂ'(x..f) :4*’1'1(3‘).1' _x‘iz(f)ﬁ{‘{z} 4 +r1_.-\.{f).*r{"ﬂ n

kosullarin, nerede gostermedigini yazar, gosterilen kosullardan x'de daha ylksek

derecedendir. Boylece, (43), kendisinin benim
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\47)

(46)

i

N-1
()= 4OxP0) + Y Butx P (r) +
k=1 E=0

y(6) =c®x(t) +yo(t). x(0)=0, 120

acikca, derece boyunca kosullari a(x,t)’in genislemesinde N'e tuttugum formda yazilir, ve
N — 1 derece boyunca genislemesinde adlandirir b(x, t). Bu genislemelerde daha yiiksek-
derecenin, adlandirdigi, katkida bulunmayacak, ilk N cekirdeklerine, beklemeksizin
gorilecek. Temsil iceride (46), uygun ilk bir adimdir ¢linkl o, daha yuksek-derece kosullariyla
(46)'in ciktisinin, sildigi gdsterilebilir, ¥(t) onu cagirabilir, u(t) herhangi bir giris icin, ne

zaman, ¥(t) yanita bu ayni girise (43)'den kiyasladi,

$ O =y <KV 20
K'in, bir sabit, ve nerede oldugu

B = ITF‘L:}":]K uit)|

'i tatmin eder. Simdi, ¥#(t) ve v(t) au(t) formun girisleri icin yanitlar disiiniir, @ herhangi

bir gercek sayi oldugu yerde. Bu durumda,
At W1 W
YO -y @] <Ko

bundan dolayr (Budamalar) ¥(t) icin polynomial temsillerinin oldugu o, ve ¥(t), (46)'e
uyuyor olan ilk N c¢ekirdeklerini kararlastirmasi igin N.'in oldugu derece boyunca ayni
olmahdir, farka bagh bir denklem, ;x':i:'(tj) icin gelistirilir, agik dikkatten dusiirmek, yol

boyunca dereceden N'den daha biytk adlandirir.
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%[T @] = %[ﬁ-“}(r)@x(”(ﬂ] =+ PO @xO@)+=Om: Y (1)
N N—-1
— [ Z ;’1';{(?)_1' (}F}(‘r) + Z Bk(r)_-r (k}(F)H(I)] @.1‘(1}(3‘)
k=1 k=0

2 OOB[ T A0 + T Bl O] + -
k=1 k=0

N-1
=Y [A()®L, + 1, ® 4()] x* V(1) (45)
k=1

N=-2
+ ¥ [Bi)®IL, + I, ®Bu()] xE V() + -+ -, xD0)=0
k=0

Boylece x" (t), x"¥(t) igin farka bagl denklem olarak ayni genel forma igeride sahip olan

(46) farka bagh bir denklemi tatmin eder. Bu modada devam etmek, farka bagh bir denklemi

verir, notasyonla N dereceye x " (t) oldugu igin formun

) N—=j+1 ) N—j .
%h%%=2amm“ﬂm+z%mwﬁﬂwm+~u
k=1 k=0

xDy=0.7=1..... N

Ay = Ay gegerek tanimladi, ve j = 1 igin,
:{J-_,uf(rj =Ap(N&EL® - @O + L O A4S @ - @]
+---+ 1@ - BT @A)

(Her terimde ve j terimlerinde Kronecker Uriinleri vardir.) Benzer bir notasyon, icin kullanihr

B, . (t). Simdi, 6nemli gozlem, koyarak odur
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x®(p)

Ben, (49) daha ylksek-dereceyle (Bazi duslinceleri disirmek) beraber blyiik bilinear durum

denkleminin, adlandirdigi gibi farka bagh denklemlerin toplamasini igceride yazabilirim:

— X

dt

(A1 Ap
0 A4y
0 0
0 0

By By
By B
0 By
0 0

v(t)=[c(®) 0

BUtln daha yiksek-derece kosullarini silmenin Uzerinde, elipsler ile temsil etti, bu resmi

A1y
Aa v

Asyao | X

Any |
B 1_}','-'_1 0 ]
BQ..'?";_E 0
B3sn-3 0

B ‘:"I.-r{] {-}

0] x®(t) + yo(t) +

x®u +

(50)
B1o
0
O |u+ -
0
-, x®(0)=0

denklem, cizgisel-analitik resmi denklemin budanan bir Carleman linearizationu iceride

cagiritlir (43). (O hem de, bir bilinearization (50) ¢cagirmak icin uygun olabilirdi (43).) Derece N

polynomial temsilini bulmak igin ilkede agiktir, bilinear durum denkleminin giris ¢ikti

davranigi oldugu igin (50). (50)'in giris ¢ikti davranisindan beri derecenin kosullari boyunca

(43)'in olanla N'i kabul et, derecenin polynomial temsili, (50) i¢in N'in, kesinlikle aynen o

olarak igin oldugu (43)'dir. Bu yaklasimin, kisim 3.1'den (22) yoluyla tg¢ koseli formda biitin N

cekirdeklerini verdigini not et.

Ornek 3.3

FM sinyallerin demodiilasyonu igin evre-kilitlenen bir ilmik, figir 3.2'de

diyagramhdir. Giris,

() =sin[or + ()]
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0, (0) = [ u(0)do
0

oldugu yerde bir FM sinyaldir Ve u(t), (modiilayon) mesaj sinyaldir.

: T+ filrer

g(1). G(s)

L 4

Voltage—controlled
oscillator

'y

Sekil 3.2. Bir faz-kilitli déngu.

Dongti filtresi, G (s) transfer gérevi ile tanimlanir, ve voltaj-kontrol edilen osilator,

v(t) = 2Kcos [t + ¢2(1)] |

$2(r) =

[ —

vio)dao

oldugu yerde ve v(t) evre-kilitlenen ilmigin ¢ciktisidir sinyali tretir. Cogaltanin ¢iktisi sonra, iki

kosuldan dayanir:
Ksin [200 + 91(2) + §2(0)]
bir ylksek-siklik terimi, ve bir algak-siklik terimi

Ksin[¢1(0) — ¢2()]

Doéngii filtresinin, yiksek-siklik terimini cikardigini farz etmek, sinyal e(t), alcak-siklik

teriminin oldugu tek icermek dustnulebilir. Odur,
e(r) = Ksin[d (r) — d,(r)] = Ksin [x(1)]

evre hata sinyalinin x(t), gecerek verildigi

x (1) = 01(5) = 02() = | u(6) do - | y(0) do
0 0

Sonra, hem de evre-kilitlenen déngiiniin giktisi olan déngd filtresinin giktisi,
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yi)=lg(t-1e(t)dt

[ S—

Evre hatasini tanimlayan bu iliskilerden farka bagh-gerekli bir denklem,

X(1) =91 (1) = o) = u(r) -y (1)
= u() | g (t—v)Ksin[x (V)] dv
0]

Bu denklem, figiir 3.3'te gdsterilen modeli akla getirir. Ne zaman x(t), déngiiniin, kilitlenmek

icin dendigi sifirdir, ve ¢1(F) = (a(t). ory (1) =u(r)

h 4

——{ ¥ - sin() 2(1). G(s)

—y
\Tdh E s

&

L J

Sekil 3.3. Faz-kilitlenmis dongt igin nonlineer bir model.

Modeli analiz etmekte zorluk, genellikle ilmik-filtre transfer gérevinin dogasinda G(s)'e

bagh olur. Basitlik icin, ben, sdzde ilk-emir evre-kilitlenen ilmigin oldugu tek disliinecegim,

nerede G(s)=1 (veya g(t) = 3,(t)). Sonra evre hatas icin farka bagh denklem

tanimlamasi,
x(t) ==K sin[x ()] +u(r)

'e basitlestirir ve, eger ilmik, kilitlenirse, x(0) = 0. Bu basit olayda cekirdekleri hesaplamak,
genel notasyonu kullanmasi igin higbir ihtiya¢ yoktur. Farka bagl denklem, denklem ile

degistirilebilir
T K 3
x(f) =-Kx (1) + ik (1) +u(®)+ -

sadece ilk li¢ cekirdege katkida bulunan o kosullar, acikca nerede tutuldu. x(t) o zamandan

beri yonsiz nicelik igin x " (£) = x/(t), izin verir
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Sonra (50),

K 0 K/6]

d e = A ®
o ()] | g [2)5. —EK J x (1)
0007 17
120 UJ x® (0 ) + m u(e) + -
1030 0

x()=[100]x%0

evre-hata sinyalinin, nerede resmi denklemin ciktisi olmak icin alindigi olur. Kisa bir hesap,

[ e Xt 0 (eK_e 3Ky ]
edt = 0 e —2K¢ 0 |
|L 0 0 e 3K

verir, ve (23)'den ilk (g, t¢ koseli cekirdeklerin, oldugu
-K(r—o, .
h(t.c1)=e { 'jg_l(f—ﬁl)
h(t.61.072) =0

| - _g+ Ko, Ko, Ko _3xr Ko, Ko, Ko,
h(r.ﬁl.ﬁz._ng):E[e Rigmh01 002, B0 _ g=3h1 p 201 802 , 2037

0_1(t—01)0-1(01-62)0_1(62-63)

'dir. (Unite adim gérevleri, bunlarin, ti¢ kdseli cekirdekler oldugu onu sadece vurgulamak igin

oradadir.)

24



(51)

x(t) = f(x(@).u(r).r). x(0)=0
y®)=h(x@®).t). t=0

formundaki durum denklemini bu bélimiin yaklasimini uzatmak w(t) ve v(t)’nin yénsiiz

sinyal oldugu yerde sert degildir. Kesinlikle olmak, 6zellikle dlizensizdir, ne zaman, ayrintida

calisti, ama makineciler, asinadir. Denklemin bir gii¢ dizi formu, elde edilir, ve sonra x(t)'i
tanimhyor olan vektor gekirdeklerinin bir takimi, hesaplanir ¢ok ayni yolda dyle, yapildi,

bilinear durum denklemleri oldugu igin. Ama simdi u'in Uzerinde f(x,u,t) in gizgisel

olmayan bagimliligi, cekirdeklerin, uyarilari icermeli oldugunu ifade eder. Saydam bir olay,

neden oldugunu gosterecek.

Ornek 3.4

x(t) =u@). x(0)=0

y(t) =x3()

yonsiz resmi denklem icin biitlinlestirmenin dosdogru, verdigi
t
_f,2
x(@®) =) u’(o)do
ﬂ .
Bir derece olarak bunu yazmak 2 homojen,

L
x (1) = J J h(t.o1.00)u(o)u(c,) do,doy
00

disincesiz cekirdegi gerektirir
hit. G1.02) = 5(}((51—{52)

Boylece, cikti, acikca sistemin, derece 61'ndan homojen oldugunu gosteren

¥
¥ (1) = ] 80(01-02)80(03-04)8(05-06)u (01) - - - 1 (5) dGg - - doy
0
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(52)
(53)

gecerek verilir. (51)'de farka bagh denkleme donmek, ben, f(0,0,t) onu farz ederim, ve,
alisildigr gibi, £(0,0,t) kendisi icin varhigin hakkinda endiseler ve ¢éziimlerin benzersizligini
¢ikarmaya yeten t = 0 mallari oldugu. Takip eden gelismeyi tamamlamak igin yeterli farkhlik,
farz edilecek, ve t 'in, kismen dislrilecek oldugu diisiince ¢linkii hesaplar, aslinda aynen

duragan ve duragan olmayan olaylar icindir. Kronecker riin notasyonunu kullanmak, derece

x = 0,u = 0 boyunca f(x,u)in genislemesi N etrafta, formda yazilabilir
2 .
f(.T..H) = Fm u + FDEH_ T F{]_:,Ie'3 L Fm.‘t‘{l) + F“x(l}” + FIQJ‘{I}HE

Bu,
N N o
.T = z z F};};'.T(?:If{j _|_ A
i=0;7=0
oldugu F,, = 0 formun xi igin farka bagl bir denklemi saglar. x‘*, -, x™? icin farka bagli

denklemleri gelistirmek igin prosediir, dnce oldugu gibi sadecedir. Simdi, yine de,

X
, (2)
|~}( _T

X 9 .

@

icin denklem, birkag ekstra kosula sahip olacak:

d £
a .

- .® & - @2 o @,  N-1 . N o
o =" +Gux"u+Gyx“u-+- -+ Gt u gt gyt +

Bu noktadan, fikir, bilinear olayinda gelismeyi taklit etmektir. F igin gecis matrisini
karistirirken degiskenlerin bir degisikligini kullanmak, ve sonuc veren resmi denklemin her iki
kenarini sonra bitlinlestirmek, tekrarlayici yer degistirme proseduirini kurar. Tabii, burada
daha bircok kosul vardir, ama, notasyonun bu diizeyinde, dogru formda homojen kosullari

yazmak igin prosedir ve sokma uyarilarini uygulamak, ilkede agiktir. Bu bir defa, yapildi,

dereceye cikti denklemini N'e genisletmek,
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(54)

h(x)=yo(t) +hix +hox@ + o+ ™ +

~yor) + hx® + -+

elipslerin silmesinin Gzerinde bir polynomial giris ¢ikti temsiline gotirdr. Bu son adimin,
hicbir seyin daha ¢ok, Kronecker Uruninidn mallarini kullanmaktan gulglestirmedigini

gerektirdigini fark etmez. Ozellikle hicbir ekstra uyari ihtiyaci, sokulmaz.

Ornek 3.5 Figlir 3.4'te gosterilen gizgisel olmayan geri besleme sisteminin, yonsiz

cizgiselligin, (Veya glg dizileri)

h(x) =po(t) + hix +hyx@ + -+ ™ +

= yo(t) + hx® + -
gecerek tanimlandigi

bir polynomial oldugu

W(o) = o0+ Yy + pzer + -

yerde.
I'rf-_ 4 1
LH\\Z}—’ w() —®cedb —
A_
Sekil 3.4. Ornek 3.4 icin nonlineer sistem.

Yaklasimi sadece kullanmak, ana hatlarini ¢izdi, ben, kapali-ilmik sistemi igin ilk ve ikinci

derece gekirdekleri hesaplayacagim. (53)'e uymak, kosullar, ihtiyag duydu, ilk iki cekirdek,

.
)

|
X° = {x@J

koymayi karistirdigi icin ve formun resmi bir denklemi ile verilmis resmi denklemi

degistirmek

27



d (3 [§%4 — %) i
Ex‘:] = Fx® + (_71.1‘C'H T g T gou +

v =hx ®

0, acik bir sekilde daha yiiksek-derecenin, igeride adlandirdigi x® olmaliydi Ve sen, ihtiyag
duyulmayacaksin. Ustelik, o, kendisi icin farka bagl denklemde calistiriliyor olan x® genel

notasyonun oldugunu kapatacak Oyle ilk iki cekirdegin, ilgilendigi gibi gereksiz uzakta olan

kosullar boyunca tasi. Ozellikle, x® icin denklem x® x, x'¥, xu, x P u, u ve uilgili terimleri
icerir. x Py kosullari, ihtiya¢ duyulmaz, ve 0'a katsayilari keyfi olarak koymak, meseleleri

basitlestirebilir.

X icin farka baglh denklem, kendisine girmeyen x®
¥ =Ax + b[(u—cx) + Wo(u—cx) +ys(u—cx)® +- -]

= (A—bc)x + bu + yybu® — 2usbexu + b (ex) + 3uzb(ex)u + - -

(ex)? = (ex) ®(ex) = ¢ D ex @

yazmasi icin Kronecker Uriin notasyonunu kullaniyor olan ve nokta kosullarina dislriyor

olan formda yazilabilir Denklem, verir
x = (A =be)x + bu + yabu? = 2usbexu + Wrbe @ex@ + 3yzbe @exPy + - - -

x# icin farka bagl bir denklemi gelistirmek, Griin kurali, verir

%[x@] —F®x +x®F

=[(A-be)®I +I®(A-bc))x® + [b®I +I@b]xu
+ L[bR®T +I®@bIxu? — 2y [be ®I + IR®bc JxPu +

Yeniden son sonuca katkida bulunmayacak olan kosullar, distrildi. (53) bakimindan

boylece resmi denklem x®
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d. o | A—bc UHrbe @c¢ ] ®
1= [(A-be)@f—f@(ﬁ—bc)]r
- ~2ysbe 3y3be ®c x®u+ | 2]+ {wa 1>
[bOI+19b] ~2y,[(be) @1 + 1@ ()] | o] " o

y=[c 0]x%. x%(0)=0

Simdi yer degistirme prosediri, uygulanabilir, sadece 0yle, yapildi, bilinear durum
denklemleri oldugu igin, uyarilarin, dogru formun kosullarini elde etmek sokulmali oldugu

istisnayla. Ug késeli cekirdegin, hesabi

h(t.o)=hef (g,

F(?—Ul}GleF(Gl—U:} F(t—1)

h(t.6,.65) = he g1 +he £290(61-02)

tamamlamak igin gecerek verildigi genel notasyonda ona gostermek igin kolay ilk ikidir, bu

cekirdekler, verilmis resmi denklem bakimindan onu gostererek ifade edilebilir

eUbeN [ U=bNI-0)N\y e @ e (AP RTH® U=b)0 g 5

[ L SRS

Fr _
e = 0 e [((A-bc) @I+ ® (A —-bc)]t

Sonra ilk iki, lic koseli cekirdegin, oldugu

h(t.G) =ce@PN0p§_ (t-0)

h(t,61.07) = [-2wye (‘{_bc)(r_ﬁl)bce (A ~be)(o, —G:)b
=0y
vy, | PN @ colABISIHEUIN Gy (bR [+ @ b)e“ )
0

T hce (_4—55)&—5,)580{61_0_2)]3_1 (1-61)0_1(0,-05)

'dir. Oyle baslangicta bahsetti, x'* karistiriyor olan kosullar, diger sézciiklerde, G,'in ikinci

blok stitununda kosullar, sonuca girmez, ve basitlik igin sifira koyulmus olabilirdi.
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(55)

3.4. Variational denklem yaklasimi
(56)
Variational denklem yaklasiminda, bir resmi-denklem tanimlamasi, her derece igin k elde

edilir, giris ¢ikti temsilinde homojen subsystemdir. O, onu kapatir, k subsystemin, gizgiselce
daha asagi-derece igin denklemlere subsystems birlesildigi derece igin denklemin olmasina
ragmen, denklemlerin her birinin, ayni birinci derece (Cizgisel) kosullari var. Boylece gesitli
cekirdekler, cizgisel-resmi-denklem c¢6ziiminin, kisim 3.1'de inceledigini kullanmak

hesaplanabilir. Onceki kisimda oldugu gibi, ben, kendisine

x(t) =a(x(t).t) +b(x(@).0u(), t=0

y() =c(t)x(t) +yo). x(0)=0

a(0,t) =0 oldugu cizgisel-analitik resmi denklemi disiinerek baslarim, bundan dolayi
u(t) = 0’ye yanit x(t) = 0,¥(t) = y,(t). Analitiklik farzi, sadece cekirdeklerin sinirl bir
sayisinin, hesaplanacak oldugundan beri zayiflatilabilir, ama burada basitlik icin tutulur. Daha
genel resmi denklemler zorunlu olmayan yanitta 6zel farzlar olmadan, kisimda sonra
tartisilir.

Homojen alt-sistem durum denklemleri, form a'in girislerine farka bagh denklemin yanitini
iceride duslnerek (55) turetilir; au(t) Keyfi bir yonsiz nicelik midir. Yanit, parametrede bir
genisleme olarak yazilabilir @ Formdan (Mevcut baglamda, subscripts, bir vektorin
bilesenlerini gbstermez.) Noktalarin, iceride derecenin kosullarini N'den daha biyik icerdigi

x(t) = o () + 02x, () + -+ oV ay(t) + -

Guig dizisi bakimindan a(x,t) ve b(x, t) analitik gérevleri gérmek, (55)'e (56) yerine koymak,
ve katsayilar giicleri gibi a'i esit saymak; x,(t) her biri icin farka bagh bir denkleme kursun

tabakalar, x(t)'in k derece bileseni.

Carleman linearization yaklasiminda oldugu gibi sadece, ilk adim, (55) gii¢ dizi temsilleri ile

kosullar igeride degistirmektir. Agiklamanin rahathgi igin, sadece ilk Ug¢ ¢ekirdegin hesabi,
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davranilacak. Boylece resmi denklem (57), distiniilecek. au(t) hem fa%ﬁiilen giris, hem de

farz edilen yanit iceride (56), yerine koyulur
() = A1 (Ox D) + 4,(Ox D () + A3(0)x () 59
+ Bo(Ou(t) + B1()xP(@u (1) + Br(Dx D () + - -

y(®) =c(OxDE) +yot). xP(0)=0. t=0

Kronecker Grlnleri icin hesabin kurallarindan onu not et, oldugu
x @) = [ox1(6) + 02x, () + - - 1@ oo () + 0 x4(0) + - - ]
_ 2 (D) 3 . 4 ...
=’ xP (1) + & [x (D) ®x (1) + x2() ®x ()]
¥ = P+

yeniden, sadece derece 3i'nln kosullari veya daha az, acik¢a tutulandir. (58)'den dusiiriilen

x'de daha yliksek derecenin kosullari, daha asagi-derece kosullarina iceride katkida
bulunmayacakti @. Odur, x'in bir derece k gorevine (56) yerine koymak, derecenin kosullarini

k'e verir, ve daha yiksek iceride a. Simdi, (57), formda yazilabilir
oy (1) + 0%, () + oPx5() +- -
= 0 1 (D 1 (1) + 0 [A 1 (D)x 2 () A2 (Dx ()]
+ 02 [A1(Ox3()+A2 (D) 1 (1) ® x5 () +x2(F) ®x 1 (1)) +A 3 () ()]
+ 0Bo(Du(t) + B () (u (t) + P [B1(E)x (1) +B(t)x P (O)]u () + - - - .
ox 1(0) + 02x5(0) + &Px3(0) +--- =0

Bu farka bagh denklem igin ve denklemden ilk durum, herkes igin tutmali oldugu icin «

Katsayilar, gligleri begenir « Esit sayilabilir. Bu, ilk tg variational denklemlerini verir:

31



(61)
(64)

(9)
%2(0) = 4, (Dx5(8) + A5 (OxP (6) + By (Ox 1 (D (7). x2(0) =0

Tl(f) =;11(i‘).*r1(r) +B[}U)”U)~ ‘Tl({}) =0

x3(1) = A (tx3(t) + A>(O)[x (1) ®x5 (1) +x5(1) ®x(2)]

+ A3(OxP () + B1(0)x (O (1) + Bo(txP u(r) . x3(0)=0

ilk denklem iceride (60), farka bagli denklemin linearized uyarlamasi iceridedir (55).
w(t.6) = ®(t.6)By(0)d_1(t—0) )
®(t, 1), A, () icin gecis matrisidir vektér cekirdegini tanimlamak, temsili verir

¥

x1() =) w(t.0)u(c)do
0

(60)'de ikinci denkleme devam etmek, terim ;rc'l:::', formda yazilabilir

P =

D Cm—,

w(t.ou(o)do]®[ J w(t.o)u (o) do]
0

b

-

f
= J w(t.o) @w(t.o)u (o u(or) dordaoy
0

0 e

(60)'de ikinci denkleme (62) ve (63) yerine koymak, bunun, cizgisel farka bagh bir denklem

iceride oldugu x,(t) o bulunur. (O, acik bir sekilde bu cizgisellik 6zelliginin, metoda anahtar

oldugu olmaliydi.) Boylece

I

]

agg
() = d(t.o)42(0) | | w(o.0)) ®w(6.60)u(6))u(0,) dordo,
00

0
a

]

+ B1(0) | w(o.01)u(o1)dou ()] do
0

w(t,a) = 0 gergegi kullanmak o, eger, o = tise, (64), formda yazilabilir
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(65)
O(t.0)4,(c)w(6.01) @w(e.00)u(c u(c;) dodordo,

O e,
O e,

b
-

+ | [@(t.0)B,(0)w(5.0,)u(o))u(6) dodo,
00 (637

Boylece x(t)'in 2 bileseninin,

Pt
x,() =] | w(t.0,.00)u(o)u(o,) do,do,
00

gecerek verildigi derece oldugu

i
w(t.61.0,) = | ®(t.6)4,(0)w(6.06,) ®w(0.0,) do
0

+ ®(t,67)B (62w (0,2.01)

i

-

= | ®(.6)42(0)P(6.6,) RD(6.6,) dGBo(G,) ® By(52)

max [0;.0,]

+ ®(,0,)B(0,)®(0,.6,)B((0,)5_,(0,-0,), 0<0,.0, <t

béylece derece yazilabilir, ayni prosediir, x;(t)'i tanimlayabilen 3 vektér cekirdeginin
oldugu bir dereceyi tliremek icin kullanilir. Agik bu, ama diizensiz hesap, okuyucuya soldur.
Dereceyi giris ¢ikti davranisi igin 3 polynomial temsiline kararlastirmak, acik bir sekilde vektor

cekirdeklerinin o her biri, gecerek cogaltiimaliydi ¢(t).

Ornek 3.6 Variational denklem yaklasimini kullanmak igin érnekte ilk-emir evre-kilitlenen
ilmigi 3.3 tekrar ziyaret etmek, bir daha cokta makinecilerin, modayi goérevlendirdigini
gosterecek, mukayeseye ek olarak iki metot, simdiye kadar tartisti. ilk U¢ cekirdegi

hesaplamak, baslayan nokta, resmi denklemdir, gli¢ dizi formunda evre hatasi oldugu igin:
. ; K 5, | B
I(F)Z—fﬂr[?‘)+€I'(I)+H(I)+"' . x(0)=0

Farz edilen girisle resmi denkleme
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.T(F) = U.T]_(T) + {12."('2(?) + [;{3.1(3(;) 4.

genislemeyi yerine koymak au(t), ilk Gg variational denklemlerini verir:
x1(t) =—Kx1(t) +u(t). x1(0)=0

xXo(t) =—=Kx,(f). x,(0)=0
£3(0) = K30 = o0, x30)=0

ilk variational denklemini ¢6zmek, basit bir meseledir:

I

xq(1) = J*E?_K{I_U)H (6)do
0

Boylece, derece, sistem icin 1 ¢ekirdegin, oldugu
hit.o) =e 2D (t-0)

'dir. ikinci variational denklemi, hatta daha basittir, her t = 0icin x,(t) = 0 vermek. Béylece

derece, 2 cekirdegin, aynen 0 oldugudur. Uciincii variational denklemi, verir

f i
x3(f) = | e X0 % xi(o)do
0

Standart derecede bunu yazmak 3 homojen, olusturur, alacak, biraz daha cok, calisacak. ilk

adim, yazmaktir
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(68)

(8]
¥1(0)=[) e u(o)) do; 1P
0

1)
= _l g k(00 ,~k(0-3) ,~K(o-03) (o u(c)u(o3) do;dordoy
0

f
= | KOO, 7R(0701) K005 | (5-61)8_1(6-52)8_1 (6—03)
0

u(o)u(o,)u(cy) do,dc,do;

x5(t) icin ifadeye bu ifadeyi yerine koymak, ve bitiinlestirmenin emrini yeniden

dizenlemek, verir

x3(t) =

[
o [

L -
e[| e05_1(0-01)8-1(0-02)81(6-03) dole” T
0

u(opu(or)u(o3) doydo,dos

|
12

-3k K(oy+o,+0; _Er —2Kmax(06,.05.0;) K(o,+0.+0;
[€3Kr€{1 2 }—E}LFE max (0.0 )6{1 2 }]

2 o

u (o (o-)u(o3) dodordos

Simdi bir derece, sistem icin 3 ¢ekirdegin, acik oldugudur. Fark et, yine de, bu sonucun, onla
ornek 3.3'te kabul ettigi hemen agik olmadigi. Variational denklem yaklasiminin makinecileri,
en genel resmi denklemlerin, diistinlldigli zaman az degistirir. Aslinda, yanitin, aclya sebep
olmadan gevsetilebildigi ciktinin ve sifir-giriste gizgiselliginde 6zel farzlar. Bazi ayrintida bunu

resimlemek,

2(t) =f @ (@).u(@).t). x(0)=xg
v()=hx@.u@).r). 120

u(t) oldugu genel resmi denklemi diistiniir, ve ¥(t), yonsiiz niceliklerdir. i (t) tutturulmus ilk
durum ve girisle onu varsay, yanit, x(t),¥(t). Bu koymada, ilgiden girisin sapmasi
bakimindan kendisinden #(t),v;(t) = v(t) — #(t)'den c¢iktinin sapmasini tanimlayan bir

polynomial giris cikti temsilini bulmak igindir @i (t), us(t) = u(t) —a(t).
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Bu, benim, bitin degiskenler degisikliklerinin 6nceden, notasyonlari temizler oldugunu

birakiyor oldugumu ifade eder. Derece boyunca N, farka bagli denklemin dogru tarafi iceride

(68), etrafta bir Taylor dizisi

Fleat) =f (x+xs.0+ugs.1)

o N N o
=fxaut)+ Y Y Fie)x§us +- -, Foo=0
i=0;=0

yoluyla (t'inki en dusirmek) gegerek degistirilebilir %, 1. Simdi, auz(t) formun sapma
girislerini distinur, nere a Keyfi bir yonsiz nicelik midir, ve kendisi bakimindan sonug veren

sapma yanitinin, genisletildigi & 'i farz eder mi :
— 2
Xg=0Ox)g T0 x5 T 50

a® teriminin, @ = 0 girisin, @ oldugunu ima ettiginden beri kagiriyor oldugunu not eder,
hangisi, yanitin, oldugu x'i ima eder.) Farka bagli denkleme yerine koymak, verir, (Yeniden)

derece 3l boyunca

05 + 0% g5 + %35 + 0 = Frp(Dorrys + oxgs + 07 x 3]
+ Fao(D[omr 5 + 0°x 2517 + Fag(0)[owx 1517+ aF g1 (D s
+ o Fop(ug + o Fos(Dug + Fiy (6o + ox g5 ours
+ Fio(®loxslodui + Fap (Do 5] Pomg + - - -

Katsayilari esit saymak, a'in guglerinin, ilk Gi¢ variational denklemlerinin, asagida listeledigini

verdigini begenir.
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x15 = Fro(Hx 15 + For(Dug . x15(0) =0
X235 = F1o(0x 05 + Fao(Ox8 + Foa(Dus + Fi1(Ox 15 . x25(0) =0
x35 = Fro(t)x3s + Fao(f)[x 15 ®x 25 + x5 @x 5]

+ F3o(Ox§8 + Fos(Dug + F11(Dxasus + Fia(Dx 155

+ Fay(txfgus . x35(0)=0

Ama once oldugu gibi simdi her degisme hasilati i¢cin vektor gekirdeklerinin hesaplamasi
sadece, ara sira olan bir uyarinin, homojen bir terimin standart formunu elde etmek
sokulmali oldugu disinda. Sonra sireg, ¢ikti denklemini genisleterek tamamlanir, o
genislemeye yerine koymak, ve ¢iktinin, (68)'in, girise glivenmek igin izin verildigini iceride
haritaya doktiiginden beri daha ¢ok uyarinin muhtemelen bazi sokmasiyla derece gibi tekrar

toplayan kosullari.

Ornek 3.7 Variational denklem yaklasimi, érnek 3.5'in g¢izgisel olmayan geri besleme

sistemine uygulanacak:

x(1) =Ax (@) + bylu(@)-»y(@)]. x(0)=0
v(t)=cx(t), t=0

ve nereii(t) =0,%(t) =0ve ¥(t) =0 hert = Qicin

W((I)Z(:{-I—wzaz —|—w3a3 + -
oldugu. Derece 2i boyunca ¢ekirdekleri hesaplamak, sistem, dyle yazilir
(1) = Ax (1) + b[u )=y (O] + Wb [u (O (OF +- -+

Onun, higbir 6zel avantaji teklif etmediginden beri bu 6rnek igin genel notasyonu disiirmek

icin uygundur. au;(t) girisi farz etmek, ve

¥ (1) = ox (1) + oPxoy(0) + -

yerine koyarken yanit, ve @ glglerinin, variational denklemlerini verdigi gibi
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71 =4 = bele(8) = bu(t) . x1(0)=0

%2(1) = [4 = beJxo (1) + b [u(D-ex (D] . x2(0)=0
katsayilarini esit saymak.

ilk denklem,

I

x1(t) = _l gAbelt—op, (o1) doy
0

'den, ve gikti denkleminin, gizgisel oldugundan beri, derece, polynomial giris ¢ikti haritasinda

1 gekirdegin, oldugu

h(t-0,) = ce ™ 7 1ps (1-ay)

'dir. ikinci denklem, benzer bir modada ¢oziiliir, kosullarin, karistirmasina ragmen, daha

karisiktir.
. o

xo(t) = e NV b [u(ey) - | h(oy-02)u(0,) doy]? doy
0 0

L e

wre N0 s (61-6)u (6))u (6,) dordo,

I
O e,

{:}"—_q

L e

e N b (61—60)u (611 (6) dGrd Gy

|
O ey

{::"——q

L e

O
_| wo e OB (61 -65)h (6103 (62 (03) dordo3do
0

D"——,H—t
..'_:..'r—_':l

2 boylece derece, adlandirir, giris ¢ikti haritasindan,

L
)
0

h(t.61.0)u (G (o,) dordo,

=t

'dir, nere, son terimde degiskenlerin biraz tekrar etiketlemesiyle,
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\7u)

(69)

h(t.61.62) = W h(t—61)0¢(61—62)0_1(G1—062) — 2w h(t—61)h (61—62)

L
+ ] wah (t-63)h (63-6,)h (63-0,) dos
0

2 gekirdegin, acik yolda verilmis sistem parametreleri bakimindan yazilabildigi bu derece.
3.5. Biiyiiyen Ustel Yaklasim

Bolim 2i'nde tartisilan exponentialsi blylimenin mallari, isteyerek sabit-parametreden
transfer gérev tanimlamalarini (Duragan) resmi denklemlere bulmanin problemine adapte

edilebilir.
x()=alx().u(). x(0)=0

v(t)=cx(t) +yo(t). t=0
a(0,0) = 0 ve a(x,u) iceride x analitik ve u genel formu dlsin. Kisaca belirtti, simetrik ilk
N, (69)'e uyuyor olan gérevleri transfer eder, takip eden gibi hesaplanir. ilk, a(x, %) x ve u
'da bir gli¢ dizisi ile degistirir. Sonra,
At At
u(t)=e*' + - +e-

formun bir girisini farz eder, ve

x(H) =Y G,

m

'i??i' ;".. +--- 4+ m_';",_v)r
My (} V1s - - - s lﬁ,r)g 144 vAN

notasyonun, kesinlikle bolim 2i'nin olan oldugu formun bir ¢6zimiini farz eder, ve vektor
katsayilari, kararsizdir. Farka bagli denkleme yerine koymak, katsayilarin, Ustelleri

begendigini esit sayarak
Giro .. o). Grao . olAA). oL Gr o (AL oL Aw)

icin ¢dzer. Sonra giktinin, gizgisel bir gérev oldugundan beri
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H(s)=cGyg. . ols)

1
ng'm('gl*'gl) = F CGI_I,{L . ,D(SIJZ_‘ZZ)
Hyoym(s1. -+ o58) = 75 ¢Gr o a(s1e - osw)

Ben, emekte oldukga blylk tasarrufun, fark edildigini not etmeliydim, eger agik¢a ilginin
kosullarina katkida bulunmayacak olan exponentials, hesabin her sahnesinde dusurdlirse.

Ornegin, en az biri igin m; = 1'le higbir terim j ihtiyag iceride (71), tasinmaz.

Ornek 3.8 ik Gigli simetrik bulmak, simdi asina resmi denklem tanimlamasina uyuyor olan

gorevleri transfer eder

x(f) =—-Kx(r) + %ﬁ(z} +u(t)+ ---

A Aa Aat
u(t)=e™ +e™ +e”
formun bir girisini farz eder, ve, basitlik i¢in distinceleri disirmek, formun bir ¢6zim{
e A ;‘...3,? 23
x(1) =G e + Goe™ + G + Gygge™

2hat 2hat R —Ralt
+ Goype " + Gope +G‘.1D€I:h' !

I'-}..-_ _;.3_}?

Y
+ Gipre + Go e ™

Guha=hsdt |

! + 6111{1‘

Tabii, ¢iktiyla bu yonsiiz olayda duruma ayni, G notasyonu, simetrik transfer gérev notasyonu
ile degistirilebilirdi. Hem de G54, Gpag. Gggz  kosullarinin, onlarin, gereksiz oldugu bir 6rnegin

baglaminda sadece gostermek icin kapsandigini not eder. Herhangi bir oranda, kolay bir

hesap, verir
(Bt S =000
x*(1) = 6G100Go1oGoore ™ 4+ -
Farka bagli denkleme yerine koymak, ve sirasiyla

gt A +Hha )t (g Hhgp+hs)t
gl..éll:] _:l_ek'l - 3N
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'in katsayilarini esit saymak, denklemlerin oldugu
M Goo +KGygo =1
(A Fh) Giyp T KGyyp =0
(A1 +A2+A3) Gy + KG i1y = KGiop Goto Goo

hasilatlar. Donlgste bunlari ¢dzmek, verir

1
€} )=
100 (A1) K
G0k M) =0
KG100Go0Gmm

G‘ (}u .}a.'l.}u"h = Py - -
1l 172,05 }n.'_ +J'u2 +J'u_'; +K

Acik gergekleri kullanmak: Simetrik

1
Goiglha) = L Goop(hs) =
o10(Aa ) ik 001 (A3) ik
ilk Gg, gorevlerin, oldugu
Hi(s)=
1(6) s+K
HESI‘.'?N (.5' 1 __.5':} =0
K/6

H 51.83) =
) 35.””('51 _.5'__-5'3} (,5‘1 TS5y T8y +K}(SI+K:|{5]+K)(‘53 _K}

'i transfer eder.

Ornek 3.9 Yeniden formun en basit genel cizgisel olmayan denklemini dusinir (69);

Bilinear durum denklemi
x(t) =Ax(t) + Dx(Hu () + bu(t)

vty =ex(t), x(0)=0

ilk ikiyi simetrik bulmak, gérevleri transfer eder,
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izin verir, ve onu farz eder

At A (A =Rt
II:!] = G'_:gﬂh + G 2 4 Gl_lf?l‘ 1A

A

Farka bagl denkleme yerine koymak, ve katsayilari esit saymak, eger e”+% verirse

}”IG'.:E] =4 G'.:l:l + b

Bu gizgisel denklemi ¢6zmek,
G = I-A)"D
oyle verir ki 1 derece, gorevin, oldugu
H(s)=c(sI-A)"b

A

'i transfer eder. A% )%jn katsayilari, benzer bir modada denklemi vermek igin esit sayilir

(M+h)G11=4AGy1+D Gio+D Gy
Gy o = (A4 — A) b ve Gy4 = (A1 — A)7'b yerine koymak, ve ¢cozmek, verir

G11 = [+ AT D[(MI-A)b + (aI-4)'b]

2 simetrik boylece derece, gorevin, oldugu

Hysym(51.52) = % cl(s1+5)I—-AT" D(s17-A4)"b + (s21-4)7'b]
(S) <

'i transfer eder. Daha basit asimetrik bir uyarlamanin, denetleme ile yazilabildigini not et,

yani

) H2s1.52) = cl(s1+s2) -4 I D(sll—.aij'lb'

Ben, okuyucuya 3 asimetrik bir derecenin, gorevin, yazilabildigi
Hi(51.51.53) = c[(s1+51+83)—AT]" D[(s1+52:) =41 D(s,1-4)"b

'i transfer ettigini gostermesi igin onu birakirnrm. Bundan, daha ylksek-derece transfer

gorevleriigin bir desen, acik bir sekilde olmaliyd.
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(73)
(74)
Bundan, daha yiiksek-derece transfer gorevleri igin bir desen, agik bir sekilde olmaliydi.
3.6. Sistem, N'inci-Emir Farkl Olan Denklemleri ile Tanimladi.

Tartisilan metotlarin g¢esitli uyarlamalari, zaman zaman edebiyatta goézikti. Bunlar
¢ogunlukla, N'inci-emir igin kuruldu, daha yasl edebiyatta ¢izgisel olmayan, farka bagli
denklemler. Bazi problemlerin, tamamen dogal olarak bu kosullarda tanimlandigindan beri,

ben, (75)

YOO + a1 Oy @ + -+ ag(y () + § () (6) = u ()
k=2

y© =y0©) = =y¥ D) =0

oldugu denklem igin variational genisleme metodunu inceleyecegim, bundan dolayl o,

u(t) = 0 icin ¢éziimiin, oldugu v(t) = 0 dir. Tabii, bu, dzel bir oIaydlﬁ(,7£)na fikirler, saydam

bir modada geneller. au(t) girise yaniti disiin, nere a Bir yonsiz nicelik midir, ve
M
y(O) = 2 oyu(t) = -
m =1

77
nerede sadece M'in veya daha azin, agik¢a tutulan oldugu derecenin S<0§)ullar|n|n oldugunu

yazar. Farka bagli denkleme yerine koymak,

M N K M E

> oY a0+ Y bO[ Y oMy + = o (1)

m=1 i =0 k=2 m =1
a,(t) = 1 nerede oldugunu verir, ve ilk kosullar,
y0)=0. n=01,....N-1., m=12,. ..M
Katsayilari esit saymak @ Her iki kenarda,
J.h';r

Y a,y @) =u@). y{(0)=0. n=0.....N-1
n=0

ver, ve bu gizgisel farka bagl denklemin ¢6ziim, formda yazilabilir
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()

(182)
A
1 (r) = J h 1 (f. GI)H (Gl) {??Gl
0
@’ 'in katsayilarini esit saymak, verir
N .
Y a,($ () + bo(tni(6) =0, ¥§7(0)=0. n=0.... .N-1

n =0

Bu farka bagh denklemin ¢6ziimd, formda yazilabilir
L
_ : 2
y2(t) =) h1(t.61)ba(61)yi (01) doy
0

Olagan derecede bunu yazmak 2 homojen, olusturur, vi(o;) icin bir yer degistirme:

gerektirir
t y K
¥a(t) = | hy(t.61)b1(01) ) 11(01.02)u(02) d6s | hy(61.03)u(03) dozdo,
0 0 0
£ G O
=] ] ) hi(t.61)b2(62)h1(01.62)0 1 (01.63)u(07)u (03) d62d03d 0,
00 0

Unite adimini sokmak, is gériir, bundan dolayi bitiinlestirmenin sinirlari, t'e kaldinlabilir, ve

degiskenleri tekrar etiketlemek,

va2(t) =11 hy(t,61.00)u(cy)u(c,) do1do,

O
[ ) S,

nerede oldugu

f

n-

ho(1.61.05) = | h(t.6)b>(0)h1(6.61)h1(6.62)8_1(6-61)8_;(6-0>) do
0

'i verir.
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(89}

Ben, benzer bir yolda (Budanan) polynomial giris cikti temsilinde(8daha ylksek-derece
cekirdeklerini hesaplamak i¢cin devam edebilirim. Genel bir formile etmeye tek engel, cizgisel

olmayan terimde iceride yalan soyler (76). Bu,
M . *'wk A
/. —_ J 45 -
[ X 0"y, (O] =Y yit) (g5
m=1 =k
yazarak tutulabilir, ve kosullar boyunca bir lanet etmeyi tlremek y; , (t),j = k. lzin ver

Jw
Sl =2, a”y,(1)
m=1

(86)
M
g =[Y oy, O]
m =1

Sonra, g(a), dyle

J.MA— ]

go)= Y oy 1(0)

J=k-1

ve yazilabilir
M,
flo)g(o) =3 oy;x(t)
J =k .

a’,j = k'i izole etmek, bu denklemin her iki kenarinda adlandirir, gére her iki kenar j

zamanini ayirir & ve koy a@ = 0.

47 . ; j 7 Ji-i
Hod [f (0)g (o] E{j e[ o F()] =

g (o]

artin kuralini kullanmak, verir

Y i)k () =y (D)
i=0 ,
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(89)
(94)

Ama toplamda daha asagi sinir, o zamandan beri 1'e kaldirilabilir v, (t) = 0. j = k oldugu
icin, ve sifir olmayan summand-lar j —i = k — 1'e uydugu icin toplamda Ust sinir, gegerek
degistirilebilir j — k + 1. Boylece, kendisi i¢in oldugu
J—k+1
H,i’(ﬂ - E .1"5“).1’,1'—;',#—1 (f) (90)
i=1
k=1,y;4(t) = y;(2).

Yakinda probleme simdi dsnmek, denklemin her iki kenarinda @®'in kats(a‘%fll)arml esit sayar

fﬂ"”i a,(y5(t) + Zbk(r)zo%;r(r) + o =ou(r). yP0)=0
m=1 1 =0 k=2
Bu, (92)
N
Y a, (5 (1) + by()y32(t) + b3(t)ys3() =0
n=0

batdndyle ilk kosullarin, nerede sifir oldugunu verir. C6ziim, formda yazilabilir
(93)

v3(®) =) hi(t.o))[ba(o1)y32(61) + b3(01)y33(61)] doy

) ey, ™k

Lanet etmeler sadece,
¥32(01) =y1(61)y21(01) +y2(0)y11(01) =2y (01)y2(01)
v33(61) =y1(61)y22(0)) =1 (07)

hasilati gelistirdi, bundan dolayi o

vi(t) = J h1(1.61)[2b2(61)y1(61)v2(01) + b3(o1)yi (61)] doy
0

Simdi bir derecenin formuna bunu koymasi icin (78), (80)'den ¥,(oy),¥,(o;) icin yer

degistirme adil meselesi, ve bitlnlerin bazi idaresi 3 homojen subsystemdir.
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Ben hem de, biylyen Ustel metodun, tamamen kolayca, takip eden 6rnegin, gosterdigi gibi

n'inci-emir farkh olan denklemlerine adapte edilebildigi ona dikkat gekmeliydim.

Ornek 3.10  Basit pandiiliin, dayandig bir kiitleden m, uzunlugun kiitlesiz bir cubugunda

L.'i asti, eksende giris torkunun, u(t) oldugudur, eksende gevseten katsayidir, bir, ve gikti

v(t), dikey agidir. Kuyu, bu sistemi tanimliyor olan farka bagh denklemi bildi,

N a ... g . N
V(r) + —y(f) + =sin[y(r)] = —u ()
' mL=" L [ mL -

'dir, ve ilk kosullarin, sifir oldugu farz edilir. ilk (ici simetrik hesaplamak, biiyliyen {istel metot
ile gorevleri transfer eder, ilk adim, onun gii¢ dizi genislemesi ile sin[y (t)] degistirmektir.

Tabii, sadece adlandir, emir boyunca Ug ihtiyag, acik¢a tutulur, bundan dolay ilginin farka

bagli denklemi,

o a g .. g 3., _ 1
V(0) + —5y(@) + 2y (0 -y () + - = —Ful)
) ”']L_ ) ( I. JIL-} .'-”L_

Buylyen Ustel metot, tartisarak bu olayda basitlestirilebilir, ¥(t) duzenli derecenin higbir
homojen kosulunu igermeyecek olan durumun veya farka bagh denklemden fiziginden her
biri.

Odur, eger giris sinyali u(t), ¥(t) ¢ikti sinyalini Uretirse, sonra giris sinyali —u(t), —v(t)
Uretir, ve o, sadece garip-derece kosullarinin, mevcut olabildigini izler. Simetrik transferi

hesaplamak, derece ligli boyunca is gorir, formun bir giris sinyalini farz eder

s At

u@) = ™ 1™ M k3 0. 18 (—o.00)
2 kosulun, sifir olmak igin bilindigi biitlin derecenin,

y() = Hi(M)e™ + Hi(h)e™ + Hi(h3)e™

. R 1 Y P Ty
+ 3 Hyg(A Ag hg)e ™ & 70 =

yaniti farz ettiginden beri nere, alisildigi gibi, sadece son sonuca katkida bulunuyor olan

kosullar, tutuldu. (Simetrik transfer gérev notasyonunun, G-notasyondan ziyade, hesaplarin,

dosdogru ciktiyt karistirdigindan beri kullanildigini fark et.) Farka bagh denkleme yerine

koymak, verir, bircok kosulla yeniden, distrdd,
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5 Mt e s . R ¢ R Yy a "
AH (h)e™ + (hy+hg+0a )31 s, O g ks )e ™ T L 4 3 H(hy)e™
’ mL~
a . - . Ry =R A Z At
+ Iz (Aqt2s +fu3]3!H3:I1mI:fu1._lg._h;j]é?l: T+ -E—H*_ (Aq1)e
[ E

(A Hha 20t

+ %3!;;3 sm(h. o ka)e

_.}“: _:'.3 :'r

- %H 1(MIH (A2)H (A3)e B

— 1 E_;‘v'_f + 1 gﬁ.ﬂ i 1 }.3!

3 ] b
mL- mlL - ml =

e %in katsayilarini esit saymak, verir

1/4mL?)
}.? +a/mL : Jhy + g;I

Hlt}”l}:

Boylece, 1 derece, gorevin, oldugu

1/mL*)

HI(S}= 7 7
s=+a/f{imL-)s +g/L

'i transfer eder.

g AL
(hy +ha+ha) +a/mL ) hy +ho+ha)+g /L

3!H3{1m(}‘11}‘3-}“3} = Hl(}bl}Hl (}‘E}Hl(}"ij

o(Astiy +15)

® hasilatlarinin katsayilarini esit saymak, veya, daha siki formda,

mel
Hig(51.52.53) = %'%—Hﬁﬁ+5:‘53}H1(51}H1f52131'f53)
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BOLUM 4

GERCEKLESTIRME TEORISi

Giris/¢ikis icin verilen verilen problemin gergeklestirimi 3.boliimdeki problemin tersi olarak
diistintilebilir.bu gerceklestirme teorisi hesaplama ve homojen polinomal ya da Volterra
sistemiyle belirtilen durum-esitlik gosteriminin 6zellikleriyle ugrasir.

Tabi ki belirtilen sistemin kabuklar ve transfer sistemine gore tamimlandigi kabul
edilir.Ozellikle,buradaki tartismalarin birgogu,diizenli ¢ekirdek ve transfer fonksiyonlari
gosterimiyle tanimlanan sabit sistemler icin olacaktir.

Dogrusal gerceklestirme teorisini tekrar gézden gecirdikten sonra ,ger¢eklestirilebilirlik
durumlarn ve ¢iftdogrusal durum esitligi hesaplama prosediirleri sabit homojen sistemler i¢in
tartisilacak..Sonra sabit polinomal ve Volterra sistemleri anlatilacak.Cift dogrusal durum
esitliklerinin yagisal 6zelliklerini tartistiktan sonra ,¢ift dogrusal durum esitliklerine gore sabit
olamayan sistemler i¢in gerceklestirebilirlik durumlar1 tartisilacak.Bu gelisme boyunca
,sadece sonlu-boyutsal gerceklestirmelerle ilgilenilecek-Sonsuz boyutsal gerceklestirmelerden
bahsedilmeyecek.Ayrica minimal boyutlu c¢ift dogrual gergeklestirmelerin ozellikleri ve
yapisina vurgu yapilacak.

4.1 Dogrusal Gerceklestirme Teorisi

Dogrusal sistem teorisindeki temel problem gerceklestirimi sdyle ifade edilebilir.Dogrusal
transfer fonksiyonu H(s) olarak verilip,sonlu-boyutsal dogrusal durum esitligini bul,bu
bulunan bu icerikte dogrusal ger¢eklestirme olarak adlandirilir.

Dogrusal durum esitligi su formu alacaktir:
X(t) =A(x) tbu(t), t>0
Y(t) =cx(t) , x(0)=0 (1)

X(t ) m x 1 durum vektorii iken,her t bir sabit uzay R”"m elamani,ve u(t) ve y(t)
skalerdir.Dogrudan iletim terimi,du(t),temel gelismeyi degistirmeden c¢ikis esitligine
eklenebilir,ancak bunu burada yapmayacagiz.Dogrual durum esitligi (1) kisaca (A,b,c,R"m)
olarak gosterilir.



Gergeklestirme problemini iki kisimda diisiinmek dogaldir.Birincisi,dogrusal gerceklestirme
icin H(s) deki ihtiyaclar1 ve durumlar1 bulmaktir.Bu dogrusal gerceklestirmenin var oldugu
sistemlerdeki durumlar1 bulmaktir.Ikincisi,dogrusal gerceklestirilebilir A,b,c yi hesaplama
metodunu bulmaktir. Genellikle minimal dogrusal gergeklestirme bulunur,bu m boyutunun
olabilecek en kiiciik degerindeki gerceklestirmedir.

Dogrusal gerceklestirilebilirlik  sorusu  okuyucuyu siipheye diisiirmeyecek kadar
basittir.H(s)transfer =~ fonksiyonunun  tam-ger¢ek  mantikliligi  sistemin  dogrusal
gerceklestirilebilirligi icin gerekli durumdur.Ciinkii transfer fonksiyonu ,(1) i¢in tam gergek
rasyonel fonksiyon c(sI -A)*-1 b dir. Bu durum da yeterlidir.bilindik durum esitligi(1) ile
kullanarak gosterilebilir. Tabi H(s)nin katsayilarindan denetimle yazarak.Bu bildik gelisme
minimal dogrusal gergeklestirmenin

pesinden izlenebilirken,fark: bir yaklagim sunacagim.

Bu dogrusal olmayan durumlarda daha basit bir erisim saglar.Aslinda dogrusal ve dogrusal
olmayan gergeklestirme teorilerinin benzerlikleri fikrinde dolayr dogrusal durum gozlemleri
olagandan daha ¢ok detaylandirilacak.

Bilindik seri genislemesini kullanarak
si=Ay' =t +as? + 4%+ - (2)

Dogrusal durum esitliginin transfer fonksiyaonu(1) negatif power serisiyle yazilabilir.

e{sf=Ay b =chs™ +cAbs™ +¢ed2bs™ + (3)

(gosterimin basitlestirilmesi i¢in,0zdeslik matrislerinin boyutlarini ,uyabilirlik gereksinimiyle
sabitlemek icin ihmal ettim.)Bu dogrusal gerceklestirebilirlik i¢in daha agik olur.Negatif
power serileri formunda gosterilen H(s) transfer fonksiyonlarini diislinmeye yeter.

His)=hos™ +hs7 +hys™ + oo @

Baska bir deyisle,sadece sonsuzda analitik sonsuzda sifir olan transfer fonksiyonlari
diisiiniilmeye gerektir.(3) ve (4) tn karsilastirilmast sunu gosterir:seri bakis agilarindan
,dogrusal gerceklestirme teorilerindeki temel matematiksel problemler S,b,c matrislerini
bulmay1 kapsar.yani m x m,m x 1,1 x m boyutlar1 sunu verir.

cAlb=h;, j=0,1,2,-- (5)

Bu temel problemi ¢ézecek ilk adim ,belirli basit soyut gerceklestirme olacaktir.Bu  6zel
secilmis dogrusal uzay ya da durum uzay1 kapsayan dogrusal operatdrler olarak belirtilen
A,b,c deki gergeklestirmedir.Sonra matrix gdsterimi ,durum uzayr R”m olarak degistirilen
dogrusal operatorler i¢in hesaplanabilir.



Bu iki hesaplamadan agiktir ki her hangi 720 i¢in S'H(s) ¢ok uygun bir rasyonel
fonksiyon aym: f(s). paydali. Kaydirma islemiyle sadece sayisal polinom degisir. Boylece
tiim elementler rasyonel bir fonksiyon olarak gosterilebilir ayn1 uygun paydali. Sadece
elementten elemente sayisal kisim farklilik gosterir. m-1 dereceli polinomlar dogrusas bir
uzay olusturdugundan , U/ < m boyutlar1 ve boylece () dogrusal gergeklenebilirdir.

Ornek. 4.1 katica uygun rasyonel aktarim fonksiyonu

5% +7¢ +3

Hiz) = —

§i+dg? +55+2
Basit hesaplamalar verir ki,

Gy ¥+ 752 +35 —957=175—4
SHis) = —% —4 '%
dhdgt 45542 17 +d5" 4518 +2

Ve

=95 =175 —8s o _ 195"+375+18

.Tznr.lr(_\'] = — - = =
g +4s<+55 +2 sl st 45542

Su agiktir ki H(s) ve S7) dogrusal olarak U dan bagimsizdirlar, ama bir fazla hesaplama
gosterir ki,
SH(s) = =3SH (s) - ZH(s)
Bu nedenle, #* terine U konabilir, standart sirali temel elementleri su sekilde segersek
[é] = H(s), [{f] =SH)

Temelde ki baslatma islemi i¢in bir matris gosterimi

(3
Ayrica, kaydirma iglemi i¢in matrisin sunu tatmin etmesi lazim,

- 13- 41 2
Soyle devam eder,

_Jo-=2

4=113



Son olarak &5y~ 4

gosterimi,

ve ESHIs)=-Y9 oldugundan, degerlendirme islemcisi i¢in bir matris

c=[4 9]

2 boyutlu bir gerceklestirme 3-derece bir aktarim fonksiyonu icin elde edilebilir, pay1 ve
payday1 His) ile carparak,

_ (As43)s +1)

His) -
(s+24s+1Y

Dogrusal kaydirma gergeklestirmesini kurmada dahil edilen bagimsizlik hesaplamalari
otomatik olarak payda ve payda ki yaygin faktorii iptal eder.

Gergeklestirme teorisi iyl bilinen bir sira kosullu testi vermeye yeniden
ifadelendirilebilir. U yu negatif islii serilerin dogusal uzayi olarak gosterirsek, element

SIH(s)=hs™ +hysZ +hjas™ + -, j=0,12,--- (13)
[liskili dizinin katsayilariyla degistirilebilir

(B B Bpezn = )5 F=0012, -+ {14)

U nun sonlu boyuta sahip oldugu agiktir ancak ve ancak bu dizinin bir sonlu sayis1 dogrusal
bagimsizsa.

Teori 4.3

fi{s)  aktarim  fonksiyonuyla belirlenen bir dogrusal sistem dogrusal
gerceklestirilebilirdir ancak ve ancak davranis matrisi

'IJ'1:- |'IJ| .Fl'l
rl?| JII;\- .lr‘i".; se

By =
ﬁ: #3 ﬁq

Ei}

sonlu siraya sahipse. Dahasi, bir dogrusal gerceklestirme sistemi igin By sirast H5)nin
minimum dogrusal ger¢eklemesidir.

Burada davranis matrisinden minimal gergeklemenin yapisini 6zetleyebilirim. Ancak bu kisa
bir gbz gezdirme olarak tasarlandi, boylece tamami referanslara birakildi. Ayrica verilen Hiv)
nin minimal denklik &zelliklerini bakmay1 da gegecegim. Bu konular kisim 4.4 de cift
dogrusal gerceklemelerde anlatilacak ve simdi 0 = 0 alarak bir ¢ok dogrusal teori atlanacak.

Ancak, sabit dogrusal gergekleme konusunu birakmadan once, verilen aktarim
fonksiyonu yerine baglangic noktasi verilen ¢ekirdek olursa, olusan degisklikleri
aciklayacagim. Uygun rasyonel aktarim fonksiyonu iissel ¢ekirdek sekli ile iligkilediginden,



W O -
hQ) =3 F a7, 120 (16)

i=li=l
b

Aciktir ki, A1) bir dogrusal durum esitligi ile gerceklenebilir ancak ve ancak 16 daki sekle
sahipse. t>0 icin verilen ¢ekirdek analitik kabul edilebilir, diger tiirli bir dogrusal durum
esitligi tarafindan gerceklenemeyecektir. #(f} yi t=0 kuvvet dizileriyle genisletirsek, Laplace
dontistim sekli A(71 su sekilde yazilabilir.

L] = | hide™ di
i

= h{0) j e~ dr + FUNDY J %? i + h”'{ﬂ}.[ ;. e ™ df ¥+ ---

[1] (] : g ==

=h(0p~! + A0 + AP0+ - (17)
Soyle ki,

. 3
B0y = 2 hinl, -
i’

Boylece, 4 deki girisler 0 da degerlendirilen ¢ekirdek tiirevleri tarafindan belirtilebilir. Bu
noktadan, kaydirma gergeklemesinin yapisi biraz once bahsedildigi gibidir.

Cok girisli-¢ikish dogrusal sistemler i¢in, ger¢ekleme teorisi daha hafiftir. Tek girise
sahip olmasina ragmen, tek giris sistemler temel dogrusal gercekleme sonuglart ¢ok
degiskenli sistemler icin teknik yogunlagma olarak kisim 4.2 de bilinecek. Bu nedenle, kisa
bir yorum uygundur.

Dogrusal durum esitligini diisiin,
2y =Ax({Y+Bult)y, 20

V() =Cr(ty, x(0)=0 (18)
(1), mx 1 girig #(1) bir rx | vektor ve *'' bir 4 %1 vektorii olmak iizere.

[lintili aktarim fonksiyonu & X matrisi

His)=C(i-A4)7'B (19)

Teori 4.4 bir dogrusal sistemin « x: aktarim fonksiyonu matrisi #{s)} i¢in tanimlandigini
varsayalim. (s} bir kati uygun rasyonel matrisse, sistem bir sonlu boyut dogrusal durum
esitligi tarafindan gergeklenir. Yani, ancak ve ancak (s} nin her elementi Hii(s) kat1 uygun
rasyonel fonksiyonsa.

Teori 4.4 iin gerekli kismu (/=4 yazarak aciklanabilir. Yeterlilik esit olarak

kolaydir: her gii¢lii uygun , rasyonel H4(s) 1 in bir durum esitligi tarafindan gergeklenebilir.



Ve tiim bu durum esitlikleri r giris q ¢ikis degerini vermek icin birlestirilebilir.

Gergekleme sorusu sabit olmayan sistemler i¢inde ilgingtir. 1. Boliimden sabitligin
tanimin1 hatirla, sonuclar giris/¢ikis gosterimi seklinde durumlanacak

p{n= J h{L o (o) do (20)

ek

Sabit olmayan durumda, dogrusal durum esitlik ger¢eklemesi zaman degiskenli katsayialarla
birlikte,

() = A () + BN
pir) = e (2) (11)

Teknik nedenlerden dolay: 4 (). #(r) ve ¢(f) nin siirekli matris fonksiyonu olmas1 gerekir.
Yani, her giris bu katsay1 matrislerindeki bir stirekli fonksiyondur.

Teori 4.5 gekirdek "(.7) sonlu boyusal, zaman degiskenli dogrusal durum esitligi tarafindan
gerceklenebilir ancak ve ancak ayrilabilirse.

Kanit, ¢ekirdek dogrusal gergeklenebilirse ve 21 #(f,0) nin gergeklemesi ise,

k{r,a) = c(1)D{1, )b (a)

Yazarak,

vy ()
cER0) = [vglr) -+ v(0)], WO,a¥(0)=
1||"{ﬂ.} . . oqe
gosterir ki 71.0) ayrilabilir

form da.

H
h(1,0) = F volfv):(0)

i=l

Ayrilabilmeden kaynaklanan siireklilik, dogrusal durum denkli tizerinde ki siireklilik
varsayimlarindan saglanir.

hlr.o)nin ayrilabilir oldugunu varsayalim ve 22 de verilen gercekle. Daha sonra
kurulum,

viir)
A =0, bi)=| |’ c(t)=[vyls] = vu(i)]
Vit

21 deki #it.a) icin bir ger¢ekleme verir.



Onemli bir soru sunla ugrasir bir ¢ekirdek #{1,5) sabit parametre bir dogrusal durum
denkligi tarafindan ne zaman ger¢eklendigi. Diger bir degisle, bir giris ¢ikis gosterimi
gercekleme sistemi tarafindan ne zaman olusturulur.

Teori 4.6: ¢ekirdek /{7.0) bir sonlu boyutsal tarafindan gergeklenebilir ancak ve
ancak sabit ve farksal olarak ayrilabilirse.

Kanit, kogullarm gerekliligi dogrudan # (1,6} formundan takip edilir. Etkili bir kanmit hafiftir, u
nedenle ¢ekirdekin sabit, farksal ayrilabilir ve su sekilde

hit,o) = volthv) (o)
) RekE oldugu 6zel durumu diisiinerek basgliyorum.

[k adim T>0 almaktir, boylece,
I

iy = ,F L-',é_(."];f." =)

.

Tabii ki, bu gibi bir T nin var oldugu kabul edilebilir, diger durum da {5} =0 dir ve teori

enteresan degildir. Simdi, sabit+ /(9 =A(0.6=) " tarafindan, béylece

i d
— (1,0} + — {1,0)=10
¥ (a3 (L) ot “0)

Veya
va(1)¥1(0) + o)y (o) =0
Bu esitligi ¥¢{") la garparak ve —T den T ye integralini almak verir ki,
g vi(g) + ryvyle) =0

Soyle ki,
r
= j it n{l}ll"|{f:] ar
=T
Ama 91 * 0 baylelikle farksal esitlik agik degildir ve boylece ¥1(0) iissel

v (o) = V] [.D::llf' ={r gy )0

Daha sonra sabitlik kosulu verir ki,

hI:I': g) = 1:n{{]}1.| {D:IE"-I--\'J W=



Diger bir deyisle ¢ekirdek sabit farksal olarak ayrilabilir ve tek terim ise, basit iissel olmak
zorunda. Agikc¢asi bu ¢ekirdek dogrusal durum esitligi tarafindan gerceklenebilir. Eger her
val!) ve vilf)l gergek degerli ise, dogrusal durum esitliginin toplanabilir paralel baglantilari
bir dogrusal durum esitligi tarafindan gosterilebilir. Eger 22 deki fonksiyonlardan bazilari
karmasik degerli ise, eslenikler kapsanmak zorunda oldugundan gercek katsayir metrisli bir
dogrusal durum esitligi gerceklesmesi bulunabilir.

4.2 Sabit Homojen Sistemlerin Ger¢eklemesi

Ozellenmis homojen dogrusal olmayan sistem icin, tartisilacak olan problem iki-dogrusal
durum esitligi seklinde bulunan gergeklemelerin problemidir. Yani, formun durum esitligi

2y = Ax{y + D (e (1) + bu (1)
wry=ex(ry, rz0, x(0)=0 (73)

a(t), mx1 durum vektorii olmak lizere, her t i¢in K™ durum boslugunun ve giris ¢ikis bir
elementi skalardir.

Tabi ki, bir iki-dogrusal durum esitligi genelde homojen bir giris ¢ikis gdsterimine
sahip degildir. Bu nedenle, bu kisimda ki sonuglar daha ¢ok 6zellenmis iki-dogrusal durum
esitligini igerir.

23 de ki birletim e kullanilan giris ¢ikis gdsterimi boliim 3 de tiiretildi. iki-dogrusal
durum esitligi bir Volterra sistem gdsterimi tarafindan tanimlanir,

] Lo ]

=] | hon,....00u0) -+ ul6a) o, - - - doy (24)

0o 0

Cekirdek su sekilde verilmek iizere

T . =011 4Gl -y A0,

rzgy2- 20,29 (15)

Bir iki-dogrusal gerc¢ekleme teorisini gelistirmek amaciyla, ana yogunlagma diizenli ¢ekirdek
ve diizenli aktarim fonksiyonlari iizerinde olacak. 25 den diizenli ¢ekirdegi elde etmek icin ilk
adim kisim 1.2 de tanimlandig1 gibi sabitligi yiiklemektir. Bu da sabit bir liggensel ¢ekirdek

Eril e - g ={0,—0y. ..., -7, )
=, A L A 1G]y, .
Oy 2ayq=---z2ag; =0 (26G)
yi verir. Esiglik 26 y1 ilk tliggensel payda iizerine bir tiggensel ¢ekirdek olarak yeniden
yazarsak

Alllpy L. pedtiay

2zt z2---21,20 (27}

Al
Bualf 1 - o s dgy =" *De

Verir.



Boylece, n dereceli diizenli ¢ekirdek homojen alt sistemi iki-dogrusal durum esitligi 23 e
ilintili olan

h ATy :‘rﬂ‘-I o L't"'-”‘f_};_-'”"'ﬂ . Df.-l'.' I {28?

reg I:

terimler gosterir ki bir iki-dogrusal durum esitliginle ilintili diizenli c¢ekirdek su sekilde
yazilabilir.

iy Uy L

.
Wgltisint) =% B3 Xafith

=1 h=1 =1 f=1

gl g
Ll 15 T —A, I,
g Wl g 24
(=1} - -~ 1N &

Cesitli katsayilar ve iisler bu ifade deki karmasik olabilir, ama diizenli ¢ekirdek gercek oldugu
icin, esleme kosullar1 tatmin edilmeli.

Agikgst, bir iki dogrusallt durum esitligi i¢in diizenli ¢ekirdek kisimsal olarak basit sekildir.
Diizenli aktarim fonksiyonu da ayrica basit sekildedir, adlandirilan

HeeplS 11 80) = € (8 l=AY D (5, [-A)'D -+ D(s =AY & (30)
Iki dogrusal durum esitligi i¢in Bir diizenli aktarim fonksiyonlar1 su sekilde gosterilen,

Jp{-\[-u---w‘l“':l
¥ i Ty el ) T : : (:\ll
n"t_{{5'| Sy QI{-"'-!} "!2_15(-"'”: y dir.

Boylelikle, n derece homojen sistem bir kati uygunluk tarafindan tanimlanan diizenli aktarim
fonksiyonu 31 den ,

i LT 1 T SRR T ] .,I_.\"i' B (12}
1y=0 i, =

Ve 9i(5) bir tekil m..i =1, .r dereceli polinomudur. Bir ilintili iki-dogrusal gerceklemeyi
olusturmak i¢in matrisin faktoryelinde payda dogrulugu yazilarak,

{’1.‘#'|......'F_.I}—S‘,. S-“_| S|P {3_-“ dir.

P($),82,53) =9, 8183 + 353 +3,5y +55; a3 %1

Ornek 4.2 polinomu i¢in

s1lizerine bagimlilig etkenlemek igin

3 1 18 _'f:-!+l
f{.¥|,.\:1.~3}—[ .'.3] 18248 +8,

‘ yazilir.



Simdi, her polinom f{izerinde ki +: bagimliligi bu ifadenin sag tarafinda ki ayni sekilde
etkenlenebilir

1
l s 0 D0 #y+1
Plsysan)=[l 5] 0014 )

Son adim s6yle olmal1 ki

17

| 0

15, 0000007 |,

1s; 0 0|00 1s,0000] ]|

Plersist=0 0l g g s f|looonrs,00]]o0
C00DOO0 I ]I

1

33 iin genel gosterimi i¢in32 takip eden sekilde gider.
: =1 ¥
Sp=11 s '5':;“ ] [34’01S111’1

Ve /=1 ....n-ligin 5iitanimla (s~ #;41) %00, =) matrisi 1. inci satirdan

[n. :-I.[.lrrl--mrl ]-"‘:ll EhE: '-I"-Tlt_l |:}I = fan, y .'r.lll'l i I:%i.]

Daha sonra P siitiin vektoridir
P'=Ipg..coPo 0 "Pu-t--0ow -oPuo. .o

Pl A8 Plirgalomini) " Priclicim=1] [36)

tarafindan Ozellenir.

Bu pay faktoryelleme prosediiriiniin sonucu su sekilde yazilabilen diizenli aktarimdir

'r"r.-w,-{-"'J o8y =Gylsy) o G ylsy) {R?}I
Oyle ki,
Gl 2 G | =2 (38)
5= - 5)= L J=2,....n :
i) 0,(1) T o) !

kat1 sekilde uygun matris fonksiyonlari. Bu nedenle her @ilsi) bir dogrusal gerceklemeye
sahiptir ve su sekilde yazilabilir

Gi(s) = Cilw,l - A7 B, (39)

Simdi iki dogrusal durum esitligini diisiinelim
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0 A, 0
A= 3 : b=| ¥
P 0 - A4, 0
¢ 0 0 0
B.C, DO : Do
D - 0 ByCy - ¢ 0}, c=[0 0C, ] (40)
{ 0 R.C,; O

tarafindan 6zellenen.

Bu iki dogrusal durum esitligi igin diizenli aktarim fonksiyonlart 30 araciligiyla
hesaplanabilir. A daki blok kdsegeninden dolay1

{gl—4, ;‘1 0
(sl =AY = i - 0
0 5, Gl

Boylece ileri dogru hesaplamasi verir ki,
‘F'f-'ry{""l' e 0. k=il =l m+l 42, .-
H’I‘f\‘L{a ] y == w ISIF.} - er"\-tl'f_'-‘;ll.‘l -IB“ c“.l.'—l ISJ —I'Ir_l.‘Irl—I .TI I'Fgll —ll {-ll —-I
Al ﬁ:(.‘|l:.'|"_.|r—r!|}_lg

= Gl ) = - Gyled (41)

Boylece, 40,verilen aktarim fonksiyonu i¢in n-dereceli homojen iki-dogrusal gerceklemedir.
Gelisme takip eden sekilde sonlandirilabilir.

Teori4.7 Bir n derece homojen sistem Hegl815 -+ ) diizenli aktarim fonksiyonu
tarafindan tanimlanan iki dogrusal gerceklesmedir.

Teori 4.7 deki ger¢eklesebilme kosuluna ek olarak yukaridaki gelisme sunu belirtirtir
ki, bir n derece homojen sistem icin iki-dogrusal gergekleme problemi temel olarak bir n
dogrusal gercekleme problemi dizisi igerir. Ama basit faktoriyelleme prosediirii genellikle
yliksek degerli bir iki dogrusal ger¢eklemeye yol acar minimal dogrusal ger¢ekleme her
G(57) i¢in kullamlsa bile. Bir minimal kenar iki dogrusal gergeklestirme yapmak icin, daha
karmagik faktoriyelleme fonksiyonu prosediirii kullanilabilir.

31 de verilen bir diizenli aktarim fonksiyonu i¢in iki dogrusal gercekleme teorisine
alternatif bir yaklasim dogrusal durumdaki ile ayni, bir soyut kaydirma gerceklemesinin
kavramini igerir. Dogrudan minimal-kenar iki-dogusal gerceklemesini sagladigindan ve
polinomik ve Volterra sistemleri i¢in ana gere¢ olacagindan bu yaklasimi detayli bir sekilde
gosterecegim. Bu kayma gergeklemesi yaklasimi #re(f10 - 5%l nin negatif kuvvet serisi
gosterimi sekliyle en basit sekilde tanitilabilir, sdyle ki,

11



ff_l_”:t_ﬁ‘h rea -""r.l} = z Y E lIliI|| J,I'I'II_”I.+II o '-"'l'._-i;l.'-'-:':I f'q'.z

30’un kat1 uygun, fark edilebilir aktarim fonksiyonlari i¢in, bu seri gdsteriminin gegerliligi (2)
genislemesinin tekrar eden kullanimidir. Kayma ger¢ekleme yaklasimi icin genel ayarlar
diizenli aktarim fonksiyonu smifindan almabilir, dyle ki teori 4.7 den acik oldugu gibi
sonsuzda analitik olan, her degisken i¢in sonsuzda sifirlara sahip olan. Her hangi bir oranda,
sekil 30 i¢in serileri ve 42 yi karsilagtirmak gosterir ki takip ettigi sekilde tamel matematik
problemleri durumlanabilir. 1 % nr. i % m.m =1 ve |x=m kenarlarinin A, D, b ve ¢ matrislerini

bul sdyle ki, negatif olmayan tiim tamsayilar /1-/2:/3: -+ - icin,

edM DA D o DAl = (43)

Dogrusal durumla benzer olarak, verilen diizenli aktarim fonksiyonuna ilintili bir m-kenarl
iki-dogrusal gerceklemeyi gostermek igin 4.2.0.6.87) kavrami ile gosterimi uygundur.

K degiskenli her hangi bir negatif kuvvet serisi i¢in

- ={iy ¥} L+
3 ¢ PRy T p R p S o B ol (44

i =0 i =0
Kayma igletmeni S yi tanit

EF"{.5|..1-..'51-]= E- Z—H’.*Z.J- |,5-“III:I-"-"'£_-(;HIII '145]

iyl iy =0

Suna dikkat et ki, kayma sadece ¢1 degiskenini igerir ve * = ! i¢in kisim 4.1 de tanimlanan
kayma isletmenine al¢alir. Agikga, S bir dogrusal isletmen, ve S¥is] bir k degiskenli negatif
kuvvet serisidir, boylece &' Vis} iyi tanimlanmistir.

Ayrica 44 de Visi. - - - sihizerinde belirlenmis bir indeks islemcisi T,
A PIIICR T SIEE, YR PN o RELY L (46)
T |
k>1 igin ve T¥(s1) =0 k=1 igin. T bir dogrusal islemci ve TV(51. .. .%) k — 1 degiskenli bir

negatif kuvvet degiskeni. Boylece, cogu k adimindan sonra 0 elde edilse bile, T tekrarl bir
sekilde uygulanabilir. Takip eden gelisme dogrultusunda, negatif kuvvet serilerinin alanina ve
degisken sayilarina aldirmayarak semboller S ve T kullanilacaktir.

Simdi, verilen bir n derece homojen sistemi negatif kuvvet serileri seklinde
Hreg(s1,-- 25 diizenli aktarim fonksiyonu tarafindan belirlensin. Negatif kuvvet serilerinin
bir dogrusal uzay belirle suna gore,

12



{"Ir] B ""‘PﬂH {fj-'-l""j_'{" | EEEEX "S'I_I-}I Ll';'\I"il"rrl:'.l:' {"". Iy ===n '.'-rl .I: Sj‘rjl'l'f{'q Jr===n '(rl }‘ HE -'I {d?}

TU+ notasyonunu T altinda ki U, goriintiisii i¢in

U, = span { TU,, STU,, S2TU,, -+ }

Uy = span { TUp_yy STUp o1y 27U, oy, =+ (48)
olsun.Daha sonra Uy , n+l=i | i=1....n ve Ui\ U;=0. degiskenli bir negatif kuvvet
serisinin dogrusal uzayidir. Dahast, SUjclpye TG, CUisy olan S ye gore degismezdir.

Simdi dogrusal uzay

U=span [U;,..., U} (49) yi diisiinelim.

U nun elementleri n degiskenli veya daha az degiskenli negatif kuvvet serileridir ve S ve T
her ikisi de U dan U ya dogrusal islemler olarak gdsterilebilir. Initilizasyon islemcisini
L:R — U iverilen diizenli aktarim fonksiyonu seklinde tanimla,

Lr=H (81.....8,) {500

Ve degerlendirme islemcisini * £l — R

0, k=1
EV(s|,....5) = (51)
EV{."-'| ) k=1

EV{s1) , 10 da tanimlanan dogrusal durum icin degerlendirme islemcisi olmak iizere.
Kolayca tlirevlenen formiilleri

SF(s e s =5 Pl s =0 VG .0 T11] -

TV, . .. )=[5,Fixy,. .--"'.i!']l'_r: iy

i
LTk

0 k=1
EVis,....,5)= (52
P ymes k=1

Bu yorumlar hesaplamalar i¢in ¢ok 6nemlidir, negatif kuvvet serisi gosterimleri gergek islem
icin yeterli olmadigindan dolay1.

Verilen diizenli aktarim fonksiyonu (S,7,L,E,U) bir soyut gercekleme oldugunu
gostermek olaganiistii sekilde basittir. Ozdesilk,

pylapphup ey, (s
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Takip eden hesaplama dizisinde dogrulanur.

L =5 HegS 1. 8]
7 }-: E: ﬁ hr: Hhdy |..""?rlll.l"":[1-l . """:.-{II e
0= iy~ i, =l .
8'L=% B T s,
[ w

SHELL— Z E E 'r'l.l' dykindy l,..|‘!'-.|'r|l I."‘EI...:‘H.I' “¥p-]

s s L

|
A M
T

-
=

]

G TSJ’_ I .TII;-"'L &= E | P fogdy HL 51

ESh TS T TS L =hy,..;

Sunu gostermek kolay ki, 43 de ki kalan terimler gercekte O dir. Eger k<n ise, bagimsiz
degiskeni bir degiskenden fazla olacagindan, E islemcisi isi yapar. Eger k>n ise, T ler 0
verecektir. Simdi gercekleme prosediirii tanimlamay1 igerir eger U sonlu kenarli ise ve
dogrusal operatorler S,7,E, ve L i¢in matris gosterimlerini bulmak, U, E™ le tarafindan
yerlestirildigi zamanda Oyleyse. Takip eden sonu¢ ve onun kanit1 4.1 i animsatmakta, kanit
4.3 e kadar ertelenmesine ragmen.

Teori 4.8 diizenli aktarim fonksiyonu #H.als1,. .. s.)tarafindan belirlenmis bir n
derece homojen sistem iki dogrusal ger¢ekleyebilirdir ancak ve ancak U bir sonlu kenarl1 ise.
Dahasi, sistem iki dogrusal gergekleyebilirse, . (5. 7.4, £, /| minimal iki dogrusal gergeklemedir.

U bir sonlu kenarli oldugu zaman matris ger¢eklemesini bulmak i¢in, U yu takip eden sekilde
degistirmek uygundur. Eger kenar U=m, R" i¢in standart siralanmis temelleri se¢ soyle ki,
€1 -®n U in dogrusal olarak bagimsiz elementlerini gosterir, “mi#i+--+Fm; U, nin
dogrusal olarak bagimsiz elementlerini gosterir ve bu sekilde devam eden. Daha sonra su
gergekten, Ui, ... .U, baglantisizdir ve daha 6nce degismez ozeliklerden bahsedildigi gibi, S
ve T i¢in matris gosterimleri

(4 @ - O
0 Ay <+ D
A= v L RO
L:} 'D A;"r
@ g s @ 0
Dy 0 - 0 0
D= @ By O 0 (54}
0 0 D, 0
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Ayrica, L nin goriintiisiiniin ve E nin bos uzaymin 6zel seklinden, matris gosterimi su sekilde

olacaktir,

b
=19 = , s
b=|9], e=ppo ¢ (59)

0
Ornek 4.3 verilen iki dogrusal gergeklemeli diizenli aktarim fonksiyonu

sy Lo g sne i
f-r.-a'j,’{-'llu"_-} (.‘i+2}{-73+3} f|;2+3_r'+15':+ﬁ

Gergekleme yapiminda ki ilk adim U, ve U, uzaylarini hesaplamaktir.

Xy _ I
.F|.'L'2+.-'|-.'||'| +2‘|’:|‘:'EI .'i'1_.3
-2

- =_2'Hr v ‘.'1
~'-'|-'-'3+3.‘-I'|-21.'2+|:1 *H[ql 1)

SHyg(s1.52) =

oldugundan su aciktir ki

r

I
Uy = span | ——————m—e
gy k3, +le+6

U, yi hesaplamak i¢in, kaydet ki,

1 |

TH,, (51 52) = i
H'J..{I"1 "._'! [|1|.||I|I2+3"|.| +2.';_'|+'5 ]l_r:"_i. £ iy
STH (31 43) = ——e = 1=

r:'ll_.,’{,n'l'ls-'f 2] 5 +3 8 1

Boylece,

Ve degistirmeyi yaparak

U\ = span [ H‘n] 1 Ua=apam [ [?”

Metris gosterimi S,T,L ve E takip eden sekilde hesaplanabilir. eger S icin A metris

gosterimiyse, daha sonra

Boylece,

15



Eger D, T i¢in matris gdsterimiyse,

o (3] (4] o [8]- ¢]

Ve son olarak,

: . E ]
Sz +de 46 Fy+3

oldugundan, E i¢in matris gosterimi,

c=[0 1]

Su agiktir ki, homojen sistemler i¢in tartisilan iki gergekleme problemi i¢in iki yaklasim,
dogrusal gercekleme teorisi i¢in iki ana yaklasima paraleldir. Kaydirma gergeklemesi
yaklagimi rasyonal fonksiyonlarin seri gosterimleri iizerine temellenmistir, diger yaklasim
rasyonal aktarim fonksiyonlarinda dogrudan polinomlarin kullanimlart dayanmaktadir. Ek
olarak, dogrusal olmayan sistemler i¢in kayma gerceklemesi yaklasimi dogrusaldan farki
olmayan davranis metrisi terimi seklinde yeniden ifadelendirilebilir. 4.3 de formulleme
gosterilecektir.

Durum vektérii ¥(7 yi su sekilde boliimlersek,

0 _
x(f)=1 (36)
| x,(1)
x(1) , m %1 olmak tizere, blok sekil gergekleme durum esitligi seti seklinde
tanimlanabilir:
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.';.'H'ur} =4 ;t'fl[flfl T I‘]LH“}
Xa(f) = daaxs(f) + Dypxy (Fedt)
'i.r{!} i "'ir'.l.'-"u“} 1 ﬂ!r.lr—|"lfl—1':.r:”;“|}

¥ {f} = '.'.r.l'tu{!, {_i?}

Daha sonra gercekleme fig.4.1 de gosterilen c¢oklu-giris, ¢oklu-¢ikis, dogrusal sistemler ve
vektor ¢arpilarinin 151n baglantisin iliskiler.

Kl — Ay r' s, "IL’“-;H}“- (sl - f{-’i’llljlmllla)::' ;L‘{IIH eI = A D, >
] ]

Figure 4.1, An inlerconnection structured realization.

4.3 Duragan Polinomsal ve Volterra Sistemlerinin Gerceklemesi

Polinomsal sistem durumlart 6ncelikli ve ¢ok detayli olarak tartisilacak. Tekrar sonlu-kenar
iki-dogrusal durumlar esitlik gergeklemeleri ilgi alanimizda, 6zellikle minimal kenarlar.

Diizenli aktarim fonksiyonu dizisi tarafindan belirlenen bir N derece polinomik
sistemi varsayalim.

(FF{.‘F] 1, ;.Ir,:.gli.s 1 af '_r'h vy -Hln.],r{b']. i ':'1 J {55]

N den biiyiik dereceli aktarim fonksiyonlar: sifir1 isaret etmek iizere. Ik sonug sunu gosterir
ki, temel gercekleyebilme durumu polinomlar i¢in dogrudan takip eder.

Teori 4.9-- 58 de Gzellenen polinomsal sistem iki-dogrusaldir ancak ve ancak her diizenli
aktarim fonksiyonu katica uygun gergeklenebilir fonksiyonsa.

Kanit: her freel1.---+%) aktarim fonksiyonunun katica uygun ve gergeklenebilir
oldugunu varsayalim. Daha sonra kisim 4.2 den su aciktir ki, her biri j-derece homojen iki-
dogrusal durum esitligi tarafindan gergeklenebilir.

X0y = Apx(8) + Dpxewe (1) + byudr)
() = cpxyle) (59)

i=1..Nve D =0 olmak lizere. simdi de bu durum esitliklerinin toplamsal paralel baglanti
hesaba kat. Boyle bir baglanti blok kosegensel iki dogrusal durum esitligi (4.0.5.c,8™)
tarafindan tanimlanabilir.
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Ay b0 0 o, o -0 b
. 0 ds - 0 D, - :
x(f) = L U x{N+ . ij" A1) + h:' uli)

b b edy 6 0 -y B
vify=[e; - e lx(r)

Blok kosegensel seklini A ve D i¢in kullanarak, su agiktir ki k-derece aktarim fonksiyonunu
hesaplamak
N
c(spl=AY'D -« D(sy0=AY b = ¥ cilsel=A;) "Dy - - Dits |JJ-A;) ' by
i=l
Ama j.inci iki-dogrusal durum esitligi j derecenin homojenidir, sOyle ki sag taraftaki biitiin
toplamlar j=k harig¢ sifirdir. Boylece,

e(sid=AY'D - - D (s J-AY "' b = (s T-Ap) ' Dy - - - Dyls  J=A) by
.f
| Hregfﬂ'lr k) k=0, N

i 0, k=N

Ve (4.0.h.c.R™) bir iki-dogrusal gergeklemedir verilen polinomsal sistem igin.

Simdi polinomsal sistemin iki dogrusal oldugunu varsayalim ve dahasi (4:2:5:¢.R"] bsyle bir
gercekleme. Daha sonra, her n derece diizenli aktarim fonksiyonunu hesaplayarak katica
uygun fark edilebilir fonksiyondur.

elp, f=AV'D - Dlg J-AD'h, n=1,... N

bdylece kanit tamamlandi. Bir N derece polinomsal sistemi iki-dogrusaldir ancak ve ancak ger
diizenli kernel 28 ve 29 da verilen iissel sekle sahipse.

Polinomsal sistemler icin temel iki-dogrusal gerceklenebilme sonuglar1 ayrica bir
kayma gergeklemesi yaklasimiyla da gelistirilebilir, su varsayima dayanarak ki 58 deki her
diizenli aktarim fonksiyonu negatif kuvvet serisi seklinde yazilabilir

Jrfrﬂ.f.i“|.....:i‘,|,]" E -"E-ll:]'”-..-h..'lT[”-”ll"'-'rJ._rllTll: k=1,....N {ﬁull

Tabi ki, bu varsayim iki dogrusal gerceklemelere kalirsa higbir genelleme kaybi olmaksizin

yapilabilir. Kisim 4.2 deki formiillemeden aciktir ki, tiim negatif olmayan I
tamsayilar1 i¢in bir iki dogrusal gergekleyici olusturmak A,D,b ve ¢ matrislerini bulmay1
igerir.

[; o k=1 N
cA" DA™MD - DA b = (61)

0, k=N
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Bu boliimde genelde oldugu gibi, ilk adim bir soyut kayma gergeklemesi olusturmaktir.

Verilen herhangi negatif kuvvet serilerinin sonlu dizisi

|:: V: ".f] :1 V:{_L'] 1 ] ;'._1.:.'5'5 1.'\-':.:.'!.'}}_ Al } {ﬁi!
Kayma iglemcisi S yi belirle

Sl: j'r| I::.T|:}lI !)2 {.'u' |_1.'|‘3 }: !’j{""l o 3..“\.'].}. v ]

=(5F, (5, ) SVas 51} V351,827,830 ) (63
tarafindan.

SVilsy, . ..8), 44 ve 45 de belirlenen kayma islemcisi olmak iizere. Benzer olarak, indeks
islemcisi T yi

T(Vylsy ) Valsyos2) Valsga82.85), 00 0)

={ ITIPEIIL.\] 53], T[r_q_{.'l'].."-'].-":‘,}. g }' |:'|f|'-"|-

tarafindan TVils1....5), 46 da belirlenen indeks islemcisi olmak iizere tanimla.

Daha fazla ilerlemek i¢in, su notasyonu kullanmak uygundur
HGp, oo 530 = (HE ) Hoag51510h v Hogl810e 0 0810:0, ) (€5

Daha sonra, takip eden negatif kuvvet serilerinin sonlu dizisinin dogrusal uzayini tanimla

Ly = span ;‘th[m ...... Sxl .3'1:1’1.~:h aaEali .ﬁ':!}[.i.' TR LT [V RPN,
Us = span {TU, STU, st T, )
Uy = span {TUwy_1, STU Yy, St e, 0} (66

U =span {Uy, ... .Uy olarak, S ve T, U dan U ya islemler olarak gosterilebilir. Baslangig
yapma islemcisi £:8 — L yi verilen H(s.. ... .5+ seklinde tanimla

L= H{S s oSN (67’

Ve degerlendirme islemcisi * £:L/ — & yu

E(V (sy) Val(sy,32), Vals os2u53) -2 ) =EVy{s;) (68
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EVi(s1) dogrusal durumda tanimlandig1 gibi olmak iizere.

Simdi hesaplamalar, (STLEU) verilen 51+ ¥)nin soyut iki dogrusal gergekleme
oldugunu gostermek i¢cin homojen durumun i¢indeki hesaplamalardan dogruca takip eder.

Ornegin,

Teorem 4.10 : Diizenli (51, - .. ,Sn) fonksiyonlar: transferinin dizisi olarak tanimlanan
bir -V derece polinom sistemi ¢ift dogrusal gergeklestirebilir ancak L/ smirli ebatlidir. Bunun

yaninda , eger sistem c¢ift dogrusal gerceklestirebilirse , sonra (S,I.L.E.U) en az ¢ift
dogrusal ger¢eklestirebilir.
Ispatsa , H(s1.....5v)tarafindan tamimlanan polinom sistem ¢ift dogrusal

m
gerceklestirebilir , bu (A'D .b.c.R™) hi¢ ¢ift dogrusal sistem gerceklestirmez, ve bu
(S.T.L.E.U)

dogrusal uzayi (62) gibi izin verir. Sonra

DOx)=(c(sI-4) " 'x, c(s,/—-A4A) "D (s I1—-4)"x.

sistemin degisimi gerceklesir. W, negatif gii¢ serilerinin biitliin dizilerinin

c(s3/—-AV D (s, ]-A) D (s I-4) x. -+ 1)

tarafindan kisalik icin bir dogrusal operatér (:R™ — W tanimlamay: kesinlikle uygun bir
dizi gibi sag taraf yazarim , benzer negatif gii¢ serilerinin yerine fonksiyonlar tanimlanabilir.
Bundan baska , homojen durumda degisim operatoriin tanimini kullanma,

c(spl —AYD - - D(s{I—A4)4b

= E R 2 FAT.??D ] "D;‘lj]_lbjz(ﬂ-l-l) . --SE(F}_I}
iy=0 ir=0

=SY - Y cA"D - D4 bs7 Y L D

f1=':| !ile_-=':|
SHygg (515 - - - s). k=1,....] v
) ) H(sq.,....5%5) o
Diizenli transfer fonksiyonlarin dizisine bu hesaplamay1 uzatmaya bu

(D(A‘b) = 51%(5 1=~ - - ..-S'J:h,,r)
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gosterilir. T’nin tanimini kullanmada bir benzer yolda ,

c(sp_1J—A)'D---D(s{I-A)'Db

=Y -+ Y cd™D - D4 pbsi® TV L GO

j]_:':l fl!___l:D
=] =] . . it e
:TE EC’AHD"'DA“EJSl(}l 1)...5;:(& 1)

i 1 =0 !ik =0

Tekrar ,

H[:-S']_. " '.Sda,'.':l

e gore genisletildiginde bu hesaplama ,

ODDL) =TH(s1, .. .. 5y)  anlamina gelir. Bu sonuglart birlestirme U < R|[P|
gosteren
DAD DA b)Y =S""T- - TS"H(sy.....sx). n=1,....N

mh

verir. Sonra , @ bir " ebatl boslugun iistiinde bir dogrusal haritadir , o ebat Usm takip

eder. Boylece , U sinirh ebathdir , ve ayrica soyut degisim gerceklestirme en azdir ondan

sonra Unun ebati 7 (1. ---.5w) ‘nin herhangi bir diger ¢ift dogrusal tanilamanin uzay
hacimli durumundan daha biiytik degildir.

Simdi farz edelim ki , {7 smirli boyutta #2°ye sahip , asagidaki ¢izim

H(s1, - 25%) *nin en az cift dogrusal gergeklestirme (4.D.b.c.R™), saglar. Standart

diizenli esas secimlerle alan [/ bv R™ 1 yenisiyle degistirmek Ut in dogrusal olarak

€1y €m, ’ s

bagimsiz elementleri i¢in 2’nin fazladan dogrusal olarak bagimsiz

elementleri igin Emy+1s - e €m, ,vesaire , asagidaki gibi bir gergeklestirme verir.

SU; < span {Uy. . ...

L'.f' } ’den sonra , o matris temsili belli olur zira S

Ay A Ay ]
0 Ay -+ A,

4 = :/_1 Ec;‘rf {T{})
0 0 Apmns
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A.Es" 18 My X5 glan tic koseli  blok sekline sahip  olacak.  Ayrica

TU; cspan {Uy, .. .. U

- 1 . g . .
J*1 7 matris temsili anlamma gelir zira T

Dy Dy -+ Dypy Dy
Dy Dy -+ Doy Day

D=1 0 D3 - Dipyq Diy (7D
i 0 0 --- DJ’IJ,IM—I Dy

A ’da bunlara gore kisimlara ayrilmis bloklar olan blok (hemen hemen ii¢ koseli) sekline

sahip olacak. ( Uyar:: Bu M (SN) bloklar V' den daha az ziyade gerekli olur.

Sebebi bir 6zellik Uj ,span (Ut Dj’—l / icermelidir.) L icin matris temsili
acike¢a blok bigiminde olacak
by
p=1|"Y (72)
0

1 X,

Ve E i¢in matris temsili , her C1y , olarak elde edilen

c=[cu " cur] (73)

her Df de £ ’ye etkisi hesaplama tarafindan bulunur.

Ornek 4.6: 2 derece polinom sistemi géz oOniine alarak diizenli transfer fonksiyonlari
tarafindan tanimla

1 1 N
si+1 7 (s1+2)(s2+3) T

I%r(-ﬁﬂzjz{
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Ut bul , hesapla
-1 -2

Sﬁ L) = . — .
G152 = (T )6, 59)

1 4
1 +1 7 (s51+2)(s2+3)

S2H(s1.54) = (
Ay

= —EH{S*I.SE} - BSH{SI .S:j
Boylece ,

1 -1 )
s1+1 7 (5;+2)(s,+3) ) {51"'1 (s1+2)(s2+3)

L'y = span i{

L

T ’nin altinda U licin bu temel elementlerin goriintiisii “~ 2°i bulmak i¢in hesaplanmali , ve
sonra daha sonraki goriintli tekrarlanan vardiyalarin altinda hesaplanmali.

. 1 1 1
TH(s1.s5) =T . 0, )= L0,

G122 =TT 56, 49) )= (15 )
TSH r(— —2 0, )=(—2—.0, )
SHEws) =T 7 e, ) T 55

— 2TH(s1.51)

. 1 . =3
STH(54.,5,)= 5§ L0, --) = L0,
(152 =S( -0 )= (52350 0)
— _3TH(s,.5,)
Boylece,
U, = span !{ .0, ]]
2 3
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Simdi R’ tarafindan U =span {Uy,Us /
elementlere gore secmek

yerine koyulur ve standart diizenli temel

1 1 0
s1+1 7 (s +2)(s,+3)

-1 -2
. L0,
s+l (s1+2)(s2+3) )

1

il e I e o= o oo
Il
—

= L0,
{ 51—3 :I
Bu matris temsilleri saglar
0210 000
A=|1=3 0| .D=10 00
00 =3 1 20
Hesaplamalar EH{Sl..S'g} = 1. .ESHI:S 1...5']] =-1, ETH{Sl.Sg} =1 verir
c=[1 -1 1]
Ve , sonug olarak,
1
b=10
0

Simdi verilmis Volterra sistemi i¢in ¢ift dogrusal gerceklestirme problemini goz 6niine almali.
O farz edelim ki gosterimde yazili diizenli transfer fonksiyonlara gore belirlenmis bir sistem.

Hisy. ..., 5.0) = (H(s1). Hipel51.52). Hypels1.52.53), -+ ) (74)
Her zaman oldugu gibi , H(51. - - - .5w) negatif gii¢ serilerinin bir dizisi gibi goziikecek , her biri

(60)’daki sekli alir. Bu perspektiften , bulunmus A4, D, b matrislerini i¢eren Volterra sistemi igin
cift dogrusal gergeklestirme problemi agiktir , ve ¢ Oyle ki biitiin £k = 1,2, . . . , ve biitiin negatif

olmayan numaralar/ 1+ - - - /% icindir ,
cA™D---DAb=h; .. (75)
H(s1.....5=) igin soyut degisim gerceklestirmenin yapimi polinom sistem

durumundayken ayni1 sira boyunca ilerler. Bu ylizden sadece mekaniklerin kisa bir
incelemesine istenir. Degisim ve indeks operatorler polinom durumdayken su sekilde
tanimlanir ,
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Sf"[:.i"_, e 5w) =(ST(51), SFa(51.52). )

WGy, ... 5.) = (IV3(51.52). TV3(51.52.53). ---) (76)

Bu operatorler ve belirlenmis Volterra sisteme gore , bir takim dogrusal bosluklar su sekilde
tanimlanir ,

Uy = span ff:ffsl._ S St:f(s-_ ..... 5ol 531}(31 _____ s.). -
U, = span {TU,. STUy, §°TUY. - - -}
U3 =span {TU,, ST, 5T, - - } )

Ve, sonug olarak ,
U=span {U, U3, Us, ---} (78)

Aciktir ki, S ve T U’dan U’ya dogrusal operatdrlerdir. Belirlenmis sistemlere gére baslatma
operatorii L:& — U su sekilde ,

Ly = I;'{Jl ..... 5.0 (79
ve degerlendirme operatorii £ :L7 — Rgu sekilde ,
E(Vi(sy). Va(s1.52). -+ ) = EVy(s1) (80)
tanimlanir.

Bu ispat (S,T,L,E,U) simdiye kadar standart hesaplamalardan takip edilen belirlenmis
Volterra sistem icin bir soyut ¢ift dogrusal gerceklestirme sistemidir. Ayrica , ¢ift dogrusal
gerceklestirebilirlige ve en az sorulara bir cevap kolayca elde edilir. Eger U smirli boyuta
sahipse , o zaman belirlenmis sistem cift dogrusal gerceklesebilir olan yenisiyle degistirme
yapimi tarafindan agiktir. Diger taraftan , bir basit tez teorem 4.10’un ispatinda gdsterilen ona
benzer bir Poperatdrden yararlanir , eger belirlenmis sistem ¢ift dogrusal gerceklesebilirse o
zaman U smirli boyutludur. (Ve eger dyleyse degisim gerceklestirme sistem icin en az ¢ift
dogrusal gerceklestirmedir.) BoOylece Volterra sistemin ¢ift dogrusal gerceklesebilirligi
dogrusal bosluk U’un sinirlt boyutuna esdegerdir. Daha fazla dogu nitelendirme i¢in arastirma
teorem 4.9’un yoniinde baglar.

-

Teorem 4.11: Eger (74)’de H(s1. - - Sw)tarafindan belirlenmis  Volterra sistemi ¢ift
dogrusal gergeklesebilirse , 0 zaman her diizenli transfer fonksiyonu Hreg(s 1, . . . ,sk) kesinlikle
uygun taninabilir fonksiyondur.

Teorem 4.11°in ispati H(s1. .- 5w) cift dogrusal gerceklestirmesini almadan
daha fazla hi¢bir sey olusmaz ve her Hreg(s 1, . . . ,s) hesaplama tarafindan gozlem kesinlikle
uygun taninabilir fonksiyondur. Bu inceleme , teorem 4.9’la birlikte , ayrica asagidaki ilging
bilgi iiretilir.

Sonu¢ 4.1: Eger Volterra sistem ¢ift dogrusal gerceklesebilirse , o zaman herhangi bir
polinom sistem Volterra sistem ucunu kesme tarafindan sekillenir ayrica ¢ift dogrusal

gerceklesebilir.
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Maalesef , Volterra sistemler icin ¢ift dogrusal gerceklesebilirin daha fazla direkt
belirlemesini arama teorem 4.11’in tersinin basarisizlikla sonuglandig: gosterir.

Ornek 4.5: Volterra sistemi hesapla

1 121 1! )
51+l 7 (s +1) T (59+1)--- (5, 1) °

ff(j"_,...,_‘.'m:!l=|: )

Indeks operatdr defalarca j = 1,2, .. . igin uygulama verir ,

1A +2) l{n+j+1)! .
""" (5171)---(s,+1)

- L +1)!
) =
PHEL ) S S T e D

Alt sistemin numaralar1 beklenilen yonde davranan tiim fonksiyonlar1 aktarir. Ama numaralari
koleksiyonundan beri

1 1 1
ST e, —_— )., j=0.1,
( G+ G+ (j+n=1)! '
sonsuz ebathdir , degisim operatriin hareketi dizgin hesaplama olmadan agiktir
U=span {Us.Us.--- } sonsuz ebatll olacak. Boylece ZZG1:--- S«)cift  dogrusal
gerceklesemez.

Farz edelim Volterra sistem her alt sistem diizenli transfer fonksiyonu , kesinlikle
uygun ve taninabilir olarak belirlenmistir. Cift dogrusal ger¢eklesebilirligi kontrol etmek igin ,
ornek 4.7 se¢cim olmadigini gosterir , ama U'nun boyutunun hesaplamasi boyunca calisir.

Genel sekil gibi elde edildiginde , cift dogrusal gergeklestirmenin hesaplamasi boyutlar
kiictikse kolay olabilir.

Ornek.4.6: Volterra sistem icin

1 1 1
s+l 7 (5152 1) T

Hizl1 hesaplama gosterilir , bu

ve

Bundan dolay1 boyut U =1 , ve baska kolay hesaplama gosterilir bu , en az ¢ift dogrusal
gerceklestirme soyledir

I == (D +x () +u(t)

y(f) =x(1)
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Resimle gostermeye ek olarak bir bakima en kolay miimkiin Volterra sistemi
gerceklestirme problemi , 6rnek 4.5 ‘le birlikte alt sistem profirtlerin karsilikli bagimliligint
gosteren bu Ornek smurli ebatli gerceklesebildiginde onemli rol oynar. Diger deyisle , ¢ift
dogrusal gerceklesebilirlik Volterra sistemde diizenli transfer fonksiyonlarin numaralarinda
sadece degisim sayilar1 tarafindan yaratilan ya da imha edilen olabilir. Diger ilging inceleme
ornek 4.6°da sistemin iki dereceli polinom budamaya kars1 yapilabilir , yani ,

1
His1. V=TT Gneny S

Bu polinom sistem i¢in en az ¢ift dogrusal gerceklestirme boyutu iki boyuta sahiptir. Boylece
budama en az ¢ift dogrusal gerceklestirmenin boyutu artabilir.

Belki belirlenmis Volterra sistemin ¢ift dogrusal gerceklesebilirligi i¢cin durumun temizleyici
anlatimi ( ya da , bu konu i¢in , polinom ya da homojen sistem ) degisim gergeklestirme bakis
acisindan gelisebilir. Yaklasim asamayla negatif gii¢ serilerinin yerini igerir bundan dolay1 U
bu ilerlemelerin sisteme diizenlemesi ilerlemenin dogrusal uzay1 gibi goriiliir , ve sonra
matrisin ilerlemelerini not alma U’nun sinirli boyutluluga esdegerdir. Ayrica , o dogrusal
duruma pek ¢ok benzer sekildir.

Diizenli transfer fonksiyonlarin Hisy.. ... S.) sirasim gosterme negatif gii¢ serilerin sirasina
benzer
Hisp.. . s)=(Yhs™ ¥ zhr,, s gy (81)
=0 i, =0i,=0

ve seklin anlatim1
SETS T TS H sy s.) (82)

ayni yolda goriilebilir. Ornegm

L] f==)

SH(s). .. .5.)=( Efr s Y S kT sy
f|=|::!.3={| o

TH(s).....5.) = {M. AR Y W TP P N (83)
iy =08, =0

Negatif giic serilerinin ilerlemelerinden her biri ilerlemelerin dizisi gibi goriilebilir. Ornegin ,

_%.F(Sl._ ce ,5'.:.,:!' = ({.a?ujfl._jfz. -t ‘!l (jf.;]n,.a?ul,fi'c'\._ 'E-; 10 "I:"ll Jil.i‘]_':u, Tt :I, - ]
SH(s1.....5.)=((hha e, -2 ) U hna. }hc hohp, <o) o)
TH(s1. ... .5.) = ((hoo.horfiga. - --). {Pi'um-.ffﬂm-}!m: ----- how.fonhoz. ) o)

Tabii , ¢ok indeksli ilerlemeler sistematik olarak bir ¢ok yola sahiptirler , ama 6zel diizenleme
hepsi ayni yolda listelendigi siirece 6nemsizdir.

Bu bakis agisindan , (77)’de her Ui ve (78)’de her U ilerlemelerin dogrusal uzay1
gibi dikkate alinmali. Degisim ve indeks operatorleri lstteki gibi acgiklanir , ve L ve E
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operatorler dizi agiklamasi i¢in benzer sekilde degistirilmistir. Daha sonra belirlenmis sistem
icin bir davranig matrisi dizi yorumu agisindan su sekilde tanimlanir ,

I;r Ii:_'i 1--- - 5 M:I
SH(sp... .. S
S*H(sq. .. .. 5o)
Bi = TH(s). - ... 5 o)
STH(sy.. ... 5o)
S TH(sq. .. .. 5.)
ST IS H(s), . .5.0)

.'i? N ni'? 1 -t _|'-1 00 r:_:' al
."’.'.1 fy -l hiy
Lo o (84)
Fi :||:| |1|:|1 - ' R | |:||::| I|";| 001

Ve simdi asagidaki gerceklesebilir durum dogrusal bosluk U iistiinde sinirli boyutsal durumun
apacik yeniden ifadesi olmali.

Teorem 4.12: H(S1.- .. .5.) tarafindan tanimlanan Volterra sistem ancak ve ancak uygunsa
cift dogrusal gerceklesebilir. Davranig matrisi BH sinirly siraya sahip. Bunu yaninda , ¢ift
dogrusal gerceklesebilir sistem i¢in , BH’nin sirasi en az ¢ift dogrusal ger¢eklesmenin

boyutudur.

4.4 Cift Dogrusal Durum Denklemlerin Ozellikleri

Cift dogrusal gerceklestirme sorusunda dogrudan dikkate sahip olma , bdyle durum
esitlemenin ayiric1 6zelligin bazilar1 tartigmaya uygundur. Onceden bahsedilmis gibi , ¢ift
dogrusal durum esitlemeleri bir ¢ok yapisal karaktere sahiptir , bu dogrusal durum
esitlemelerin iyi bilinen karakterlerine dikkat g¢ekici sekilde benzerdir. Bu ozellikler cift
dogrusal durum esitlik temsilleri olan Volterra sistemin genel durumunda ispat edilecek.
Homojenik ya da polinom sistemin 6zel durumlarin ayri olarak dikkate alinmasina gerek yok.

Sik sik karsilagilan bir soru belirlenmis ¢ift dogrusal esitligin en az olup olmadigidir.
Diger bir deyisle , durum denklemin girdi-¢ikti tanimlamanin en az ¢ift dogrusal gerceklesme
olup olmadigidir. Bu soruya uygun yol uygun fikirler boyunca ulasilabilir ve gbzlenebilir. Bu
fikirler en aza gelistirilecek ve baglanacak. Ayni1 zamanda , en az ¢ift dogrusal
gerceklestirmelerin kesin denklik 6zellikleri ele alinacak.

Cift dogrusal durum denklemi i¢in ulagilabilirligin uygun tanimi
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Ty =Ax () + D (tu(r) + buir)

ViOh=ex(f). 20, x(0)=0 (83)
ulasilabilir durumun kavramiyla baslar. Her zaman oldugu gibi , x(0eR™, u(f) ye ¥
sayisallardir.

Tanim 4.1: Cift dogrusal durum denkleminin (85) *1 durumu parca parca siirekli giris sinyali
varsa dyle ki baz1 71 = =°, x{t1) =1 icin ulagilabilir( *(9) = 0°den) adlandirilir.

Asagi yukari uygunluk sorunu olan giris sinyali i¢in parca parga siirekliligin 6zelligini
not almali. Girislerin daha ¢ok genel ve kisitlayici siiflari sabitken sonuglar se¢ilmis olmali.
(Ama kabul edilebilir girdilerin agikca belirtilen sinifi degil zayif tatta olacakt.)

Cift dogrusal denklemi icin ulasilabilir durumlarin seti , durum bosluk &™nin
dogrusal alt uzayr sekli verilmesi hos olurdu. Maalesef bu durum degil ; ulasilabilir
durumlarin dogrusal bilesenleri ulagilabilir olmamali. Bu yiizden , dogrusal cebirin teknikleri
icin uygulanabilen ulasilabilirligin biraz daha gii¢siiz kavrami kullanilir.

Tanim 4.2: Cift dogrusal durum denklemi (4.D.b.c.R™) ulagilabilir durumlarin stirelerinin
R™ setine ragmen stire ulasilabilir olarak adlandirilir.

Belirlenmis sistemin siire uygulanabilirligi i¢in bir kriterin ilk adimi , ulasilabilir

durumlarin karakter siiresidir. Son olarak , Lsp(®) izin vermek R™’nin en az boyut alt uzay1
belirtmek b ve degismez A ve D’nin altin1 kapsar.

Yardimar teorem 4.1: “4-D-5.6.8%)>pip ulasilabilir durumlar tarafindan siirelenen alt uzay

X, cR" A= L4p(5) tarafindan belirlenmistir.

Ispat baz1 girdi #(f) ve baz1 {1 === ¥{t1) =X1 j¢in , ¥1 ulagilabilir durumdur. Sonra

X1 ¢ift dogrusal durum denklemin ¢oziimii *{f) igin boliim 3’te tiiretilmis ifade kullanma
yazilabilir. x{0) =C ‘nin durumu ve sabit kat say1 matrisleri i¢in , ilk birkac sartlar

- ._;‘ (!I—G:E}u [

X1 =J e g)do
0

8]
0

Bu ifade *1¢Lsn(b) icin , A ve D carp1 b’nin lrilinlerinin dogrusal bilesimin gosterir. Bu

X, cLyp(b) X

sonugla < ’den beri ulasilabilir durumlarin seti “*sri¢in bu temel sekiller vardir.

Ters kapsamayi elde etme , biitiin7 = 0 i¢in *(f) kapsanan alt uzaysa gosteri zor
degildir. Boylece , herhangi bir sabit girdi #(f) = ,ve herhangi bir ulasilabilir durum *1 igin,

(4 +Dux, ~buelX,
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Ozellikle , *1 = 9 ulasilabilir , ve bu yiizden beXy Bundan dolay1 , eger u herhangi bir reel
saylysa, ve ¥1 herhangi bir ulasilabilir durumsa ,

(d+Dux, e X,

Sonra ulagilabilir durumlarin bu siirelerinin seti 4z , (4 = Du) gltinda Ko nin herhangi bir u
goriintiisii i¢indir.
(4 +DulX, =X,

Bu ima etmeleri gostermek icin soru 4.14 ‘e bakilir , bu <= her iki 4 ve D ‘nin altinda

sabittir. Sonra A= b’yi icerir ve A ve D . Lip(B) =X 'pjn altinda sabittir. Bu
tamamlamalarin ispat1 ,

'Ly 5(®) *nin bir nitelendirmesi tekrarlanarak tanimlayan tarafindan elde edilebilir.
p1=b. p;=[4p;.y Dp;1]. i=2.3,--- (88)
Ve miisaade eder.

Pi=[p1p2 - pil (89)

Yardimel teorem 4.2: ' L40(5) ye R[P,] dogrusal alt uzaylar 6zdestir.

Ispat dogrusal alt uzay R[P] , P&’nim kolonlar tarafindan alt uzay siirelidir. Pronm

kolonlar1 bu -1 kapsar , ve ekstra kolonlar 4 ve D tarafindan carpilarak tiretilir. Bu

ylizden ,
R[P{)= R[P3]=---—R™
Ozellikle , birt 1 = m vardir , 6yle ki,
R[P1]=R[P:]c---cR[Pi.1] =R[P:]= --- =R[Pu] cR™

ve bu ylizden RIPe1] =R[Pul g4 ve Dve b kapsamalarin altinda sabittir. O gosterir ki R[Py]

alt uzay gibi en az boyuttur. Bundan dolay1 farz edelim X < R&™

b’yiigeren ve A ve D ‘nin
altinda degismeyen herhangi bir alt uzaydir. Ama X X <R[Pu] olan b.4b. Db.. ... ¢

icermeli. Sonug olarak R[Pul enaz boyuttur.

Bu sonug siire uygulanabilirligi igin olgiite direkt olarak yol acar ¢iinkii riithe £,

R[Pu] *nin kesinlikle boyutudur.

Teorem 4.13: m-ebath cift dogrusal durum denklemi (85) ancak ve ancak riithe £m = *yse
siire ulasilabilir.
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Simdi ¢ift dogrusal durum denklemleri i¢in bir uygun go6zlenebilirlik 6zelligi
gelistirmenin problemine donerim. Tekrar , kullanilan kavram dogrusal durum denklemleri
icin gozlenebilirlik olan biraz gii¢siiz bigcimde tanimlanacak.

Tanim 4.3: Cift dogrusal durum denklemin (85) x*a#0 durumu segilemez (0’dan) olarak
adlandirnlir eger *(%) =xq jle cevap ¥(#) her parga parga siirekli giris sinyali i¢in *(0) =0 ile
cevaba 0zdesse.

Burada , oOnceden oldugu gibi , parca parca devamlilik sadece kesinlik igin
belirlenmigtir. Uyar1 , bu tamim cevap () nin bilgiden goriilebilir baslangic durumu
hesaplama kabiliyeti hakkinda higbir sey ima etmez. Bu konu tartigma altinda yapi1 kuramla
ilgili olmadig i¢in dikkate alinacak.

Tanim 4.4: Cift dogrusal durum denklemi (85) gézlenebilir olarak adlandirilir eger se¢ilemez
durumlar yoksa.

Cift dogrusal durum denklemi (4.D.5.c.R™) icin gozlenebilirligin kavramin
nitelendirmek , 4 ve D’nin altinda sabit olan en genis alt uzay kapsanan XNI[cl,
G4ple) =R™ jzin vermesi uygundur.

Yardimar teorem 4.3: (4.D.5.c.R™) ’in biitiin secilemez durumlarin alt kiimesi % = Ga.p(€)
tarafindan belirlenmis olan dogrusal alt uzaydir.

Ispat (taslak) bdliim 3’te tiiretilmis gdsterimi kullanma , gelisigiizel baslangic durumu
*o ve girdi () a ¢ift dogrusal sistemin cevaba seriler gibi yazilabilir , ilk birkag sartlar ;

I I
¥(1) = cedxg + | ced 9 Ded yu () do + | ceTDbu(a) do + - - -
0 0

Biiyiliyen matris iilserleri sekilden sartlar saglar

v(t) =cxg +cdxgt + fD.rg_[ u(a) do
0

+ .:bJ‘ u(o) do + .:AE}_I' (t—o(o)do + --- (90)
0 0

Secilemez durumlar sekiller bir dogrusal alt uzayin seti olan bu anlatimdan acik olmal.
Ayrica eger Y0£Gup(€) goriilmesi kolaysa , o zaman Xo segilemez. Diger deyisle,
G1p(c) =X Ters kapsama biitiin reel sayilar u i¢in gosterildiginden elde edilendir ,

(4 T DulY; o X
ve bu
X o Ne]
Detaylar tamamlamada giictiir , ve bdylece ¢ikarilir.
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Simdi & tanimlama G.p(c) tanimlamay1 igerir.

gi-14 .
d)1 =¢, gr:[g:—]_ﬂ]- T:2=3'--- (g]'}
vE
q1
o =% i=12 - (92)
gi

Sonra agagidaki sonug yardime1 teorem 4.2 ‘ye benzer tarzda ispatlanmistir.

Yardimei teorem 4.4: Dogrusal alt uzaylar 4; ve N[On] Ozdestir.
Simdi dogrusal cebirin agik uygulamasi bir gozlenebilirlik kriteri verir.

Teorem 4.14: m-ebath ¢ift dogrusal durum denklemi (85) ancak ve ancak riithe @m =M ise
gozlenebilir.

Bu kavramlar kendileriyle ilgilendiginde , burada ki amag¢ en az ¢ift dogrusal
gergeklestirmelerin teoriyle birlikte onlar1 kullanmak igindir. Sonugta ¢ok dnemli olan £i ve
Ormatrisleri hakkinda daha fazla olgu vardur.

Yardimei teorem 4.5: Herhangi bir JE=12. . iriin 9P icin belirlenmis sistemin biitiin

cift dogrusal gerceklestirmeleri aynidir.

Ispat varsayalim (4.D.b.c.R™) ve(4.D.b.:R™) ikisi de belirlenmis sistemin cift
dogrusal gergeklestirmeleridir. Sonra iki sistemin diizenli ¢ekirdeklerin = 1.2, .. .. icin biitiin

1. - - On = Oicin asagidakini verir.

Ao, - A y . Ag, & Ag, - ~ g,
ce” D™ D - - DeMb =" D™D --- Db

Onun gii¢ serilerinin genislemesi tarafindan her matris iissel yerine koyma ve benzer tezlerin

katsayilarini esitleme her #n =1.2.---. ve her i = 0 i¢in sunu gosterir.
cA™D---D4"b=24"D---DA"b
Bu tam ispattan sonra iirin €% ’in her elementi kesinlikle bu sekle sahiptir.

Bu noktada , hemen hemen biitiin araglar ¢ift dogrusal gerceklestirmeler icin gerek
duyulan en az karaktere yakindadir. Bir kalict hesaplama gosteri igerir eger (4.D.5.c.R™)
belirlenmis sistem i¢in bir gergeklestirmeyse o zaman herhangi bir tersine ¢evrilebilir , m x m
matris T. (AT .TDT . Tb.cT'.R™) de sistem icin gerceklestirmedir. Bu bir kolay alistirma
gibi birakilir.
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Teorem 4.15: Belirlenmis Volterra sistemin ¢ift dogrusal gergeklestirmesi ancak ve ancak
stire ulasilabilir ve gdzlenebilirse en az dir.

Ispat (85) varsay belirlenmis Volterra sistem icin boyut m’in ¢ift dogrusal
gerceklestirmesidir , ama bu siire ulasilamaz. Boyut < m’in bagka c¢ift dogrusal gerceklestirme
yapimi nasil gosterecegim. Sonra (A.D.b.c.R™)siire ulasilamaz R[PuJ=R™ e

" =R[Pu] ® V. yazabilirim , @ dogrudan toplami gosterir , ve ¥ en azindan boyut 1’in

me

dogrusal alt uzayidir. R™icin temel se¢im , R[Pn] icin temel W1.----Wr ve V i¢in temel

We+1- - - Wmin birlestirmesidir. T~ ‘e izin vermek kolon Wi ile #* m *m matrisi olur ,
sonra da (ZAT'.IDT.Th.cT™!.R™) belirlenmis Volterra sistemin m-ebath ¢ift dogrusal

gerceklestirmesidir. Bundan baska , & [Po] icin b ‘i kapsar , ve 4 ve D ‘in altinda sabittir , bu
yeni gergeklestirmenin kisimlara ayirmada ki sekli

AT = [ 41 41 IDT-! = Dy Dy
T 0 dAn | | 0 Dxn
s 1
h=|g | T =le1 ¢ (93)

747t ve TDT! de 0 bloklar1 (m—r)<r dir , Tb de 0 blogu (m—r)= 1 dir, ve€1 7 *1 dir.
Simdi n =1.2.--- ve Gi.....0. 20 i¢in gosterilen kolay hesaplama sudur

A 4 A A 4 A
ce” P pe*™p ... D™ Mp =ce "ﬁ"D-_le "G""D-_l ---De "“'EJ-_

Boylece (d11.D11.51.01.R") boyut ¥ = m ‘in ¢ift dogrusal gerceklestirmesidir. Cok benzer bir
bicimde gosterilebilir eger ¢ift dogrusal gergeklestirme gozlenebilir degilse , o zaman en az
degildir.

Simdi (4.D.b.c.R™) ve (4.D.b.&.R™) belirlenmis sisteme gore , sirastyla , boyut m ve
m ‘in ¢ift dogrusal gergeklestirmeleri siire-ulasilabilir ve gozlenebilir. M = max[m.m]’e izin
vermek , yardimci teorem 4.4 ‘Ui verir

OyPys = OuiPuy (94)

Ama P ’in m siralart ve @3’in m kolonlar1 dogrusal bagimsizdir , ve Fi’in # siralar

ve @’in i kolonlari dogrusal bagimsizdir. Boylece , (94) m =m anlamma gelenler
okuyucuya detaylar birakir. Biitlin bunlar , belirlenmis Volterra sistemin siire-ulasilabilir ve
gdzlenebilir gerceklestirmeleri ayn1 boyuta sahiptir. Ispatin ilk boliimiinde gozlenen en az gift
dogrusal gergeklestirme siire-ulasilabilir ve gozlenebilir. Bdylece belirlenmis Volterra
sistemin biitiin slire-ulasilabilir ve gozlenebilir gergeklestirmeler en azdir.

En az ¢ift dogrusal gerceklestirmenin nitelendirmesinde son adim belirlenmis Volterra
sistemin boyle biitliin gergeklestirmeleri degiskenin degisimi tarafindan baglantili olarak
gosterilecek.
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Teorem 4.16: (4.D.5.c.R™) belirlenmis sistemin en az ¢ift dogrusal ger¢eklestirmesidir. Sonra

(4.DbCR™  de ancak ve ancak ters cevrilmis  matris T oyle ki
A=TT ' D=TDT ' b=Th.c=cT" varsa belirlenmis sistemin en az ¢ift dogrusal
gerceklestirmesidir.

Ispat eger bdyle T varsa , o zaman yeterli miktar Oneriyi daha erken kolay
alistirmadan izler. Zorunluluk i¢in , her iki durum denklemleri de belirlenmis sistemin en az
cift dogrusal gergeklestirmeleridir. Sonra yardimci teorem 4.4 tarafindan ,

O:P; = QP . kj=12 --- (95)

ve , biitiin teorem 4.15 , Dm- @m- Pu- ve £m tarafindan riitbe m’ye sahiptir. Ozellikle , (O Om)
olan bu ima etmeler ters ¢evrilmistir , bu ylizden eger

T= (0w On) ' On 'é:'re ise

0 zaman

QI'H -QI'HI = QI'H .QI'H

Ve

~

O.l'i‘l -g.l'i‘l TPI'HPW = Qﬁ"i‘ -QWPFrJPFH = Qﬁ"i‘ anPﬂIP?H .

=

Ondan sonra £m¥m " ters cevrilmis olabilir , bu ters gevrilmis olan 7”’yi verir , ve
I =P,Py PPy )

Simdi (95) de k=17 =m ile ¢Pm =CcPw’{ ima eder , buda b = Th°i verir. “Pm *in kolonlarimi
not almak Pw-<1’in kolonlarmi kapsar , ve DPw’in kolonlari Pm=1in kolonlarmi kapsar.
Boylece (95)’deki ima etmeler

OwAPyy = OnAPy. OnDPy = 0,DP,
Ornegin , bu denklemlerin ilkini alma ,
O OwAP Py = Oy OpdB, Py
ya da
A = (On Q)" O OwAPy Py, (PP ) = TAT™
Ikinci esitligin benzer hesaplamasi ispati tamamlar.

4.5 Sabit Olmayan Durum
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Doniistim-bolge araglar onceki boliimlerde ¢ok genis Ol¢iide kullanima sahipti ama
sabit olmayan durumlarda basarili bi¢imde kullanilamadi. Ayrica , diizenli ¢ekirdek sabit
sistemler i¢in sadece gelistirilmektedir. Bu yiizden sabit olmayan sistemlerin girdi-¢ikt
gosteriminde ya ii¢ koseli ya da simetrik ¢ekirdekleri kullanmanin se¢imi ayrilir. Sonra ¢ift
dogrusal gergeklestirmeler ilgingtir , bolim 3’te iic koseli ¢ekirdek gelisti ¢linkii bu sekilde
durum denklemleri kullanilacak , sonuglara ragmen simetrik ¢ekirdeklere gore kolayca tekrar
ifade edilebilir.

Sabit olmayan ¢ift dogrusal durum denklemi su sekli alir
O =AW () + D (Ou () + b(Hu(h)
y(e)=c(tx(r) (96)

biitiin boyutlarda aligildig1 gibidir , ve katsay1 matrisleri #’in varsayilan stirekli fonksiyonlari
olmaya onemsizcedir. Boliim 3’te x(0)=0 ile bdyle durum denklemi Volterra sistem
gosterimi sagladigini gosterir

L

t 01 -
yo=% 1] | hton ... .ouo) - u(o,)do, - - doy (97)
=10 0 0

ti¢ koseli ¢ekirdek olan nt su sekilde verilir

hitoy. . ... 0,) = ¢ (OO, G, 1D (0 )D(0;.02)D (02 )D(0,.03)
T D(Gn—l ]m(ﬁn—l-ﬁn)b {Uu} [98}

ve ®(t.0) olan 4(f i¢in genis matristir.

Sekil (97)’nin genel Volterra sistemi igin ¢ift dogrusal gerceklestirme problemini
hesaba katmak zor istir. Bunlar hakkinda simdi sdylenebilir ki Volterra sistem ¢ift dogrusal
gerceklesebilir ancak ve ancak eger uygun bir sekilde boyutlu , stirekli matris fonksiyonlari
A(t). D(#). 5(t).ve c(t) byle ki gekirdekler sekil (98)’de yazilabilir ; daha dogrusu sdyleyismis
gibi cift dogrusal gerceklesebilirdir ancak ve ancak ¢ift dogrusal gergeklesebilirse. Zorluk
sabit durumda meydana ¢ikan zorluklara dogada benzerdir. Volterra sistemin ¢ift dogrusal
gerceklesebilirligi kisisel ¢ekirdeklerin 6zelligine ve cekirdeklerin karsilikli baglanti yoluna
baglidir. Ancak goriiniis tiirdes ve polinom sistemler i¢in daha parlaktir , ve bu durumlarda
yogunlasacagim.

Teorem 4.17: n-dereceli tlirdes sistem g0yle tanimlanir

t 0 LS
vior=11-- | hiton. . .. O (G1) - - - 1 (G) dGy - - - doy (99)
00 0
cift dogrusal gergeklesebilir ancak ve ancak cekirdek 7(t.01. - .0.) ayrilabilirse.

Ispat eger sistem cift dogrusal gerceklesebilirse , o zaman cekirdek sekil (98)’de
yazilabilir. Gegis matrisin 6zellikleri nedeniyle , bu yiizden ¢ekirdek ayrilabilir.(Dogrusal
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durumdaki gibi , siireklilik ¢ift dogrusal durum denkleminde siirekli tahminler tarafindan
dosenmis olmasi gerekli.)
Simdi bu varsayimda ¢ekirdek ayrilabilir ,

h [!J‘jl-. - - --.Gu:' = Z FE:'(?I)-P'_![GI) o Vrn'['[}rlj

i=]

Durum m = 1 i¢in , ¢ift dogrusal durum denklemin gosterisi agiktir ki

0viw® 0 - 0 0

I;I ':I v?m(ﬂ T 0 0
xH=1. : : : x(u+ | o fu@

0 0 0 T Vrl—'.:m{r} 0

0 0 0o - 0 Vi (£)

V()= om0 - - 0]x(#)
cekirdekle n —dereceli tiirdes bir sistemdir
h (F- O, ..., G?f] = vl:l:'u{r]v lm{ﬁlj U v?fm(ﬁ?fj

Ispat genel durumda kullanilabilen bu basit ¢ift dogrusal durum denklemlerin bir katkisal
paralel baglantisindan sonra simdi hemen hemen tamdir. Ispatin sebebi tam degildir
m =1 oldugunda Vi) reel fonksiyonlar olmali , ama m = 1 i¢in onlar karmasik olmali. Bu
detaylar1 g6z oniinde tutma okuyucuya birakilir.

Ayrica bu tiirdes sistemleri nitelendirmek ilgi cekicidir , sabit olmayan iiggensel
cekirdeklere gore temsil edildigi halde , gergcekten sabit-parametre c¢ift dogrusal durum
denklemi tarafindan gerceklesebilir. Bir daha , sonuglar dogrusal-sistem sonuclara bezerlerdir.

Teorem 4.18: Sekil (99)’un n-dereceli tiirdes sistemi sabit-parametre ¢ift dogrusal durum
denklemi tarafindan gerceklesebilir ancak ve ancak cekirdek h(2.01.-...04) sabit ve farkh
olarak ayrilabilirse.

Ispat eger n-dereceli tiirdes sistem bir sabit-parametre ¢ift dogrusal gergeklestirmeye
sahipse , o zaman sabitsel ve diferansiyellesebilir ayrilmis olabilenler ¢ekirdegin bilinen
genel seklinden kolaylikla takip edilir.

Simdi varsayalim ii¢ koseli cekirdek sabit ve diferansiyellesebilir ayrilabilirdir.

Basitlige gore her *i () reel fonksiyon olan 6zel durumu hesaplayacagim
h I:!,'L‘Il.. e >Gu:' = 1"':'(?']1". I:Gl:' T vrz{ﬁu}

(Dogrusal durum gibi , ispatin genellemesi karmasik-degerli fonksiyonlar gereken harig
kolaydir. Sonra daha fazla telagh tartigmalar reel-katsay1r gerceklestirme elde edilebilen
gosteriye gereklidir.) Ispatin ana boliimii €1-41- - - - @y reel numaralar icin sekilde yazilabilen
cekirdegi gostermeye adayacaktir.
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T ﬂl:.r } ﬂ:':. 2 ﬂ'_.|: .1-_r|:I
ht.oL. ... (jﬁ.]=f-_e'_“'e ) B

Buda kurulmustur , ¢ift dogrusal gerceklestirme alisilagelmis hesaplama tarafindan isteyerek
dogrulanmis oldugu gibi su sekilde belirlenmistir.

a 0 --- 0 010 --- 0 0
" 0 ay --- 0 001 - 0 0
xty=1- - . x| N x@u) |- | ul

00 --- 0 000 -~ i 0

0o 0 - iy 000 - |

y(©)=[c10 - 0]x(n)

Temel yaklagim ilk Onerinin sabit-katsay1r dogrusal diferansiyel denklemi tahmin eden her
vil) <in ispatlamasini icerir. Buna gore goster , sdyle , ¥1(01) | izin ver

T I

q1 = | o J va(fvi(oa) - - - vi(o,) dr do; - - - do,
-T -T

T 41 = 0 igin segilir. Eger T"nin bdyle olmadigini not alirsak , o zaman g¢ekirdek bir dnemsiz
durum ayni0 dir. Su sekildedir

h(t.01. .. ..Oy) = h(0.01t. . ... Gyut)
¢linkii
n ] ) . i ]
& o0, hitap. ..., a,) o h(t.oy.....0,)=0

Ayrilabilir sekil kullanarak tiirevler hesaplama sunu verir
Vot 1 (01 )v2(02) - - - valGy) T voltlv1(01 v2(02)v3(T3) - - - v,(0,)
T veva(on) - v (01)0(0,) T Votvi(ar) - - - va(0,) =0
vo(tv2(02) - - -vu(04) ve yeniden diizenleme tarafindan bu denklemi ¢arpma sunu verir
a(tv3(02) - - w0191 (01) + a2 (02)72(02)v3 (03) - - - vii(0,)
+e B EVI(02) V(O n(O) T VoV o(EVE(G2) - - valOw)v1(G1) = 0

Bu anlattmin her iki yani da 77’in acik tanimiyla elde etme fG2.....0n"¢ gore
birlestirilebilir.

g1vi(oy) +rvila) =0
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Boylece ¥1{01) basit-parametre dogrusal diferansiyel denklem (71 =0 icin 0onemli) tahmin

edilir. Bu yéntem uygun @1 ve €1 igindir. Bir benzer gelisme J=2.3..-..7 icin
_ . a0,

vi(0;) = e olan gosteriye gerceklesebilir. Simdi durum

u

vo(t) = vo(0)e @™ T

veren
vl:l(?l)..'" :gﬂlﬁl .. cﬂgﬂnﬁn — 'L"E[:'D]._'" '_EGII‘G'_IJ . fﬂgﬂ"(ﬁ'_'j

- )% 2a)r) | a, o,
—'L‘,;[:'I:l]g c1€ e Cge

gibi yazilabilir. Boylece ©1’in tekrar uygun tanimlama
_— . - "l_r

h(r'ﬁl ----- 'I:F_rz:] :f'_{:'_{gl A Ea"ﬁ- ___Eanﬁn
— . G—{f-h_- -- —ﬂr:':?—G_:lg—(f?:— co TN -y g_a"m-"_l_qr:

ve ispat tamdir.

Tiirdes sistemler i¢cin bu sonuglar direkt olarak polinom sistemler i¢in ¢ift dogrusal
gerceklesebilirlik sonuglart saglar. Bu , polinom sistem i¢in ¢ift dogrusal gerceklesebilirlik
cift dogrusal gergeklesebilirligin her birine ve her bir tiirdes alt sisteme baglhidir. Asagidaki
bicimlestirmenin kolay ispati boliim 4.7°ye birakir , teorem 4.9’nin ispatini ip ucuyla elde
edebilir.

Teorem 4.19: N-dereceli bir polinom sistem (sabit-parametre) ¢ift dogrusal gerceklestirmeye
sahiptir ancak ve ancak N {i¢ koseli ¢ekirdeklerin her biri ayarlanabilirse (sabit ve farkli olarak

4.6 Goriisler ve Kaynaklar

Goriis 4.1: Dogrusal gergeklestirme probleminde materyalin bollugu vardir ve sadece birkag
kaynaklar burada listelenecek. Sabit sistemler igin bir basit inceleme , ¢ok-girdi , ¢cok-¢ikti
kapsayan durum , bulunmus olabilir,

C. Chen , Dogrusal Sistem Kuramina Giris , Holt , Rinehart ve Winston , New York , 1970.

Bir temel islem olan vurgular Hankel (Behavior) matrisleri ve rasyonel fonksiyonlarin
cebirsel 6zellikleriyle baglantilar kitapta belirlenmistir bu algak goniilliiliik beni hemen hemen
anmanin Onene gecer :

W. Rugh , Dogrusal Sistemlerin Matematiksel Tanimi , Marcel Dakker , New York , 1975.

Hankel sistem yaklasimin daha ¢ok arastirma-yonlii incelemesi , perspektifler ve agik
problemlerin bir ilging tartismasiyla birlikte verilmistir

R. Kalman , “Dogrusal Dinamik Sistemlerin Gergeklestirme kurami” , Fonksiyonel Analizde
Kontrol Kurami ve Konulari iginde , Cilt 2 , Uluslar aras1 Atom Enerjisi Temsilcisi , Viyana ,
sf. 235-256 , 1976.
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Boliim 4.1 de kullanilan soyut degisim gergeklestirme su yaklasimdan gelismistir

E. Gilbert , “Dogrusal Sistemler icin Gergeklestirme Algoritmalart ve Sinirli Geri Kalmis
Degisim Gergeklestirmenin Rolii” , Bilgi Bilimleri ve Sistemlerinde 1978 Konferansinin
Yéntemleri , Elektrik Miihendisligi Boliimii , Johns Hopkins Universitesi , Baltimor , sf. 145-
151, 1978.

Son olarak , sabit olmayan dogrusal sistemler i¢in gerceklestirme problemi sunda ele alindi

L. Silverman , “Dogrusal Dinamik Sistemlerin Gergeklestirmesi” , Otomatik Kontrolde
Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-16 , sf. 554-568 , 1971,

R. Brockett , Sinirli Ebatli Dogrusal Sistemler , John Wiley , New York , 1970.

Gorils 4.2: Dogrusal sistemlerin ve carpanlarin birbirine bagli olmalarina gére dogrusal
olmayan gerc¢eklestirme problemin dnceki islemi sunda verilmistir

M. Schetzen , “Dogrusal Olmayan Sistemlerin Bir Smifimin Sentezi” , Idarenin Uluslararas
Dergisi , Cilt 1, s£401-414 , 1965.

Iki dereceli durumda , temel birbirine bagl olma durumu dogrusal sistemin bir kas kat
baglamas1 asagidaki iki dogrusal sistemin ¢arpimsal paralel baglantisidir. Bu temel yapilarin
katk1 maddesi paralel baglantilar1 da kullanilir. Gergeklesebilir testler ve gerceklestirme
yontemleri aktarim islevi igin yapisal sekilde dayanan gelismisliktir, 16 1H2(52)H3(s1%52)
birbirine bagli olan sonuglardan dogal olarak meydana ¢ikar. Transfer fonksiyonu igin
standart sekle gore gerceklesebilirligin konusu (simetrik transfer fonksiyonu demek)
tartisilamaz.

Daha fazla gerceklestirme fikirlerin gelisimi dogrusal sistemler ve ¢arpanlarin az ¢ok
birbirine bagli olma 6zelligin simetrik transfer fonksiyonlarin yapisal 6zelliklerine dayanma
asagidaki sayfalarda desteklenebilir.

W. Smith , W. Rugh , “Dogrusal Olmayan Sistemlerin Bir Sinifinin Yapisinda” , Otomatik
Kontrolde Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-19 , sf. 701-706
, 1974.

K. Shanmugam , M. Lal , “Dogrusal Olmayan Sistemlerin Bir Siifinin Analizi ve Sentezi” ,
Devrelerde ve Sistemlerde Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt
CAS-23, sf. 17-25, 1976.

T. Harper , W. Rugh , “Volterra Sistemlerin Faktorlerin Yapisal Ozellikleri” , Otomatik
Kontrolde Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-21 , sf. 822-832
, 1976.

Birbirine bagli olan gergeklestirme problemin islemleri dikkate deger birbirine bagli olan
yapilara dayanmamasi iki dereceli tiirdes sistemler i¢in sunda verilmistir
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G. Mitzel , W. Rugh , “Homojen Dogrusal Olmayan Sistemler icin Cok Boyutlu S-Doniisiim
ve Gergeklestirme Probleminde” , Otomatik Kontrolde FElektrik ve Elektronik Miihendisligi
Enstitiisii Islemleri , Cilt AC-22 , sf. 825-830 , 1977.

E. Gilbert , “Cift Dogrusal ve 2-Gii¢ Girdi-Cikt1 Haritalari:Fonksiyonel Serilerin Sinirli Ebatl
Gergeklestirmeleri ve Rolii” , Otomatik Kontrolde Elektrik ve Elektronik Miihendisligi
Enstitiisii Islemleri , Cilt AC-23 , sf. 418-425 , 1978.

Bu sayfalarin ilkinde , Laplace doniisiimiine bir cebirsel yaklagim resmi seriler gosterimine
dayanan gelismedir. Tanmnabilir 6zelligi kullanma , birbirine bagli olan gergeklestirmeler
belirlenmis transfer fonksiyonun kismi boliim genislemeden gelismistir. Tkinci sayfa birbirine
bagli olan yapinin uzmanhigini kullanir sézde ¢ift dogrusal girdi-¢ikt1 haritalart ( bolim 6’da
tartisilmis olan) tiirdes durumda gergeklestirmelere varmak igindir.

Goriis 4.3: Cift dogrusal denklemlerin burada adlandirilan yazinda bir¢ok isimler vardir,
“diizenli sistemler” , “icten c¢ift dogrusal sistemler” ve “igten iki-afin sistemler” dahil.
Bunlarin herhangi biri i¢in iyi sonuglart vardir , ve okuyucu anahtardan daha ziyade savasa
tesvik olur. Daha anlamli konularda , belirlenmis Volterra sistem i¢in ¢ift dogrusal
gerceklestirme problemin dnceki islemi sunda goriiniir

A. Isidori , A. Ruberti , “Belirlenmis Sistemlerin Gergeklestirme Kurami” , Sistem Kuraminda
Geometrik Metodlar iginde , D. Mayne , R. Brockett , D. Rediel , Dordrecht , Hollanda , sf.
81-130, 1973.

Probleme iki yaklasim sunuldu. Ilki ii¢ kdseli gekirdeklerin zinciri i¢in carpanlara ayirma
yaklagimi (yapict olmayan) , ikincisi s6zde bolim 4.3 de aslinda Behavior matrisiyle ayni
genellestirilmis Hankel matrisi igerir. O bu gelismede diizenli ¢ekirdegin dahili kullanma nota
ilgi c¢ekicidir. Siire ulasilabilirlik ve go6zlenebilirligin kavramlar1 tanitilandir , ve
gerceklestirme kuraminda zorunlu araglardir. Bu sayfalarin temel igeriklerin ¢ogu da
sayfalarda bulunabilir

P. D’Alessandro , A.Isidori , A. Ruberti , “Cift Dogrusal Dinamik Sistemlerin Gergeklestirme
ve Yap1 Kurami” , Kontrolde Dergi SIAM , Cilt 12 , sf. 517-535 , 1974.

A.Isidori , “En Az Cift Dogrusal Gergeklestirmelerin Direkt Yapimi1” , Otomatik Kontrolde
Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-18 , sf. 626-631 , 1973,

Cift dogrusal gerceklestirmeyle baska erken sayfa yaklagimi

R. Brockett , “Cift Dogrusal Sistemlerin Cebirsel Yapiminda” , Degisken Yapi Sistemlerin
Kuram ve Uygulama iginde , R. Mohler , A. Ruberti , Akademik Basin , New York , sf. 153-
168, 1972

Siire ulasilabilirlik ve gdzlenebilirligin ¢ift dogrusal durum denklemleri ve kavramlarin ¢esitli
sekilleri i¢in esdegerlikler bu sayfada vurgulandi.

Goriis 4.4: Cift dogrusal gerceklestirme problemine ¢ok farkli yaklagim sunda verilmistir
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M. Fliess , "Sur la Realization des Systemes Dynamiques Bilineaires" , C. R. Akademik Bilim ,
Paris , Seri A, Cilt 277 , sf. 122-148 , 1973.

Her ne kadar daha az 6zIii hesaplamada 6nersem

M. Fliess , "Un Outil Algebrique: les Series Formelles Noncommutatives" , Matematik Sistem
Kurami i¢inde , G. Marchesini , S. Mitter , eds. , Ekonomi ve Matematik Sistemlerinde Ders
Notlar1, Cilt 131, Springer-Verlag , New York , sf. 122-148 , 1976.

Bu yaklagim degistirilemeyen degiskenlerde resmi serilere gore temsil edilen girdi-gikti
davraniglart icerir. Formiillemenin basit sartlar dogasinda gostermek , ii¢ koseli sekilde bir
Volterra sistem gésterimi hesaba katar:
¢t 0z
() = hglt) + |L~1{r o (oy) doy + ] |
00

2t 01.02)u (o Ju (02) dodos +

Varsayalim holt) rz0. icin analitiktir , ve bu g¢ekirdeklerin her biri sahsi bolge
t20p 2 - - 201 20 de analitiktir. Sonra seklin gii¢ serilerinin gosterimi kullanilabilir.

w0 #
ho(t) = _Z hj Il

L] (f—ﬁl)‘rﬁh
hy(roy) = E D e P
Jo=04,=0 SO o
= oo o (f—ﬁ:_}‘lﬁ('ﬁ:—ﬁ_).llﬁjin
hrono)=% X X hu THTH
=0, =07,=0 JoF1ad2!

Bu c¢ekirdek gosterimler iki degiskende degismeli olmayan resmi seriler sistemine
birlestirmenin yéntemini saglar (ya da iki degigmeli olmayan degiskenlerde resmi seriler),

L] L]

[ . i
W= z Ji'rﬂtl{:. ¥ hig 1L{|'I1 111,; E E ¥ .?*.-MJ-:1L-‘.§f'|1-'111-"|;'11'111{;.“ + .-
Jo=0,=0 Jo=07,=04,=0

Volterra sistem gosterme ve degismeli olmayan seriler gésterme arasinda uygunluk sadece bu
ilk “birka¢” sartlardan agik hale gelmeli. Degistirilebilirlik olmayan bu bildiri ¢ok dnemlidir ,
eger Wo ve Widegisirse , o zaman terimler arasinda ayirt etme imkansizdir. Ornegin ,
degistirilebilirlik su anlama gelir

3 3 3 3 ¥
wowwiwwg = whw? = wiwiwiwwg

Simdi , sistemin girdi-gikt1 dzellikleri serilerin 6zellikleri gibi yorumlanabilir. Ornegin , W
dogrusal girdi-¢ikti davranisi temsil eder ancak ve ancak W ‘da her sifir olmayan terimse
degisken wi.ile sonlanir , sabit terim hari¢. Diger bir deyisle , ancak ve ancak W su sekle
sahipse

W=ho+ ¥ hojwowi+ £ T Aoy, whiwrwhwy + -

Ji1=0 Ji=0 =0

Sistem i¢in ¢ift dogrusal gerceklestirme problemi seklin ¢ift dogrusal durum denklemlerine
gore ¢ok dogal olarak kurulan W tarafindan tanimlanir
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(1) = Ax () + D ()

) =cx (). x(0) =xg
Bu durum esitlemeyi tekrar yerine koyma yontemini uygulamak sekilde yazilabilen bir seriler
anlatimin1 verir

: 0 ¢ 0
v =c[I+ .1J do + DJ u(o)do +4° | | dorda + wl | u(o2) dordon
1] oo
' o t o
+ DAl u(oy)| doydo, + D) u(o)) | uloy) dosdo,
0 0 0 i
I ':.T| L E
+ 43| [ | dosdorday + - Trg
000

Uyari katsay1 matris iiriinleri 1 ya da #(f) ‘in tekrarlanan integrallerin diizenine dogal bir yolda
uyusur. Bu tekrarlanan integraller c¢ift dogrusal sistemin cevabi i¢in degismeli olmayan seriler
gosterimi saglama iki degiskende , wa ve 1 | tek birimli tarafindan gosterilebilir

Y =cxg Tedxgwo T E.D‘{'Q'Hl + edlxgwg + cdDxgwow) + eDAxgwwg
+cD? .1.:11.1-1' +cd? xown + ---

Tabii , bu degismeli olmayan serilerdir ¢iinkii o WoW1 #W1Wo dir,

t O t O
| J 1u(Gy) dordoy = | u(oy) | doadoy
00 0 0

Simdi ¢ift dogrusal gerceklesebilir bir sonu¢ hemen belirlenmis olabilir. 7" tarafindan

bir temsil edilmis sistem ¢ift dogrusal gergeklesebilir ancak ve ancak iki 1 > m: matrisler 4

ve D varsa , bir mx 1 vektor , ve bir 1:xxm vektor ¢ Oyle ki 77da wiwiwl - -

Wiwg <in
katsayist 4’ "D4™" - --D4’"xq tarafindan belirlenmistir. Bu sart degismeli olmayan serilerin
cebirsel kuraminda rasyonellik durumuna esdegerdir , ve referanslara hizli bakis sadece
hikayenin baglangicinda olani gosterir. En az olan kavramlar , siire gerceklesebilirligi ,
gozlenebilirlik , ve hatta bir Behavior matrisi , hepsi kuramda formiile edilebilir. Ger¢ekten
sabit Volterra sistemler i¢in diizenli transfer fonksiyonu gosterimi 2-degisken degismeli

I T hs! i+
olmayan tek terimliye whwy - wlwy g degisken degisebilir tek terimliyi UYL sl

birlestirmek yoluyla elde edilen deglsmeh seriler gibi tanimlanir. Bu baglant1 sunda tartigilir

M. Fliess , “Homojen Siirekli-Zaman Sistemleri Gergeklestirme ve Transfer Fonksiyonlara Bir Goriis”
, Otomatik Kontrolde Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-24 ,
sf. 507-508 , 1979.

Goriis 4.5: Cok genis ol¢iide kullandigim ¢ift dogrusal gergeklestirme kuramina degisim
gerceklestirme yaklasimi suna dayanir

A. Frazho , “Cift Dogrusal Sistem Kuramina Degisim Operatdr Yaklasim1” , Kontrol ve
Optimizasyonda Dergi SIAM , Cilt 18 , sf. 640-658 , 1980.
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Homojen sistemler i¢in polinom ¢arpanlara ayirma yaklasimi sundan alinmigtir

G. Mitzel , S. Clancy , W. Rugh , “Homojen Dogrusal Olmayan Sistemler igin Transfer
Fonksiyon Goésterimlerde” , Otomatik Kontrolde  Elekirik ve Elektronik Miihendisligi
Enstitiisii Islemleri , Cilt AC-24 | sf. 242-249 , 1979.

Goriis 4.6: Cift dogrusal sistemlerin O6nemi tahmin sonucuna gore daha fazla
dogrulanabilirligi sunda olugsmustur

H. Susman , “Yarigrup Temsilleri , Girdi-Cikt1 Haritalar1 ve Genellestirilmis Girdilerin Cift
Dogrusal Yaklasimi” , Matematiksel Sistem Kurami iginde , G. Marchesini, S. Mitter, eds. ,
Ekonomi ve Matematiksel Islemlerde Ders Notlar , Cilt 131, Springer-Verlag , New

York , 1976.

Tek-girdi , tek-¢ikt1 sistemleri i¢in , sonug asagidaki gibi 6zetlenebilir. Girdi bosluk U, [0,7 ]
de tanimlanan biitiin dlgiilebilir #(f} fonksiyonlart olusur ve 7 ve M degismeyen biitiin
t£[0.T] igin |u(r)| =M tatmin edicidir. Cikt1 sinyali ¥ =F[u] tarafindan operator kayitta
belirlenmistir. Varsayilan F nedenseldir , ve Fluzl. £=0.1... .. ¢ikt1 sinyallerin sirasi olan
kanida siirekli F[u] da daima aym tarzda bir araya gelir , her neyse girdi sinyallerin serisi
girdi u da giigsiizce bir araya gelir. Sonra her €= 0 icin operatér gosterim ¥ =B8] her
te[0.T] ve her weU icin |FLul-Blu]l <€ olarak tahmin edilen ¢ift dogrusal
gerceklestirme vardir.

Benzer sonuglar goriis 4.4 ‘de tartisilan degistirici olmayan seriler gosterimleri
kullanarak elde edilir. Gorelim

M. Fliess , “Series de Volterra et Series Formelles Non Commutatives” , C. R . Akademik
Bilim , Paris , Seri A, Cilt 280 , sf. 965-967 , 1975.

M. Fliess , “Topologies pour Certaines Functions de Lignes Non Lineaires; Application aux
Asservissements” , C. R . Akademik Bilim , Paris , Seri A, Cilt 282, sf. 321-324 , 1976.

Goriis 4.7: Tabii , az cok diger gerceklestirmeler ¢ift dogrusal gerceklestirmelere ek olarak
tartigilabilir. Dogrusal-analitik durum denklemleri bu saygida ¢alisilir , yine de ¢ift dogrusal
durum denklemlerin yaklasik olarak uzunlugu degildir. Gorelim

R. Brockett , “Volterra Serileri ve Geometrik Kontrol Kuramlar1” , Otomatik , Cilt 12 , sf.
167-176 , 1976 (E. Gilbert , Cilt 12, sf. 635 ile birlikte)

Gostermesi zor olmayan homojen ya da polinom sistem ancak ve ancak ¢ift dogrusal-analitik
gerceklesebilirse. En az ¢ift dogrusal-analitik gergeklesebilir olan nokta en az ¢ift dogrusal
gerceklestirmeden daha diisiik boyutlu olabilir. Homojen durum igin , ¢ift dogrusal-
gerceklesebilir sistem igin en az dogrusal-analitik gerceklestirme hesaplamaya gore yontem
sunda verilmistir

M. Evans , “k-Gliclerin En Az Gergeklestirmeleri” , Bilgi Bilimleri ve Sistemlerinde 1980
Konferansinmin Yontemleri , Elektrik Miihendisligi ve Bilgisayar Bilimi Boliimii , Princeton

Universitesi , Princeton , New Jersey , sf. 241-245 , 1980.

Polinom sistemler i¢in , en az dogrusal-analitik gerceklestirme problemi sunda tartigilir
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P. Crouch , “Siirli Volterra Serinin Dinamik Gergeklestirmeleri” , Kontrol ve
Optimizasyonda Dergi SIAM , C1lt 19 , sf. 177-202 , 1981.

Volterra sistem durumunda , bir ¢ok kalintilar bitmistir. Az ¢ok dogrusal-analitik
gerceklestirmelere gore olan gidisatlar daha ¢ok benzer 6rnege gore gosterilir. Girdi-¢ikti
davranigiyla sistem hesaplamak

v(t) =tanh [j:e (o) do]
0

0 hakkinda hiperbolik tanjantin gii¢ seri genislemesini kullanma seklin Bir Volterra sistem
gOsterimini verir
i

w L1
yO =% -] =u@)--ulo) doy - do,
0 0

n=l -

Alfalar kullanilir ¢iinkii gercek katsayilar oldukca karisiktir. Ug koseli sekilde , Volterra sitem
su sekilde tekrar yapilabilir

0y i

P Loy uioy) - ulo,) do, - - - doy
0 0

i

L

v =

1

"

Volterra sistem sayisal dogrusal-analitik gerceklestirmeye sahiptir , yani ,
(1) =1 —x* ()] (t)

yii=x(r), x(0)=0

ama sinirli-ebath ¢ift dogrusal gerceklestirme yok. Volterra sistemleri i¢in dogrusal-analitik
gerceklestirebilir ve ¢ift dogrusal gergeklestirebilir gosterime ek olarak denk degildir , bu
ornek sonsuz-ebatli ¢ift dogrusal gerceklestirmelerin nasil gosterilecegi ilging olmali. Ug
koseli  cekirdeklerin  basit hesaplamast i¢in gosterilen Volterra sistemi  seklin
gerceklestirmesine sahiptir

3.-1?‘% 000 - 1:[!}
i X 100 - x3() 0
dr | x| 7010 - (1) u®)+ o =0
x1(8)
vit)=[og on oy ---] x5(t)

Sonsuz-ebatli ¢ift dogrusal gerceklestirmeler goriis 4.5 de Frazho tarafindan bahsedilen
sayfada tartigildi , ve sunda

G. Koch , “Sonsuz Ebatli Cift Dogrusal Sistemler i¢in Gergeklestirme Teoremi” , Ricerche di
Automatic , Cilt 3, 1972.
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R. Brockett , “Simirli ve Siirsiz Ebatli Cift Dogrusal Gergeklestirme” , Franklin Enstitiistiniin
Dergisi , Cilt 30, sf. 509-520 , 1976.

W. Wong , “Volterra Serisi , Evrensel Cift Dogrusal Sistemler ve Fock Gosterimleri” , Bilgi
Bilimleri ve Sistemlerinde 1979 Konferansimin Yontemleri , Elektrik Miihendisligi Boliimii ,
Johns Hopkins Universitesi , Baltimor , sf. 207-213 , 1979.

Tabii , durum denklemleri agisindan gerceklestirmeler dogrusal-analitikten daha ¢ok genel
olsa da dikkate alinabilir. Cok genel durum denklemleri agisindan 2-dereceli homojen
sistemler icin gerceklesebilir ve en az olmanin donilisiim-bolge nitelendirmesi sunda
verilmistir

E. Gilbert , “Dogrusal Olmayan I-O Haritalar1 i¢in En Az Gergeklestirmeler:Siirekli-Zaman 2-
Giic Durumu” , Bilgi Bilimleri ve Sistemlerinde 1978 Konferansimn Yontemleri , Elektrik
Miihendisligi Boliimii , Johns Hopkins Universitesi , Baltimor , sf. 308-316 , 1978.

Daha fazla sonuglar , en az gergeklestirmelerin durum bosluklari olan olgu ve en az
gerceklestirmeler icin dogal bi¢imi kapsayarak benzer sekilliligin dikkate deger tiirii
tarafindan iligki kurulur , sunda ortaya ¢ikar

E. Gilbert , “Siirekli-Zaman 2-Gii¢ Girdi-Cikt1 Haritalar1 i¢cin En Az Gergeklestirmeler” ,

Otomatik Kontrolde Elektrik ve Elektronik Miihendisligi Enstitiisii Islemleri , Cilt AC-26 ,
1981.
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BOLUM 5

SABIT SISTEMLERIN KARAKTERISTIK KARSILIKLARI

Ozel bir giris sinyali i¢in bir homojen sistemin karsiligin1 hesaplama metotlari nceki
boliimde ele alindi. Biitiinlesmeler zaman-alan temsilinde disar1 tasinabilirler yada degerler
metodunun birligi donilisen alan icinde kullanilabilir. Diizenli transfer fonksiyonunun
stiresinde daha acik bir yaklasim, girisin islerin toplami oldugu zamanda kullanilabilir. Bir
polinomial sistem i¢in yanit hesaplamasi, uygun bir simgeyi bulmak zor olmasina ragmen,
basitce homojen altsistem yanitlarin1 ekleme meselesidir. Aynisi, ayni noktada birlesmis
noktalarin ilave karisikligi ile birlikte Volterra sistemlerin dogrulugudur.

Giris sinyallerinin 6zel tipleri i¢in, homojen bir sistemin karsiligi, genellikle dogrusal
sistemlerin iyi bilinen ozellikleri gibi 6zel nitelikleri vardir. Bu 6zellikle sabit sabit sistem
durumlarinda dogrudur, ve bdylece, ben sadece o durumu ele alacagim. impuls girislerine
yanit, sinuzoidal giriglerine sabit durum yaniti, ve stochastic girislerinin yanitlarinin
ozellikleri dikkate alinacak. Gorilislerin ¢ogu simetrik g¢ekirdek ya da simetrik transfer
fonksiyonunun dénemlerinde olacak. Bu, hem alisma meselesi hem de formiillerin genellikle
simetrik gostergeler bakimindan ifade edildiginde basit bir formda goziiktiigii gergeginin bir
sonucudur. Bu boliimdeki maddeler boliim 7 deki tartisma problemleri ile baglantida yararlt
olacak.

5.1. Impuls Girislerini Yanitlamak:

Bu bolimde impuls fonksiyonlarinin girisler birlesimi i¢in olan homojen sistemlerin
yanitlar1 hesaplanacak. Polynomial veya volterra sistem durumlari i¢in, homojen-alt sistem
yanitlarin1 eklemekten daha fazlasi yapilamazdi. Simetrik cekirdek simgesi bu boliimiin
basindan sonuna kadar kullanilacak. Tabii ki, bu ¢ekirdekler impuls’t serbest biraktiklar: farz
edilecek, boylece impuls yanitin1 tanimlamak garanti olur.

Kesinlikle, dogrusal sistem i¢in bunu hatirlatarak okuyucuyu sikacagim.

)=\ ht—o)u(o) do
vo-] (1)

giris u(t)=9,(¢), y(t)= h(t), t>0sonucunu verir. Bu, dogrusal bir sistemin impuls yaniti
cekirdegi ortaya ¢ikarir. Bir n(>1) derecesi i¢cin homojen sistem
t

YD) = [ hymlt=oy,. . = )ulo) - ulo,) doy -+ do,
’ )



giris 0, (), h,,, (t,...,t),t = 0sonucunu verir.

Impulslarin toplaminin meydana getirdigi girisler dikkate alindigi zaman daha ilging
hesaplamalar ortaya ¢ikar. Ornegin, (2)deki girisi sdyle farz edelim

u(t) = 80([) + So(t“T), T>0 (3)
sonucu hesaplamanin bir yolu terimleri toplamak
u(U'l) te ll(O‘,,) = [80(0'1) + 6()(0'1_T)] s [80(0’,,) + 80(0',,_T)] (4)

ve her terimi eklemek. Bu zor degil ¢iinkii, simetrik ve bazi basit kombinasyonlar yardimei
olur. Indeksler degisik siraya koyulabilir, boylece (4)de ortaya ¢ikan genel terim su bigimi
alir;

80(0’1) c e 80(0’m)60(0'm+1_T) M 80(0',,_ T)

biitiinlesmelerin sonucundaki degismeler olmaksizin. Aslinda, (4)den ( )terimleri olacak ki
bunlar bu ayrintili formda yazilabilir. Boylece, sonug soyledir:

_ % (n _ _
y(@) = m2=,0 (m) hsy,,,(t,.”.' 5t T,."_.m.,t D “

simdi derece-n (2) sistemindeki girisin oldugu yerdeki genel durumu g6z Oniinde
bulundurursak

u(t) = 8p(t) +8,(t—T)) + - - -+ 8o(t—T,1) ©6)
Ti,...,T, ’nin farkl bir pozitif sayilar kiimesi oldugu yerde. Tekrar, prosediir sonucu bilyiitir;
u(0'1) Tt U(O',,) = [80(0’1)+ tee +80(0’1—Tp_1)] te [50(0'n)+ e +80(0',,_Tp—1)]
ve sonra biitiinlesmeler her bir terimi isletir. Fakat, indislerin permutasyonu bu biitiinlesmeleri
etkilemez, ve boylece sonugtaki genel terim formda yazilabilir;

Bo(y) - -+ 89(0,, )80(0 11— T1) =+ = 80(0 gy 4~ T1)
e SO(O-n—mp+l_ Tp—-l) T SO(Un— Tp—l)
my,...,m parcasl i¢in bu yolla yazilabilen terimlerin numaralarini hesaplamak multinominal
katsayilar1 ortaya ¢ikarir, ve sonug bu yolla verilir;
n! . -
y() = % —m hsy,,,(t,. Y S .,W
i ,, )

Z ‘nin p-bag ozeti tiim tamsay1 indisler m,,...,m , gibi oldugu yerde soyledir;

m
0<m < nand m+---+m,=n.

5.2. Sinuzoidal Girisler icin Hazir-Durum Yamti

Bu béliimiin geri kalani i¢in, sabit durum yanit 6zellikleri esas yararin nesnesi olacak.
Boylece sabit durum yanitlarinin sinirlandirilmasint garantilemek i¢in girig-¢ikis siireklilik
ozelliklerinin g6zOoniinde tutulmasina ihtiyag duyulur. Zaman alaninda,
f Bgym (t1, . . St dty - - - dt, < o . . ) .. ..
Zeo olan bir derece-n homojen sisteminin sinirl giris, siirh ¢ikis
stirekliligi icin yeterli bir sart olan boliim 1.3’teki sinirli hesaplamalardan anlasilirdir.

Fakat, simge doniisiim donemlerinde, sartlar bulmak i¢in daha zordur. Dogrusal
sistemler i¢in iyi bilinen bir durum bir sistemin garantili giris, garantili ¢ikis sabiti oldugu,
eger ve sadece eger transfer fonksiyonlarinin tiim kutuplar1 gercek negatif parcalara sahip



olan transfer fonksiyonlarindaki makul azalma tarafindan tanimlanmistir. Derece-n
durumlarinda(n>1), benzer tiplerin yeterli bir durumu sistemlerin tanimlanmasi i¢in tam
dogru, tanimlanabilir, diizenli transfer fonksiyonlari(problem 4.16) tarafindan verilebilir.
Maalesef, bu sonug¢ simetrik transfer fonksiyonlarinin dénemlerindeki durumlar i¢in ¢ok az
basittir. Ustelik, genel simetrik polinomlardaki zorluk, faktdrlerdeki kontrolii zorlastirir.
Boylece, siireklilik 6zellikleri, basitce varsayilacak bir makul sabit durum analizleri i¢in
ihtiya¢ duyulur.
Sabit bir dogrusal sistem

y(@) = f h(a)u(t—o) do
0

(8)
tek kenarli girig sinyaline yanit1 g6z oniinde tutmakla tanimlanir.
U(t) = 2ACOS((!)t), t 2 0 (9)
Karmagik iis formundaki bu girisi yazmak daha uygundur
ll(t) = Aei“”+Ae_'“” (10)
sonra
t 4
y(t) =4 f h(o.)eiw(t—-cr) do + 4 f h(o.)e—im(t—o') do
0 0 (11)
yada
t L
y@ = AL h)e™ dole + Al [ h(o)e dole ot
0 0 (12)

sistemin sabit oldugunu farzetmek, ¢ — oo integraller H(iow) ve H(-i®) bir noktada birlestirir,
anilan siraya gore sistem transfer fonksiyonunun oldugu yerde.

co

HGs) = [ n(o)e do
0 (13)
Boylece, T yi yeteri kadar biiylik secerek, biitiin 7> 7 igin sistem yanit1 bilinen sabit durum
yanitinin belirtilen toleransi icinde olmasi garanti edilebilir.

ys(t) = AH (iw) e + AH (~iw)e " (14)

Tabii ki standart benzerlikleri kullanmak bu sabit durum yaniti formlarda tekrar yazilabilir
Vss(t) = 24 RelH (iw)lcos(wt) — 24 Im[H (iw)]sin(wt) (15)

ya da

Vss (1) = 24|H (iw)lcos [wt + L H(iw)] (16)

standart rakamlar ve isaretler sistemlerinin gercek kisim, sanal kisim, biiyiiklik ve ac1 igin
kullanildig1 yerde. Bu hesaplamalar iyi bilinen bir gercegi acik hale getirir ki o sikligindaki
siniis girdisinde bir dogrusal sistemin sabit durum yaniti, s=ionin degerlendirildigi transfer
fonksiyon agis1 ve biiyiikliigii tarafindan karar verilen evre ve genislik ile aymi sikliktaki
siniisdiir. (sunu belirtmeliyim ki, sabit durumu gérmek i¢in bir baska yol var. Girig t =—cda
baslamak icin dikkate alinabilir ve sonra siirli herhangi bir t’deki yanit sabit durum
yanitidir.)

Simdi bu sonucglarin genellestirilmesi su formiil tarafindan tanimlanan homojen
sistemler i¢in géz Oniinde tutulur:

4
y(@) = f hym(ay,. . Lo )ult=cy) -+ - ult—0,) doy - - - do,
° (17)
fakat ben baslamadan once, siniizoidal girigler i¢in dogrusal olmayan bir sistemin yanitini
tartigmaktaki ortak bir gli¢liigii belirtmek mantikli goriiniiyor. Dogrusal sistemlerle ¢alisirken,

2 Ae'”faz agismm gercek kismi olarak (9)’daki girisi gz 6niinde tutmak ortaktir. Sonra bu
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karmagik girig i¢in olan sistemin yanit1 hesaplanir, ve sonra (9) i¢in olan sistemin yanit1 faz
acist i¢cin olan yanitin ger¢ek kismini alarak basitce bulunur. Aslinda, bu kisayol
dogrusalligin iizerine 6nemine dayanir, agagidaki drneklerin gosterdigi gibi.

Ornek 5.1: giris (9) icin sistem y(f)=u’¢t’nin yamitim hesaplamak igin, giris
u,(t) =2Ae" nin uygulamasi y,(¢) =4A4°¢' yanitin1 verir. Sonra (9) igin sistem yaniti olan

bir hatali sonu¢ y(t)=4A’cos(2wt)’dur. Bu hatalidir c¢ilinkii direkt (9)’un uygulamasi
y(t)=4A%cos?*(ot)= 2A*+2A%cos(2mt)dir.
Tek kenarl giris sinyali (10) ile (17)nin yanit1 sundan hesaplanabilir:

—iw(t—o )

y(t) = f hsym (a-l;- o . 0") Hl [Aeiw(t_o-j)'{'Ae J ] d(fl c--do
0 Jj=

(18)
bu ifadeyi daha yararl bir sekle sokmak i¢in, bolim 2.4’iin ¢ift-lis-giris gelistirmesini taklit
edecegim. bu gelismelere A, =iw ve A, =—iw yararlar izin vermek, sonra

n

f 2 2 n
y(0) = A"f hym (@1, 0, 2 2 eXP[Z}‘k,-(t—"j)] do,---do,
0 k=1 k,=1 j=1

Mm

2 ! '
= A" Ce 2 [f hsym(o-l" . .,0',,) exp(—i )\kja’j)
1 k=1 0 =1

n

ky

I

do,---do, exp(i A t)
= (19)
Dogrusal durum icin benzer bir davranista, t’nin biiyiik degeri i¢in yaniti gozoniinde tut.
Sistemin  siirekliligini  farzetmek, (19) daki desteklenmis donem ¢-—>e  gibi

H (Zkl ,...,/1,(" )’ye yaklasir. Boylece (19)’daki y(t), (14)’e benzerligi agik bir ifade tarafindan

sym
sabit-durum yanit tanimi i¢in keyfi kapali olur.
2 2
Vs =43 - ¥ Hym g .,xk)exp(i Apt)

et . (20)
benzer islerle [kA +(n—k)A,] birlikte bu terimleri birlikte toplamak ve Al ve A2 nin
tanimlarini tekrar almak, (20)de yazilabilen

V() = 4" Y, Gy piliw, —iw) ¢! @k—not
k=0 (21)
gibi sunun oldugu yerde
2 2
GenkApA) = 2 - X Hyp N, o)

k=1 k,=1
kit -tk =2n—k

- (Z)Hsym()\l,. C oA . oAy
\’\/_\-/ \’V—‘/
n—k (22)

(22)den takip edilen bir yararli benzerlik sudur:

Gk,,,_k(iw, _iw) = Gn_k’k(—i(x),l'w)

(21)’deki terimler asagidaki gibi yeniden diizenlemek miimkiindiir. ilk 6nce su yazilr:



Vs () = A7[G, oliw, —iw) ™ + Go,,(iw, —iw)e "]
+ A"[G,,_l,1(iw,-iw)ei(”_2)“" + Gy oy lio, —iw) e i=Der

A"Gypplio,—iw), n even

+oe . .
An[G"_H n—1 (iw,—iw)e""’-i—G,,;l n+l (iw,—iw)e_""'], n odd
2 2 2 2
= A"[G, oliv,—iw) e + G, o(—iw,iw) e~ "] (23)

+ A”[Gn_l'l(iw,_iw)ei(n—Z)w! + G”_lll(_iw’iw)e—i(n—Z)wl]

A "Gn/z,n/z(iw, —iw), n even

A"G 41 4o liw,—iw)e™+G 4 -1 (Ciw,iw)e ™1, n odd
n n—1 n n
22 272

+...+

Simdi, standart benzerlikleri kullanmak,

Vs (1) = 247G, oliw, —iw)kos[nwt + L G, olio, —iw)]
+24"G,-1 1liw,—iw)|cos [(n—Dwt + L G, 1(iw,iw)]

A"G (i, —iw), n even

24"G p11 p-1lio, —iw)|coslwt + L G 41 p-1 liw,—iw)]l, n odd
2 2 2 2

R &

(24)

Bdylece, frekans o’nin bir cosinuzoidal girigsine olan bir derece-n homojen sisteminin sabit-
durum yaniti frekans nw’deki (n-2) o,....,0(n herhangi) ya da o(n eski) cosiniizoidal
bilesenlerinden meydana gelir.

Simdi bir derece-N polinamial sistemi giris sinyali u(t)}=2Acos(w t) ile birlikte

y(@) = ﬁ f hygmor,. . Lo )ult=0y) - ult—0,) doy - - - do,

n=1 ~co (25)
g0z Oniinde tut. Sabit-durum yanit1 her homojen alt sisteminin katkilarinin eklenmesiyle
elde edilir. n’nin tek say1 oldugu yerdeki her derece-n alt sistemi ®, 3 ©,..,n ©
frekanslarindaki donemlere katkida bulunur. n’nin ¢ift say1 oldugu yerdeki her derece-n alt
sistemi 20, 4 ©,...,n o frakanslarindaki bir degismez donem ya da donemlere katkida
bulunur. £ <n ve k ve nin ayn1 esitlige sahip oldugu farzedilerek, k o frekansina olan derece-

n alt sisteminin (23)’teki katilim sudur:
A"G ., ., (o-i0e"™ +A"G ,  (Ho,is)e*™ (26)
2 2 2 2

( alt sistemin derecesini belirten G {izerindeki altscriptlerin toplamima ve altscriptler
harmoniginin farkina dikkat etmek yararlidir.) Boylece k gibi ayni esitlikle birlikte N, *nin en

bliylik tamsay1 < N olmasina izin vermek , (25)in sabit-durum yanit1 s0yle yazilabilir

V()= [y(Aio)+ D [ [, (4,iw)e™ + [, (A~iw)e™] (27)

k=1

oldugu yerde



fol4iw)= 4G, | (io~iw)+ A*G,, (io~i @) +........ +A4%G) ,y, (i0-io) (28)

2 2
f(4iw)=AG, ,(io~iw)+ A’G,,(i0~i@)+........ +ANGyy y (10, 0) (29)
22
fo(Aiw)=A’G,  (io~iw)+ A*G;,(io~i@)+......... +A"G, ;v ((0-i0)  (30)
2 T2
ve bdyle. Genel terimler formlarda yazilabilir
N2
fidiw)= Y 4YG (iv-iw)
J=1
Qm%vz _
fk (A,ZCU) = 2Ak+2] Gk+j,j (ia)a_ia))ak = 1’29" '9N (3 1)
J=0

simdi her zamanki gibi, (27) sdyle yazilabilir:
N
7o ()= fo(4i@)+2Y | f,(4,i®)|cos[kax + £f, (4,im)] (32)

k=1
Bunun yaninda fourier katsay1 giris genisligi A’da giris frekansi o’nin fonksiyonlar1 olan
katsayilarla birlikte polinomialdir.
Ornek 5.2. Ornek 3.8°deki sarkag sistemini géz oniinde tutun. Derece 3’e dogru simetrik
transfer fonksiyonlar1 kullanmak, u(t)=2Acos(wt)’ye sabit-durum yanit1 sundan verilir:

.gs(t)=ZJ

AH (iw)+ 3A3H3Sym (iw,io—~i®)+....|cos[ax + ¢, (w)]+2| A’ H,
u elveris

A (lw,iw,iw)+...| cos[3ax + ¢, (c
idir

sym

g/L
s’ +(a/ml*)s+g/L
ve su formda ornek 3.8’deki transfer fonksiyon hesaplamalarini yaz:

H(s)= ngL W(s)

W(s)=

1
3!(mgL)

Sonra

v, () =2| m—ZL W(iw)+ 2A—33 W (i@)W (—iw) + ... | cos[ax + ¢, (w)]

(mgL)

W’ (@)W (i3w) +......| cos[3ax + ¢, ()] + ......

3

+2| 3
3(mgL)

Bu formiiliin basit bir analizi giris frekansi ®’dan daha yiiksek frekanstaki sarkac
sistemindeki olaganiistii rezonansin olabilirligini gostermek i¢in kullanilabilir. Bu fenomen
cok kiiclik 4 giris genligi icin meydana gelebilir, fakat sarkagin genel dogrusallagsmis modeli

tarafindan 6nceden bildirilmez. Ozel olmak igin, farz et ki katsay1 a’yi indirmek (g /L)' ? ile
iliskisinde ¢ok kiiciik olsun. Sonra W(s)’nin kutuplar1 dogal frekans @, =(g/ L)Y *yi
indirmemek i¢in ¢ok kapalidir. Bu durumda, eger = @, /3ise, sonra | W (i3w)|, | W (i3)| ile
mukayesede ¢ok biiyiik olabilir bu yilizden y_(¢)’deki yiiksek olan terim {igiincii harmoniktir.

Tabii ki, ¢ikistaki {iclincli harmonik terim ve esas terimin ikisi birlikte iptal edilmis daha

5



yiiksek derece transfer fonksiyonuna dayanir. Fakat, bu kayip terimler rezonansin
olabilirligini elemeyi gostertilebilir. Aslinda, daha yiiksek-derece terimler giris frekansinin
cogu diger seceneklerinde harmonik rezonansin olabilirligini gosterirler.

Gorligtin  simetrik transfer fonksiyonunun terimlerinde ¢ok uzak olmasina ragmen,
benzer sonuglar ti¢ koseli ve diizenli transfer fonksiyonlari i¢in elde edilebilir. Bunu yapmanin
bir yolu, Boliim 2’de ele alinmis olan ¢esitli transfer fonksiyonlarinin arasindaki iligkiyi
kullanmaktir. Aslinda, bilinear-anlagilabilir diizenli transfer fonksiyonlarmin durumundaki
direk bir ge¢it yolunu almak ilgingtir, c¢linkii gerekli stireklilik 6zelligi belirgin durumda
olabilir.

Farz edelim ki

P(sy,. . .s,)
Hreg(sl,. . oS ) = ’ i
! (s) -+ - Q,(s,)
Q1 (s 0, (s (33)
tamamen  dogru,  onaylanabilir,  dlizenli  bir  transfer = fonksiyonudur.

u(t)=2Acos(ax)giris sinyaliyle birlikte boliim 2.3’teki teorem 2.10 y, =iw,y, =—i@ ile

birlikte su formiil karsiligin1 verir:

2 2
Y(s)= A”Z 2 H,  (s+y, tety, oSty ,S)
i=l i, =l

1 1
+

sty t..ty, +io sty +.+y, —i®

(34)

(34)’deki terimlerin her biri tamamen anlasilir oldugundan beri, s’de rasyonel fonksiyonlar,
sabit-durum yamti kismi bolim genislemesi yoluyla hesaplanabilir. Eger H,,,(s,,...,s,) nin

tiim kutuplarmin negatif gergek kisimlariin oldugu farz edilirse, bu, her bir Q,(s ;) nin tim

koklerinin gergek kisimlarint oldugudur, sonra kutup faktorlerine, transfer fonksiyonunun
sabit-durum yanitinin iligkilendirilmesi gibi gérmezden gelinmesiyle yardim edilir. Bunun
yant sira, asagidaki formiilden meydana gelen (34) deki kutuplara yardim edilmesinden beri
hazir-durum yanitinin sinirlariin koyuldugu agiktir.

. . Tiwn
s=tinwti(n—-2)o,....s ———
0,n
odd
even



Sabit-durum yanitin1 hesaplamak i¢in, A4"K, (i®) nin i¢in kismi bolim genlesmesi
katsayisinin (34)iin sag tarafindaki faktor (s-ikw)’ne benzer olmali.

A'K (iw) = (s —iko)Y (s) |

s=ik@
2 2

=AY LY H (5HY At Y ST 09 ke

i=1 i, g=l
v, oty =-itk+Do
2

2
+ A LD H (Y A A VS Y8 | (35)

ij=1 i

—

n—1

Y, tety, =-ilk+ho

Bu formiil iki zorlamali, ¢esitli 6zetleri tam bir toplamin i¢inde birlestirilerek basitlestirilebilir
ve sonra s yerine ik koyulur. Bu da sunu verir:
K (i)=Y H,.  (ko+y, +..+7, ...iko+y, iko)| (36)

Viges ¥y =IO
Vi toty, =-ilkt)w

(36)daki terim karmasik oldugunda, kiiclik n i¢in yazmanin zor olmadigina dikkat edin. Ve
genelde,

K (iw)= H,, (iw,i2w,...,inw)

Son adim kismi boliim genlesmesindeki her bir terimin Laplace bi¢cim degistirmenin tersini
almak.

K, (iw)
(s —ikw)

Standart trigonometrik tanimlar1 kullanmak, sabit-durum yanitini su verir:

v, ()=2A4" | K, (iw)|cos[nax + LK , (iw)]
+2A4" | K, ,(iw)|cos[(n—2)ax + ZK, ,(iw)]

(37)



even

odd

A K, (iw),n
+..+ {—

24" | K, (iw) | cos[ax + ZK, (im)],n
Polinomial sistemler icin, daha erken goriigiilmesiyle  birlikte  ¢esitli
homojen alt sistemlerin katkilar1 eklenebilir.

5.3. Cok-Tonlu Girisler icin Sabit-Durum Yaniti

Bir sintisoydallar toplam1 1’den daha biiylik derecenin bir homojen sistemine eklendiginde,
yanit farkli frekanslarin donemleri arasindaki dogrusal olmayan etkilesimler tarafindan
zorlastirilir. Bu konuyu anlatmak i¢in, iki ton giris ile baglayacagim:

u(t) =24, cos(wt)+2A4, cos(w,t),t =0

‘ , . . (38)
= Ae'™ + Ae™ + A,e'™ + A,e”™

Tekrar, boliim 2’deki iislii gelisme biiyiimesi kullanilabilir, 4 islii durum i¢in bu zaman:
A =io b =—iw, 4 =io,, A, =—io,

Simetrik transfer fonksiyonu H, (s,,...,s,)ile birlikte bir derece-n sistemi i¢in, ayrilan

degisikliklerle birlikte boliim 2.4°teki kopya(73) sunu verir

Vo O=, ANAG, i, (s Ay A, Ay e (39)
n!
[ CA— 4,4, A4,4) = —H, (ApseeesAsees Ay Ay) (40)
m\m,\m;!m,! —_ ——

ve 0<m_,ve m +...+ m, =ngibi m,,...,m,lizerine Z ‘nin bir 4-kat 6zetinin oldugu yerde.

m

M'lar i¢in yerine koyma sunu verir:

_ my+my  gmy+m . . . . i[(my—my )@y +(m3—my )@, It
yss (t) - Zm Al l ZAZ ’ 4(;’m1m2m3m4 (la)l’_la)l’lwz ’_le )e L P (41)

Ornek 5.3: n=2 durumu igin (41)Deki katalog terimlere belki 6gretici katalogdur. Ozette 10
terim var ve bunlar tablo 5.1’de gosteriliyorlar. Ger¢ek miktarlarin terimlerindeki ¢ikist
yazmak, G nin  Ozelliklerini  karmagiklagtirma  ¢ekimini  ele almakla  birlikte

mymymsm,

kullanilabilir. Ornegin,

Goriolioy, —iwy, i), —ie,) = 2H )5 (—iwy,iw))

Ve



Gloo1(iw1, —iwy,iw,, —imz) - 2H2sy,,,(icu1, —iwz)
Bu yiizden G, = Giool oldugu aciktir, karmasik ¢cekmeyi belittigi yerde. Benzer,

Gy10 = Gotors G,o00 = Go2oo Goon0 = Gooo2

Boylece standart trigonometrik tanimlar su ifadeyi ortaya ¢ikarir

Vss(8) = APG 1100 + AFGoo11 + 24,45 Goppolcos [(wy—w) t + L Gopyol
+ 24 1A2|G1010|cos[(w1+w2)t + L 61010] + 2A12 |G2000|C0S[2wlt + L Gzooo]
+ 243 |Goozolcos 2wyt + L Gyl

Dikkat edilmeliki bu frekans parcalar1 farkli frekanslarda meydana gelmaya ihtiyaglari vardir.
Ornegin, @, = 3@ durumunu ele alin.

Tablo 5.1

Ornek 5.3 i¢cin Frekans-Yanit Terimleri

Ozet indexler Ozet

1 1 0 0  A{Gug

0 1 1 0 44 2001103i(w2_m1)t
0 0 1 1 A3Gun

10 0 1 44 26100191'(”1*”2)'
L 0 1 0 A4,Gipe’ ™"
0 1 0 1 Ad,Gogpe ™"
2 0 0 0 AlGyupe

0 2 0 0 A2Gpwe "

00 0 2 0 47Gonoe 2ot

0 0 0 2 A2Gupe ™

Daha yiiksek, dereceli homojen sistemler géz oniinde tutuldugu zaman, sabit-durum
yanitindaki terimlerin numarasi diiser. Bu yiizden, ¢ikistaki 6zel bir karmasik {islii terimin
katsayisin1 veren bir ifade elde etmek i¢in daha kullanigh goriiniir. Cok yada az terimler
istenir sonra ele alinabilir ve iislii terimler eger gergek form isteniyorsa birlestirilebilirler.

Uslii ™V A >0, N >0 e benzer (41)’deki terimler asagidaki gibi yazilabilirler:

2m,+M 2m,+N
2 4 . . . .
Y 2 B P ATUNG, i iy, iy iy, —iwy)

m=0 my=0 m3=0 m,=0
mytmytmstmy=n
mi=mytM, my=m4+N



Fakat simdi 4-kat 6zet sunu elde etmek igin belirlenmis kisitlamalar1 kullanan m, ve

m, yerlestirilmesiyle kolaylastirilabilir:

n n
2m +M 2m +N
2 4 . . . .
2 2 A Gm2+Mm2,m4+N,m4(lwl'_ler““2:_’m2)
my=0 m,=0 '
n—M-N

m2+m4=

(42)

Bu rakamlar ve isaretler sistemi ile kontrol i¢in uygun olan G’nin alt scriptlerinde
birgok iliski vardir. Alt scriptlerin toplami sistemin derecesidir ve ilk ikinin farki

@, (w,)harmonigiyle birlestirilir. Buna ragmen M,N =0 oldugunu varsaydim, terim

e MaNelonin katsayisini elde etmek icin her G’deki her frekans uyusmazlhigmin isaretini

basitce degistirin.

Tabii ki, e ™M@l pin katsayist (40)’1 kullanan simetrik transfer fonksiyonu

H,, (s),..,s,)’nin terimlerinde direkt olarak belirtilir. Bu transfer fonksiyonunun

argumentleri i¢in katlanmig bir rakamlar1 kullanimin verir,

2m2+M 2my+N

> et g ( i) =iy 0,)
oo (mt M)l m gt N) tmgt ™ o o L el
_n—M-N
mytm 4= 2 (43)

(42)’deki gibi (43)’te kullanilan ayni kural M ve/veya N negatif oldugu zaman
katsayyr bulur. Sunu belirtmeliyim ki frekans terimleri e"**¥*) farkli olmamali. Ornegin,
eger @ =2w,), sonra [, + @, | = 2@ ise bdylece bu iki terimin katsayilari birlestirilir.

Ornek 5.4: Bir derece-5 homojen sistemin frekans bileseni ¢“*"*:)*¢ katkis1 hesaplanacak.
Bu durumda (43) sunun i¢in 6zellesir:

é 25‘ 3y 2m2+1A22m4+2 ( )
H;s iw);—iwy; io,;—iw
sym L) ’ )
r1y=0 m =0 (my+ 1) my! (my+2) ' my! ;n';l—ll b ,#2 my
mytm =1

Burada 6zette iki terim var, 0,1 ve 1,0 indeks ¢iftlerine uyumlu olmak. Boylece 6zet sunu
verir:

514,44 51474

3! HS.sym(iwbimbin-i“’L_iwz) W HSSym(lwl:lea_lw1;1w211w2)

Frekans bilesenini katsayisin1 hesaplamak i¢in 6greticidir.

10



SIA A4
. 1 2 . . . . .
a3 H,, (i0-0,-i0,-0,i0,)

514, 4; L
oo Hsanli0, 10,100 10, i)
(43)’lin dogru diiriist bir uygulamas1 dahi ¢alisir, buna ragmen terimler, formiiliin tam tipi
yliziinden olusan negatif faktoriyeller, negatif gilicler ve negatif alt scriptlerle birlikte
silinmeli. Ozellikle, (43) M=1, N=-2 ile olusur,

s s 51,4 22t 4 2me2
m22=0 m =0 (m2+1)'m2'(m4—2)'m4'
mytmy=3

Hs,,, (o ;—iwg; io,;—ion,)
sym 195 10w,
mytl my m4~2 my

Ozete katilan indeks giftleri: 0,3;1,2;2,1; ve 3,0’dir. Fakat son iki ¢ift konu dis1 gibi

iIMoy+Nw, ]t »

diisiiriilebilir boylece e nin katsayist su olur;

514,4)
31' 2 Hsym (la)l s la)Z ’_ia)Z ’_ia)Z 7_ia)2)
SNA’ A S S L |
+ 0 H,,, (io,io,~io,~iw, ~io,)ki bu erken sonugla katilir.

Polinomial yada volterra sistemler i¢in, yeni tamamlanmis analizin hazir olarak eklenebilmesi
aciktir. Sabit-durum yanitindaki e™?*V2!°nin katsayisin1 elde etmek icin, (43)’teki
katsayilar n=1,2,... i¢in birlikte eklenmis olmalilar. Boylece, katsayr sunun gibi simetrik
transfer fonksiyonlariin terimlerindeki bir volterra sistem i¢in yazilabilir:

i o (2m,+2m,+M + N)!'A
(my, + M)!m,\(m,+N)!m,!

ny :0m4 =0

(44)

H(zmz+2m4+M+M)m, (i ;—ia;;)
-

my+M m,
n alt scriptlerin toplamini ayirmakla yerine konulur ve 6zetlerdeki kisitlamalar kaldirilir.

Ornek 5.5: (44)’iin kullaniminin bir rnegi olarak, giris (38) i¢in bir derece-3 polinomiyal
sisteminin  yanitindaki terimleri listeleyecegim. Karmasik ¢ekimli terimler bilgi
eklemediklerinden beri ihmal edilmis olacaklar. Derece-1 alt sisteminin katkis1 (44)deki
2m, +2m, + M + N =1smirlamasini biiyiitmekle bulunur.

Tablo 5.2

Frekans-Yanit Terimleri: Derece-1 Alt sistem*

Ozet Indeksler Frekans
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m, my M N  Term .
0 0 1 0 AH (iw)e"
0 0 0 1 AzHl(iwg)emzr

*(art1 karmagik-cekimli frekans terimleri)

Derece-2 alt sisteminin katkis1 aslinda tablo 5.1 tekrarmi kapsar. Fakat, rakamlar ve isaretler
sonraki kontekste farklhidur, boyleki ben onden gidecegim. (44)teki
2m, +2m, + M + N =2katkiy1 fazlalastirmak, tablo 5.3’teki listeyi verir. Bu durumdaki
onemli dikkat edilecek sey, M ve/veya N E negatif olmalari i¢in izin vermekle olusan sadece

bir farkli frekans parcasmin oldugudur. Oyle ki bir terim dnceki hesaplanmis terimlerden nasil
elde edildigini gostermek i¢in bir isaret anahtar: olarak adlandirilir.

Tablo 5.3

Frekans-Yanit Terimleri:Derece-2 Altsistem*

Ozet Indeksler Frekans

Term
2142 H g, (iwy, —iwy)
21 A3 Hygm (iwy, —i®2)

. . i2w,t.
A 12H25ym(lwl,lw1)e

A22H25ym (iwz,iwz)e
214,A4 2H25ym (iwl,iwz)e
sign switch 2V A Ay Hogy, (iwy, —imy)e

i2wqyt

coo o~3
coo ~oi
~OoN OOR
~No 002

i (ml+w2)l

i(u;‘—wz)l

Aym bigimde, 2m, +2m, + M + N =3ayarlamas, tablo 5.4’de gosterildigi gibi derece-3 alt
sisteminin katilimini verir.

Tablo 5.4Frekans-Yanit Terimleri:Derece-3 Altsistem

Ozet Indeksler Frekans

12



Term

31 5 . .
TAthym (lwl:lwb_’wl)e
314242 Hsy (i), —iwy,io)) e

34 1A22H3sy,,, (iwy,iwy, —iw))e

=
3

iwll

l.(l)lf

iwll

— - OO
.—ao»—‘oz

3! . . . fwzl
el A3H; g, (i0g,iw,, —iw))e

3 L
T'A 12A 2H3Sym(lw1,lw1,lw2)e
3 o
T A\A}H;,, (i0y,io),i0))e

3 . . .
AfHsgn oy i0pio)e,

A7H3gym (o, 10,,10,)e
f

i +w)t

&) o»—o»—‘g
—

o o O
—

i3(ull

3
0 0

sign switch —;A P4 Hygym (i) iw), —iw))e
. : 3i . : :
sign switch 7A1A22H35ym(1w1,—1w2,-—lw2)e

o O O oS O O = =

wW o N

1(20) l—mz)l

i(wl—sz)l

Tabii ki, bu 6rnegi tamamlamak i¢in, tiim bu terimler birlestirilmeli.

2 siniisoydal terimden daha fazlalarinin toplami olan girisleri géz 6niinde tutmak igin,

ayni yaklasim takip edilir. Ornegin, takip eden etkenin dogrulugunu kanitlamak sikici
olmasina ragmen dogrudur. Bir volterra sisteme giris i¢in:

u(t) =24, cos(wpi)+2A, cos(at) +2 A, cos(awyt) (45)

Sabit-durum yanitinda "NV [ Af N > (iisliisiiniin katsayist belli sayida -titiz olmak

icin- transfer fonksiyonuna giren ¢esitli sayidaki diisiincelerin girildigi yerde soyledir:

=

i i Z (2m, +2m, +2m, + L+ M + N\ AT A7 42
mr=Omes0 e (my + L)!m,\(m,+M)!m,\(m+N)'m!

H(2m2 +2my+2mg+L+M+N)sym (i(q a_i(q > i0)2 a_ia)z > ia% ,—i@) (46)

L, M ya da N negatif olduklar1 zaman, katsay1 dnceki gibi frekans tezlerinin kargilagtirmasinin
igaretini degistirmeyle bulunur. Hem de 6nceki gibi , @), @, ve @, diizenli degerlere dayanan

frekans bilesenleri farkli olmayabilir. Sunun {izerinde durmaliyim ki, (46) karmasik bir
iisliiniin katsayisini verir. Bdylece, toplam sabit-durum yanit1 hakkinda ne sdylenebilir?

5.4. Rasgele Girisler icin Yamt

Onceki boliimlerdeki gibi, genellesmis dogrusal teori ilk énce gozden gecirilecek. Sistem igin

girisin kabul edilen deger E[u(t)] ve otomatik baginti olasiliksal islemden ger¢ek ornek bir
fonksiyon oldugunu varsayin
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oo

y() = f h(@)u(t—0o) do
- (47)

Ru(t1,1) = Elu(t)u(s))] (48)

Sonra ¢ikis gercek bir olasiliksal islemden bir Ornek fonksiyondur ve c¢ikisin E[y(t)],
giris/¢ikisin, ¢apraz-bagintinin

Ryu(ll,tz) = E[y(tl)u(tz)] (49)

ve ¢ikis otomatik bagintinin

Ryy([],tz) = E[y(tl)y(tz)] (50)

beklenen degerini bulmakla ilgilidir,
Direk hesaplamayla olan islem, beklentinin asagidakiyle biitiinlesmesiyle yer
degistirilebilirligi agiktir,

w

Eb@Wl= [ h(@Elut-o)] do
A (51)

Boylece,

)

yWuy) = [ @ ut—0)ult) do

—oo

her iki kenardaki beklenilen degerleri almak sunu verir:

R, (tnt) = [ h(@)R,(11=0,ty) do

(52)
Benzer sekilde,
yeye) = § I nednedutho)utron doo,
ve boylece
R, (1y,t) = Io Io hio ) h(oy) Ry (ti—01,t—07) dodo, )

Sunu belirtmeliyiz ki, teknik konularmm bir numarast tekrar gérmezden gelinir.
Omegin, E[u(t)] ve R, =(t.t,) asafida gosterilen biitinlesmelere izin vermeye yeterli
olarak davrandigi tam olarak farz edilir. Bu gibi etmenler doldurmak icin ¢ok zor degil ve o
gorev okuyucuya birakilir, genellikle.

Baglant1 iliskileri ¢cok degiskenli Fourier doniistiirmenin terimlerinde sik sik belirtilir.
Genel tek-degiskenli Fourier doniismeye tam benzerlik i¢in

14



F@) =Flfol= [ se e a

(34)
Bir fonksiyon f(t,,...,¢,) 'nin ¢ok degiskenli Fourier doniismesi asagidakiyle tanimlanr:
Floy,. . ,0,) = f Flay. . ot)e e gy - dt,
. (35)

Tabii ki, bu silirpriz degil, boliim 2’deki c¢ok degiskenli Laplace doniismenin verilen
tartismasidir. Bunun yaninda, ¢ok degiskenli Fourier doniisme boliim 2’deki Laplace
doniismenin Ozelliklerinin bir gozden gecirmesi sonrasinda makul olarak beklenen tiim
ozellikleri gosterir. Ters Fourier donlisme soyle verilir:

1 iwyt) iw, 1,
) = Floy. - o)l " doy - da,
f(ll ) Q)" —:[o 1 (56)

Bu boliimiin amaci i¢in, /(f)’nin Fourier doniismesi sistem fonksiyonu diye adlandirilir ve
H(w) seklinde yazilir. Bu genel durumda, Laplace ve Fourier doniisme arasindaki dogal ortak
carpismanin okuyucusuna belki hatirlatabilirim. Eger bir (Laplace) doniisme fonksiyonu H(s)

Re[s]=0 i¢in olusur, sonra sistem fonksiyonu H(s)|,_,,= H(iw) tarafindan verilir. Laplace

S=iw
doniismenin rasgele giris sinyalleriyle birlikte madde isleri i¢in yana konulmasindan beri, ben
sistem fonksiyonu ve tiim tek- ya da c¢oklu — degiskenli Fourier doniismeler icin H(w)

rakamlar ve isaretler sistemini kullanacagim. Bu arada, Fourier doniismenin var olmasini

garantilemis hipotezler varsayilacaktir. Ornegin, sistem sabitlik 6zelliginin J | h(t)| dt <oo

—oo

uymasl, sistem fonksiyonu H (@) nin varolmasina garanti oldugu farz edilebilir.

Diger bagint1 fonksiyonlarinin dontigimleri i¢in ayni tanimlarla birlikte

S,,u(wl,wz) = F[Ruu(tl,lz)]
(57)‘e izin vermek

(52) ve (53)’te gosterilen bir dogru hesaplama asagidakiyle gosterilebilir:

Sy,,(wl,wz) = H(w,)S,,,,(wl,wz)
Sylw), @) = H(w) H(wy) S, (@, ) (58)

Bu genel kavramlar gergek rasgele islem u(t)’nin sabit oldugu durumdaki en ilgincidir.
Bunun igin, ¢ = - ’da giris sinyalinin eklendiginin farzetmek, ¢ikis dahi gercek bir sabit
rasgele islemdir. Diger bir deyisle, burada tam bir sabitlik farzetme var.

Sabit giris durumunda, E[u(t)] bir degismezdir, bdylece

)

Ely01= [ k(o) do Elu(®)]

-0
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(39)

Ayrica, otomatik bagmti fonksiyonu R (f,t,), sadece ¢ —¢, farkina dayanur.
t, =t,t, =t +rdegiskenlerini degistirmeyle genel rakamlar sistemini takip etmek, otomatik

baginti R, (¢ +7,t )sadece t'nin bir fonksiyonudur ve bundan dolayr R (7)seklinde yazilir.

Yeni degiskenlerin terimlerinde giris/¢cikis c¢apraz-bagintiy1 belirlemek ig¢in, (52) soyle
yazilabilir

R, (t+7,1) = f h(o)R,,(t+17—0,t) do

ve sag tarafin t’nin bagimsizi oldugundan beri, su sekilde yazilabilir:

oo

R, (1) = f h(@)R,,(1—0) do
o (60)

Benzer sekilde, ¢ikis otomatik baginti s0yle yazilabilir

R, = [ [ hoDh(@)R, G040y dodo,
“ee S0 (61)

Bu iliski tek-degisken Fourier doniisiimii kullanan frekans domaininde belirtilebilir. Bu kolay
bir bicimde dogruca sonuglanabilir. Aslinda, sonraki gelismeler i¢in 1sitmak i¢in, (58)deki 2-
degiskenli Fourier doniisiim formiillerinden olan ifadeleri belirtecegim. Asagida gosterilen
yeni degiskenleri kullanmak,

(=S I -

Sw(wl,wz) = j f R,‘m(tl,[;_y)e_-i'-u]’]«‘.’ﬂ.wzt2 dt\dt,

—O0 00

[

= f f Ruu(t+’r,t)e—iml([+7)e_iwzl det

—00 —oo

0 oo

= f f Ry (m)e e iertedt 4y

7’¢ uymakla biitlinlestirme sabit rasgele islemin gii¢ gercek olmayan yogunluk olan Fourier
dontisim S, (@) = F[R,,(7)]’yi verir. Sonra iyi bilinen doniisiimii kullanmak

f e dt = 278 y(w)

asagidakine gotiiriir:

S (@1, @) = 278, ()3 (0w +w,)
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®,’ye uyan iki tarafin biitiinlesmesi asagidakini verir:

.
Sy (@) . :[o Sy (@, wq) dw,y )

Bu formiil o islemin genel otomatik fonksiyonunun 2-degiskenli Fourier doniisiimiiniin bir
sabit rasgele iglemin gii¢ gercek olmayan yogunlugunu belirtir. Tabii ki, benzer bir iligki
(58)’de verilen S (@,,®,) nin terimlerindeki ¢apraz gergek olmayan yogunluk S, (@,) i¢in

elde edilir. Boylece (58)’deki ilk denklem asagidaki gibi olur:

Syu(wl,wz) =27 H(w)S,, (0 )8(w,+w,)

boylece giri/¢cikis capraz-gercek olmayan yogunluk giris giic gercek olmayan yogunlugun
terimlerinde su sayede verilir:

1 ©o
S,Vu(wl) = E‘T‘L 2”H(wl)suu(w1)80(w]+w2) d(l)z

= H(wl)Suu(wl) (63)
(58)’deki ikinci iliski i¢in benzer bir tarzda isleme asagidaki giris gilic gergek olmayan
yogunlugun terimlerindeki ¢ikis giic gercek olmayan yogunlugu sdyle verir:

Syy (w;) = H(wl)H(—wl)SW(wl)
- 2
lH(wI)I Sw(wl) (64)
Ben bu noktada belitmeliyim ki ergodik tarzlar1 ayirma, sabit durumdaki ¢esitli bagintilar ve
gercek olmayan yogunluk ortalam bir zamanda anlatilir. Bu gergek teshis teknikleri tartisildigi
zaman bolim 7’de c¢ok Onemli olacak. Ayrica suna da dikkat edilmeli ki, sistem
fonksiyonlariin terimlerinde, (59)’da verilen ¢ikisin beklenen degeri su sekilde yazilabilir:

Ely(D] = HO) Elu ()] (65)

Simdi asagidakiyle tanimlanmig dogrusal olmayan sistemler i¢in gbézden gecirilmis fikirlerin
genelini goz oniinde tutalim:

@ = [ k. . o ult=0) - uli=a,) doy - - do,
Lo (66)

Polinomiyal ya da Volterra sistemlerin tartismast bu homojen durum ele alinana kadar
ertelenmis olacak.
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u(t) gercek bir rasgele islem oldugu zaman, dogru hesaplama asagidakini verir,

Ely()] = f hoy,. . ,o)Elu(t=a) -+ ult—=o )] do\ - - - do

—co

n

n

- f hoy,. . ,o )RM(t—0ay,. . ,t—0c,) doy- - do
- (67)

girisin n"-dizi otomatik fonksiyonunun asagidaki tarafindan tanimlandig1 yerde.

Ry, . ot,) =Elu(ty) - u(z)]

Benzer bir tarzda giris/cikis capraz-baginti ve c¢ikis otomatik baginti asagidaki bicimde
yazilabilir:

o0

R).u(ll,tz) = f h((Tl,. . .,O'H)Ru(:+“([1'_0'|,. i .,tl—O'",t'z) doy--- do, (68)

o

Ryy(t].tz) = f h(C'l.. . .,G‘,,)h(O‘,,H,. . .,0'2,,)

R(Zn) _ _ — - .o
uu (tl 0'1,, ol -rl] o'mtz 0'n+]’, . "tz (7'2”) do’l 02" (69)

n=1 i¢in bu ifadeler onceki tartigmalardir. Fakat n>1 icin ¢ikisin beklenen degeri ve ¢ikis
bagmtis1 daha yiiksek dizi giris otomatik bagintiya dayanir. Diger bir deyisle, karakterize
edinmeye ihtiyag duyan daha fazla degismeyen bilgiyi n diisiiriir, 6rnegin, ¢ikis otomatik
bagmtisi.

(67), (68), (69) ifadeleri degisken birliklerini izleyen kat bi¢iminde yazilabilirler, bir
bicim ki katlarin ve c¢ok degiskenli Laplace doniisiimiinii kullanan bir homojen sistemin
girig/cikis isaretini gdz onilinde tutmakla ortaya ¢ikan degisken birliklerinin benzeridir. Fourier
doniisiimlerin terimlerindeki (68) ve (69) ifadeleri ile ilgili oldugundan beri, bolim 2’de
yapildig1 gibi birlik goriinlisiinden kat goriinlisiinii ayirmak i¢in uygundur. Bunu yapmak i¢in,
cok degiskenli giris/cikis capraz-baginti agsagidaki tarafindan tanimlanir:

Ryu(tl) . . -:tn+1) =
fh(ol . U”)R,,(,,"+l)(t1_0'] ty—0 plys1) d
» ’ 1+« ot nréin+l O-]"'do-n
J (70)
bdylece
- nh=-:--==t
Ryu(tl:tl) = Ryu(tl,. . .,[,,.H) b=t l (71)

Benzer sekilde, ¢cok degiskenli ¢ikis otomatik bagintisi $0yle tanimlanir,

18



Ryy(tlx- . .,12,,) =

fh(crl,. ca TR0, Lo )RV (1—0 12— 2,) .
»Yn ntls e - -y n uu se e iy T 0, d(T] ) dUZn
A (72)
bdylece
R t1= ... =t =t1
Ryy(t],tz) = R_yy(tl:- . .,12,,) "
tn+l= « e =t2n=t2
(73)

Bu orta ¢ok degiskenli degerin Fourier doniisme yolu ile simgeyi kolaylagtirmaktan
baska anlami yoktur. Cikisin diizen-n otomatik bagintisinin Fourier doniismesi sOyle olsun,

Su(un)(wl)o . -,w”) = F[.Ru(un)(tl,. . .,t”)] (74)

ve ¢ikisin ¢cok degiskenli bagint1 ve otomatik bagintisinin Fourier doniisiimii sdyle olsun,
Syu(w],. . .,(U,H.l) = F[ﬁyu(tl,. . .,t,,+1)]
Syy(w],. . ’!w2n) = F[ﬁyy(t],. . .,12,,)] (75)

bunlar ¢cok degiskenli gercek olmayan yogunluklar olarak adlandirilirlar, yine de  gergek
olmayan yogunlukla yapmak i¢in az ya da hicbir seyleri yoktur. Sistem fonksiyonunun
terimlerinde olan Fourier doniismelerin kolayca kurulmus kat 6zelligini takip eder,

Syu(wlw . .,w,,+1) = H((Ul, . .,w,,)Su(,j'“)(cul, .. -an+l) (76)

Sy (@y,. .., 09,) = H(w,, .. w0 )H (w1, ., 05,)887 (0, . . " @3,) 77

n=1 igin diizeltme imleri sol taraftan kaldirilabilir ve sonra bu ifadeler (58)dekilerle birlikte
katilir. Simdiki 6nemli problem n>1 i¢in ¢ok degiskenli ger¢ek olmayan yogunluklarin
terimlerindeki S (@,,@,)ve S (@,®,)’yl belirtmektir. Bu, Fourier ddniismenin

terimlerindeki (71)ve (73)deki degisken birliklerini belirtmektir. Bunu basarmak icin az bir
manevra alir, fakat manevralar boliim 2’deki degiskenler formiilii birliginin ispatindan bildik
olmal1.

Ters Fourier doniisme iliskisi cok degiskenli capraz-baginti i¢in soyle yazilabilir:
R 1 T 3 iygt i t
Rty . . Lty = W :r Syu(71: RV P4 L DL 2 VAT dyy -+ dy,.,
Sundan

_ 1 i iyt Fy ey i
Ryu(t],lz) W :!; SW(YI: L. --7,.1»1)8 28! Y ’Ie‘7n+l'2 dy,--- d7n+l
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Iki kenarm Fourier doniisiimiinii almak asagidakini verir

Syu(&l],wz) =

l T A —i( .
W=y — - —y ) - -
(27m)nt! f SO, o Lypde T PR R dyy - - dy,ddty
Ve ¢, ve t,ye uymakla biitiinlesme,
1 -
Sy (@1, w3) = 2m)yr—1 Lsyu(yl" - Yar)Bol@—y— - - - —y,)
8olwa—y 1) dy1 - - - dy,aq
- hl TH( (n+1)
(27,_),,_1 < Yis- « - ')’n)Suu (71'~ - -,'}’,,+1)80(w1—'y|— ... —'yn)

Solwy—y, e)dy) - - - dy i

(78)
Otomatik bagint1 ¢ikisi i¢in bu prosediirii tekrar etmek asagidakini verir
1 T 4
Sy (@1, @) = W :[o Sy . . L ya)delw—y— - - - —y,)
80(w2—7n+1_ e _'an)d’)'l ccedya,
= _‘1 .TH( (2n)
(277)211—2 v Y. - "yn)H(7n+lr- . -:‘YZn)Suun (7[,. . ..an)

80(")1_7]— e ‘Yn)ﬁo(wz‘"')’nﬂ‘ e _72,,)(1")’1 s dyay, (79)

Buradaki benzerlikler bolim 2’deki degiskenler formiilleri birligi ile birlikte heniiz
goriinmedi, fakat ben kisaca bahsedecegim.

Gergek hesaplamalar veya uygulamalarin iizerinde diisiiniillip tartisildigi zaman ¢ikis
gercek olmayan yogunluk i¢in bu ifadeler ve ¢apraz-baginti yogunlugunun zorlu olmasi ile
ilgili hi¢ soru yok. Fakat giris rasgele islemi lizerindeki ¢ok daha fazla ilizerine almanin
islemiyle kolaylastirilabilirler. Dogrusal durumdaki gibi, bunun ilk 6ncesi sabitlik. Bir sabit
girig t = —oo da bir sabit homojen sisteme eklendigi zaman, alisilmis ve oldukc¢a basit zaman-
degisimi tezi ¢ikis rasgele islemin sabit oldugunu gosterir. Boylece, ¢ikis otomatik bagint1 ve
girig/cikis capraz-baginti gozden gegirilmis teknikleri kullanan tek bir degiskenin
fonksiyonlar1 olarak belirtilebilir. Ben Problemler icin bagintilar1 birakmayi ve gergek
olmayan yogunluklar i¢in hesaplamalar1 yapacagim.

Capraz-ger¢ek olmayan yogunluk i¢in, form (62)nin bir iliskisi yazilabilir, asagida
verilen
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1
Syu(wl) = - f S},,,(wl,wz) dw,

= (21r) L yu(')’l:- o Yae)dlo Y~ - '_Yn)
30(@y—y,41) dyy " - dypa1do; (80)
Biitiinlesme ilk @, ¢iktilarina uymakla
Sy (@) = 1 _T Su@i . o w¥es)ol@=y = =y,) dyr - dYan
QQm)" . (81)

ya da, sistem fonksiyonunun terimlerinde ve sira n+1’in girig ger¢ek olmayan yogunlugu,

SW(Q)I) f H(’yl,« . ,')’,,)S("+l) . -v7n+l)

(2 )

60(‘”1_71_ o _')'n) dyy - dyps (82)

Dikkat edilmeli ki, (82)deki y,’e uymayla biitiinlesme

1 T a
=— |5 g e — o e d
Sy (@) am) J‘; v (@12 Y Y2 Y ns1) dY2 Y+l (83)

boliim 2.3’teki bir degiskenler formiilii birligi gibi olan bir ifadeyi verir. Aslinda, (82)’deki
biitiinlesmemis form daha fazla gelismeler i¢in daha fazla hizli ve verimli olacak.

Cikis gli¢ gergek olmayan yogunluk igin benzer bir hesaplama asagidakini verir
1 T &
Syy(wl) = W f S”,('yl,. eyl =y 1= =y )dy, - - dya,
1 o
= (2m) 21 f Hy,. . -,')',,)H(')’n+lr' . ,‘)'2,,)5(2")(7.,, . ‘,72")
Sploy=yi— - —y,) dy1 - dya, 54)

Tekrar, bu bir degiskenler formiiliiniin birligi olarak yorumlanabilir.

Daha fazla basitlesmeyi elde etmek icin, gercek, sabit, rasgele islem giriginin sifir-
ortalama ve Gauss dagilimi oldugu farz edilir. Bu durumda giris isleminin daha yiiksek dizi
otomatik bagintilar1 dizi-2 otomatik bagintinin terimlerinde belirtilebilir. Bu etkinin kdkeni
verilmeyecek, daha dogrusu, ben basit¢e formiilleri verecegim.

Bir sabit, sifir-ortalama, Gauss rasgele islemi u(t)’nin dizi-n otomatik fonksiyonu
sOyle yazilabilir
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n
IR, (t—t), n eve
R (hy,. . 1) = %’J;k gk "

O, n odd (85)

n

H nin 1,2,...,n°den bir dizi tamsay1 n/2 ciftlerinin {izerinde bir iiriin oldugu yerde ve
Jik
Z asagidaki gibi tiim triinlerin

p

n!

(n-1)(n-3)(n-5).. .(I)ZW

toplam1 oldugu yerde. Daha fazla bir belirgin rakamlar ve isaretler sistemi kabul
edilebildiginde, karmasiklasir ki, ben (85)i kullanacagim ve Orneklerle daha fazla
aciklayacagim.

Ornek 5.6 n=2 icin sadece bir ¢ift var, yani (1,2). Boylece
RP(1),1) = Ry, (11—t

Bu, genel dizi-2 otomatik bagintidir. n=4 icin 3 tane 2 ¢ift dizisi var yani,
(1,2),(3,4);(1,3),(2,4) ve (1,4),(2,3). Bdylece

RSP (t1,t0,83,t8) = Ry (=1 Ry, (t3—14)

+ Ruu (t]—t3)Ruu(t2_t4) + Ruu (11_t4)Ruu (lz_tj) (86)

Benzer bi¢imde daha yiiksek sira gecek olmayan yogunluklar dizi-2 giic gercek olmayan
yogunlugun terimlerinde belirtilebilir. (85)in Fourier doniisme n-degiskenini alma asagidakini
verir:

nf2 " .
Su(,,")(wl,. . .,wn) = (277.) %}}(Suu(wj)SO(wj'f'wk), n even

0, n odd (87)

Ornek 5.7 n=2 i¢in bu formiil
Su(uz) (w1, wy) =278, (08¢ (w4w,)

Bu boliimiin basinda elde edilmis bir ifadeyi verir. N=4 i¢in hesaplamay1 bir ornekle
birakacagim ve sonucu saglayacagim:
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S,,(:)(wl,wz, (1)3,0)4) - (217)28,,,,(w,)S,,,,(w3)80(w1+w3)80(w3+m4)
-+ (ZTr)ZSW ((U])Suu (&)2)80((01+(03)80(w2+(04)
+ (277)24.9"" (wl)Sw (0.)2)50(0)]""(04)80((02""(03) (88)

Ornek 5.8 bu formiillerin kullanimimi 6rneklemek igin, ¢ikisin beklenen degeri, giris rasgele
islemin gercek, sabit, sifir-ortalama, Gauss ve beyaz oldugu durum i¢in birim yogunluk ile
hesaplanacak. Bu, R (7)=0,(7) dir. Ayrica, sistemin simetrik kernel ya da simetrik sistem

fonksiyonlariin terimlerinde tanimlandig1 farzedilecek. Bu durumda (85)in (67) nin yerine
konmasi n tek oldugu zaman n > 1, igin E[ y(¢)]= 0’1 verir ve

Eb@) = [ hyn(o. . o) T so(os=0) doy -+ do,
—ca p A
y n
=Y f hym (o, 0 y,) !LSo(ak-—aJ) do,---do,, n even
I

p —

Simdi toplamin her bir teriminde n/2 impulslar1 tiimlesik olabilir ve bu kernel’1 sadece n/2
farkl iddialarla birakacak. Kernel’1n simetriligi sayesinde, ayn1 iddialar ¢iftlere diizenlenebilir
ve biitiinlesmenin degiskenleri olduklarindan beri, form hsym****’de etiketlenebilirler. Bu
tipin (n-1)(n-3)...(1)terimleri olacak, boylece sonug

‘ o0
Eb’(l)] o W f hg'm(al:ol'- . .,0',.,/2,0'”','2) dO’l SOs e dUn.nQ’ n even

(82)’yi kullanmak, ¢apraz-bagint1 yogunluk ve ¢ikis gii¢ gercek olmayan yogunluk bir gergek,
sabit, sifir ortalama, Gauss-rasgele-islem girisi ile simetrik transfer fonksiyonuyla
tanimlanmis bir derece-n sistem ic¢in simdi hesaplanacak. Capraz-ger¢ek olmayan yogunluk
icin, nt+1 tek igin S (@) = Ooldugu (87)den bellidir, ki bu herhangi derecenin bir homojen

sistemi i¢indir. n+1 oldugu zaman, basit bir yerine koyma asagidakini verir
S(m)»—;jfy ( Yool —y 1=« « - =v,)
yu @1 Q) -2 J_Hom Y- - S Yel00\@1TY) n
n+l
2 Rsuu(')’j)s(](?’f*")’k) dy, " dyan
)
l o
- 6;)_‘—"“—”"—2 2 f Hsym(')'l.- . -;yn)ao(‘”l_')'l_ e _7n)
p —=

n+l
H(Su,,(‘yj)ﬁo('yj+'yk) dyy- - dy,s
' (89)

Genel durumda bu ifade iizerinde ¢alismadan 6nce, bir 6rnek 6greticidir. Ve, tabii ki, dogrusal
sistemler i¢in tanimlanmis verilen n+1=2 durumu cok basittir.
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Ornek 5.9 n+1=4 igin, (89) asagidaki sonucu verir

Sy (@) = % J; Heym (1,72, 7980 (@1=y1—y3—73)
S”“(y1)S““(y3)80(71+72)80(73+74) dydy,dy;dy,

+ 51; 1[0 H,, (Yly)’z,73)80(w1—71_y2_73)
S (7 D) S (Y280 (v 1+73)80 (v +v4) dy1dyadysdy,

+ 5177— _L Hyym 1,72, 7380 (@ 1=y 1—y 1~ 3)

S (YD) S (¥ D80 (y1+y)80(yoty3) dyidy,dysdy,

Bu terimlerin her birindeki y, ’ye uymakla biitiinlesmek asagidakini verir

Sy (@) = % :[OHsym 172, 73)80(@1—y1—y2—y3)
St (Y1) S (¥3)80(y1+y2) dy dy,dy;

+ '2%7“ :[O Hyy (y1, 72, v3)80(@ 1=y 1—y2—y3)
S (Y1) S (v D)0 (y1+y3) dyidy,dy;

1
+ E— f Hsy,,, ('yl,72,')/3)30(601—71_72_‘)’3)

S Y DS (¥ D80 (yat+y3) dydy,dy;

Asagidakini elde etmek i¢in simdi ,’ye uymakla ilk terimi biitlinlestirme, ¥, ’ye uymakla

ikinci terimi biitlinlestirme ve 7, e uymakla {iglincii terimi biitiinlestirme

Sy (w) = =— f Hym vy, v, 01— yl YD S (VD) S (@1=y1=y) 8o (y 1 +y,) dy,dy,
f sym(w,wl Y13 Y3) S (r 1) Sy (01— 1 — ¥3o(y1+y3) dyidy;

L L
2

1
T f Hyy (@01=y2=73, 72, ¥3) S (@1=77=¥3) S (¥ )80 (¥ +y3) dy,dy;
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Son olarak, ifadenin y, gore integrali ve geri kalan iki ifadenin y; gore integrali,

l 0?

SJW((OI) - q -’ HS,\’m(Yl'_Yl c 1) (V1) Sy (®1) d"ﬁ
1 o2

- 7 J Hsym (Yl g -_'Yl))slm (“{1 )Suu ((1)1) d“/l
|

4 q J Hs_rm((l)l,«{3.—7_7)5,”,((1)1 )Suu(Yz) d“{z

Ama Hgymw1,w2,w3) simetrik oldugundan giris/¢ikis ¢apraz-spektral yogunluk ifadesinin daha
acik sekli,

3
S.\'u((')) = q Suu(®) J Hspn (©.7.=)Su(Y) dY
) - (90)

HgymW1,W2,w3) simetrik oldugu icin bu Ornekteki tiim ifade ile (89) daki ifade Ozdestir.
Boylece n+1 in ¢ift oldugu durumda capraz spektral yogunlugunun genel ifadesini elde etmek
icin, sadece tek bir terimli ve ¢ok sonuclu toplamlar ile ¢alismak gerekir. (1,2), (3,4), . ..,
(n,n+1) ciftlerinin ayarlanmasina iliskin ifade,

00
-

nn=2)---(1)
(2712)(” -1)2 _L Hs“ " (Yl """ ¥n )60 ((’)1 - ~Yn )Su (Yl )

S_\’u ((’)l ) =

Suu(Y3) e Suu(Yn)BO(Yl +Y2)60(Y3 +Y4) e 60(‘\{71 n -*1) le e dYn*—l

v2ye gore daha sonra y4 gore integral alinirsa,

nn=2)n-4)---(1) T o n—l _~yn—
(2n)(n_l):2 S (©®) _{( HS)‘m (0, =122, - - s YTI {Tl)

Syu (@)=

Suu(YI )sz(Yl) o Sun(y ”:1 )le o (IY% . n+leven (91)

Syuw) = 0 iken n+1 gifttir.

Gergel, sabit, sifir ortalamali, gaussian girisli homojen sitemin ¢ikis gili¢ spektral yogunlugu
icin benzer hesaplama yapacagiz. Tekrar simetrik kernel ve transfer fonksiyon ifadeleri
kullanilir. (84) teki ifadeden (87) ifadesi ¢ikarilir ise

[e)

1 X
(a, Tt)n -1 Z ,. Hsym (Yl ---- Yn )Hs_\'m (Yn = BRI Tan )
-~ D —0

Syy(w) =

2n

80 (0=y—- - _Yn)}-l{_ Suu(Yj)SO (Y_}'+Yk) dﬁ{l T dﬁ/ln (92)

25



Ama  HgmY1,..,¥n)Hsym(Yn+1,..,Y2n)  simetrik olmadigindan bu durum, ¢apraz-spectral
yogunlugundan daha komplekstir. Boylece, farkli kosullarin tipleri, toplamda ortaya ¢ikacak.
Gergekte, genel form Syyw) i¢in ¢ok karigiktir. Ben, n= 2 ve n= 3 i¢in sonuglar1 bir 6rnekle

verecegim.
Ornek 5.10 n=2 icin (92) deki ifade

(=)

Syy(w) = % J Hiym (Y12 ) Hym (Y3 Y2 )80 (00=Y1=12) S (Y1) o (¥3)
_: S0 (y1 +¥2)00(v3 +v2) dyrdyadysdys

+ % J H, o (V12 ) Hisym (Y342 )80 (@=1=12) S (Y1) Sos (¥2)
_: Bo(Y1+¥3)80 (Y2 +¥s) drd2dy3dys

5 | E 0 ) B (516080 (0= =12)S (1) Sua ()

8o (Y1 +Y4)0 (2 +Y3) dy1dy,dysdy,

—00

Herbir ifadenin integralini y4’e gore alirsak

00

1 -
S'U ((l)) - ; J Hs" m (Yl 12 )HSJ'"’ (Y—” =13 )60 ((’)_ =12 )S uu (Y] )S un (Y 3 )
w0 So(y1+72) dyrdyrdys

1
+ ; J Hsym (Yl Y2 )Hsym (YS 6 )80 ((O_YI Y2 )Suu (Yl )Suu (Yl )

-

—00

00

S (11 +73) ddY2d s
17
+ ; J Hs,\fm (-7 )Hsym (3»—"1 )80 (@Y1 =Y2) S0 (V1) S (YZ )

—00

S (1 +vs) dyydyrdys

Nasil devam etigi acik olmali. 11k terimin y, ye gdre son iki terimin y, ve y3 e gore integrali
alinirsa

00

1 4
S)p'((’)) = q 80 () J Hsym 1.1 )Hs_\‘m (V3:=¥3) S (V1) S (Y3) A1 Y3
1 2
+ q J Hs_wn (Yl NO ol )Hs_\‘m (_Yl ~_(’):_Yl )Suu (Yl )Suu ((')_Yl ) le
1 2
+ % J Hs_wn (f1.0-1 )Hs_vm (—0+Y1.=Y1) Suu (Y1) S (0—71) le

n= 2 i¢in sistem fonksiyonunun simetrigi kullanilarak son iki terim birlestirilip ¢ikis gii¢

spektral yogunlugu ifadesi yazilirsa;
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1 2
Sy'r((')) = ; 80 ((’)) J Hs_wn (Yl M )Hsym (’/2 12 )Suu (Yl )Suu (Yl) le d“{l’

oo

) Hopon (=Y P Hey o (01~ S () S () dy (93)

—00

+

A

Bu ornek genel formiildeki fakli tipte olusan ifadeleri tanimlar. Ayrica {igiincli dereceden
homojen sistemlerin sonuglarini listeledim.

o0
-

6
SD'((')) = 2 2 J Hsym (@7 _Y2-Yl-“{2)Hs,1'm(_(’)+q/1 +"{2-_‘\{1~_'Y2)
- Suu ((’)_Yl ) )Suu (Yl )Suu (Y.’_) le dY2
) :
+ OT)Z Suu(('))J Hs.wn (®.y1.—n )Hsym (-(')-Yz-—"{z )Sun (Yl )Suun (YZ) le d"{2 (94)
Ornek 5.11 Sekil-5.1 sistem giris gli¢ spektral yogunluklu bir gergel, duragan, sifir-

ortalama, rastgele Gaussian islemidir.

(B8]

A
Suu((’)) = 2 )
" +o-
u 2 > B Y
| O s

Sekil-5.1 2. Dereceden homojen sitemler
Cikis gii¢ spektral yogunlugunu bulmak i¢in, dnce simetrik sistem fonksiyon yazilirsa;

B
iy +im, + 3

Hsym ((') 1.0 ) =

Boylece,

2

A 4
B* (yi+od)(yi+a?)

oy

1 o=
Syy(@) = p- Oy (®) J J dy,dvy,

—00

1

1
T

2 2 4
J B A dy

(io+B)(—io+P) (v +o?)[(o—y)*+0?]

2

AJ»B.;
2np?

1
v +o

;N °‘J° 1

80(0))[_'!,0 - o B’ . (P o) [(o—y)?+o?] v

"

Integral tablolar1 kullanilirsa
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S
| - dy =

]“ 1 4

N =

e (Yz_az)[((,)_,y)l_a_v] 1 m

Cikis spektral yogunlugunu yeniden yazacak olursak,

4p2 A 4402
Sy (@) = 25T §o(w) + A B
- 20°B3° (o +p" ) +407)

Simdi, rasgele girisli Volterra ve polinomlu sistemlere bakalim. Cikis gii¢ spektral yogunlugu
hesaplanmasinda sadece bir kag ifade i¢in sonuglar verilecektir.

Kullanmak i¢in gerekli notasyon

y(0) =3 5,0
n=1 (95)
Burada y,(t) n. Dereceden homojen ifadenin ¢ikisi. n ise kernel transfer fonksiyonunun
derecesi. Giris keyfi, rasgele gercel bir fonksiyondan olusuyor ise, giris/¢cikis c¢apraz-
korelasyonu agagidaki gibi yazilabilir.

Ry, (t1.t2) =E[y(tu(t2)] = Y Ely,(tu(t)] = X R, ,(t1.12)
n=1 n=1 (96)

Burada Ry,(ti,t2) ¢apraz-korelasyonu gostermektedir. Capraz-korelasyon ve gapraz-spectral
yogunluk ifadeleri polinomlu ve volterra sistemleri i¢in n ile tiiretilmis ifadeler toplanarak
bulunur. Ornegin giris gercel, sifir-ortalamali ve gaussian is giris/cikis ¢apraz-spectral
yogunlugu;

00
-

).
S."“((’)) =Szm ((’)) Z (”)(” -)_1 ») (l) J HrrSJ'nr ((')'Yl Sl B Yﬂ—Yﬂ)
odd n=1 (ZTC)(” )2 —0 2 2

S"'“(Yl) Y Sl!l-’(’Y$) le T dY# (9,)

Rastgele gercel bir giris durumuna doniiliirse, otokorelasyonu ¢ikisinin veya giic spektral
yogunlugunun hesaplanmasi daha da zorlasir.

R.l)'(rl~r2) = E[V (rl )‘ (f:)] = i i E[Vn(fl).vnl(tz)] (98)

n=1m=l1
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Bu ifade notasyonda yazilirsa,

Ry(it2)= 3 3 Ry, (t1.12) (99)

n=1m=1

Burada Rynym(ti,t2) =E[yn(t1)ym(t2) kismi ¢ikis otokorelasyonu olarak bilinir. Bu ifadenin
hesaplanmasi diger hesaplamalardan biraz farkl.

Bazi hesaplamalar, kismi ¢ikis otokorelasyonu verir,

(=]
Ry,.)',,, (tl'rZ) = J hnsym (Gl """ GnV’msym(¢n—l """ On -m)
—00
RS:;I-M)(II_GI """ 11=Cpst2—Cp =1, * " " +13=Cy =) dGy * -~ d G, -y, (100)

Bu formun agiklamalartyla baktigimizda, ¢ok degiskenli kismi ¢ikis oto korelasyonunun
asagidaki sekilde tanimlanmasi uygundur,

=]
Vi ,( Isseo Iy -m) = .’ hnsym(ol ---- Gn)hmsym(on—l ---- On -m)
RE::t‘n’)(Tl_Gl """ Ly <m0y —m) dol T dG” -m (101)
Oldugu i¢in
h |I‘1— =t =n "
Ry, (t1.12) =Ry (t1.. ... toem) Lo o op o (102)
n-1 n+m=— L2

Ayrica, bu notasyonun avantaji fourier transformunun konvoliisyon 6zelliginin direk
uygulanabilmesi ve degisken associcationlarin ayri ayri ele alinmasidir.

Sy (@1.02) = F[R,, (11.15)]

S)',‘_\'M (O1,..., Oy =) =F [R_\'! P (ty,. ... Iy -,,,)]

Rl (0 YR @y —p) = F[RE™(t,. .. .. ty-m)] (103)

ve Onceden tanimli sitem fonksiyonlar1 kullanilirsa

SJ'.J... (0. .. .. W, -p) = H, nsym (0, ..., ,)H, msym (@y+1s- -y @y +)S 1(1’1’4_,")((')1 ---- ©y =)
(104)
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(79) ifade tekrar tiiretilirse

o0

1 -~
J S)',,)',,, (Yl ----- Yn -1)1)80 (o “Yi— _Yn)

S,l'n.\'m ((')1 O ) = (-) 71:)” -m-=2

60((’)2_Y}1-1_' Y ﬂn) le e ‘d"{,, ..,,,(105)

Bu yiizden rastgele islem girisleri i¢cin kismi ¢ikis gii¢ spektral yogunlugu asagidaki sekilde
verilir.

00

1 A A
W J S)‘.,J',.. (Yl ----- ) —m)80 ((’)_Yl_' ' '—Yn) le o 'd"{n -m (106)

Sy m (w) =
Elbette m=n durumu i¢in bu formiil (84) ifadesi ile kontrol edilebilir.
Simdi girisin gercel, duragan, sifir-ortalamali, gaussian ve gii¢ spektral yogunluklu Suu(w)
oldugunu var sayalir.(106) ifadesinden (87) ve (104) ifadeleri ¢ikarilirsa,
Syy (@) =0. n+m odd (107)

Ve

o0

1

S-"-"v""’ ((D) - W % —:.? I-Insym (Y Is s+ Tn )I_Imsym (Yn =1 Tn —m)
80((')_71_ o _Yn) n Sm.'(Yj)SO(Yj_Yk) le Y dYn ~m » N M even (IOS)

Bu ifadenin ¢ok daha agik bir formla yazilmasi biraz komplex bir problemdir.

Ornek 5.12 3. Dereceden polinomlu sitem durumlari i¢in Syy(w)’nin hesaplanmasi i¢in
n,m=1,2,3 i¢in Synym(w) ifadeleri hesaplanmalidir.

S."z.":(m) = S.":.": ((0) = SJ':."z ((’)) = S."s.":(m) =0

n=m=1,2,3 i¢in kismi ¢ikis gii¢ spektral yogunluklar1 6nceden hesaplandi ve (64),(93) ve (94)
ifadeleri de veridi. n=1 ve m=3 i¢in (108) ifadesi;
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00

Sy, (@) = 2% % _JM Hy (Y1) H 35 (Y2 Y3 ¥2)00 (=1 )
:ITA_SM.‘ ()Y +¥e) dyy -~ dYs
= i _]iH 1 (V1) H 35m (Y23 Y2)00 (@—11) S0 (1) S0 (¥3)
So(V1 +¥2)80 (V3 +¥s) dyy - - - dy
+ ﬁ jJiH 1O ) H 35m (Y2 Y3 ¥4)00 (@—=Y1) So (Y1) Su (12)
So (1 +¥3)80 (2 +¥a) Ay -~ dYy
+ i jJiH 1 (V1 ) H 35m (Y2 Y3 Y2 )80 (@Y1 ) S (11) S (2)

do(y1 +Ye)0o(Y2+Y3) dyy -+ - dys

Integral ifadesi alinir

3 2
Sy;_\-‘; ((')) = ; Hl (('))Suu ((l)) J H3sym (_(')"Y'_Y)Szm (Y) dﬁ{

Benzer sekilde Sy3yl hesaplanabilir. Baska bir sekilde elde etmek icin Syy(w)=Syy(-w)
ifadesi kullanilabilir.

8

3
SJ{\‘((’)) = Hl (w)Hl (_(’))Suu ((’)) + % Hl (O))S,m ((’)) HBsym (_(’)~Y~_Y)lezt (Y) dﬁ/

(=]

3
+ ; H, (_(’))Suu ((')) J HSS_\'m ((’)Y _Y)Suu (Y

~ é.,_

dy

1 2
3 &) | B 259m (V1.=Y1)H 25ym (V2. =Y2) S (Y1) S0 (V2) d1d 2
+ J H 2sym ((’)_Y Y)H 2sym (—(0+Y! _Y)Sllll (Y)Suu ((’)—Y) d\(

0

1
m
6

+ 2
(21)° -

J Hi gy (Y1 =12 Y1 Y2 ) H 35m (—O+Y1 T2 V1.7 Y2)

Suu ((’)_Yl =12 )Sml (Yl )Suu (YZ) le d Y2

9 2=
0 Suu ((’)) J J H 3sym ((’)'Y 1N )H 3sym (_(’)"YZ*_‘YZ)

(2m)” o0 —o0

Slm (Yl )Suu (YZ) d"{l dﬁ{2 (1 09)
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Ornek 5.13 Ornek 3.3 de faz kilitlemeli loop tanimlandig1 icin 6rnek 3.8 deki ilk ii¢ simetrik
transfer fonksiyonun gosterilisi,
__1 _
H(s) = IR Hygm(s1,52) =0
K/6
(s1+s2+53+K)(s1+K)(s2+K)(s3+K)

HS:.J'm(S 1 -SZ-SS) =
Varsayalim mesaj isareti, gercek , duragan, sifir-ortalama,A hasali Beyaz Gaussian giiriiltiili.
Boylece

Rl!h’ (T) = A80 (‘C) s Sllll’ ((D) = A

Ucgiincii dereceden ifadenin iginde Hata sinyali x(t) sifir ortalahdir. 65 den X(t) nin 1.
Dereceden bileseni ve drenek 5.8 den 2.derece ve liglincii derece bileseni de ayrica sifir
ortalamalidir.

J HS:_\'m (_(’)'Y'_’Y) dY

—00

MXx

%A“ T
H(—(l)) J Hisym (0y.—y) dy
Acik sekli,
A
AH(OH(-®) = ————
(@H(w) = —"—
Integral ifadesi,
342 % KA%/Ar T
H(® 35ym (— ..~ ok ©
7 () Jm am (=0, V) ((l)2 +K,)(—iw+K) —‘L Y +K* !

A%/
- ((z)2 +K? N(—i®w+K)

w yerine —w konarak ikinci terimden ii¢lincii terim elde edildikten sonra hatanin gii¢ spektral
yogunlugu;

A KA
+ 7.2

®> + K? (0 + K?)

SI'.\' ((‘)) =

5.5 Wiener Orthogonal Gosterimi
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Polinom veya Volterra sistemi ig¢in, ¢ikis gilicii spektral yogunlugu ya da 6z ilinti
hesaplamadaki temel zorluk, boliimsel c¢ikis spektral yogunluklar1 ya da 6z ilintilerin
fazlaligidir. Bu sebeplerden ve 7. boliimde tartisilacak olan sebeplerden dolayi, cevabin
istatistiksel tanim1 uyarinca mutlak diklik 6zelliklerine sahip olan bir seriler gosterimini goz
onlinde bulunduracagim. Uygun yakinsama sartlar1 altinda, bu Wiener serileri, Volterra
serileri gosterimindeki terimlerin yeniden diizenlenmisi gibi gosterilebilir. Buna ragmen, bu
bakis agis1 sasirtict olabilir ve muhtemelen bu Wiener gosteriminin farkli bir baslik olarak
kabul edilmesi i¢in en iyi bakis agisidir.

Bu boliim boyunca, giris isaretinin gercek, duragan, zero-mean bir A yogunluklu beyaz gauss
rastgele isleminden elde edilmis basit bir fonksiyon oldugu farzedilecek. Bu ifade, yakinsama
sonuglarinin olagan engellemeleriyle, sonsuz seriler seklini alacaktir. Aslinda, Wiener
gosteriminin yakinsama ozellikleri “square sense” olarak adlandirilir ve ortaya ¢ikan sartlar,
Voltera seriler i¢in olanlardan daha az kisitlayici oldugunu gosterebilir. Bu sonuglar bolim
5.6 da incelenecek.

Bir sistem i¢in Wiener gosterimi,

Y1) = Y Glkyu(®)]

n=0
bicimini alir.

Burada her bir Wiener operatorii Gn[kn,u (t)] , simetrik bir Wiener kernel kn(t 1, . . . ,tn)
tarafindan belirlenmis n-ninci dereceden bir polinom operatoriidiir. Operatoriin polinom
derecesini belirten altsimgenin 1.Bdliimdeki operatdr gosteriminden ¢ok az farkli olduguna
dikkat edin. Kn’e baglilik goriilmektedir. Ayrica simetrik olmasina ragmen Wiener kernel’de
“sym” altsimgesi yoktur. Bu, geleneksel gosterime uymaktadir ve Wiener kernel’i simetrik
Volterra serisi kernel hygym(ti, . . . ,tn) den ayirt etmeye yarar.

Diizenlenecek olan 6nemli kosul, asagidaki esitligi saglayan bu yeni gosterimdeki kismi ¢ikis
0z ilintileri olarak adlandirilabilenlerdir.

E[G,[k,.u(t+1)]G,,[k,.u(t)]] =0, forallt.m#n

Elbette, bu kosul belirtildiginde, ¢ikis 6z ilintisi agagidaki sekilde verilir,

Ry(t) = 3 E[Gulky,u (t +0)]Gy[kn.tt (1)]]
n=0

Wiener gdsterimi yalin ve genel bir ispat ile saptanabilmesine ragmen, bir baslangi¢ iislubu
icinde baslamak aydinlatict olacaktir. Yaklasim, asagidaki esitligi saglayan n-ninci dereceden
bir polinom operatdrii yardimiyla Gn[kn,u (t)]’yi bulmaktir.

E[G,[kyu(t+D]F;[u(t)]] =0, forallt, j =0.1,..., n-1
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Burada Fj[u ()] j-ninci dereceden herhangi bir homojen operatdrdiir. Elbette, bu kosul n-1 ya
da daha az dereceli polinom operatoriine dik Gn[kn,u (t)] yi saglamaktadir. Asagidaki
hesaplamalar agiginda, Fj[u (t)] ye uygun simetrik kernel j=0,1 oldugu zaman “sym” gereksiz
olmasi durumu diginda, fjsym (t1, ... ,tj) seklinde ifade edilecektir.

Sifirinct dereceden Wiener operatorii basit bir bicimde GO[k O,u (t)] = kO seklinde tanimlanir.

Birinci dereceden Wiener operatorii asagidaki formda ifade edilir.

Gilkvu(®)] = | k1(0)u(t—0)do + k1o

—00

Burada kl(t), birinci dereceden Winer kernel, k1,0 ise se¢ilmis bir sabittir. Bu operator her
hangi bir homojen operator FO[u (t)] = f 0 © a dik olmalidir. Soyle ki, her hangi bir fo igin,

0=E[G[ky.u(t+1)]Fo[u(D)]]
J f0 (G)E [U (t+ T—G)] do + fOkl.O‘ forall t

Mademki, birinci terimde beklenen deger sifir, bu kosul k1,0=0 i¢in saglanabilir. Bu, birinci
dereceden Wiener operatoriinii asagidaki bigime doniistiiriir.

Gilk.u(t)] = J ki(c)u(t—o)do

—00

Kernel’lerin farkli olabilmesi disinda Wiener gosterimi Volterra serileri gosterimine
benzemektedir.

Simdi 2 inci dereceye gegelim, burada ¢ok ilging seyler olmaya baslayacak. G2[k 2,u (t)]’nin
genel bigimi

k+(61.00)u(t—61)u(t—0,) do1do>

{2 Il(f)

+

J
J k> 1(01)u(1—61) doy + ki (116)

Burada k2(t1,t2) simetriktir, saglanan kosullar asagidadir.

E[Ga[kyu(t+1)]F1[u()]]=0

E[Gs[kyu(t+1)]Folu()]]=0 (117)
I1k kosul
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= J; k>(61.065)f1(G)E [u(t +1—0; Ju (t +17-0,))u (t—0)] d6,dG,d G

+

j ks 1(01)f1(0)E [u(t+1-0, )u(t—0)] dod

+

| ka0fi(0)E[u(t-0)] do

=4 J ks 1(o+1)f1(0) do

—00

ifadesini saglar.

f 1(t) ne olursa olsun k 2,1(t) = 0 olmas1 durumunda bu kosul saglanir. 117 deki ikinci kosul,

0= J k2(01.02)foE [u(t +1—01))u (t +17—0, )] d61dGr + kaof0
=4 J k+(6.0)fo do + k> ofs
ifadesini saglar. Bu

kyo=-A j k(0.0)do

—_0

icin saglanir. Ikinci dereceden Wiener operatorii,

Galky.u(t)] = J k>2(01.02)u(t—0)u(t—0>)doydo, — A J k>(c.0)do (118)

olur.

Bu, bir tek kernel tarafindan Wiener polinom operatérlerinin nasil saglandiginin ilk 6rnegidir.
Ayrica, burada kesin bir teknik varsayimin olduguna dikkat edin yani ky(t;,t;) nin integrali
sonludur.

Ucgiincii derecedenWiener operatoriiniin genel formu,

Gilksu(t)] = | k3(6,.0,.03)u(t—cy)u(t—0,)u (t—03) do,dc,do;

—00

j
I

+

3.2(01.062)u (t—01)u (t—0,) d6,1do,

+ | ks (o (t—o1) dor + ks (119)

—00
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bigimindedir.
Burada {i¢iincii dereceden Wiener kernel k3(t,, ta, t3) simetriktir. Biitiin fo lar i¢in

oo

4 | k32(0.0)fo do + k3 ofo =0

—00

esitligini saglanmalidir. Bu kosulu saglamak i¢in,

00

k3o =— J k3,(0.0)do

olmalidir.
Birinci dereceden homojen operator i¢in diklik

o0 o0

0 =347 | k3(01.061.6+1)f1(0) doydo + 4 | ks 1(c+7)f,(0) do

—00 —00

esitligini saglar.
Bu kosulu saglamak i¢in,

0

ky1() ==34 | ki(c.0.t) do

—00

olmalidir.

Simdiye kadar {igiincii dereceden Wiener operatoriiniin,

G3[k3.ll (f)] = ]\’3(01.02.03)11 (T—Cl )ll (T—G:)I( (f—C:,) d01d03d03

+ | k35(0,.00)u(t—cy)u(t—0,) dc,do,

J
J
- 34 J k3(01.01.0)u(t—0)doydo — A4 J k;»(0c.0)do (120)

—00 —00

esitligi tizerinde duruldu.

Biitiin ikinci dereceden homojen operatorlere dik olan esitlik (120) kosulunu empoze etmek
bizi k3,2(t 1,t 2) = 0 se¢imine gotiiriir. Boylece (110) esitliginde verilen tigiincii dereceden
Wiener operatoril,

36



Gilks.u(t)] = J k3(01.02.03)u(t—01)u (t—02)u (t—03) d61dcrd o3

—34 J k3(01.01.0)u(t—0) doydo (121)

—00

olur.
Genel sonug asagidakiler gibi ifade edilebilir.

Teorem 5.1 n inci dereceden Wiener operatorti,

(21 (—D)nl4’

Su®] =Y

=0 2(m-2i)li! .
dty - dru(t—61) - - u(t—6,-2;) dcy - - - dG, —y; (122)

bigiminde ifade edilir.

Burada [n /2], n/2 den kiiciik ya da esit en biliylik sayiyr gostermektedir. Wiener kernel
kn(t 1, . . . ,tn) simetriktir. A; ger¢ek, duragan, sifir ortalamali ve Beyaz-Gaussian giirtiltii
girisinin siddetidir.

Ispat: n; ¢ift tamsayidir. n tek say1 icinde kanit benzerdir. Kareli parantezin karesi toplamanin
iist limit isaretinden silinebilir. Ayrica notasyonu kaldirarak Fj[u (t)] gelisi glizel homojen
operator degeri j ile birlikte simetrik kernel i¢in

E[G,[ky.u(t+0)]F;[u(t)]]=0. oddj<n

Bunun sebebi tiim terimler, gausian rastgele degisken modeli iiriiniiniin beklenen tek say1
degerini icermesi. Boylece bu kalanlar1 gdstermektedir.

n—2
2

E[G,[k,u(t+0)]F 5 [u(@)]]=0, j=0.1,...,

E[Gn[kn,u (t)]] =0, n> 0 i¢in bu sartlar indirgenmesini gosterir. Direkt hesaplama (85) te
bize sunu verir.

|
E[G,[k,.u()]]= Z © _(D'nid’ J k,(oy.. ... Oy 2Ty Ty e v s T,.7;)

=0 2'(n-20)li!
n=2i

dty - d, A" Y q do(0;—01) doy ** * dG, ;i
p JF

Her bir sabit i i¢in her bir ifadedeki (n —21)/2 impuls’lar1 tiimlestirilerek sonugtaki her bir etki
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Benzer sonuglar getirecektir sebebi wiener temeli simetrisidir. Bundan dolay1 (85) ten

(n—=2i)! _ (n=2i)!

(" —2i )'F)(H_-,l).v"‘: (:_’ _I-)!zn 2 21

1 teriminin i¢indeki sonucun toplamidir. Bu yilizden degiskenlerin siniflandirmasi su sekilde
yazabilirim

E[ n[ nal (T)]] . *')A 71 nz 41(_1)1 J. kn(01~01 """ Gn.f?‘on.ﬂ) dol e don.#’l
- (S -
Ama
e O ) M S Vo)
> (/,)_2(1)[-]0

i=0 (2 )i
=

Bundan dolay1 sonug asagidaki gibidir,
E[Gulky.u(D)]]=0, n=12---
J=1 i¢in su gdstermeli, n > 2 varsayilmalidir.

E[Gulky.u(t+1)]F2[u()]] =0

Burada F2[u (t)] 2. Dereceden operator keyfidir. Hesaplamalar tekrar yapilirsa,

E[G,[k,.u(t+0)]F,[u(®)]] = z 7(;(—:% ] k,(o;..... G,
i=0 . —00

dtl Y dTi f25}‘m(0-n—2i-1 <Oy -2i -2) E [” (¢ +T—Gl)

T u (f +t_0n—2i)“ (r_Gn—Ez"-l)“ (T_Gn—li‘l')] dGl e dGn—Zi—;‘

_"2 (=1)'nd! ]

k(... Gy 2Ty Tpe e v v s T;.7;) dty - - dT;
=0 (m=2)12" _, (01 n=2i e %) T i
I n=2i+2
fls,vm(cn—zi—l-Gn—zi—z)A(n_" 2”2y 1—,[\ 80(0;—0k) dGy * * * dGy 21 -2
ik
p

oncelikle her bir sabit i i¢in tiiretilmis terimleri ), icinde dikkate almak gerekir. Bu etkiyi
entegre etmek her bir terimde bize 6zdes bir sonu¢ vermektedir.
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(n=2i)! _ (n=2i)!
( n—2i )'l(n =2i)/2 ('_’ —)')!271 /2 2—1‘
’) 2

(n-21) /2 iirlinleri 6 0n2i den argliman giftlerine sahip olacaktir. Boylece bu terim sunu
verir.

n/?2 (—l)fn 14 =2 %
J ]\'n(o'l ..... Gy T1-Tge v v v T,-.Ti) d‘Cl T dTi

i=0 (% _I')!i!zn--'? —0

n=2i

fL\m (Cn-2i+1.0On-2i 1) z n 60(0_;_01») dGl ' dcn =2i+1

n yAln-’)" n/2
= o I S z TL J f_..)m(on—li—l'Gn—Zi—l)don—li-l
i=0 (ML _iyij1 o
( 5 i)li!
= o0

J kn(ol-cl ----- Gnn2:0nn) dcl o 'an;j

=0
Tekrar belirtmem gerekir ki asil bulgular heniiz kullanilmistir. Biitiin terimlerin
(formiillerin,esitliklerin) kiimesi (takim1) grup i¢indedir.

n=2i=+2

2 I 3(c;~0p)
rp -
sOyle ki 80(c, —21 +1—06, —2i +2) form’unun impuls’1 sdyle yazilabilir.

n=2i

60(0-)1 —2i=1 — Op-2i=2) Z }l_—}: 60(0_)‘ — Ok)
Av ’

Bu sonu¢ devamda kullanilabilir. Simdi (Burada), her sabit i i¢in takip eden
terimleri,(formiiller, esitlikler) dikkate almaliy1z Bu terimlerin hepsi j,k <n —2i i¢in form
00(cj—0, —21 +1)00(ck—0n —21 +2)’nin etkenlerini igerir. Bu ifade n<n/2 igin,

(n—2i+2)! 3 (n—2i)! _ (n—21)! (n—2i)
H=20+2  A(n=2i=2" noo. 22002 Ho o an2A—i
< \1H(n=2i +2)2 (=202 — )12
(—5 )2 (,) i)2 ( S i)!

i & —

1’nin her terimi i¢in bdyledir. Simetriden dolay1, impuls’larinn integralini aldiktan sonra tiim
ifadeler 6zdes(benzer) olacaktir. Bdylece, bu terimler,
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(e
-

n2=1 (1) n14 D22
i§0 ( ) no . .”(,"’ ) ;L]"n(01-01. T -GnQ-Gn,"Z)
(F—i)2n= »
flsym(ol-GQ) dol e dG,, n = 0
Ifadesinden
S n/2) n2 n/2—1)

E'O (-1 i | (n=2i)=n 2:0 (-1) i =0

Genelde dikey durumu dogrulamak i¢in j’nin daha genis degerleri i¢in bu tip hesaplamalari
gerektirecegi simdi daha agiktir.

Gu[kn,u (t)’yi hesaba katmak icin baz1 genel 6zellikler vardir. Bu derece n;n-2,....,1 (n tek)
veya 0 (n ¢ift) gibi homojen dereceleri iceren n.derece bir polinom operatdrlii. Fakat tiim bu
homojen terimler(esitlikler) derece-n, simetri, Wiener kernel kn(ti, . . . ,t,) ve A’nin girdi
yogunluk giiriiltiisii ile belirlenmistir(¢ercevelenmistir). Terimin(esitligin) dogru oldugu
(122)’deki i=0 esitligi okuyucuyu yanlis anlamaya sokmasin.

J‘ kn(ol ..... Gn)ll (T—Gl) 7| (f-on) dol Ce dC,,

—00

Sonug olarak, seziyi teknik olarak olusturmak icin Wiener Kernel’deki bilinen biitiinlesik
sartlar1 elde tutmanin gerekliligi agiktir.

Simdi (111)deki Wiener sunumunda tanimlanan bir sistem varsayalim. Boylece dikey
ozellikle ¢ikt1 oto korelasyonu

00

R,(v) =E[y(t+t)y ()] = X E[G,[ky.u(t+0)]G,[ky.u(1)]] (123)
n=0

Genel terimi hesaplamadan Once, ilk bir kacin1 ¢ozmek 6gretici olacaktir. n=0 igin agiktir ki;

2 2

E[Gylkg.u(t+v)]Golkq.u(t)] =E[ky] = kg (124)

n=1 i¢in hesaplama sadece biraz karisiktir ¢iinkii bu genel lineer durumdur.

o0

E[G[ky.u(t+0]G [ky.u(®]] = | k1(61)k(62)E [u(t +1-0, u (t-0,)] d6,do,

=4 | ki(c+Dk(0) do (125)

—00
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Tiim daha 6nce en azindan bir kez yapilmasina ragmen n=2 i¢in hesaplama biraz daha
onemlidir,

G:[k3.11g+t)]63[k3.zl (1]

- J k+(01.0,)k+(03.04)E [u (t +1—0; Ju (t +1—0> )u (t—03 )u (t—04)] do; - - - doy

—00
]

J‘ k5(0,.07)E [u(t +1—0y)u (t +17—0,)] do,d o, J k,(c.0)do

—00
00

-4 J k1(61.62)E [u(t—61)u (t—02)]dc1d 6> J k:(c.0)do

+ 42 [J k(0.0) do)? (126)

Hedeflerin artmasiyla, kolaylikla dogrulanmis sonuglar (veya sonucu kolaylikla dogrulayan)
hesaba katilmayarak terimlerin hesaba katilmaz.

[}
-

E[Galkr.u(t +0)]Ga[kau(D)]] =242 | ky(61+1.6:+0)k12(61.62) do1do,  (127)

—00

Genel sonug ¢ok bigimsel olarak sunulmus olacaktir.

Teorem 5.2 Wiener polinom operatérii Gn[kn,u (t)] i¢in (burada u(t) gercek, sabit (duragan),
sifir ortalamali, A’daki beyaz giiriiltii yogunluklu Gaussian)

2]

E(Gulky.u(t+1)]Gy[kyu ()] =n'4" J kp(O1+T..... Cn+0)k, (01, .. .. CG,)doy - -do,

(128)

Ispat : Yazimi basitlestirmek icin, Wiener operator derece-n’i asagida gosterilen genel
polinom formunda yazilabilir. Burada sadece n’nin Gn[kn,u (t)] ’dan olustugu derece ile ayn1
pariteye sahip homojen terimleri hatirlayin.

Gylk,u(t)]= Y glor..... Oi)u(t—01) " " u(t—0)doy - - - dog
=0

p(k)=p(n)

Daha sonra dikey 6zellik kullanilir (kullanilarak)
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E|[Gulky.u(t+1)]Gy[ k.1 (1)]]

—00

= E[J gn(o1. ..., Gpu(t+1—01) - - u(t +1-6,) doy - - - dG, Gulk,.u(t)]]

D J g.(01. ..., Cn)gk(T1, . . -, T) E[u(t +1-04)

k=0 —00
p(E)=p(n)

cru(t+1r—ou(t-1y)  u(t—t)]doy - -do,dty - dTy (129)

K™ beklenen deger (n+k)/2 impuls’larmin toplamini igerecektir ve her impuls’larin argiiman
(tt1—ol), ..., (ttt—on), (t —1l), ..., (t —tk).’dan secilen argiiman ¢iftlerinden farklilik
gosterecektir. Oncelikle K=n dzellikle bu beklenen terimlerin degerinin her tepkide o;
degiskenlerinin bir par¢asi oldugunu ve argiimaninda 1; degiskenlerinden biri oldugunu
dikkate alin.Umulan degerde n! gibi iiriinler olacaktir, burada n o; degiskeni ile ¢ift
olusturmasi i¢in 1; den, n-1 ikinci o; degiskeni ile ¢ift olusturmasi icin t; den se¢ilir ve boyle
devam eder. Boylece bu durumda iiriin siralanmamus ¢iftlere gecer, burada o; nin sirast
onemsizdir. gn(ty, . . . ,tn) simetrik oldugu siirece, impuls’lar biitiinlesik degilken sonug
terimleri benzer olacaktir. Boylece k = n teriminin katkisinin pay1 sdyle yazilabilir:

(=]

n'd" J gn(01+1, ..., G, +1)gn(01. . . .. G,)doc, - do,

—00

Elbette, orijinal gdsterimde bu tam olarak (128) dir, ve ispatin kalan kismi1, (129) daki diger
biitiin ifadelerin sifir oldugunu gosterilmesine baghdir. k=n oldugu durumdaki impulslarin
kalan sonuglari en az o; nin 2 farkli degerlerinden olusan kalanli bir impuls igerecektir. Bu
niteleme (129) daki biitiin k<n ifadesi i¢in gegerlidir.

ASO(Gn—l _Gn) E[” (z +T_Gl) T (f"t—Gn_g Ju(t—ty) - u (f—t;‘.)]

(129) daki her bir k degerleri i¢in terimler toplanir o, € gore integral alinirsa ve Gy[ky,u(t)] nin
ortoganel 6zellikleri ile

00

n
z 4 J gn(ol ----- G1-2.0y-1.0n -1 )gk(‘cl ----- Tk) E [“ (t +1-01)
k=0

p(k.)=p () o
cu(t =0, u(t—1) - u(t-1)] doy - - do,ydty - - dTy,

=4 E[J & (01 -, Gy 2:0y-1.0,_u (t +1-01) " " u(t +1-0,_3) dGy - " d0,

n
Y &t mut=ty) o u(t—y) dty - - d Y]
k=0
p(®)=p(n)
=4 E[ J &0 .-, 0n—2:0n-1:0,-1 )dO',, —qu(r —t_Gl)

T (t +T_Gn—2) dol o 'dO',,_g Gn[kw“ (f)]]
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Simdi (129) k sabiti igin, do( On3- On2) faktdriini iceren 6o( Gn.1- ©y) faktoriinii igermeyen
beklenen degerdeki her bir impuls ifadesini dikkate alicaz. &¢( On3- On2) formunu bir
faktoriinii iceren toplam ifade eksi . 0o( Gp-3- Gn-2) 00( On-1- Gn) formunun bir faktdrii yazilabilir.

Ady(0,_3-0, ) E[u(t+1-0y) - - u(t +1=G,, 4 )u (t +1—0,, _y )u (t +7—G,,) ‘
u(t=1y) - u(t=14)] — 4°84(6,-3—6,-2)80(0, -1—0,,) E [u (t +1-01)
U (P10 g u(t—1y) - u(t—1)]
k’nin her bir degeri i¢in (129) daki ifadeller toplanir ve impuls faktori integral digina alinirsa
Ady(0y3—6_2)E [u(t+1-61) * = u (t +1—6p _g u (t +1—6, _1 Ju (t +1—0,,)]

Bener sekilde geri kalan ifade

=]
n -

o
Z —A- J gn(Gl """ 01-4:0,-3:05-3:0y-1.05 1 )gir(‘tl """ Tk)
k=0 —00

p(E)=p(m)

Elu(t+1—01) - u(t+1-0,_y)u(t—7) - u(t—t)]do, - - - do, _4dt, - - d1;

R
=-A4- E[ .’ &n (01 """ 0n-4:07-3:0;,-3.0,-1.0, 1 u (t _T_Gl)

—00

e u(t+1-0p ) Gy * - dGy—g Gylkn.u (1)]]
=0

Ispatin devaminda ifade 8¢( On.5- On.q) faktoriinii igerirken So( Gn3- Gna) ya da So( Gu.i- Gn)
faktorlerini icermez.

kn(ti,..,tn) Wiener kernelleri ayirma i¢in kullanilan Metotlar 7. boliimde bilinmeyen sistemler
icin ana baglik olacaktir. Fakat diger bir yol bilinmeyen sitemlerin wiener kernelleri i¢in
wiener kernelleri ve volterra kernelleri arasindaki iliskiyi tanimlamaktir. Wiener ortogonal
ifadesi ve ayrica simetrik kernel volterra serileri tarfindan tanimlanmais bir sistem diigiiniin.

00
) -

y(t)= z J hns.\m(cl ----- On)u(t—=01) - - u(t—Cy) do, - do, (130)

n=0—0
Teorem 5.3

Simetrik volterra sitemi ve wiener ve dikey temsili tarafindan tanimlanan bir sitem farz
edelim. Daha sonra N’inci dereceden simetrik volterra asagidaki denklem verir.

= (Y24 T
h.‘\YSI'NI(rl ..... f:\') = z ( )’( — "]) J k;\"'z_}'(rl ..... f_,\;ﬂTl ..... TI.T,-.TJ') d‘Cl e dTJ'
' = Ny oo ’

(131)

Ispat 110°dan 120°ye kadar sistem icin Wiener tasarimi sudur.
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oo [n/2] (_l)mn 14™
yo=% ¥ — j k. (G, ..., Cpam-T1:Tpe v - s Tyr T )
n=0m=0 (n—=2m)m!12"™ _,

dty - dt, u(t—0y) - u(t—0,,)doy - dG, oy

Hngym (t1,...tvy i¢in bir aciklama bulunmak isteniyorsa N’inci dereceden tiim terimler
aciklanmalidir. Bu terimler kesinlikle n-2m=N birliktedirler oncelikle N’nin(gift,tam)
oldugunu farz edelim, eger n-2m=N ise n(gift,tam) oldugu agiktir ve n>N’dir. Bu nedenle
N’inci dereceden terimler(winner taniminda) asagidaki denklemde verilir.

00

O e
& N -2 " 2 2

n even

dTl .. 'dt n:.'\' “(r—ol) s -u(f—()';\r) dGI o 'dO-_V

Bunu diizenli bir forma sokarsak, toplam indeksi (n-N)/2 yerine j yazarsak formiil asagidaki
gibi olur.

5 V@2 i
= Ny

N’nin durumu i¢in bilinen bir degisiklikte wienner sunumunun ayni oldugudur.

Simetrik volterra kernel ifadesindeki wienner kernellerinin agiklanmasi messier tasktir. Takip
eden ispatta kullanilan bu yaklasim simetrik kerneller i¢in hnsym(ti,..,tn), hn-2)sym(ti,. tN,01,01),
hn2)sym(ti,. IN,G1,61,062,02)  dir. Wienner kernelleri bu agiklamalar1 kullanilarak kn(ti,..,tN)
isole edilebilir.

Teorem 5.4

Volterra sisteminde (130) ve wienner dikey sisteminde (110) (122) agiklanan bir sistem farz
edilin N’inci dereceden wienner kernel ifadesi,

© (N+27)147 T
]\'N(I'l ..... ty) = Z LV'J%)U J ]1(_.\;_3_‘,‘)3',"(?1‘ e s N, 01,01, .- - G_',‘.O'}') doy - 'de
JA=0 AN & —00

(132)

Ispat,uygunluk i¢in

_ (V+2))47

N.j
. N1

(131) soyle yazilabilir
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thym (f TR f_:\r) = k\ (fl ..... rN)

+ Z (—l)fa(Vj)J knwai(tys oo BT Ty e T,.T;) dty - d
J=1
k>1 igin,
h(\ —’k)s;m(tl ..... . 01.G1.. ... O'k.o'k) = kN-zk(tl‘ R £ 2% ¢ TP © S PRI O'k.o'k)
+ z (—l)‘a(V+7k])J k\,-vk-ﬂj(fl ..... IN.01.01. . ... Oi. Ok T1. Ty, v n s fj.tj) dty -+ dtj
J=1 —o0

Baz1 baslangi¢c moniplasyonlari ve degisken etiketleri kullanilirsa,

2]

J h(N—Ek)S\'m(rl' ce I TN T tk'tk) d'tl T di

—00

= 2 ( 1)'_ka (7V+7k I—k) J ]\\_‘a (f] W INTL T T,-.t,-) dtl e d‘t,-
=k

(132) nin sag yan1 yazilirsa tekrar

0]
o0 -

hngm(t1.. ... ty) + kz=:1 a(N.k)_J00 hov-2m)sym(t1s - -, T Ty, e T T) dTy - - d T
=ky(ty.. ... ty) + é (-1Ya (z\’.j)_]j0 b as(tye ... INST1aTls e e - s T,1) dTy c dT
+ 2 a(N.k) Z (-1Y*a (N +2k.i-k) J SRS (ST 2 U 1.7,) dt - - dT;
k=1 i =k —o0
Formun genel terimi
sz +24(t1 IV T1 Ty e e s T4.Tg) dTy dt,

g>1 ile birlikte esitlik

(-1)%a(N.q) + % (=) *q (N.k)a (N +2k.q—k)
k=1

Basit 6zdeslikler kullanildiginda esitlik 0 olur.Bdylece ispat tamamlanir.
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Ornek 5.14

3.dereceden polinom sistemleri sekil 5.2 de gosterilmektedir.

U » ot 6_1(0 ;{ 2 ) ¥

g0

Sekil 5.2 3.dereceden polinom sistemi

Wienner kernelleri simetrik volterra kernellerinden kolayca hesaplanilabilir.

hy(t)=e™d_4(1)
h 25}'m(r1‘r2) =0
higm(tiuta.ts) =e e e 8y (11)8.1(12)81(t3)
(132) kullanilarak, 2 sifirsiz wienner kernel ifadesi
34, _
ki(r) =(1+=-)e704(1)

ks(tyty.ts)=e e e 78 y(t1)8 1 (12)0 (t3)

olur.
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BOLUM 6

(W.J.RUGH)

DiISCRETE-TIiME SYSTEMS
SAYISAL (AYRIK) SISTEMLER

Devamli zamanli sistemler igin tartisilan Dogrusal olmayan sistem teorilerinin ¢ogu
zaman bolmeli sistemler i¢in gelistirilebilir. Farkliliklar vardir tabii ama bu farkliliklar teknik
detaylarda veya sonuclarin yorumundadir. Dogrusal durumlarda Tek zamanli ve zaman
bdlmeli teoriler birbirine benzerdir. Bu bolimde zaman bolmeli dogrusal olmayan sistemleler
icin volterra serileri metotlarin1 anlatacagim. Basitlik i¢in sadece kararli sistemler burada
incelenecek. Zaman bolmeli ve tek zamanli sistem teorilerinin arasindaki farka 6zellikle
dikkat edilecektir. Ve sonuglarin raporlarinin ¢ogu okuyucuya birakilacaktir. Ek olarak 2 yeni
sistem simnifi anlatilacaktir. Bunlar ¢ift dogrusal girig-¢ikis sistemleri ve 2 boyutlu dogrusal
sistemler. Coklu zamanli giris-¢ikis sistemlerinin ve ¢ok boyutlu dogrusal sistemlerin genel
smiflar1 kendi haklari ile ilgilenir. Burada bu ikisinin en basit halleri heterojen sistemlerin
benzer siiflarina sunum ve analiz metotlarinin benzerligi islenmistir.

6.1 Zaman bolgesinde Giris-Cikis sunumlari:

Asagidaki formiilde gosterilen Zaman bolmeli bir sistem diisiiniin

y(k) = iih (i), Julk =i, )os(k =i ), k=012,...

i=0 i,=0

Giris sinyali u(k) ¢ikis sinyali y(k) k<0 icin 0 olan gercek dizilerdir. Cekirdek (kernel)
h(i,...,i, )kadar gergektir ve herhangi bir in degeri negatif ise 0 ‘a esittir. 1 numaral
formiilde belirtilen sistemin kararli nedensel ve n dereceli homojen olup olmadigini
belirlemek basit bir islemdir. Toplamin iist limiti en az k olabilir fakat sonsuz iist limiti formiil
olarak basitlestirilebilir. Herhangi bir & degeri i¢in 1 numarali formiildeki y(k) degeri belirli
bir toplami gosterir. Teknik bir hipotez bildirmeye gerek yoktur. Baska bir degisle
integrallenebilirligi ve devamlilig1 tek zamanl sistemde 1 nolu formiildeki gibi diisliniilmez.
Ayn1 zamanda direk iletim terimleri 1 nolu formiilde ayrilmis olarak gosterilmistir ve isaretsel
cekirdegi (kernel) diisiinmeye gerek yoktur. Ornegin eger formiil

W)= Li=.=i=0.
e 0, aksitakdirde
Yukaridaki sitem asagidaki gibi yazilabilir

ylk)=u"(k), k=0,12,..
Benzer permitasyon elemanlarinin toplami gosterir ki 1 nolu formiildeki ¢ekirdek
simetrik ¢ekirdek ile degistirilebilir asagidaki gibi



N , _
hsym(ll""’lz):_'Zh(lﬂ'(l)"""lﬂ(n))
I’l.,r(_)

Genelligi kaybolmadan ( n! Permitasyonu i¢in toplami geri ¢agirir) simetrik ¢ekirdek
sunumundan iiggen ¢ekirdek bulunabilir. Bununla birlikte biraz dikkat etmek gerekir ¢iinkii
cekirdegin belirli argiimentlerin de toplama higbir etkisi yoktur tek zamanli durumlarda
isaretsel olmayan ¢ekirdegin integralinde yapildig: gibi. Bu ticgensel ¢ekirdegin degerleri
ticgen seklindeki sinir noktalarinda uygun olarak artirilmalidir. Bu artirimi yapmanin bir yolu
asagidaki notasyonu kullanmak

By iy ) = - iy srrsix )0 (G =l iy = by, —1,)

Cok degiskenli adim fonksiyonu asagidaki gibi verildiginde zaman.

0, eger i, <0
Li=..=i,=0
S.Gi~i )= w  [i=e=i=0. @)
—— 3
ml..m! i, =.=i,,,=0
nl,i..,i,_, >0

N=2 oldugu zaman sonug simetrik ¢ekirdekten liggen ¢ekirdege 3 nolu formiildeki gibi
gittigi kolaylikla belirlenir ve tig¢gensel cekirdekten simetrik cekirdege 2 nolu formiil
kullanilarak gecilebilir. Daha yiiksek dereceli durum daha zordur ama yapilabiliyor. Diizeltme
isaretsiz notasyonlar daha degisik adim fonksiyonlarinda asagidaki gibi belirtilebilir.

I, k=0,1.2,..

S‘I(k):{o k<0

Uciincii 6zel form diizenli gekirdek formudur. Formiil 5 deki {icgensel esitliginden
baslayarak

y(k) = i...ihm.(il,...,in ulk =i, )..u(k —i,) (5)

i=0  i,=0

Bagimsiz degiskenlerin iizerinde yapilan kiigiik bir degisiklik ile

y(k) = ioiohg Gy yernsd, Julle =i, —...~1) ©)

ulk—i, —..—i )ou(k—i,)



Breg (i sevesiiy ) = hyy (i a0y ot iy s,

. . . 2 )
:hsym(ll+°"+ln912+'“+ln9 )5 (ll’ ’"1)

Formiil 7 nin gegerli oldugu kosullarda formiil 6 daki genel toplam esitligi elde edilir.

Formiil 5 ve formiil 6 daki genel toplam esitliklerinin iist limitlerinin sonsuza kadar
degil de sonlu bir degerle de bitirilebilecegi goriilmektedir. Fakat bu formiili daha da
karmasgik hale getirmektedir ve bundan dolay1 da tek zamanl sathalarda oldugu gibi sonsuz
iist limit kullanilir.

Sadece sabit sistemlerin sonlu degerlerle bitirildigi diisiiniildiigiinde

y(k) = 22 hk,iyye.ni Ju(i, (i) (8)

deki genel toplam esitligi ortaya ¢ikacaktir. Tek zamanlh satha ve bir ¢ekirdek h(k,i ,...,7 )
sabitiyle eger

h0,i, —k,....i, —k)=h(k,i,,....i,) 9)

ve bu iliskinin gecerli olmast durumunda
gt )= (0,0, ...~ (10)

da ki esitligin yerine konmasi ile

k

y(k) = 2 D8l =ik =i, Juiy).ui,) (11)

7=0 i,=0
deki genel toplam esitligi elde edilecektir.

Bu esitlik formiil 8 deki genel toplam esitligi ile aynidir. Clinkii;

glk—=iok—i )=h0,i—k,,...i, —k)=hlk,i,,....i ) (12)
Degiskenler iizerinde basit bir degisiklik yaparak formiil 11 yeniden yazarsak

y(k) = 2 Zgjl, g Julk = ji )k —j,) (13)

=0 j,=
deki genel toplam esitligi elde edilir. Bu formiil 1 deki formiille aynidir.

Elimizdeki bu ana esitliklere bagli olarak, polinom ve volterra sistemlerinin
tanimlamas1 homojen terimlerin sonlu ve sonsuz toplamlarindan baska bir sey degildir.
Elbette volterra sistemleri i¢in koveryans konusu dnem arz etmektedir, fakat tek zamanh
safhadaki koveryans olan temel yaklasim bu sorunu dogrudan halletmektedir. Zaman bdlmeli
homojen, polinom ya da volterra sistemlerinin karsilikli baglantilari, gelismelerin boliim 1.4
den kolayca uyarlanabilmesinden dolay1 burada ele alinmayacaktir.



6.2 Doniisiim alanindaki Girdi-Cikt1 Formiilasyonlar:

Sifirdan baslayip negatif yonde olan n degiskenli f =(i,,....,i,) tek tarafli fonksiyonun z

doniisiimii formiil 14 de tanimlanmistir
F(le ) Z[f(lv -l )]
= sz(ll ol )27 2
i=0  i,=0

(14)

Bu koveryans sartlarmin dahil edilmesi zorunlu olan karigik degiskenlerin z,,....,z, pozitif

olmayan bir kuvvet serileri olarak goriilebilir. Ancak, burada diisiiniilecek fonksiyonlar i¢in
(Zaman bolmeli dogrusal sistem teorisinde diigiiniilen tipik fonksiyonlar i¢in oldugu gibi)
kovaryans bolgesi daima mevcuttur. Bu nedenle de konuyu dikkatle inceleyecegiz. Aslinda
formiil 14, koveryansin olmamasi durumunda n bilinmeyenlerinin cebirsel bir objesi (bi¢imsel
serisi) gibi goriinmektedir. Boyleyken, beklide daha teferruatli olan bakis acisi ¢ogu sonuglari
tartigilacak model kurmak i¢in kullanilabilir. Biz burada daha klasik yoruma bagl kalacagiz.

Ornek 6.1 : Ornek 2.1 i hatirlayarak X ’nin sabit oldugu
fliiy)=i, =i, A", i,i, 20

Fonksiyonu nu diisiiniin bu fonksiyonun z doniisiimii su sekildedir.

(lez) 22( —i A k2

i=01i,=0
— iy _ iy =0y
—22121 " 22”1 7"z,
=0 i,=0 =0 i,=0

T - |_ + Tl —i i
ONETE DTN RN WaE
;=0 i,=0 ;=0 i,=0

her bir sonsuz seriyi toplarsak (yada tek degiskenli z doniistimii ele alinarak)

Z) ) Z) )
(z,-1D z, -1 B (z, -1z, -
_ (1-Azz,

(2, =1)(z, = )(z, = )

F(Zl,Zz):

haline gelir.

Formiil 14 deki tanima dikkatli bir bakis acist ve 6rnek 6.1 deki hesaplamalar z doniistimiiniin
birkag 0Ozelligini ortaya c¢ikarmaktadir. Bu 0Ozellikler Laplace doniislimiiniin tasidigi
ozelliklere dogal olarak ¢ok benzemekte olup asagida sunulmustur. Ve bu 6zelliklerin genel
kanitlar1 kolaydir. Tim fonksiyonlar tek tarafli olarak wvarsayillmis ve biylik harfli
tanimlamalar z donilisiimii olarak ele alinmistir.



Teorem 6.1 Z doniisii dogrusaldir :

ZLf (st )+ 8lironi, )| = F (21002, )+ Gz,.002,)

(15)
Zlof (iy,..oi, )= OF (z,...,2, )

Teorem 6.2 Eger f =(i,,....,i ) iki ¢arpanin ¢arpan1 olarak

JAUP LY (AR A1 (AP (16)
Yazilabilirse o zaman

F(zl,..,zn)zH(zl,..,zk)G(ZkH,..,zn) (17)
Olur.
Teorem 6.3 Eger f =(i,,....,i ) tek degiskenin kat1 olarak

Sisesiy)= D 00 = fovest, = ) (18)

=0

Verilirse o zaman

F(z,.,z,)=H(z,,.,2,)G(z,,,z,) (19)

Olur.

Teorem 6.4 Eger f =(i,,....,i,) n kath (iislii) olarak

f(il,..,in)zi....iy(jl,...,jn)g( — Jisesd, = ] ) (20)

Verilirse o zaman
F(zl,..,zn)zH(Zl,..,zn)G(zl,..,Zn) (21)
Olur.

Teorem 6.5 Eger i ,....,i, pozitif tam sayilar ise

Z G, 1 i, =1 )=z 2" Flz,,..,2,) (22)

Z doniigiimiiniin tersi i¢in temel formiil ¢ok degiskenli bir tam say1 seklindedir.



1 i
f(l'l,..,in):W]...J.F(Zl,..,zn )zi .z dz ;..dz, (23)

Her 7 nin Zj kanisik diizlemindeki uygun bir ¢evre ¢izgisi olmasi durumunda agik¢a goriilen
nedenlerle bu formiil kullanilmasi zor bir formiildiir. Bir alternatif yaklasim ise f = (i,....,i )

fonksiyonun degeri olan z,...,z, nin negatif kuvvetindeki F =(z,....,z,) fonksiyonun
genisleme katsayilarinin elde edilmesidir. Eger F' =(z,,....,z,) rasyonel bir fonksiyon ise bu

genisleme katsayilar1 polinom payimnin polinom paydasina boliinmesi ile bulunur. Fakat bu
islem i¢in biraz dikkatli olmak gerekir cilinkii her rasyonel fonksiyon bir z doniisiim
benzemez. Bu fark ise bir z doniisiimiiniin negatif kuvvet serilerine karsilik gelme
zorunlulugundan olusmaktadir. Thtiya¢ duyulan rasyonel fonksiyonun uygun ya da kesinlikle
uygun olmasi bir ¢6zliim degildir.

Ornek 6.2 Rasyonel fonksiyon

1

F(Zlazz): - 42
1 T2,

Bir z doniisiim degil ¢iinkli bdlme sonucu

1 -1 -1 3.2
=z, —z, .Z,tz 7z, —..
z, tz,
Yada
1 -1 -2 2_-3
=z, —z,.z2, tz;z, —
z, t+z,

Ortaya cikar ve her ikisi de negatif kuvvet serisi seklinde yazilamamaktadir. Diger yonden

Z,.Z,

F(Zl,22)=

z,.2, —1
Bir z doniisiimiidiir, ¢iinkii negatif kuvvet serisi seklindedir.
Flz,z,)=1+z"2" +z7%z" +....
Ilgili fonksiyon su sekilde yazilabilir.

L, i =i, =0,12,..
0, aksitakdirde

S (il N ) = {
Tak zamanli sathada kullanilan Laplace doniisii gibi z doniisiimii de »n dereceli homojen
sistemde ayni sekilde kullanilabilir. Bir n dereceli homojen zaman bolmeli sistem i¢in
doniistim fonksiyonu sistem ¢ekirdeginin bir z doniigiimii olarak tanimlanir. Ornegin simetrik
doniisiim fonksiyonu



Hsym (Zl’ 2 ) Zlhsym (ll’ ol n)J (24)
Ne yazik ki her zaman beklenilmesi gereken bir ihtimalle U(z), Y(z) ve H , =(z,,....,Z,)

terimlerinin form 1 deki girdi-¢ikt1 iliskilerini dogruda dogruya gostermek imkansiz
goriinmektedir. Genel yontem olarak form1 su esitlikler seklinde yazilmalidir.

Vollerke,) =Y i i, il =i, ) ek, =i,

i=0 (25)

v, (z1 yees 2, ) = hsym (zl yeesZ,, )u(zl )...u(zn ) (26)

Y /2Z)ysz/
Y(z)= ! J.J. (212 22 Z"_la’zl...a’z,k1 (27)

De ki integrali iceren bir degiskenler iliskisi icerisidedir.
Ucgensel transfer fonksiyonuna gore form 1 in gdsterimi de ayni diizende olacaktr.

Diizenli donilisiim fonksiyon durumunda ise formiil 25 ve formiil 26 dogrudan
uygulanamaz. Ancak girdi isaretlerinin uygun olarak sinirlanmas ile daha agik ve kesin bir
formiil tiiretilebilir. Bu sonu¢ teorem 2.10 ile ayni olmakla birlikte diizenli doniisiim
fonksiyonunun formu {iizerinde hipoteze gerek duymayan ve tek zaman sathalidan oldukga

farkli olan bir ispat ile konuyu detayli olarak ele alacagiz.
[lk olarak form 6 da ki girdi-¢ikt1 ifadesinin z déniisiimii i¢in temel bir ifade kuracagiz.

Zhreg(zl, Wi )2 i = 012, (30)

7=0

da ki gibi tanimlanmas1 durumunda

H, o (2)0r2,) = Z|h oy Gy e (28)

deki diizenli transfer fonksiyonu

Hreg (z1 - ) = z ZHA el (Zn )Zl_il ...Z;f’l*‘ (29)

da ki esitlik seklinde yazilir.



Yardimer Onerme 6.1: » homojen dereceli bir ¢iktinin z doniisiim formuna gére zaman
aralikl sistem

w(z) = i i H, , (z) iu(k—i1 —=i )

i=0  i,,=0 k=ij+.+i, (3 1)

u(k—i, —...—i,_).u(k—i _u(k)z™
De ki diizende yazilabilir.

Ispat: y(k) nin z doniisiimii form 6 daki gibi aldigimizda

y(z) = iiihg Gy Yl =i .1,

k=0i=0 i=n

u(k—i,—...—i ).u(k—i)u(k—i)z™"

Genel toplam esitliginde k yerine j =k —i indeksini koydugumuzda

W2=Y..3 {ihwg i) )}

i=0 i, ,=0| =0

i‘u(j—i1 ——i (=i, — =i (=i, _u(j)z"’

j:_in

Simdi u(k) = 0 ve k <0 varsayimi ile ve formiil 30 ile sonu¢ aydinliga kavusur.

Bu on kuram girdi-¢ikt1 hesaplamalarinin performans: i¢in kullanilan degisken
metotlarin iligkisine bir alternatif saglar. Daha da iyisi y(z) i¢in daha net kesin bir ifade hazir
ve nazir bir girdi takimi ile elde edilmis olur.

Teorem 6.6 : n homojen dereceli zaman bdlmeli sistemin H,,, =(z,....,z,) seklinde diizenli

doniisiim fonksiyonu olarak tanimlandigini varsayin ve girdinin de

m

U=y a_,z[ A #0, j=1..m (32)
=1

de verildigini, o zaman

y(z)= i iaﬁ o

J1=0 Jn1=0

Z VA z VA
H ) 9°°°o 5 4
reg /1 —;l,. ﬂjz—/i, z ( )

1 In-1 In-1 jnfl jl jnfl




Ispat: formiil 32 nin z doniisiimii agik¢a girdi isaretini ifade eder.

U(z)=ia A k=0L,...
j:

Jo 2

Formiil 31 de yerine koyarsak

y(z)zg.g ey {zﬂ}

= 22 a; ..a; 2...Hl.l il (2)
A=0

W=l gyl
m oo
kmiy =iy Ak—iy—miy A=k
2, 24 4 A
Jj=1 k=i +..4i,_,
Simdi k dizisini yerine » =k —i, —...—i,_, koyarsak

_l'l

¥(z)= 2 Za Y Y H, @ 7 4

H=0 i, ;=0
—i —r
z z
o | 7 2“ S
12 - jn—l jn—l = r=0 —
= a z -
reg PIEED) ’
il:l l"*1=1 ijz ijﬂ*l ljnfl ljl ijn 1

Elde edilir.

Teorem 6.6 genel olarak genis bir durumu yeterli bir derecede kapsamaktadir ve
goriiniiste dagmik olmasma ragmen hesaplama sistemi olduk¢a dogrudur. Ornegin eger
H,, =(z,...,z,) uygun bir rasyonel ise 0 zaman Y(z) uygun bir rasyonel olacaktir ve kismi

kesir geniglemesi Y (k) y1 hesaplamak i¢in kullanilabilecektir.

Doniisiim uygulamalarini bitirmeden once degisik transfer fonksiyonlari arsindaki
birkag¢ basit iligkiyi gorecegiz. Form 7 yi kullanarak ve degiskenlerde basit bir degisiklik
yaparak



Hreg ZyseesZ 2 ZHm ll+ +l lz+ +l ) —i,,

=0 i,=0

- - ~Ja ~Jn
Z sz Ji+- +]n) ( [ Zn ]
Z

l: ]n

Hm.(zl,z2 [z, +..+z, /Zn—l)

Elde ederiz. Bu iliski kolayca tersine gevrilerek
H,(z,.z2,)= H,, (2,,2,2,p00r2,.2,))

Elde edilir. Simetrik doniistim fonksiyonunu diisiiniirsek o zaman daha da karisacak form 2 ile
dolayl1 olarak anlatilan temel iliski

H,, (Z1 youZ, ) = l sz' (Z”m sy )

O zaman formil 35 bize

1 ( )
Hsym (Zl yerZ ) = - ZH,eg Zry 2 By Py s Fioees By
n- ﬂ-()

Verir

H,ya da H,  nin H  then hesaplanmasi i¢in en iyi yolun simetrik bir g¢ekirdegin

reg
bulunmas ile baslanacagl goriilmektedir. Diizenli yada tiggensel ¢ekirdek elde etmek igin
form 3 ve form 7 yi kullan ve daha sonra z doniisiimiinii hesapla. Bu hos olmasa da yapilacak
en iyi seydir. Fakat basit durumlar da kullanilabilecek bazi numaralar vardir.

Ornek 6.3 n=2 durumunda

1 1
Hsym(Zl’Zn)=5H (ZI’ZIZZ)+5Hreg(ZZ’ZIZ2)

reg

— 11 iy
__ZZhreg 11912)21 Zl’Zz)

11—0 =

+= Zzhreg 1’12k2l1 Z[azz) &

11 =01i,=0

Boylece, degiskenlerin basit bir degisimi sunu verir

10



i
2Hsym 21722/21 Zzhre‘g 1,12)21 Zz

i=01i,=

+ Z Z hreg (Zl H i2 )ZZ_il Z2_([1+[2)

i1=0 i,=0

Acikea, sag taraftaki ilk terim H,, =(z,,z,) olurken ikinci terim z, ’in sadece pozitif giigleri
ile birlikte ilave olarak 2H , =(z,,z,/z) deki her z, teriminin % sini igermektedir.
Boylece, H,,, =(z,,2,), 2H,, =(z,,z,/z)’in bolinmesi z, ’in tim pozitif gli¢lerini igeren

tiim terimlerin silinmesi ve her z teriminin % ile ¢agrilmasi ile elde edilebilir. Ozel bir
durumda ;

z,\z
__“1%2
Hsym(Zlﬂzn)_
z,z, —1

Degiskenlerin degistirilmesi ve bdlme sonucu

2z,

2H\ym (ZI’ZZ /Zl): = 2(1+ZZ_1 +ZZ_2 +._..)

Z;
Daha sonra, z1 terimlerinden olusan tiim seriler

Hreg(zl, =14z, +z,7 +... %2

z,—1
Elde edilir.
6.3 Durum Ejsitliklerinden Girdi/Cikt1 Onermelerinin Elde Edilmesi:

3. Boliimde anlatilan tiim metotlar oldukga kiigiik degiskenle zaman aralikli safthaya
uyarlanabilir. Bunun i¢in birka¢ sayfa doldurmaktan ziyade varyasyonel esitlik metodunun ve
Carleman dogrusallastirma metodunun akillica bir kombinasyonuna konsantre olacagiz ve
baslangictaki durum esitliklerinin genel bir takimini diisiinecegiz. Daha 6nce bahsedildigi
gibi zaman bdlmeli sathanin giizel bir 6zelligi itici ¢ekirdekler sorunun ortaya ¢ikmamasidir.
Diger bir ifadeyle, zaman aralikli girdi/¢ikti Onermeleri dogrusal doniisiim terimlerini
icermektedir.

Ancak bu terimlerin g¢ekirdekleri i¢in olan genel formlari epeyce zorlastirdigini
goreceksiniz. Durum esitlikleri

x(k+1) = flx(k),uk)], k=0,

34
y(k) = hlx(k),u(k)] G4

de x(k) nin n, x 1 ve u(k) ve y(k) nin sabit olmas1 durumunda yapilacak degisikliklerle daha
uygun hale gelecektir. Baslangic durumunda x(0)=0, f(0,0) = 0 ve h(0,0) = 0 oldugu kabul
edilmistir. Bu basitlik i¢in yapilmistir, eger x(0)=x0 =0 ve f(x,)=x, oldugunda x, bir
denge durumudur ve sifir baslangic durum formiiliinii elde etmek icin basit bir degisken
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degisimi kullanilabilir. (Eger x, denge durumu degilse o zaman burada bahsedilen sz

konusu problemin yeni bir bigime sokulmasi i¢in daha zor hesaplamalara ihtiyag¢ vardir.)
Formiil 34 deki son varsayim, f(x,u) ve h(x,u) fonksiyonlari, istenilen derecede

polinomal girdi/cikt1 Onermesini hesaplamay1 saglayan yeterli derecedeki x=0, wu=0

durumundaki Taylor formiilii kullanarak gosterilebilir. O zaman verilen durum esitligi yerine

N N
x(k+1) =33 Fx (k' (k), Fyy =0
i=0 j=0

N N

(k)= ZHg;x(i)(k)”j(k)a Hy, =0

(35)

Gosterilen durum esitligi  bir yaklasimla gegirilebilir. Standart Kronecker iiretim
notasyonunun kullanildig1 durumda x” (0) = 0, i=1....N dir. Tek zamanl safhada oldugu gibi
onemli olan husus formiil 35 de uyarlanan N dereceli ¢ekirdekler ile formiil 34 de uyarlanan
N dereceli ¢ekirdekler ayni olacaktir. ( 3.Bdliimde formiil 35 deki toplamlarin iist limitlerin
cok ciddiye alinmasinin gerekli olmadigi deneyimini kazanmistik. Formiil 35 de N dereceli
polinom 6nerimi ne katkida bulunmayan pek ¢ok terim vardir.)

Bir sonraki islem formiil 53 deki x(k) igin fark esitligi saglayacak x* (k), x® (k) ve
bu sekilde devam eden fark esitlikleri gelistirmek olacaktir. Esitlik formu tek zamanh
sathadan farkli olmasina karsin, ¢iinkii x“" (k+1) anlamma gelen x‘”(k+1) ifadesini iceren

iiretim kural1 yoktur. Bu prensipte basit bir meseledir 6rnegin x® (k) i¢in farkli bir esitlik su
sekildedir.

x*(k+1) = x(k+1)® x(k +1)

N N ' ' N N ' ' (36)
= XY Ex O’ (k) | @] X 3 Fyx (ke (k)
=0 j=0 =0 j=0
Net toplam1 kullanarak bu bir fark esitlik formiiliine doniisecektir.

N| N ' ‘

kD=3 Y F, ®F, kW(kw’ (k) (37)
i,j20| k+q=i

m+n=j

@ _

Baslangi¢ durumunda x 0 olmas1 durumunda bu esitlik formiil 35 deki x(k) icin verilen

fark esitligi ile aym formdadir ve agikga x (k),x¥ (k),... esitlikleri de ayn1 olacaktir. Simdi
kiime

_x(l)(k) ]

xP(ky=| (38)

_x(N)(k)_

12



Bu state-affine (durum affinesi) olarak adlandirilan N dereceli esitlik yaklagimina kilavuzluk
eder.

x®(k+1)= §A1x®(k)ui(k) +iblui(k), x®(0)=0
" (39)
p(6) =Y ex® (k' (6) +Y. ' (k)

Toplamdaki st limitler N den kiiglik derecenin cekirdeklerini hesaplamaya ihtiyag
duyulan terimleri igerecek sekilde secildigi durumda elbette bu durum esitliginin boyutu
oldukca yliksektir. Fakat genel bir tiiretme olarak terimlerin istenenden fazla olmasi sorununa
kars1 bu kiiclik bir problemdir. Cift dogrusal zaman bolmeli esitligin istenilen basit bir olay
oldugunu hatirlaym.

Formiil 39 daki state-affine fark esitligini ¢c6zmek icin varyasyonal esitlik metodunu
kullanacagiz ve simdiki fazla Kronecker semboliinii iptal edecegiz. islem ou(k)girdi isaretini

varsaymakta, o istege bagli bir ger¢ek sayidir ve formun ¢éziimii
x(k) = ox, (k) + &’ x, (k) + o’ x, (k) + ... (40)

Durum esitliginde yerine koyarak ve o nin kuvvetleri gibi katsayilar1 esitlemek varyasyonal
esitlik olan formiil

x, (k+1) =4 x,(k)+bu(k), x,(0)=0

x, (k+1)= A x, (k) + Ax, (ku(k) +b,u’(k), x,(0)=0
X, (k+1)= A x,(k)+ A x,(k)u(k)+ A4,x, (Fu’ (k) + b3u3 (k), x;(0)=0

(41)
N-1 A
xy (k)= 3 A, (o' (k) +b,u” (k), x,(0)=0
i=0
Bu esitlikler kolayca ¢oziilebilir ve ¢oztimii tekrar yazarsak (k>0 i¢in)
k-1 )
x (k)= Y A b u(i)
i=0
< k—1-i 2
%00 = 3 A4 A, (i) + b’ ()]
i=0
k-1
x (k)= 3 A [y, () + Ay, G ) + b ()] (42)

xy (k)= ﬁ Ay {i Axy_ G’ (D) +byu®™ (i)}
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Bu tekrarlanan setlerin ¢oziimii varyasyon esitligi daha karmagsik bir ¢oziim formiili
verir. 1k ii¢ ifade asagida siralanmustir.

k-1
x, (k)= A3 " bu(i)
i=0

k=1 i-1

x, (k)= Z ZAg_l_iAl Aél_l_iz byu(i)u(i,)+ Ag_l_ibzuz ()

i=0 i,=0
k-1 i1 ip—1

X (K)=D 2 A5 A AT A A7 b iy i) 43)

i=0 i,=0 ;=0
+A(];_l_i 4, Aé‘ o byu(i, )u ? (i) + Ag_l_i 4, A(;I o byu ? (@)u(iy)
+A7 b’ (i)
Gerek bir sonuca varmadan 6nce formiil 43 deki ilk iki ¢oziim ifadesini diizenli bir forma

dontistirmek uygun olacaktir. Elbette x, (k) i¢in ¢ekirdek vektori diizenli bir formda
tanimlamak kolaydir.

k k
x, (k) = Zl,Aél_lbiu(k —1) :Zg(il yu(k —1i;) (44)
i= ;=0
G(0)=0 oldugunu gostermek i¢in bir basamak fonksiyonu kullanarak yazarsak
g(i))=A4;"'b,6_(, -1) (45)
Simdi x, (k) ti¢gensel formda yazilabilir, vektor gekirdek ifadesi
AT A AT k>0 >0, >0
w,, (k,iy,iy) =3 Ay by, k>i =i, 20

0, aksi takdirde

oldugu durumda

x, (k) = i i W, (ki 1 Ju (i Ju(iy)

i=0 i,=0
ya da birim adim ve birim isaret fonksiyonlarini kullanarak

Wy (K,1),0,) = Ag_l_iAlAél_l_izb§—1 (k—-1- i1)§-1 (i =1-14,)

e : N (46)
= Ag 7,0 (k=1-0))6,( —1), i,i, 20
Sabitligi kontrol etmek i¢in
w,.(0,i, —k,i, —k)=w, (k,i,,i,) (47)

Boylece sabit formdaki bir tiggensel ¢ekirdek
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g, (0,1,) = w,,; (0,1, ,—1,)
= Ay A 45706, (G~ DI Gy~ 1) (48)
= +Aé_1b25—1 (il _1)50 (iz _il)a i =i,20

I1k iicgensel tanim kiimesi iizerinde iicgensel ¢ekirdek

2,00, = A7 A AT b6 (i, — DS, (i, —1—1,)

b1 : . (49)
+ A7 70,0, (i, =18, (i) —1,)
Boylece diizenli ¢ekirdek
gl‘eg(ilﬂiz):gtri(l‘l+i2’i2) (50)
= A(;r] AlAélilblé‘A (iz - 1)5—1 (i1 - 1) + A(;rlbzg—l (iz - 1)50 (il)
Ile i;,1, 2 0igin verilir.
Formiil 39 daki ¢ikt1 esitligi gz oniine alinarak y, (k) min 2. dereceden ¢iktist
2 (k) = cox, (k) + eyxy (Kyu(k) + d o’ (k)
k. k
= chogreg (i, 0k =1, — i) Ju(k —1,)
i,=0 i, =0
< . . ) (51)
+ 2 8 ulk —i)u(k) +dyu” (k)
i\ =0
k. k
= hreg (G, 0y u(k =iy — 1, Ju(k —1,)
i,=0 i, =0
Formiil 45 ve 50 den
d,,i,=i,=0
cA¢"'by, i, >0,i,=0
B (i) = 1o Yo 4 2 (52)

c,A27'b,, i, =0,i, >0

i1 i1 -
oAy Al Agby, 0,1, >0

Genel olarak bu hesaplamay1 yapmak i¢in ¢ok karisik bir toplama ve indeks islemleri
vardir. Bu yiizden detaylara inmeden basitce sonuglart gorecegiz formiil 39 daki durum
esitliginin dereceli diizenli ¢ekirdeginin state-affine uygun olarak esitligi su sekildedir.
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By G ) =1, (53)

. . . ) i 1,>0
e AT A AT A T e
q r J .
diger durumlarda =0

i1 iyl i1 . .
coAg A Ay A Ay by, g, i, >0

Her terim igin formiilde toplanan degerlerin n oldugunu ve sirastyla gelen her A;* ' katsayisini

ise k indeksinin belirledigini gormekteyiz. Genel bir n dereceli ¢ekirdek i¢in toplam olarak 2"
kadar terim olacaktir.

Ornek 6.4: Zaman bolmeli state-affene sistemleri 6rneklem girdi isaretlerine sahip cift
dogrusal tek zamanli sistemlerin tanimlamasinda dogrudan ortaya ¢ikmaktadir.
Anlasilabilmesi i¢in sadece 2. dereceden homojen olan bir 6rnegi tartisacagiz ve ornek isaret
olarak tepki modeli kullanilacaktir. Sistem su sekilde tanimlanmastir.

h(t,t,)=ce™De™b,t t, >0
1>%2 1°%2

reg

ve girdi igareti

u(t) = iu(kT)cso (t — kT)

oldugu durumda

)= J.J.hreg (0,,0,)u(t—0, —0,)u(t—0,)do,0,
00

T nin 6rneklem periyodu olmasi durumunda. O zaman, m" deki zamanda &rnek olayin ¢iktisi
su sekilde verilir

ymT) = [ [h, (0,,0,) Y u(lT)3(mT -0, =0, —kT)
00 k=0

Y u(k,T)6(mT -0, -0, —k,T)do,0,

ky=0

-3

k=0

N by (e, T =k, T,mT — ke, TYu(k, T)u(k,T)
ky=0

Bu ifadeyi diizenli bir forma ¢evirmek i¢in toplamadaki degiskenlerin degistirilmesi (yeniden
diizenlenmesi) gerekir. Oncelikle k, yerine j,=m—k,ye k, yerine j =m—j,—k,
yazalim. Daha sonra ise giris isareti ve diizenli ¢cekirdegin her ikisinin de negatif degerler i¢in
sifir oldugu gerceginden hareketle

16



ymT) =YY h, G\T, j,Du(mT = j,Tj, = j,Tj, u(mT — j,T)

71=0/,=0
Bdylece bu zaman bdlmeli icin diizenli ¢ekirdegin gosterimi su sekildedir

h(jT,7,T)=c(e”)>De™)'b,  j,j, 20
Simdi tanimlarla beraber

A,=e"", 4, =D, b =e""b,b, =Db

— AT — —
c,=ce” , c =cD, d,=cDb

Son bir yorum olarak formiil 53 deki fonksiyonun n. {issiinii almak olduk¢a kolay olmaktadir.

H . (2),0002,) = ZZhwg (iyyerdy)zy oz

i1=01i,=0
=d, +c, (z,1—A4)"'b +... (54)
+c,(z,_ A= A4) " A,(z,_ = A4) " ..(z;] = 4,)b; ...
+co(z,0 = A) " Az, ] — A) " A A (2,1 — 4)b,

Her ne kadar bu ifade formiil 53 de oldugu gibi ¢ok agik olmasa da 2" li terimleri ortaya
cikarmak biraz ¢calismayla miimkiindiir.

Ornek 6.5 Formiil 39 daki state-affine durum esitliginin 3. dereceden normal fonksiyona
cevrilmis formiilii

Hreg(zl,zl,z3) =d, +c, (ZII—AO)_Ib1 +6’2(22]—A0)_1b2
+co(23]_Ao)_lb3 +¢ (Zzl_Ao)_l 4, (Zzl_Ao)_lbl
"'00(231_‘40)_1 4, (Zzl_Ao)_lbl +¢ (231_‘40)_1 4, (Zzl_Ao)_lbz

+¢o(z30 — 4, )_1 4, (2,1 — 4, )_1 A,(z,1 - Ao)_l b,
Eger durum esitligi gercekten ¢ift dogrusal ise o zaman en son ifade en dogrusudur.

6.4 State-Affine uygulama teorisi

Zaman bdlmeli sistemler icin uygulama problemi temel olarak diizenli doniisim
fonksiyonu girdi/¢cikt1 gdsterimi ve state-affine denklemleri 151ginda tartisilacaktir. Boylece
burada bahsedilen uygulama teorisi 4. boliimde anlatilandan daha geneldir. Aslinda zaman
bolmeli sistemler icin ¢ift dogrusal uygulama teorisi goreceli olarak daha az karmagik 6zel bir
durum olarak karsimiza ¢ikacak.(Cift dogrusal uygulama teorisi 4. boliimdeki s’lerin z’lerle
toptan yer degistirmesi yolu ile de elde edilebilir). Burada homojen ve polinom sistemlere
agarlik verecek ve volterra sistemlerini ise orijinal aragtirmada birakacagiz.

Dontisiim fonksiyonun eger polinomlarin bir kesiri olarak yazilabiliyorsa dogrusal olarak
adlandirildigini hatirlayalim.
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p(z)5enZy) (55)

H(z,...,z,)=
( ) 0(z,5e2,)

Eger p(z,,...,z,) in derecesi ; Q(z,,...,z,)nin derecesinden kii¢iikse dogrusal doniisiim
fonksiyonunu uygun(tamamen uygun) diye adlandiritlir. Eger Q(z,,...,z,)=0,(z,)...0,(z,)

ise tanmabilir diye adlandirilir. 4. boliimdeki gibi numaratér ve denaminatdr polinomlar
goreceli olarak 6nemsiz konular1 disarida birakabilmek icin esastir.

n. dereceden homojen veya polinom bir sistemin state-affine uygulamasi su sekilde
olur

x(k+1)= nz_lAl.x(k)ui (k) + ib,.ui (k)
)
k) =X e x(ku' (k) + 3 diu' (k)

Sonlu x(k) durum vektoriiniin boyutu uygulamanin boyutu olarak adlandirildigi durumda
formiil 56 daki toplamin {ist limitlerinin sistemin derecesi ile uyumlu olduguna dikkat edelim.
Bu formiilleri kullanarak uygulama {izerinde su sonuglara varabiliriz.

Teorem 6.7 : n. derecen bir homojen zaman bdlmeli sistem ancak ve ancak diizenli doniisiim
fonksiyonu uygun, taninabilir fonksiyon ise state-affine taninabilir olarak adlandirilabilir.

Ispat : Eger sistemin state-affine uygulamasi varsa diizenli doniisiim fonksiyonu formiil 54
deki gibi yazilabilir. Her (z,/ — 4,)”" i klasik adjoint-over-determinant formunda yazmak ve

terimleri ortak bir denominator Uzerine yerlestirmek H,,(z,...,z,) nin uygun, tanmabilir

fonksiyon oldugunu gosterir.
Eger H,,(z,,..,z,)uygun, tanmabilir bir fonksiyon ise o zaman bunu su sekilde

yazabiliriz.
P(z,07.)
Hreg(Zl""’Zn): 1 (57)
QI(ZI).“QH(Z”)
Burada
nm, m, . ] ]
P(Zl,...,Z”): Zzp . .]nZl IZI’Z !
RN
m! j
m; .
Q,-(Zi):Zi + Zqijzi i=1...,n (58)

Stirekli zaman durumundaki gibi, payda polinomu matriks faktorlii olarak yazilabilir.
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P(Zl,...,Zn) = Zn“'ZZZlP
Z; 0,1,z,...,7 jmj ve j=1,...,n degerlerini alirken P katsayilar vektoriidiir. Diizenli transfer

fonksiyonu asagidaki gibi faktorlii halde yazilabilir.

Z, 7. 7P
0.(z) 0,(z)0z)

= Gn (Zn)'“Gz (Zz) G1 (Zl)

Hreg (Zl""’Zn) =

Herbir Gj ( Zj) uygun tamsayilardan olusan bir matrkstir. Boylece, dogrusal farketme
teknigiyle asagidaki esitlik ¢ikartilabilir.

G.i(Z/) - éj(zjl_za])_léj—i_bj’j - 1""’”

Ay blok kdsegeni olsun ve A; j. blok altkdsegeni disinda 0 olsun.

0..0 121
0 ..0.0
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j. blok harig tiim satirlar 0 olsun,

N - =

B, 0

b1 — . bl_: B‘,-D,-_1”D1 , J=2,...n

_O 1 _O .

Asagidaki esitlige gore (n-1). blok harig tiim ¢; satirlar1 0 olsun,

Co~ lO“OénJ

C,= |:0..(l)n...l)n_j+1 Cn_j)...O],j=1,,,’n_1

Ve son olarak f =...= d’H =0, dn =D.D.. Dy Buna benzer diizenli transfer

fonksiyonlari (54)’den hesaplanabilir. Ozel blok yapisi yiiziinden, derecesi 0 olmayan tiim
transfer fonksiyonlar1 0’dir, ve n. derece transfer fonksiyonlar1 asagidaki gibi verilmistir.

H..(zp-z)= (15” + én (z,1- Ian)_an)."(l/jl +Ci(z,/ - 1211)_131)

=G, (z)-G(z)

Ilging olmayan bir 6rnek olarak bu hesaplama ispat: tamamlamaktadir.

Teorem 6.1. Sadece ve sadece sistemin diizenli transfer fonksiyonu kesin uygun, taninabilir
fonksiyonsa n. dereceden homojen, ayr1 zamanl sistem ¢ifte lineer olarak taninabilirdir.

En diisiik durum tanimlarinin yapisina baglamadan 6nce belki de hafif olarak
tanimalamada digressiondan bahsetmek iyi olacaktir.Su ana kadar diizenli transfer
fonksiyonlar1 cinsinden tiim tanimlama sonuglarin1 sundum.Bu sonuglar kolayca iiggen
transfer fonksiyonu gosterimine kolayca cevirilebilmektedir ¢iinkii basit bir degiskenlerin
degisimi iki transfer fonksiyonuyla ilgilidir. Ama simetrik transfer fonksiyonlar1 cinsinden
tanimlamadan bahsetmek ¢ok zordur. Bu konuya yaklagimin bir yolu diizenli ve simetrik
transfer fonksiyonlar1 arasinda iligki kurmaktir. Bu konu bdliim 6.2 de 2. dereceden durumu
icin tartigilmistir, bu tartisma bu kisimdan sonradir.

Ornek 6.6. iliskiden yola cikarak,

1 1
nym(Zl’ZZ) = EHreg(Zl’ZlZZ) +§Hreg (Z2’ZIZZ)

Agiktir ki, 2. dereceden homojen sistem i¢in simetrik transfer fonksiyonu asagidaki formda
olmalidir:
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P<Z1’Zz)

Ql(Z1)Q1(Zz) Qz(Z122)

Burada, Qi(z;) ve Qa(z,) tek degisken polinomlar ve P(,; ) 2 degiskenli polinomdur. Ama
payda herhangi bir rakam olamaz, ayrica P(z,....z,) formunda kisitlamalar da vardir.

Hsym(Zl’ZZ) =

Z\Z
Hsym(Zl’ZZ): =2 1
VAVAN

Yukaridaki simetrik transfer fonksiyonu state-affine tanimlidir ¢iinkii tekabiil eden
diizenli transfer fonksiyonu uygun, tanimlanabilir kesir fonksiyondur.

4
Hsym(Zl’ZZ): il

Z>

Teorem 6.7’nin ispatinda verildigi gibi state-affine tanimlamasinin kurumu bu
durumda oldukga basit.

6’1:1&1:351:0’Dlzl
C.=A4.=B.=D."!

Boylece state-affine tanimi asagidaki gibidir:

k+1)= 00 k 0 (k
xtk+)=| )+ )
y(k) = [01}e(k) +44" (k)

u(t)= uz () yeni girdisini tanimlayarak bu durum ¢ok kolaydir, tanimlama lineerdir.

Polinom sistem durumu i¢in, diisiiniilmesi dogal olan girdi ¢ikt1 gdsterimi homojen alt
sistemlerin diizenli transfer fonksiyonlarinin sirasidir.O zaman temel tanimlama basit olarak
boliim 4.3 deki teorem 4.9’un tekrar ifadesidir.

Teorem 6.8. Sadece ve sadece her homojen alt sistemin diizenli transfer fonksiyonu
uygun,tanimalanabilir fonksiyonsa bir polinom ayr1 zamanli sistem state-affine tanimlidir.

Polinom sistemler i¢in minimum boyut state-affine tanimlamalar kurmak i¢in, boliim
4’deki gibi kaydirma operatorii yaklasimi kullanilacaktir. State-affine durumuyla ilgilenmek

icin daha fazla terim ¢esidi vardir, z-transformu tanimindan dolay1 negatif giic serileri yerine
pozitif olmayan gii¢ serileri igerilmektedir. Ama, temel olarak fikirler aynidir.

Az 2) = H(z). H oz 20 H o (21 2)0-) (59)
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Hreg (Zl""Zk) = 2"'2hreg(i1""’ik) Zl_ll,,.Z;lk (60)

i= 7=
Esitlik (59) verilen diizenli transfer fonksiyonlariin sinirlt uzunluktaki sira igin,
minimum tanimlama problemi asagidaki gibidir. mxm boyutunda A,,....Ax.1, mx1 boyutunda
by,...bn, 1xm boyutunda cy,...cn-1 ve dy,...dx katsayilar esitlik (53) n=1,...N i¢in saglanan,
esitlik (53)’de n>N i¢in sag tarafi 0 yapan ve m’yi olabildigince kiigiik yapan matrilerini
bulun. Bu matrisler m boyutunda esitlik (56)’da state-affine tanimini belirtmektedir. Bu tip bir
tanim i¢in (A;,bj,c;,dj,R™) kisayol gosterimi kullanilacaktir.

Asagidaki gibi pozitif olmayan gii¢ serisi veriliyor:

Viziz) =220, 4 21z (61)

l'l:O ik:O

Kaydirma operatorii tanimlayin:

SVk (Zl”"Zk) = ZZ Zviﬁl,iz---ik Zl_i]"'Z;ik (62)

i1:0 ik=0ik=0
Kaydirmanin lineer bir operator oldugunu gostermek kolaydir:

S Vk (Zl ’"'Zk) = Z [Vk (Zl""Zk) - Vk (e, ZZ""Zk)J (63)

SVi(z1,...z«) ayrica pozitif olmayan gii¢ serisidir. Indeks operatérii asagidaki gibi
tanimlanmistir:

0,....... k=1
TV (rr)=1e < (64)
Vk 2y Zk Z...Zvo..i“zll...zkfl ,k>1
i dom O
TVk (Zl""’Zk) = Vk (00, Zl""’Zk—l)’k >1 (65)

T’nin lineer operator oldugunu gérmek zor degil, dyleki TV(zi,...,zx) pozitif olmayan
giic serisidir. Ayn1 S ve T sembolleri kullanilacaktir. Bu tanimlar pozitif olmayan gii¢
serilerinde belli uzunluktaki siralamalara genisletilebilir.

SV (z):V (21:2):V (215 2,0 2)» ) =SV (). SV (2, 2):SV (215 250 2)) - (66)

TV (z):V (22D V(220 2) ) =TV (2, 2): TV (215 2,5 Z3)5) (67)

Esitlik (59)’daki gibi tanimlanan N. dereceden polinom sistemi diisiiniin. Pozitif
olmayan gii¢ serilerinin belli uzunluktaki dizilerinin lineer uzaydaki toplami1 asagidaki gibidir.
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A ~ 2 A
(]1 :Span{H(Zl""ZN)’SH(Zl""ZN)’S H(Zl"”ZN)""}

U,= span{TUl,STUl, SZTUI,...}

U.,= span{T UoSTU., .S TU, .~ }
U=span{l]l,U2,...UN} (68)

S ve T lineer operatdrler olarak, U da diizlemve aralik olarak goriilebilir.

L/ : R — U bagslangic operatorlerini asagidaki tanimlara gore yapiniz.

Lr=SH(z ..z)r

L,r=STH(z .. 2 )"

Lyr=ST "H(z,.z))r (69)

FE i U — R degerlendirme operatdrleri setini agagidaki gibi tanimlayin:

V(2 2) =W 2V (205 25 V(2o 20 00)

U’nun bir elemanidir.

EV(Z sz )=V ()

EII}(ZP""ZN) = EOTI}(ZI""’ZN) = Vz(oo’oo)

E vV (Zouz)=ET V(zgpsz) =V (0000s) (70)

Son olarak, dj : R — R asagidaki gibi tanimlansin:

dj:Hreg(Zl""’Zj)| o 7009j:19~~~aN (71)

2777z

Tiim bunlarin kendi diizlemlerinde lineer operatorler oldugunu gostermek ¢ok kolay.
Eger U sinirli boyutta ise o zaman (ST,L;,Ej,dj,U) verilen polinomun sinirli boyutta, state-
affine tanimidir. Bu yapildiktan sonra, tam bir tanim bulmak U’lar1 R™ler ile degistirmeyi ve

Aj =S Tj , bj = Lj C; = Ej matriks gosterimlerini bulmay1 ve d; operatérlerinin sabit

olarak degerlendirilmesini gerektirmektedir. Bu islemin verdigi minimum boyut state-affine
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taniminin ispat1 ihmal edilecektir ¢linkii cok karisiktir. Aslinda (STj,Lj,Ej,dj,U) tanim olan
cogu ifadeyi ihmal edecegim. Hesaplamanin nasil gittigini gostermek i¢in, N>3 olan N.
dereceden polinom sistemini durumunu diisiiniin.

H(z,sn2))=H(z) H o (zs 2 H o (20 20 29

= (Zoh(il) Zl_ll’z Zhreg (il’iZ) Zl_ll Z;iz’

i o im0
2 2 Zhreg (il ? i2 ’i3) Zl_l] Z;ZZZ;h "t )
(07070

O zaman esitlik (53) 3. dereceden bir se¢imle asagidaki gibi yazilabilir. Burada ds
sabittir.

d.,= H,, (===}, 000)

Esitlik (53)deki ¢, A({ o b1 terimi asagidaki esitlige denktir.
Jr — 2 QA ( )
EzS L, E()T S ZyZy

= EOTZ(Zh(il +j1)Zl_il’22hreg(il 4_]-1’1.2)21_1‘1 Z;iz’
j=0

i1=0 Z'Z:O

222G joivi)z 2 2 )
1707700
= EO (2 hreg (jl ’0’ il) Z;ll"") = hreg (jl ’0’0)
Sonug olarak, AOJ i A, AOJ o b, asagidaki esitlige denktir.

ES7STHS L=E,S" T’ S" A(zz,)

- E,S" (S b (000 27
11:0

=E, X h,, G0+ )z
l]=0

=h.(J 0 )
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Tiim bu kaydirmadan sonra, indeksleme ve degerlendirme ¢ok eglenceli olmaktadir.
Ben okuyuculara birkag 6rnek daha yapmalarini tavsiye ederim. Ama, tanimlamay1
genellestirebilmek i¢in gerekli olan gdsterim ve hesaplama yatirimi belki de uymayabilir.

Ornek 6.7 Hesaplamalarin dogasini sabitlemek icin asagidaki gibi anlatilan basit bir polinom
sistemi diisiiniin.

H(z,z)=(2—,—20,.)
Zl_l Zz_l

(Burada diizenli transfer fonksiyonlarinin gii¢ serileri formuyla ¢aligmayacagim.) Kaydirma
operatoriiniin uygulamasi asagidaki esitligi vermektedir:

SH(z,,7,)=(—2—0,.)
Zi -1

2 ~ ~
S H(z,z,)=SH(z.z,)

Boylece,

Ul = Span{(i’ Zz ”0"")’( Zl ’O"")}
Zl_l Zz_1 Zl_l

Indeks opearatériiniin uygulamas: asagidaki sonucu vermektedir:

TH(z,,2,) = (—2-.0...)

1

Z

Kolay hesaplamalar gosteriyor ki;

STH(z,.7,)=TH(z,.7,)
TSH(Z1’Zz) =0

Boylece, [J, < [/, ve U lineer uzay1 U, olarak almnabilir. U iki boyutlu oldugu i¢in, R ile

degistirilebilinir.
O _( Zl 9 ZZ sV )
LY Zl_l Zz_l
o
= 21 0..)
L Z1_1
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Bu bazda alinarak, kaydirma ve indeks operatorleri asagidaki matrislerle verilmektedir:

<laf <[

Boylece,
_g_[oo] [0
AO_ - 11 ’ Al_ - 10

Baslangi¢ operatorleri agagidaki gibidir:

0 0
L, :SH(Zl’Zz):|:1:|ﬂ LfSTH(ZpZz):H

oo

Degerlendirme operatdrleri asagidaki sonuglar1 vermektedir:

Boylece,

EOH(ZI’ZZ) = 1’E0SH(Zl’Zz) =1

EIH(ZI’Z2) zl’ElSH(Zl’Zz) =0

Karsili gelen matris gosterimleri asagidadir:

¢, =01}, =[1.0]

Sonug olarak, sabit terimlerin d;=d,=1 oldugu aciktir. Béylece, verilen sistemin
minimum state-affine tanim1 asagidaki gibidir:

00 00 0 0] -
x(k+1)= [1 | }C(k) + [10}6(@”(1{) + [1 }”(k) + [1 }u (%)

y(k) = [11]e(k) + 10k u(k) + uk) +44 (k)

Bu yaklagimin Volterra sistem durumuna uzantisi kaniti1 olmalidir. Ortaya ¢ikan zorluk
cesitleri boliim 4.4°de belirtilmistir, ve genel teori boliim 6.8’deki arastirma literatiiriinde
detayli olarak tartigilmastr.

6.5. Ayr1 Zamanh Sistemlerin Yanitlama Karakteristikleri

Homojen ve polinom ayr1 zamanli sistemlerin girdi sinyallerinin ¢esitli siniflara yaniti
boliim 5°deki yaklagim kullanilarak analiz edilebilinir. Birim pals ve sinuzoidal girdiler i¢in
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analizin nasil gittigini agiklayacagim. Tesadiifi girdi sinyalleri i¢in, devam eden zaman
durumuna paralel olarak sonuglarin bazilar1 bolim 5.5°deki bakis agisindan daha az resmi
olarak tiiretilecektir.

Geciken birim palslerin toplamlarinin girdi bilesenlerine n. dereceden homojen
sistemin yanitin1 dncelikle diisiiniin, burada birim pals asagidaki gibi tanimlanmistir:

Lk=0
0, (k) = {O,k <0 (72)

Simetrik gosterim cinsinden, boliim 5.1°deki hesplamalar direkt olarak ¢ikmaktadir, ve
burada tekrarlanmayacaktir. Ama, belki de sasirtici bir 6zelligi bulunan bir noktay1
vurgulamak i¢in diizenli gésterim cinsinden bazi basit hesaplamalar lizerinden gidecegim.

y(k)= Z theé(zp Spulk =g == ). (k=) (73)

—0 Z_O

Yukaridaki homojen sistem i¢in, girdinin u(k) = 5 o (k) oldugu, basit bir indirgeme ile
asagidaki yanit1 elde ederiz:

y(k)= hreg (0,...,0,k), k=0.,1,... (74)
Girdi iki birim palsten olusursa daha ilging bir durum ortaya ¢ikmaktadir:

u(k):50(k)+a50(k—K) (75)

Burada a bir reel say1 ve K pozitif bir tamsayidir. Asagida belirtildigi gibi tekabiil eden
cevabin hesaplamasi basittir. Esitlik (73) ‘teki cevap formiilii asagidaki sonucu vermektedir:

0 =33 B i Sy k== m i)+ a Sy k=K === )]

—0 Z_O

A8, k=i —iy+ras,k-K i ~ilo,k-j)+aS,k-K~j)]

Sag taraftaki son kdseli parantez icersindeki kisim gosteriyor ki toplam sadece i,=k ve
i,=k-K degerleri i¢in sifir olmamaktadir. Boylece;

G Y Y AN R S|, W RS S RPN 0 o A )

=0 7,0

A8, i) vaS, (K- )+ i i a hreg(il,...,l‘n_l,k—K)[é'o(K—l‘l—...—l‘n_l)

=0 7,70

+a 50 (_il e inq )]'"’-50 (K- l.,H) +a 50(_1.#1)] 77
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Esitlik (77)’de sag tarafin birinci teriminde, kii¢iik bir diisiliniis gosteriyor ki
L =-=7,,=0 oldugu zaman sadece toplam 0 olmamaktadr. Ikinci terimi ¢6zmek daha

kolay, boylece hesaplamay1 bir basamak daha ileri kaydirtyorum. Toplam ; =K ve

l'H =0 i¢in sifir olmamaktadir. Boylece,

y(k)= hreg (0.,...,0,k)

+ Z S a apy, Gy Kk = K|S (G =i, )+ Sy (G =, = K]

—0 l_—O

BEACTRET ACTHICY 91 Y Yoy T AR V20 9

=0 i,,=0

,-50 (K~ il T in72) ta 50 (_il T in72)]'",-50(K - l.n72) ta 50 (_l.n72)4|

Tekrar birinci toplamdan, sadece j =...= 1,,=0 i¢in toplam sifir degildir. Ikinci

toplam daha da indirgenebilir, ama bir islem ¢abuk olarak sonug¢ formiiliinii vermektedir:

v =p, ©..0.0)+af, (0..0.Kk-K)
v B (0 0K 0k =K) g o (0..0.K.0.0,k ~ K)

tot @ M, 050,k = K) (79)
Yanit formiilii (79) hakkindaki ilging nokta sudur ki hreg (7,1, ile anlatilan sistem

lineer tanimlanabilirse ve n>2 ise o zaman y(k) sifirdir. Bu su gercekten yola ¢ikilarak
sOylenmektedir; eger 0 arglimani varsa homojen lineer durum esitligine denk diizenli ¢ekirdek
de sifirdir. Genel bir ifadeyle, n. dereceden homojen lineer esitlik en fazla n-1 sifir olmayan
degeri olan bir girdiye kars1 0 yamithidir. Iki palsh bir durumun ispat1 oldukga karisik
hesaplamalar igermektedir. Oldukga kisa bir ispat Problem 6.4’te nerilmektedir. Her oranda
ayr1 zamanli lineer durum esitliginin 6zelligi kisitli girdi/¢ikt1 hareketini gdstermektedir. Tam
tersi, Boliim 6.3’ten de anlasilacag: gibi state-affine durum esitlikleri oldukca geneldir .

Boliim 5°te tartisildig gibi bu tipin frekans yanit 6zellikleri ayr1 zamanli duruma az
yada ¢ok tagimaktadir. Bu durumu gostermek i¢in asagidaki girdi isaretine ayr1 zamanl
homojen sistemin saglam yanitini kisaca ele alacagim:

u(K)=2acos(wk) = A" + 4o ™ (80)

Cikt1 simetrik ¢ekirdek cinsinden asagidaki gibi yazilabilir:

y(k) = 2 thym(lp ol )H[Aem(k 44 ’W(k_i’)] (81)

=0 =0
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ﬂl =iwve 22 = —jw yaparak, n. derece {irlinii genisleterek ve toplamlar1 yeniden

diizenleyerek asagidaki sonucu elde ederiz:

2

vy =4 ZZ 2"'zhnsym(i1""’in) eXp(_iﬂvk/ij) eXp(i/Ik,k)

k1=1 kﬂ:l i1=0 l'":O

k biiytidiik¢e koseli parantez icindeki toplamlarin bir noktada birlestigini farz ederek,
y(k) asagidaki esitlikle tanimlanan saglam durum yanitina oldukga yakin olur.

y =43 Ho (e, A0 (82)
k= kA j=1 I

Esitlik (82)’de birbirine benzer bir¢ok {is bulunmaktadir, bu tisler transfer
fonksiyonunun simetri 6zelligi kullanilarak bir arada toplanabilir.

n
Gm,n_m (eﬂ/l , elz) — (m ]Hnsym (eﬂl yeees eﬂzl ’ eﬂzz e eﬂzz) (83)
A, leriiw ile degistirirsek ve 4 ’leri —iw ile,

n iw —iw. inwk iw —iw. —inwk
yﬂ(k)=A[G,,,0(e e e *(Go.(e e e J

—iw. i(n—=2)wk

+A1G, e eMe

—iw. —i(n—2)WkJ

+GLale e e

An Gn/Z,n/Z (elwa e*’W)’ nglft

oot n iw —iw. iwk (84)
A [Gn+l/2,i1—1/2(e ’e )e

w —iw. —iwk
+ Gn—l/z,n+1/2(e @ )e lntek
Standart kimlikleri kullanarak ve asagidaki esitligi kullanarak,

Gm,n—m (elw 4 e_lw) = Gn—m,m (e_lw’ elw)

Asagidaki saglam durum yanit ifadesini elde ederiz.

Yy 0=24"1G,," e cos|muk + L G..(e" o)

—iw.

+24'1G, e el cos[(n —2Qwk+L(@G, (e e )J+

n AnGn/z,n/2(e 987 ),I’lg’lﬂ‘

S L 85)
24| Gn+l/2,n—1/2(e e )l COS[Wk +L Gn+1/2,n—1/2(e e )l n..tek
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Bu hesaplamalar Boliim 5.2 ve 5.3’teki sonuglarin ayr1 zamanli durum igin kolaylikla
gelistirilebilecegini gostermek icin yeterlidir.

5. Boliimiin son ana konusu olan tesadiifi girdilerle lineer olmayan sistemler ayri
zamanli sistemler i¢in devamli zamanli durumundakine paralel olarak kolaylikla
gelistirilebilir. Bunu yapmaktansa daha genel bir bakis acisiyla tesadiifi girdilerle ayr1 zamanli
lineer olmayan sistemler icin dikey gosterimler tizerinde duracagim.

Tesadiifi girdi igaretleriyle lineer olmayan sistemler i¢in dikey gosterimlerin
gelistirilmesi tesadiifi bir islemle dikeylestirme bazinda olacaktir. Ayr1 zamanl tesadiifi islem
asagidaki formatta yazilmaktadir:

u="{u(k);k=...~1012,.] (86)

Burada u’nun reel say1 oldugu, sabit oldugu ve negatif olmayan tiim n’ler i¢in

| E Iun (k)J |< eo oldugu kabul edilmektedir. Ayrica, tiim negatif olmayan n’ler i¢in tesadiifi u

isleminin n. dereceden bagimsiz oldugu da kabul edilmektedir. Farkli indisler 7, yees], V€

polinomlar )2 (x),..., D, (x)

Elp ). p @G ))=E|p G ))-Elp @) 87)

Bu simirlayicr bir kabullenme ama 6nemli bir rol oynamaktadir. Beyaz Gaussian
tesadiifi isleminin bu kabullenmeyi sagladigi gosterilebilir, boylece buradaki durum Boliim
5.5’te deginilen ayr1 zamanli versiyonu i¢cermektedir.

Tamm 6.1 Eger asagidaki tiirden reel, simetrik polinom fonksiyonlar varsa tesadiifi u islemi
dikeylenebilir polinom olarak adlandirilir.

D, G0, 1) =P, W(G)semrrta(f ) n =01,2,... (88)

Tiim tamsayilar j ,...,j ,j ,...,j icin,
n 1 m

ED, Gyl D, (e 0]

_ El(I)n(i1="'=in’”)(I)n(jl’“"j,,’”)l” =m
0,n#m
Boyle bir kiimeye u i¢in polinom dikey gosterimi denmektedir.

Tesadiifi bir islem i¢in polinom dikey gdsterim bulmaya bir yaklasim asagidaki
gibidir. @, i¢in kullanilacak gésterim tekrarlanan argiimanlari bir araya getirmek ve varolus

sayilarin1 gostermektir. Simetri 6zelliginden tekrar siralamanin o kadar da 6nemli olmadigi
aciktir.

Yardimeir Onerme 6.2. W, (x)=1olan Y (x),n=0,12,.. tek degiskenli polinom setini

diislinlin. Burada u tesadiifi islemi asagidaki gibidir:
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ENP (k)< o, n=m
E @), (k)= { ) o0)
O,n#m
O zaman u tesadiifi islemi dikey polinom ve dikey polinom gosterimi asagidaki gibidir:
D, iy, 10 =W, @G-, @) Q)

il ,,.,,l'pfarkh tamsayilar ve ntet n,=n

Ispat: Esitlik (91)’de belirtilen her @, simetrik polinom fonksiyondur. Bundan baska, esitlik
(91)’deki gibi tekrar eden argiimanlar1 toplayarak E[(I)n G, ) D, (j1""’j ,u)J
asagidaki gibi yazilabilir:

E[(Dn(il""’il;"';ip""’ip’”)q)m(jl""’j15"'5jq""’jq’“)J

W, @)W, )P, @), @) ©2)

mt-+n,=n ile [l farkli ve ggp +...+ m,=m ile j1""’jq farklidir. Eger m # n
ise {l.l""’l-p’jl""’jpjl kiimesi iginde i; gibi farkli bir tamsay1 var ya da g # g, olmayan

1= ] 1 olan iki ayn1 tamsay1 var. Beklenen degerlerin sonucu olarak esitlik (92)’yi yazmak

icin bagimsizlik kabullenmesini kullanarak, ilk durumda ¢arpanlardan biri 0 olan
E [\Pnl (u(g 1))J clinkii \-Pnl (x) \-Pno (x) =1’e diktir. Sonraki durumda garpanlardan biri yine

0 olan E[\Pn (u(y 1))\{lm (u(g 1))} olacaktir. Boylece esitlik (89) kanitlanmis oldu, ancak

n=m iken, {jl yeees ] Jl, {l.l ,...,in} ‘nin permiitasyonu olmadiginda esitlik 0 vermektedir. Eger

permiitasyon durumu tutarsa, o zaman E[(I)n (7,51, WP, ( j1""’ ] ,u)J ifadesi asagidaki

gibi verilebilir:
2. . . . 2 . 2 .
E[(I)n [y lp""’lp’u)]: E[\I’nl(u(l]))]E[\Pnp (u(lp))] 93)
l'l,...,l'p farkli ve mt-tn,= n dir.

Bu konu boyunca ele alinacak 6rnek boliim 5.5°te devamli zaman durumu i¢in Wiener
dikey gosteriminde tartisilan 6rnege denktir.

Ornek 6.8 Tesadiifi u isleminin ortalamasinin 0, Gaussian ve E qu (k)J: A yogunlugu ile

beyaz oldugunu kabul edelim. O zaman u’nun n. dereceden bagimsizlik kosulunu sagladigini
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kolaylikla goriilmektedir. Dikey polinom gosterimi kurmak i¢in, Hermite polinomlariyla
asagida verilen esitliklerde \PP ,n=0,1,2,... alin.

w2 1) nl 4,
p -3 A

94
r=0 r!2y(n—2r)!x .

Burada [n/2] n/2’den kiigiik esit en biiyiik tamsayidir. 11k birkag Hermite polinomu asagidaki
gibidir:

W0 =L, 00 =0 (0= 4

Bu durumda esitlik (90)’n1 dogrulamak referanslar kismina birakilmistir.

BN wp|=n! 4 (95)

Ama Teorem 5.1 ve 5.2’nin ispatlarinin benzer argiimanlarinin literatiirde diger
yerlerde kullanilabilecegini vurgulamak isterim. Her oranda Hermite polinomlar1 tanim (91)
ile beyaz Gaussian tesadiifi iglemleri, 0 ortalama i¢in dikey polinom gosterimine
ulagmaktadir.

Asagidaki caligsma tesadiifi girdilerle lineer olmayan sistemler i¢in gosterim
gelistirmede uygun olacaktir. F[u(k)] tesadiifi islem u’nun 6rnek fonksiyon u(k)’nin gergek

degerli fonksiyonu olsun. £ le [u(k)]J< oo olsun ve L,(u)’yu asagidaki i¢ tirlin ile F ve G
fonksiyonlariin Hilbert uzay: olarak ifade edelim.

< F,G>= E[Flu(k)Jcu(k)] (96)
Yardimer 6nerme 6.2°deki gibi u degiskeni i¢in kurulan dikey polinom gdsterimleri

D,. D, "1 disiiniin. O zaman hernve 7, yeees], icin @, (7, e o) Lo(u) nun bir elemani
olsun. Eger f (7,»-1,) gereek degerli fonksiyon asagidaki esitligi saglarsa;

Z Zf(zla W) <o 97)

= [=

Z Zf(zp 1) D, G o, (98)

= =

O zaman yukaridaki esitlik Ly(u) nun bir elemanidir. Bu ifadenin anlatimi ihmal
edilecektir. Esitlik (98) formundaki ifadeleri disiinirken @ (7.7, ,#) ‘in simetrisinin

f (7,51, genellemeyi bozmayacak sekilde simetrik oldugu kabul edilebilirinin gésterimi

okuyucuya birakilmistir.
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Simdi de girdinin reel, sabit, n. dereceden bagimsiz oldugu tesadiifi islem u olan
y(k) = H[u(k)] sistemini diisiiniin. Sistemi L,(u) nun bir eleman: olarak gostermek i¢in k’y1
sabit diisiiniin, E[ yz (k)] < o= ve basit olarak sistem sinirli bir hafizaya sahip oldugunu kabul

edin. y(k)’nin sadece u(k), u(k-1),...,u(k-M) degerlerine bagl oldugu M pozitif tamsayisi var.
Boyle bir sistem asagidaki fonksiyonel ifadeyle gosterilecektir:

y(k) = H[u(k — j),j =0,1,..., M] (99)

u i¢cin dikey polinom gosterimini agikca iceren esitlik (99)’daki sistem i¢in gosterimi
hazirlamaya artik elimizdeki malzeme hazir durumdadir. Asagidaki formda bir gosterim
diistiniin:

yN(k) = H ,lutk=j),j=0,,..,M]

M

=3 D keGP, = k= 1) (100)

n=0 l']:O l'n=0

Her bir - (f,,....j,) simetriktir. A¢ik olarak Hx L»(u)’ya aittir ve sistem gosterimi sabit,
sinirli hafizada ve tesadiifidir. Amag esitlik (100) ortalama karede esitlik (99)’a yaklasacak
kn (7,51, katsay1 fonksiyonlarin1 segmektir. Hatay1 en diislige indirgemek icin

ko,kl (in)""’kw(i1""’iw) i se¢in;
1y0) =y B =<y~ y (k)30 -y (k)>

B0 -y, (0)] (101)

Tamim 6.2. Esitlik (101)’1 en kiigik yapan k- (f.....,j ) simetrik fonksiyonlarina Fourier

cekirdekleri denir ve olusan esitlik (100)’deki sonug fonsiyonuna da sistemin Fourier seri
ifade fonksiyonu denir.

Teorem 6.9. Yardimei Onerme 6.2°deki gibi \JP/ (), W, (x),... polinomlarini kullanarak u

icin dikey polinom gosterimi diisiiniin. O zaman n. derece Fourier ¢ekirdegi asagidaki gibidir:

nll...np!

nENY (u(k))]...E[\P;p (u(k))]

kn (l'l,..,l'l;...p l',,»--ai,,) =

EyOY, k=), (k=) (102)

Burada, l.v""l.p ayri, p +'“+7’lp =pn ve n=0,1,...,N’dir.
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Ispat: Tiim argiimanlar atilarak esitlik (100) igin kisaltilmis bir notasyon kullanarak, esitlik
(101)’deki hata kriteri asagidaki gibi yeniden yazilabilir:

N N
=y [ =<r-2kXD,y-2kXD,>
n=0 n=0

N N N
=<3y>2<0. X kXD, >+< Xk XD, D kX D,>
n=0 n=0

n=0

<kﬂX(I)n,ka(I)m >=0,n#m

Kolaylikla elde edilen sonucu kullanarak, ve beklentiler gibi i¢ carpimlari yazarsak asagidaki
sonucu elde ederiz:

ly=y. 1] =By 1-23 By, X DI+ Y By, X D, ) ]

n=0 n=0

Simdi de sag taraftaki terimleri genisletin.

Ely(k, X D)1= ELYR)Y D ke, Gyroonf YD,k = sk = 0]

Z'l=0 l'I:O

M M
=D ke, G L JEVO P (k= ek = 10)]
i i
Yardime1 Onerme 6.2°de @, icin kurma ve simetriyi 6zelligini kullanarak
E[y(f, X @,)] de asagidaki gibi genel bir terim izole edilebilir. 1< p <n igin 7, el
farkli negatif olmayan tamsayilar ve 35 +...+ n,=n ile 7,5, n, pozitif tamsayilarini

diigliniin. O zaman j , j =1,..., p arglimaninn tiim bu terimlerini igeren n; adedi birbirinin
J

aynidir ve bu terimlerin toplami asagidaki gibi yazilabilir:

B, X D,) 1= Bl Y o Gy, ) D, (k= ek =, 1)

l‘]:0 i/1:O

Koo J D, = k= ] )]

0

J=°

=2 Y i i b, (e )

i1:0 inzojl:o ]”:0

M
=

~

EIQD, (k= k=)D, = ] k= ] )]
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Eger F bir bilinear operatorse, bu sistemler bilinear giris/¢ikis sistemleri olarak adlandirilirlar,
burada F herbir argiimanda dogrusaldir. Daha kesin bisey soylemek gerekirse, F bir bilinear
operatordiir, eger;

Floquy + 191, apua + 6202,] = aopF[ug ua] + a1 62F[uy, ;]
+ G 00F[1,uz] + d16F[0, U2] (109)

Her gercek ay, &, 0o, &2 ve her giris sinyali u;(k), 6:(k), ua(k), ¥2(k) i¢in.

Buradaki tartigmanin ana parcasi, giris/cikis gosterimi i¢in daha agik bir gosterim
gelistirmekle ilgilidir. Bunu bagarmanin en kolay yolu, durum esitliginin genel bir siifi
tarafindan anlasilabilen bilinear giris/cikis systemleri diistinmektir. Daha sonra bu durum
esitliginin 0zel ozellikleri, uygun olan giris/gikis gosterimlerinin 6zelligini ortaya ¢ikarmak
icin kullanilabilirler.

x(k+1) = flx(k),ui(k),u2(k)], k=0,1,2,....
y(k) = h(x(k)), x(0)=0 (110)

burada x(k) n-boyutlu durum vektdriidiir ve /" ve & ‘in tatmin edici analitik fonksiyonlar
£(0,0,0) = 0 ve h(0) = 0 oldugu varsayilir. Sifir baslangi¢ durumundaki dengenin ve analitic
ihtiyaglarin se¢imi sonucun O6nemli 6zelliklerini degistirmeden c¢esitli yollarla saglanabilir.
Daha genel bir ¢ikis esitligi su formdadir,

y(k) = hx(k),ui(k),ua(k)]

bu yontemlerlede idare edilebilir fakat formiiller ve blok diyagramlar daha karmasik
olmaktadir.

Sonraki adim f ve h (110) fonksiyonlarinin power serisini kullanarak durum esitlik
taniminin  yeniden yazilmast ve sonra giris sinyalinin (109) daki belirtilen formda
yazilmasidir. x(k) ve y(k) genisletilerek a,, &;, an ve d; cinsinden yazildiginda ¢ok daha basit
durum esitligi elde edilir.

F(U.],ul, az,u2)=(x1a2F[u1,u2] (111)

Bilinen Kronecker iirlin gosterimini kullanarak, durum esitligi (110) su formda
yazilabilir.

(k1) = Ax(k) + Agx(k) @ x(k) + Dix(kjui(k) + Dax(kua(k)
+ blul(k) + bzllz(k) + b3ll1(k)ll2(k) +.o...
y(x) = c1x(K) + cox(k) ® x(k) +. .. (112)

sadece altkiime gelisimine giren terimler gosterilmistir. Giris sinyallerini au;(k) ve opux(k)
varsayarsak,
X(k) = 0‘le(k) + (szz(k) + (110(2X3(k) o (1 13)

Tekrar, bu terimleri a; ve o, cinsinden esitlik (111) ile uyumlu bir y(k) ¢iktis1 {iretecegi
gosteriliyor. Esitlik (113) ‘i durum esitligi ve esitleme katsayilarini a;, o, ve a0, cinsinden
yazilirsa bilinear giris/¢ikis sistemleri i¢in asagidaki durum esitligi tanimi esitlik (110)

tarafindan ifade edilir :

X](k+1) = Alxl(k) + blul(k) , Xl(O) = 0
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X2(k+1) = A1X2(k) + bzuz(k) , Xz(O) = 0

x3(kt+1) = Aixs(k) + As[xi(k) ®@Xa(k) + x2(k) ®xi(k)] + Dixa(k)ui(k)
+ DzX](k)uz(k) + b3ll1(k)ll2(k), X3(0) = 0

y(k) = 01X3(k) + Cz[X](k) ®X2(k) + Xz(k) ®X1(k)] (1 14)

Bu esitlikler kiimesi daha basit bir forma sokulabilir, ancak boyutlardaki 6nemli giderlerde
x3(k) i¢in Carleman dogrusallig1 fikrinin uygulanmalidir. Simdi uygulayalim,

x3 (k) =x (k) ®x, (k) +x, (k) ® x, (k) (115)
Daha sonra dogru olan hesaplama x3(k) y1 memnun eder,

x3(k+1) =4, ® A, x5 (k) +[A, ®b, +b, +b, ® A, [x, (K, (k) +[ A, ®b,

116
+by, @ Ay Jx) (Duy (k) +[b) @by +by @by Juy (Ku, (k) ( )

Burada x3(0) = 0 dir. Simdi
2, (k)= fofk) } (117)

Simdi bunlar biitiinlestirelim,

Al A2 D]

“EHD= 0 e, }23 () +[A1 ®b, +b, ® 4, }xz (e, ()
. 0.

|4, ®b, +b, ® 4,

. \

118
+_b1®b2+b2®b1}u‘(k)u2(k) (118)

}61 (kyu (k)

! g DZ(:[_Al)_]bI Il
U

Dol 3 e e T = 212

Dl(:I_A])~lb2 IT = -j

Sekil 6.1 Bir bilinear giris/¢ikis sisteminin baglantilar aras1 gerceklestirimi.

Elbetteki ¢ikis esitligi su formda yazilabilir
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y(k)=[c1 c2]za(k) (119)

Ozet olarak daha basit bir gdsterimle, bilinear giris/cikis sistemini esitlik (110) dan da bir
durum esitligi formu tarafindan tanimlanabilir.

X](k+1) = A1X1(k) + blul(k) , Xl(O) = 0
X2(k+1) = A1X2(k) + bzuz(k) , Xz(O) = 0

x3(k+1) = Asxs(k) + Dixa(k)ui(k)+ Doxi(k)ua(k) + bsui(k)ua(k), x3(k) =0
y(k) = cx3(k)

Esitlik (120) nin yapisal formu Sekil 6.1 de baglantilar arast sekille gosterilmistir.
Burada vektor olgiileri ¢ift okla gosterilmistir. Elbetteki bu baglantilar aras1 gerceklestirimi
durum esitligi (120) nin boyutundan en kiigiik degerden uzaktir ve 3n + n” dir. Boyutdaki baz1
azalmalar azaltilmis Kronecker iirlinlerinin kullanilmasiyla elde edilmis olabilir fakat sonug
hala en kiiclik degerden hala uzakdir.

Esitlik (110) tarafindan tanimlanan bir bilinear girig/¢ikis sisteminin somut bir sekli
Sekil 6.1 de gosterilen baglantilar arasi yapidan tiiretilebilir. Bu tiiretme c¢ikis isaretine
ulagincaya kadar cesitli kopya sinyaller boyunca benzer yordamlarla ilgilidir. A¢ikca k > 0
icin,

k-1 o
Dyxy (Kuy (k) =Y, Dy A2 by (i Juy (k)
Jj2=0

k—1 )
Dyxy (Kyuy (k) =Y, Dy A2 by (K, ()
J2=0
v(k)=D, X Uy (k)+ Dy x5 (k)uy (k) +byu, (k)u, (k)
k-1

k)= Y e () (121)

J1=0
Bu esitlikleri beraber uygularsak bize giris/cikis formuliinii verir.

k=1 J k=1 J

k—ji-1 k—ji-1
yky=3% ZCA Dy AT by () uy G+ Y ZCA D AN 2 by (s ()
N=0j2=0 N1=0j2=0
= k—ji-1 . .
+ Y edy by Gy () (122)
J1=0

Bundan dolay1 esitlik (110) da tanimlanan bir bilinear giris/cikis sistemi su formda
belirtilebilir,

k=1 k-1
(k)= 2 Zh(k_jpk_jz)“l(jl)uz(jz) (123)

J1=0/2=0

Burada, esitlik (122)’nin yeniden diizenlenmesi ile ¢ekirdek sdyle verilebilir
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i1—-1 ip—i1—1 . .
CA31 DIAIZ 1 b2 ,0 < I < 1y

in—1 i|—ip—1 . .
CA3 D2A1 bl ,0 < %) < I

-1 . (124)
CA3 b3 ,O < L < &)

h(iy,ip) =
0, otherwise

Ek olarak bir giris/¢ikis sistemini belirtmek i¢in, esitlik (123) siradan ve duragan bir sisteme
kolaylikla uyar.

2 degiskenli z-doniisiimiinii kullanarak, bilinear giris/gikis sistemleri i¢in bir transfer
fonksiyon gosterimi tanimlanabilir.

H(z1,25)= Y, Y hiy,in)z; 12,7 (125)
i1=0ip=0

Cekirdek icin 6zel yap1 esitlik (124) de gosterilmistir. Bu ayrica transfer fonksiyonu i¢in 6zel
yap1 anlaminada gelir. Esitlik (124) ‘i esitlik (125) de yerine koyarsak , sunu verir,

_ C i1-1 in—i-1 (P )
H(Zl,Zz)— 2 20143 DlAl b221 Zl
i1=lip=i1+1

C in—1 i|—ip—1 I _-I
+3 Y A Dy A bz, "z,
i1=lij=ip+1

+ YAl 50 (126)
i|=ip=l1

Hesaplamanin kalanini sekillerle ifade edebilmek icin esitlik (126) nin sag tarafi {izerinde

detayli bir calisma yapacagim. Indisi i, olan toplam isaretini j, = i, — i; — 1 su kimligi
kullanarak degistirdigimizde,

3 A= =2zl - 4)™! (127)
=0

Bu su sekilde yeniden yazilmasina izin verir:

Y YAl DAz VY = 3 e TDy (201 = 4) by (212) 7"
1=172=0 i=1
-1 -1
=c(z12p0 = 43)  Dy(z20 = 4y) by
Bu ¢esitli hesaplamalari esitlik (126) da kalan iki terimde uygularsak kazang,

H(zy,25) = c(z125] = 43) "' Dy(z0] — 4) ' b,
+ (229 — A3) ' Dy (2] — A)) by + (2201 — A3) 7'y (128)

Bundan dolayi, esitlik (110) un durum esitligi tarafindan tanimlanabilen bir bilinear giris/cikis
sisteminin transfer fonksiyonu i¢in genel bir formu elde edilir.

39



Bu konunun daha fazlasi bolim 6.8 anlatildigindan, bu konunun devamini oraya
birakiyoruz. Bu noktada bu tiir sistemlerin Volterra/Wiener gosterimi i¢in gelistirilmis benzer
metodlar kullanilarak g¢alisildigr agik olmali. Doniigsiim alanindaki giris/¢cikis hesaplamalari
degiskenlerin isbirligi(association-of-variables) teknigi ile ilgilidir. Belli girig sinyali tiirleri
icin agik karsilik formiilleri tiiretilebilir. Transfer fonksiyonunun (yada cekirdegin) yapisal
formunu baglantilar arasi yap1 cinsinden gergeklestirimini temel sartlart kullanarak
tanimlayabiliriz. Sonug¢ olarak okuyucu kesinlikle sunun farkindadir, u;(k) = ux(k) = u(k)
seklinde diizenlemeyle bilinear giris/cikis sistemi 2. dereceden homojen bir sisteme doniistir.

6.7. iki Boyutlu Dogrusal Sistemler

Cok boyutlu dogrusal sistemlerle ilgili bu teori, dogrusal olmayan sistemlerin
gdsterimi icin kullanilan Volterra/Wiener’e benzemektedir. Iki boyutlu , duragan, es zamanl
dogrusal sistemler bugiin lizerinde encok calisilan konular1 olusturmaktadir. Bu teorinin
temellerini tartisacagiz ve sirasiyla dogrusal olmayan sistem teorileri ile ilgili baglantilar:
ortaya koyacagiz.

Iki boyutlu sabit, es zamanli dogrusal bir sistem icin temel giris/cikis gdsterimi su
sekilde yazilabilir:

ki ko
y(kl,kz) = 2 Zh(kl - il,kz —iz)u(il,iz),kl,kz = 0,1,2, ...... (129)
i1=0ip=0

Burada girdi u(k,k,) ve ¢ikti y(k,k,) tamsay: arglimanlar i¢in tanimlanmis gergek iki
boyutlu isaretlerdir, fakat her ikiside negatifse, sifir olarak kabul edilirler. Dogrusallik kolayca
saglanir : acik gosterimde, cevap her a ve f degeri i¢in ow(ky,ky)+ Pu,(ky,ky)
oy, (ky,ky)+ By, (k,ky)dir. Bir gecikmeli degismez sabit 6zelligi igin duraganlik uyusmasi
esitlik (129) un icerigindedir,su sekilde ifade edilebilir. Eger
uy (ki ky) =u (k) —K;,k, —K,) ise tim negatif olmayan K;,K, tamsayr cifti igin
Vo (ki ky) =y (k; — K, ky — K,). Burada nedensellikden bahsedilemedigi farkettik, bundan

dolay1 baz1 belirsizlikler gosterimlerin i¢inde ifade edilmektedir.
2-degiskenli z-doniisiimiinde Teorem 6.4 deki convolution 6zelligini kullanarak su
girig/cikis gosterimini verir.

Y(ZI’ZZ):H(Zl7ZZ)U(ZI’ZZ) (130)

Burada H(zy,z,)=Z[h(k,,k,)] ifadesi sistemin transfer fonksiyonu olarak adlandirilir. Girig

isaretinin ¢esitli siniflar1 i¢in sistemin cevaplama 6zelliginin arastirilmasi i¢in daha Onceki
boliimlerden esitlik (130) un nasil kullanilacagi hemen agik hale getirilmelidir.

Ornek 6.10 En basit(sifir olmayan) giris sinyali birim pals girisidir. Bu iki boyutlu
sistemlerde su sekilde tanimlanir.

l,kl :k2 :0

0, otherwise

uo(kbkz):{

Esitlik (129) dan cevap agikca su sekildedir.
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Y(kl,kz) = h(k17k2)7k1’k2 = 0,1,2, .....
Yada U(z;,z,) =1 den dolay
Y(z1,2y) = H(z1,25)

Elbette ki bir digital filtre igeriginde sistemin degismeyen-durum frekans cevap verme 6zelligi
en onemlidir. Bu konu c¢alismak i¢in daha kolaydir ve bundan dolay1 bu gorev boliim 6.9 da
anlatilacaktir.

Durum esitlik gosteriminin ¢esitli tipleri vardir ve bunlar iki boyutlu dogrusal
sistemlerin benimsenen ¢aligmalaridir. Burada genel bir formiil ile ¢alisacagim.

y(kl,k2):CX(kl,k2),k1,k2 20,1,2,... (131)

Burada x(kj,k,) bir n x 1 vektordiir. Bu esitligi parca parga alirsak, ilk baz1 &y ve k,
degerleri ic¢in ilk kosullarin1 gosterir, daha uygun  olarak smir kosullar1 olarak
adlandirihirlar,¢6ziim i¢in  x(k;,0), k; =0,1,....... ve x(0,k,), k, =0,L........ degerlerine
ihtiya¢ vardir. Sinir sartlarmin bu ¢arpimi x(k,k,) nin sistem igin bir durum vektori
olmadigini belirtir. x(k;,k,) nin degeri ve giris sinyali bilgileri x(k; + K;,k, + K,) nin
degerini ifade etmek icin yeterli degildir. Siralanmis islemlerin igeriginde ifade edilen tek
x(ky,k,)degeri siranin ‘durum’ unu belirtmez. Daha dogrusu x(k;,k,) siralama igerisinde
gerektigi takdirde yinelemeyi verir. Bundan dolay1 x(k,k,) ‘i iki boyutlu sistem igin bir
verel durum vektorii olarak adlandiriyorum. Ve n’i sistemin yerel boyutu olarak
adlandirtyorum.

Iki boyutlu sistemler i¢in yerel durum esitliginin formuna ulagmak i¢in 6zsezisel yollar
vardir. Bu sezgi sistemin bir siralama islemi olarak goriilmesine baglidir, ve siralamanin
icinde genellestirilmis degerler tarafindan cesitli yontemler hayal eder. Esitlik (131) de
motivasyonu saglamak i¢in bunlardan bir tanesine dogru gidecegim.

Ornek 6.11 Varsayalim ki v(ky,k,) degerleri yatay ve dikey yinelemelerin kombinasyonu
tarafindan {iretilmis belli bir siranin i¢inde. Simdi x, (k,k,) yerel yatay durum ve x,(k;,k,)
de yerel dikey durum olsun, ve varsayalim ki yerel durum su formiille iiretiliyor.

xp(ky +Lky) = Ayxp (ky k) + Ay x, (ky ko ) + Byu(ky , ky )
x, (ky,hey +1) = Ayxg, (ky k) + Agx, (ky s ko) + Boulky k)
Yy +1,ky) = cyxp, (k) + e x), (ky L kg ),k ky =0, (132)

Elbette giris sinyali u(k;,k,) belirtilmelidir ve agiktir ki sinir degerleri de belirtilmelidir
bunlar x;,(0,k,) ve x, (k;,0) (siralamanin sol ve alt tarafi). Bu yerel durum esitlikleri esitlik

(131) de yerine koyuldugunda x(k;,k,) olarak sdyle tanimlanur.

X(kl,kz) :|:xh(k1’k2):|

Xy (kl’kZ)
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Daha sonra daha acik olan su hesaplamay1 verir.

0 0 A, A, B, 0
x(ky +Lky +1) = x(ky +Lky)+ 0 0 x(kyky +1)+ 0 u(ky,ky +1)+ B u(ky +1L,ky)

yky k) =lefs  Aach Tucky, ky) 2
Esitlik (132) de bu durum esitlik (131) in 6zel bir durumu olarakgosterilmistir .
Transfer fonksiyonu esitlik (131) deki yerel durum esitligi benzetmek i¢in kolaylikla
Problem 6.3. iin sonucunu kullanarak kolayca hesaplayabiliriz. Sifir sinir kosullari i¢in durum
esitligi doniisiim-alan formunda s6yle yazilir :

ZIZZX(ZI ,Zz) = Alle(Zl ,22) + AZZZX(Zl ,Zz) + BIZIU(ZI ,22) + B222U(Zl ,Zz) (133)
(Cozliimi sunlar verir,

X(21,22) = (21221 = Az = 4y25) " (Byz1 + By 2,)U (21, 2,) (134)
Boylece giris/cikis iligkisi su formu alir:

Y(Zl ,22) = 0(2122[ - AIZI - AzZz)_l (Blzl + BzZz )U(Zl ,22) (135)
Bundan dolay1 transfer fonksiyonu esitlik (131)’e benzer sekilde soyle yazilir:

H(Zl ,22) = C(ZIZZI - Alzl - AzZz)_l (BIZI + BzZz) (136)

Yerel durum esitliginin doniisiim-alan ¢éziimiinden, bir ‘sira-alan’ ¢oziimii asagidaki

gibi tiiretilir. Esitlik (127) nin bir kimligini kullanarak esitlik (134) ‘lin ters matrisini su
formda yazmamiza izin verir.

(21251 = Az = Ay25) " = (47 — 4y2,) (z12,) "D
=0

=3 Y 42y, (137)
i1=0ir=0

Burada A12iki boyutlu gecis matrisi olarak adlandirilir. Esitlik (137) nin terimlerinin

katsayilar1 472 nin ilk bazi degerlerini verir.

A% = 470 =0, i=0,1.2,......
A = 4t
AP =4, AN =43, 4P =44, + 4,4, (138)

Simdi convolution 6zelliginden, boliim 6.2 deki Teorem 6.4 de bulunan esitlik (137) ile esitlik
(134) iin baglanmasi yerel durum icin bir ifade elde edilebilir. i1k not
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X(Zl’ZZ) :(2 21411,1221_11 22_12 )(Blzl +BzZz) 2 ZA(jl’jz)Zl_jl ZZ_JZ
i1=0ip=0 J1=0 jo=0

- 2 2 z ZZAlz’llBlu(jl,jz)Zl_(ll+jl)Zz_(lz+]2)
i1=0ip=0 j1=0 jp=0

+ 33 Y Sz AT2Byujy, jy)z TV 2,22 (139)
11=0i2=0 j1=0 j2=0

J1 yerine k;= j;+i; ve j, yerine ko= j,+i, yerlestirirsek ve girig sinyalinin ‘bir-tarafsiz’ nin
kullanilir yapmasi sunu verir ,

(e} (o) (o] [e o] . " . . _k _k
X(Zl,Zz): 2 2 2 ZzlAll lzBlu(kl—ll,kz—lz)Zl ]ZZ 2
k1=0 kp=071=0ip=0

o o k| kp .
+ 3 S NS 2 A2 By — iy ky i)z 252 (140)
k1=0 kp=0i1=0ip=0

Simdi ¢oziimii takip eder.

x(ky,ky) =, Z(AiIH’QBl + A2 B Yuky — iy ke — i) (141)
i1=0ip=0

Esitlik (131) in yerel durum esitliginin baz1 yapisal 6zellikleri vardir bunlar tek boyutlu
dogrusal sistem teorisindeki 6zelliklere benzer 6zelliklerdir. Sekillendirmek i¢in yerel durum
esitliginin erisilebilirlik ve gdzlemlenebilirliklerini kisaca anlatacagim.

Tanim 6.3  Yerel durum esitliginin bir x; durumu erisilebilirlik durumu olarak
cagrilir.Eger baz1 K; K, < oo , x(K;,K») = x; i¢in bir giris sinyali varsa bu erisilebilirdir. Eger
her durumu erisilebilir ise yerel durum esitligi erisilebilir olarak adlandirilir.

Esitlik (141)den x,, sadece ve sadece su sekilde erisilebilirdir.

x, € span{(A"2 B + AV2H B i is =01, ) (142)
Yardimei Onerme 6.3 iki boyutlu durum gecisi i¢in matris esitlik (137) de
tanimlanmustir.

span{ A2 |i;,iy =0,1,..} = span{ A2 | i},iy = O,],......n} (143)

Ispat Esitlik (137) de klasik adjoint-over-determinant formu ters matrisi ifade eder.

adj(ZIZZI - AIZI 'AzZz) = det(ZIZ2I - Alzl -AzZz) z ZAil,izzl_il Zz_iz
11=0ip=0

Bu ifadenin sol tarafinda z; ve z; nin pozitif olmayan kuvveti yoktur. Sag taraftta
det(z,z,1 -Az, -A,7,) z1 deki ve z; deki n in , ¢ift toplam isaretindeki sifir olmayan terimleri
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i1,i2> 1 i¢in bir polinom derecesidir. Bundan dolay1 esitlik katsayilart z,- g Zy 2,

i i, 20, gosterirki 7 > n yada i, >n oldugu zaman higde 6nemsiz olmayan A2 matrisinin
dogrusal kombinasyonu vardir. A¢ikca bu sonug esitlik (143) ‘i icerir.

Teorem 6.10 Yerel durum esitligi (131) sadece ve sadece matris asagidaki gibiyse
erisilebilirdir.

B, |B, | 4 B, | 4>'B, + 4"2B, |...| 4™ B, + 4"*1B, | (144)

ispat seyrek gosterilmesine ragmen, esitlik (144) deki matris (412 + 412*1B,) ile
ij <n,i, <n formunun tim n x 1 vektorleri kolon olarak igerir. Bundan dolayi,sonug
yardimci dnerme 6.3 ve durum erisilebilirlik sarti(142) nin basit sonucudur.

Yerel durum esitligi (131) in uygun gozlemlenebilirlik tanimi varolmayan sinir
sartlaria baglidir.

Tanim 6.4  Yerel durum esitligi (131) , sifir giris kimligi ile ¢ikis kimligi sifir oldugunda
sifir olmayan sinir kosulu kiimesi yoksa gézlemlenebilir olarak adlandirilir.

Sartlarin gelisimini gozlemlenebilir olarak tanimlanmasi esitlik (131) in girisler ve
sifir olmayan sinir sartlari i¢in cevabinin analizine bagli olabilir. Boyle bir analiz teorem
6.11°e oOnderlik eden bir yardimci 6nerme 6.3’lin bir uygulamas: tarafindan takip edilir.
Ispatin kalani okuyucuya kalmaktadir.

Teorem 6.11 Yerel durum esitligi (131) eger matris asagidaki gibiyse gézlemlenebilirdir.

C
A2
a2
(145)

cAn,n

Bu yazilarin yazildigi siralarda yerel durum esitligi (131) cinsinden iki boyutlu
dogrusal sistemlerin anlasilmasi tamamen miimkiin degildi. Esitlik (136) danda agikca
anlasilacag gibi anlasilabilirligi i¢in verilen H(z;,z») transfer fonksiyonun gercek oransalligi
gerekli bir sarttir. Daha ilerde diger gerekli sart olan H(z;,z;) nin pay ve payda polinomu
z1=z2 = 0 oldugunda sifir olmak zorundadir. Diger bir deyisle, bu polinomlar sifir olmayan
sabit terimlere sahip olmak zorunda degildir. Diger gerekli sartlar da ayrica yetersizdir, bir
genel transfer fonksiyonu tarafindan anlasilabilir bir yapilmayla bir ispat verir. Boyle
anlagilabilir bir sey yazmak oldukga sinir bozucu olabilir, belirsiz olan yerleri bir 6rnekle
gosterecegim.

Ornek 6.12  Asagida tanimlanan iki boyutlu dogrusal sistemi diisiiniiniiz.
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byzy +by 2,

H(ZI’ZZ) =
Z12p +a1021 +a0122

Bu sistem i¢in bir basit hesaplama gerceklestirilebilirlik gosterir.

_ —dor —4ap 0
x(ky + Lk, +1) = x(ky +Lky)+ 0 0 x(kl,k2+1)+1u(kl+l,k2)

—dor —d0
1
+{ j|u(k1,k2 +1)
0
vk ky) = [b01 b1o]x(k1,k2)

Burada tiim ilk sartlar sifirdir.

Elbette iki boyutlu dogrusal sistemler i¢in en kiiclik boyutlu gerceklestirimin
yapilmasinin ¢ok ilgili ve daha fazla alan birakilmis olmalidir. Tek boyutlu durumda,
erisilebilirlik ve gozlemlenebilirlik ve erisilebilirlik en kiigiik gerceklestirim teorisinin
gelistirilmesinde faydali araglardir. Ancak asagidaki 6rnek iki boyutlu durumlar i¢in daha
karmasik oldugunu gostermektedir ve belkide daha once tanimlari verilen erisilebilirlik ve
gozlemlenebilirlik en iyi secenek degildir.

Ornek 6. 13 Transfer fonksiyonu igin.

21722
H(zy, 2z )=
2122 +Zl +Z2

Ornek 6.12 de verilen gergeklestirimi olur.

0 0 -1
ki +1Lky,+1)= ky+1,ky)+
x(ky 2+ [_1 _Jx( 1 2) [0 0

}c(kl Jky +1)+ {ﬂu(kl +1,k5)

1
+ {O}u(kl Jky +1)
k. ky) =[1 —x(k;, /ey )

Bu hizli hesaplama, bu yerel durum esitliginin erisilebilir ve gozlemlenebilir oldugun
gostermistir. Asagida verilen gerceklestirimden beri en kiigiik degildir.

.X(kl +1,k2 +1) :—X(kl +1,k2)—)C(k1,k2 +1)+U(k1 +1,k2)—1/l(k1,k2 +1)

V(ky,ky) = x(ky, k)

Sonug¢ olarak iki boyutlu dogrusal bir sistem kullanarak modellenebilen bilinear
girig/cikis sistemini gostermek cok basittir. Bu sistemin iki sinifi i¢in dontlistim-alan giris/cikis
esitliginin karsilastirilmasindan daha fazlasini icermez. Boyle bir karsilastirma bilinear
girig/gikis sistemleri transfer forksiyonu H(z;,z,) sOyle gortnebilir. u (k) ve u,(k) giris
igaretlerinden, u,(ky,k,)=u (k) )u k,) array formudur. y,(ky,k,) sirasm elde etmek igin
H(z,,z,) transfer fonksiyonu ile iki boyutlu dogrusal sistem ile isleriz. Daha sonra
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v(k) =y(k,k), diizenlersek, y(k) siranin késegeni olur. Bu durum Sekil 6.2 de sematik olarak
belirtilmistir.

u (k) , .'
—L——@ array ul(kl)ul(kl) .H(Zl,Zg) }’(kl,kz) ,dlagonal' y(k)

uy(k) | former readout —————>
SRR s

Sekil 6.2 Bir bilinear giris/cikis sisteminin, iki boyutlu bir dogrusal sistem kullanarak
ifade edilmesi
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7. BOLUM

Kimlik terimi ¢ok genis anlam dogrultusunda giris/¢ikis deneylerinden bilinmeyen
sistemlerin Volterra/Wiener gosteriminde gekirdek veya transfer fonksiyonlari hakkinda bilgi
alma anlamina gelmek olarak kullanilacaktir. Bu bilgi genellikle kismi nimerik bagimsiz
degisken degerleri igin gekirdek veya transfer fonksiyonlarinin deger bigimlerinde olacak.
Bununla birlikte, ben ayrica, bilinmeyen sistemler igin kismi yapi kabul edildigi zaman veya
bilinen fonksiyonlarin bilimsel terimleri iginde gekirdeklerin genlesmesi kabul edildigi zaman
meydana cikan, bazi basit parametre kimlik problemlerini tartisacagim. Yapilacak c¢ogu
kalintilar tartismanin gidisatinda netlesecektir.

Duragan polinom sistemler (izerinde dlstinllecek ve giris/cikis deneyleri 5. B&lim
veya bolim 6.5'de Uzerinde dislinilen tiplerden birinin giris sinyallerinin uygulamasini
icerecek. Uygunluk sorunu olarak, bazen tartisma sirekli-zaman sistemleri terimlerinde ve
bazen ayrik-zaman sistemlerinde olacaktir.

7.1 Giris

Genel giris/cikis deneyinden bilinmeyen sistem igin ¢ekirdek degerleri belirleme bir
lineer(dogrusal) problemdir. Bu ayrik zaman durumu igin son derece basitge gosterir,
polinom sistem nerede, teknik basitlik icin, sistemin sinirli M hafizaya sahip oldugu ve 0
derece teriminin sifir oldugu kabul edilmistir. Tek yanli giris sinyalleri kabul etmek, liggensel
cekirdek gbsterimi tarafindan tarif edildigi gibi

v(k) Byeri (g i )u(k = iy) ceu(k — i)
Z Z Z Z . 1 . "

n=1i,=0iy=0 in=0

Simdi giris sinyal degerleri u(0),...u(K) icin, cikis sinyal degerlerine iliskin ¥(0),v (K ) nin

bilindigini varsay. Sonra bu (1)’den bilinmeyen cekirdek degerleri terimlerinde lineer matris
esitligi yazmaya kadar dogrudur:

Y=HU (2)
nerede
Y = [¥(0)..y(K)]
H = [hy(0)hy (1) oo by (MR, (0,0)hgey (1,00 ey (1,1) oo By (M, oo, M)]

ve



o)

u(0) u(1)

0 u(0)
0 0

u? (0) u? (1)

_ 0 u(0)u(1)
v 0 u2(0) 3

0 0

u” (0)
0

Eger K Unun kare matris oldugu gibiyse ve eger U ters cevrilebilirse, o zaman c¢ekirdek
degerlerinin H = YU-1 ‘da verildigi simdi aciktir. Eger K bu degerden genis veya kiiguikse
veya eger U ters gevrilebilir degilse; o zaman en kiiglik kareler teknikleri, s6zde dénisim
gibi, cekirdek degerleri igin yaklagim elde etmede kullanilabilir.

Bu gelismeler gekirdek belirleme probleminin dogasini gosterdigi halde, gereken
boyutlarin ¢ogu ilgi durumlarinda ¢ok yaygin oldugu netlestirilmelidir. Ornegin (M + 1)»
dizeninde M bellekle n derece cekirdek degerler vardir. Sonug¢ olarak Y = HU lineer
denklem ¢6ziimi oldukca zor olabilir. Bu dikkat edilecekler bilinen fonksiyon terimlerinde
cekirdek genlesmesini kapsayarak yaklasim teknikleri girisine dogal olarak yol agar.

(1)’'deki Ucgensel cekirdeklerin her birinin bilinen fonksiyonlarin Grlnlerinin lineer
kombinasyonu ¢o(k), ¢:(k), ... ¢s(k) gibi gdsterimlenebileceginin varsayildigini farz et. Ozellikle,

hn:r:'(:kil !kn) = Z Z Z aj._..jncﬁj,_(kl) P (ki)

72=0 j,=0 in=0

oldugu varsayilmistir. Sonra (1)

y(k) = Z Z Z . Z Z 0, (i) e 0, (i) ulk —iy) u(k —i,)

biciminde veya benzer bir gosterimde,

N J J
.\'(k.) = Z Z e Z av’, . i‘l .d),' 5 (,k)
s34 Jimdn .

n=1;.=0 Jn=0
Ja 41

@, . ;, (k) acik tanimiyla tekrar yazilabilir. Bilinen giris sinyali u(0),u(1),... u(K) ve bilinen

ilgili yanit ¥(0),y (1), ... ¥(K) igin ¢ (k) ve bilinen katsayilar a;__; icin lineer denklem
Jiin - 7



(8)
(10)
(9)

seti kazanglari (6) bilinmistir. Eger ] kiiglikse, o zaman denklem sisten'(igj]ty boyutu (2)'nin

boyutundan ¢ok daha kiguktir. Yani, cekirdek degerlerinden daha az genlesme katsayilari
bulunabilir.

ileri arastirma genel yaklasim detaylari okuyucuya birakilacaktir. Bélimiin geri kalani
icin giris sinyallerinin 6zel tiplerine dayanan kimlik metotlariyla ilgilenecegim.

7.2 Tepki Girislerini Kullanarak Kimlik

Tepki cevabina dayanan siirekli zaman lineer sistem kimligi genisge tartisilir, zaman
kullanilsa bile ve bdylece lineer olmayan durumlar igin ilgili durumlarn tartismak gerekli
goralur. Ancak okuyucu teorik tartismanin uygulama igin sadece sinirli potansiyele sahip
olduguna dikkat gostermeli. (7) tarafindan

y(t) = f Rpsym (t— 04y oyt — 0 Juloy) .. u(o,)doy ...da,

4
tanimlanmis n derece bir homojen sistem varsay. Sonra bélim 5.1den, u,(t) = §,(t)e
yanit v, (t) = h (t, .. tydir. p =2,3,..,nigin, Ty, ... T,_,"in belirgin pozitif numaralar

nsym

oldugu yerde

-up_i(:t:) = 50&) T 5o(t— Ti:) + ot 50&— Tp—i)

‘a cevap; X,, 'in bitiin tam sayi My, o -mpdegerleri Uzerinde toplami p kat oldugu yerde,

soyleki0 = m; =n,vem; + ..+ m, =n:
. n! )
yp(t) = ﬁhnsym (& westsust =Ty gy ey e, t =Ty
my!.. m,! !
m P my mp

Bu yanit formilleri temelinde, homojen sistemler igin kimlik stratejisi 2.derece durum igin
agtklamak kolaydir. 2.derece sistem igin u,(t) ve u,(t)'e cevaplar, sirasiyla

M (t) = h::_‘.'m (:t-' t)

w0 = h

2sym (f, t) T h‘f (t: t— T1) T h-: (t - Tl-' t— Tl)

sym sym

‘dir. Boylece esit argimanlarda simetrik cekirdek degerleri v,(t) degerleri tarafindan
dogrudan verilmistir. iki belirgin arglimandan herhangi birinde simetrik cekirdek degerini
belirlemek igin, t; = t, ile t; ve t,’yi soyle, sadece Ty = t; —t, alindigl icin (10) basitce

bunu verir:



({#3)
(19§3)

(15)

! Lasym (:t1.r t:) = [."1 (ti) — M (ti) — > (t:)]

N |

&

Bu cesit analizler n derece homojen sistemleri genellestirebilir. Yani belirgin
arglimanlarda sistem cekirdek degerleri (8)'de bulunabilir. Genel hesaplama kesin sonuglari
daginiktir ve ben bu ylzden onlari motive olmus okuyuculara ve literatire birakacagim.

Henliz kapsanilan hesaplama c¢esidi polinom sistem durumunda da kullanilabilir. 2
derece durum tekrari gelismeyi goésterecek.

y(t) = foﬁ hy(t —o)u(o)do + fc‘ Rasym (t — 01, t — 03)uloy)u(o,)do;da,

tarafindan tanimlanmis bir sistem dusun. (8)'den u,(t) ve u4(t)ye cevaplar asagida
listelenmigtir:

Yo (8) = hy(8) + hygy (1)

yi(t) = hy(t) + hy(t —Ty) + by (8, 2)
+ 2hygym (t,t—T,)+ | Py— (t—=Ty,t—Ty)

$imdi, belirlenmis t; = t; icin h,_. (t,,t,) 2 derece cekirdek degerinin nasil belirlenecegini
gostermek igin, 2 derece homojen durum gibi ilerleyebilirim. Ty = t; — t, ayarlamak basit bir

hesaplama verir

h:s;.'m (:ti-' t::) =

B |

[y (£1) — ¥ (£4) — ¥ (22)]

Fakat 1 derece gekirdekten ne haber? Bu gekirdegin degerlerinin esit arglimanlarda 2
derece cekirdek degerlerinden ayrilmasi gerektigi (13)’den aciktir. interpolasyon (ara
degerleme) sorunu burada meydana gikar ve 2u,(t)'nin

V2 (t) = 2'hi (t) T 4}125;.'??1 (:t-' t)

cevabini Urettigini bildirmek icin bir yaklasimdir. Sonra _vc.(t) ve ¥V, (t) vektor formunda

yazilabilecek bir denklem kiimesi Gretir
[yg(tq =:[1 1][ hy (1) ]
v 2 4llhy,,,(t.t)
Uriinlerin ¢6ziimii

hy (£) = 2y5(0) =332 (8)

. L1 .
h‘:s_‘,.'m (.t-' t.) =2 (t) + ;.V: (t)



Boylece, bu cekirdek deger tipleri t = 0 oldugu herhangi bir degerde elde edilebilir.

Yiksek derece polinom sistemler igin, bu analizler devam ettirilebilir. Fakat ayrintilar
artarak titizlik ister hale gelir ve interpolasyon (ara degerleme) fikri cesitli agirhk tepkilerini
kapsayarak bir fizibilite bakis agisindan artarak verimsiz hale gelir. Boylece daha az siddetli
giris sinyalleriyle birlesmede benzer fikirler meydana ¢iktigi halde ben konuyu burada
birakiyorum. Bu simetrik ¢ekirdek degerlendirmelerinin nasil kullaniimasi gerektigi sorusu
eldeki bircok duruma dayanir. Tarih koyma uygulamalarinin ¢ogunda, yeterli degerler
cekirdek cizimleri yapmak icin elde edilmistir ve bunlar sistemin karakteristigini belirlemek
icin analiz edilmistir. Kisa bir siire igin analizlerin modellenmis fiziksel sisteme ¢ok fazla
dayandigi genel olarak soylenebilir.

Genel bakis agisindan, ¢ekirdek degerlerinden bir sistem matematiksel model
belirleme kabiliyeti kritik olarak bilinmeyen sistem hakkindaki varsayimlara dayanir. Ornegin,
cekirdekler igin fonksiyonel formda oldugu varsayilmali, fonksiyonel formda hangi durumda
parametreleri belirleme sistem kimlik isleminde baska bir adimdir. Bu gesit varsayim bir
bilinmeyen sistem igin bir ara baglanti yapisi varsayarak veya durum-denklem gergeklestirme
kismi tipi tarafindan tanimlanabilen sistem varsayarak uygun olarak gergeklestirilebilir.
Mevcut genel durum hakkinda kisaca soylenebilecegi icin, aklima gelmigken, simetrik
cekirdegin her zaman en uygun gosterim segenegi olmadigini gosteren basit bir 6rnekle
tatmin olacagim.

Ornek 7.1 Bir sistemin bir diferansiyel denklem formunda
() +a,3(t) +agy(t) = byu(t) +dyy(t)u(t)

tanimlanabileceginin bilindigini farz et veya esit olarak, ¢ift lineer durum denklemi
(A,D,b,c, R::):

w0 =|o g Jro+]g o]xu®+],

0

Juce
y(®) =[1 o0]x(?)
Onemsiz durumlardan kaginmak icin, b,,d, = 0 varsay. Problem 5.1'in sonuglari, genel

formla birlesmede

h

nreg (tl,» sy t,n_:) = ce'n Dedfn-1D ., 42 b,»'n- =12, ..

sistemin tepki-tinite cevabini D? = 0 ve Db = 0"in kullanildigi seklindeki gerceklerin oldugu

yerde



R, . . (18 .
formunda verir. Simdi, ¢, A ve B, esit olarak, @, @, ve by'in bu un(lte—)tepkl yanitindan
hesaplanabilecegi lineer sistem teorisinden varsayilabilir. D'yi belirlemek igin, yani, d,,

sistemin §,(t) + 8,(t —T), T = 0’e cevabi kullanilacaktir. Bu cevap su formda

() = Z [Preg(0,..,0,8) 4y, (0,..,0,T,t =T) + k.. (0,..,0,T,0,t =T) + -
=1

+ Rypeg (0, ...,0,t = T)] =ce?th + ce4*"Tbs_ (t—T)

+ CeA'it—T}DeATbé'_i(t _ T)

¢, A ve B bilindigi igin dy'in her t = T igin y,(t) degerinden hesaplanabilecegini gostermek

icin basit uygulama gibi birakilmistir.
7.3 Kararli-Durum Frekans Yanitina Dayanan Kimlik

Sinlsoid girisler icin homojen ve polinom sistemlerin kararli-durum cevabi baska
kimlik problem yaklasimi icin temel saglar. Fikirler transfer fonksiyon degerlerini bulmak igin
iyi bilinen lineer-sistem frekans yanit metotlari ile benzerdir. Spesifik olarak, H(s) transfer
fonksiyonu tarafindan tanimlanmis bir oturmus lineer sistem varsay. Sonra, bélim 5.2’de
takip eden gbzden gegirme, onarmak igin kompleks H(iw) degeri, gercek w genligi ve
u(t) = 2Acos(wt)’a karar durum yanitinin fazini élcerek belirlenebilir. Gergekten, iki
degerlendirmeye 6lgiilen kompleks numara H(iw) nun kompleks eslenigi tarafindan verilen

H(—iw) igin belirlenebilir.

Tekrar simetrik transfer fonksiyon terimlerinde tanimlanan bir 2 derece homojen
sistem dikkate alarak nanlineer sistemleri tartismaya baslayacagim. Bo&lim 5.2°den,
u(t) = 2Acos(wt) a karali-durum yaniti

Vo (t) = 24°H,,, (iw,—iw) + 24%|H,,,,, (iw, iw)| cos[2wt + £H,,,, (iw,iw)]

Boylece H,.,.,, (iw, —iw) ve H,_. (iw,iw) degerleri belirlenebilir. Fakat bu essiz sistem

transfer fonksiyonu belirlemek igin genel olarak yeterli bilgi saglamaz.

Ornek 7.2 Sekil 7.1’de gosterilen 2 derece sistemler hesaba kat. Ya simetrik transfer
fonksiyonlarini hesaplayarak ve yerine koyarak ya da sistem boyunca 24 cos(wt) girisini
izleyerek tek ton girisler igin kararli durum yanitlarinin 6zdes oldugu gosterilebilir. Ayrica
girislerin farkh tipleri igin yanitlarin 6zdes oldugu, bu agik olmasi gerektigi halde
dogrulanabilir. Hesaplamalar sonuglarin kot oldugu kadar sikicidir ve bu yiizden ayrintilari
athyorum.
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Sekil 7.1. Ornek 7.2’de dikkate alinan sistemler

Bu durumu atlamanin bir yolu daha komplike giris sinyali kullanmaktir. Ornegin, iki
ton giris icin bir 2 derece sistem yaniti dikkate al:

u(t) = 24, cos(w,t) + 24, cos(w,t)

Ornek 5.5’den, simetrik transfer fonksiyon terimlerinde kararli durum yaniti

Ve(t) = 241H,_,, (iw,, —iw,) + 243H, . (iw,, —iw,)
+ 44,4,
+ 44,4,
+ 243

+ 242

Hy o (—iwy, iw,) cos[(co: —w )t + £H, ., (—iw,, iw, )]

Hyoom (iwy, iw, )| cos[(wy + w,)t + 2H, . (iwy, iw,)]

Hyoom (iwy, iwy )| cos[2w, t + 2H,,,, (iwy, iw,)]

cos[Zco:t + ~H, iy, Lo, )]

His_‘;m (-iw: ’ iw: ) 2sym (

tarafindan verilmistir. Simdi w, ve @, 'nin (20)'de goriinen diger frekanslardan farkl oldugu

gibi varsay. sonra bu kararli durum frekans bilesenin genlik ve faz o6lcimi kompleks
H,...(iwy, iw,) degerini verecektir.

Bu degerle ne yapilacag tartismasini geciktirme, ylksek derece homojen sistemler
icin nasil ilerlenecegi net olmalidir. 3 derece durum taslagi gcizmek igin, ¢ ton giris dikkate al

u(t) = 24, cos(w,t) + 24, cos(w,t) + 24, cos(w,t)

n=3,L=M=N=1 icin bélim 5.3 (46)da uzmanlasarak e‘'“:¥wz%ws)t |atsayis
314,4,A3 Hyyppy (T, Ty, fwy) ve pilw g twytagle katsayisi

314,4,A3 Hy,,,y, (—lw,, —iw,, —iwy) dir. Bu gercek frekans
3124,4,4, |H33}.m (iwy, iw,, iwy)| cos[(wy + w, + wy)t + 2Hy(iwy, iw,, iw;)]

terimini verir. Eger wy, w, ve w; frekanslari oransizsa, bu frekans terimi belirgin olacaktir ve
bu ylzden genlik ve faz Hs,,, (iw,, iw, iw;) degerini elde etmek icin Ol¢ilebilir. Bu
sonuglar n ton girise yanitin H(iw,, ..., iw, )'nin degerini belirlemede kullanilabilecegi yerde

n derece duruma dogrudan genisletilir.



(24)

(23)

Yiksek derece homojen alt sistemlerinin disik derece alt sistemlerinki gibi benzer
frekanslarda kararli durum yanit terimlerine katilmasi seklindeki gergek tarafindan polinom
sistem durumunda bu transfer fonksiyon degerlendirmelerini bulmak fazlasiyla karigiktir.
Basit bir 6rnek olarak, sadece 1 derece ve 3 derece homojen alt sistemlerden olusmus bir
polinom sistem varsay. eger 24 cos(wt) girisi uygulanirsa o zaman karar durum yaniti

v..(t) = 24|H,(iw)| cos[wt + £H, (iw)]

+ 243 |H35_.‘_m (iw, iw, —iw)| cos[wt + LHyoym (iw, iw, —iw)]

+ 243

H... (iw,iw, icu:)| cos[3 wt + £Hy, ., (iw, iw, ia):)]

3sym .
olur.

Tabi ki, @ frekansindaki iki terim standart 6zdeslikler kullanilarak bir terimde birlestirilebilir.
Fakat isaret,3 derece homojen alt sistemin H,(iw) belirlemek igin ihtiya¢ duyulan frekans

bilesenlerine katkida bulunmasidir.
Bu 6rnege biraz daha fazla devam etmek 6greticidir. Sistemin girise yaniti
u(t) = 24, cos(w,t) + 24, cos(w,t) + 24, cos(w;t)

w4 + w, + w5 frekansinda bir terim igerecektir. Bundan bagka, eger Ug¢ giris frekansi
orantisizsa, bu bilegsen belirgindir. Bu 3 derece alt sistem fonksiyon H_.  (iwy,iw,, iw;)
degerinin tam 6nceki gibi belirlenebilecegini gosterir. Buna ragmen okuyucu kolayca H, (iw)

degerlerini  belirlemede  zorluklarin  devam  ettigini  dogrulayabilir.  Ornegin
Hyoym (T, tews, —iw,), Hygyp (y, iws, —iw;) ve Hy(iw,) hepsi karar durum yanitinda w,

frekansina katkida bulunur. Bu durum simetrik transfer belirleme problemini
degerlendirmelerinden yukariya getirir, blyitir. Bunlarin ne olmasi gerektigi net olmadigi
halde, 6zel varsayimlarin transfer fonksiyon yapisinda lazim olacagi beklenir. Lineer durumda
transfer fonksiyon H(s)’nin kesinlikle uygun oransal fonksiyon oldugu ve bazen H(s)’nin

bilinen n derece olmasi varsayildigi genelde varsayilmistir. O zaman form H(iw)

degerlendirme kiimesinden transfer fonksiyonu belirlemek icin bircok metot vardir. Onceki
¢alisma igin basit baslangi¢ noktasi sagladigl halde n’in bilindigini varsaydiginiz zaman bu

yaklasim gergek disidir. Ne yazik ki boyle bir genel baglama noktasi lineer olmayan durumda
mevcut degildir. Boylece ben genel durumu terk edecegim ve bir basit polinom sistemler
sinifiyla tek yaklasim gosterecegim. Uygunca seri kisitlamalar homojen alt sistem transfer
fonksiyonu formunda yuklenecek bdylece onlar frekans yanit dlgiimlerinden meydana ¢ikan
tip degerlendirmelerden basitge tanimlanabilecek.



(26)
(27)

1l G [ P a (P = a,0) o o0 2

Sekil 7.2 Bir ara baglanti basamaklama

Sekil 7.2’de gosterilen ara baglanti yapisina sahip olmak igin bilinen, lineer alt
sistemlerin stabil oldugu varsayildigi yerde bilinmeyen lineer olmayan bir sistem varsay.
Bundan bagka, sabit ¢oklayicilar yolun her numarasinda basamaklamanin basindan sonuna
dagitilabilecekleri icin G;(0) = G,(0) =1 oldugu varsayilir. Sistem icin simetrik transfer

fonksiyonlarinin form

H -51’ Ty Sn:) = a‘r:Gl(si) Gi (:S,!:)G: (sl Tt s,,_i)_.n = 1~'2’-' ey N

nsym (

‘e sahip oldugunu varsaymaya ara baglanti yapisi esittir. Bu yapisal varsayimin bir hayli sert
oldugunu tekrarlamaya siddetle ihtiya¢ duyarim. Ancak, en azindan ilkede, kararli-durum
frekans yaniti basit 6lgimlerinden alt sistem transfer fonksiyonlari belirlemeye izin verilecek.
Aslinda, N’in degeri ne olursa olsun, sadece tek ton girisler gerekecek. Sekil 7.2’de gosterilen

formun bir sisteminin karali durum yanitini kolayca hesaplamak igin Bolim 5.2’nin sonuglari
uygulanabilir. u(t) = 24 cos(wt) girisi icin kararli durum yaniti bu formda

N
Vee(t) = fo(4 iw) +2 Z |f,, (4, iw)| cos[nwt + =F, (4, iw)]
n=1
yazilabilir,
v /2]

- ? C 1. Ir o~ - r - -
£, (4,iw) Z [";]A"‘a:kGi" (iw) G¥ (—iw)
k=1

]

fi(4,iw) = [n- + 2k

n+k

] A g G (1w) G (—iw) G, (inw),
k=0

n=12,..,N
oldugu yerde, [x] en biiyiik integer = x gdsterdigi yerde.

Lineer olmayan polinomda katsayilar ve lineer alt sistem transfer fonksiyonlari
belirlemek icin kullanilan birkag yaklasim var. Tek ton girisler (sabit girisler iceren) gerektiren



(28)
ve goreli faz o6lgimi gerektirmeyen ¢ok basit bir metot tartisacagim. Ancak kisaca
netlesecek sebepler icin, G;(s) ve G,(s)’in minimum faz transfer fonksiyonlari oldugu

varsayilmali. (29)

Gesitli genliklerde fonksiyon girisleri adimina karar durum yanitini  6lgerek
ay, a,, ...,ay katsayilarini belirlemek ilk adimdir. Sisteminu(t) = A5_;(t)’ye karar durum

yaniti v..(t) = a;A + a, A* + -+ + a, A" dir. Bu ylizden N farkli giris genlikleri icin v..(£)’nin

sabit degerini 6lgmek polinom ara degerleme ile katsayi degerlerini verir.

G,(s) ve G, (s) lineer alt sistem transfer fonksiyonlari belirlemek u(t) = 24 cos(wt)
formundaki girislere karar durum yanitinin temel frekans bileseninde genlik 6lgiiminden
tamamlanacaktir. Bir baska deyisle 4 ve @’nun cesitli degerleri icin |f; (4, iw) [ nin élctimleri

kullanilacaktir. Kesinlik icin N’in eski oldugu varsayilir béylece f; (4, iw) formunda

N
Aay + (3)‘43‘13'61 (i) + -+ [N T 1‘ ANQA\.-|61 (:1'(0:)|‘V_1‘
2. —

F4]

fi(4,iw) = G,(iw)G,(iw)

yazilabilir. f;(A4,iw) «’nun bir basit karmasik fonksiyonun bir Griininiin ve @’nun bir

karmasik reel fonksiyonun formunda verildigi igin, ilgili kare genlik fonksiyonunu

1f2(4 i) ? = 16, (i) 216G, (i) |* [Aay + [1]A3a3|61(1w_)|‘ T

y N AN oy |N-1 :
T [l] A a-A\rIGi(ICU_)l ]

= 4? ailGi (_ico)|: G:(iw:) 242 [3] A‘:’alaalGl(iw:)lélG: (l'w:)|: 4 e
N 2

+ E‘ AP aZ |G, (i) V|6, (iw)
2

hesaplamak basit bir maddedir. Simdi, uygunluk igin a4, a; = 0 varsayarak, bir kimlik
stratejisi asagida gosterildigi gibi 6zetlenebilir. Sabit frekans wicin, |f;(4,iw)|* A%’ de bir
polinomdur. Boylece yanitlarin temellerinin genlik 6l¢imu @, frekansiyla farkli genlik

girislerinin bir uygun numarasi igin katsayilarin

P,(w,) = ailG, (iw,) 1?16, (iwy)|?

10



(33)

(33

P,y (wy) = aya;31G; (iwy) 1?16, (iwy) I
polinom ara degerleme ile hesaplamasina izin verir. Bu ylizden,

Q.i P: (:wl:)

|G, (iw,)|* = ——
S a,a; Py(w,)

a;a; P{(w,)

G, (iw, ) |? . —

_( C 1)| Q-I P: (.(014)
w,4’in farkli degerleri icin bu islem tekrarlanabilir béylece lineer alt sistemler igin kare genlik
fonksiyonlari, @w’nun fonksiyonlari gibi, tanimlanabilir. O zaman minimum faz varsayimi
kullanmak ve G,(0) = G,(0) = 1 normalizasyon, transfer fonksiyonlari , G,(s) ve G,(s)

lineer sistem teorisinde iyi bilinen metotlar kullanarak hesaplanabilir.
7.4 Gaussion Beyaz Giiriiltii Uyarimi Kullanarak Kimlik

Bu teknik sabit lineer sistemin kimligi igin iyi bilinen ¢apraz korelasyon tekniginin

uzantisidir. Kisaca gbzden gecirmek icin,
y© = [ k@) ule-o)do

tarafindan tanimlanan bir lineer sistem igin girislerin gergek, sabit Gaussion beyaz guriltu
ortalama sifir ve yogunluk A ile oldugunu varsay. sonra (riine bicim vermek

y(u(t—Ty) = f h(o)u(t —o)u(t — T,)do, T, = 0

—oc

ve her iki tarafin beklenen degerini almak

Ely()u(t —T))] = f k(o) Efult — o)u(t — T,)]do = f h(0)A8,(0 — Ty) do = AR(T,)

‘yi verir.

Boylece cekirdegin degerleri (32)'ye dayanan belli giris/cikis deney ¢esidinden elde
edilebilir. Tabi ki, ergodicity varsayiminin tamamlanmis olmasi gerceklestirme bakis agisindan
¢ok onemlidir. Sonra beklenen deger, bir zaman ortalamasi tarafindan verildigi an igin ve

11



(34)

(35)
11 .
h(Ty) = lim — y(Bu(t —Ty)dt

-7
i

formunda tekrar vyazilabilir. Bu kimlik yaklagiminin gergeklestiriimesi, Sekil 7.3'te
gosterilmistir.

Py -
= unkmown  |—{[] —> . J2ne

. - average
linear system 5 E

Y

,| adjustable
delay, T,

Sekil 7.3 Lineer bir sistemin ¢apraz-korelasyon kimligi.

Gok benzer bir analiz, bir n derece homojen sistemin simetrik ¢ekirdeginin degerlerini
belirlemek igin ¢ok benzer bir prosediire yol agar. Belirgin Ozellikler 2 derece durum
tarafindan agik yapilir, boylece sisteme girisin

v(t) f Ryeym (04,05 )ult — oy Ju(t — 0, )doy do,

aynen oOnceki gibi Gaussian beyaz gulriltisi oldugunu varsay. Ben ¢ekirdegin terimler

(asagiya) eklendigi zaman agik olacak sebepler igin simetrik oldugunu farz ederim. Simdi
T,,T, = 0, Ty # T, igin

Ely(t)u(t = Tyu(t = T,)]

o

= J. Ryeym (01, 02) E [u(t — oy )u(t — a)u(t — Tyu(t — T,)]do, do,

- 0oC

Sag taraftaki beklenti

12



Ely(Du(t — Tu(t — T,)]
= A: f h‘Zs_‘,'m (0’1, 02:)60(02 - 01)50 (:T: - Ti:) da1d0:

- 0oC
==

+ A f h:s;,-m (04,0,)8,(Ty — 04)8,(T, — 0;) doyda,

- 0oC
oc

+ 4 f hasym (01, 02)6o(Ty — 01)8,4(Ty — 0;) doyda,

- 0c

-

= A" aG (TZ - Tl) f h:sym (01 0) do + ZAzhis;.'m (T1~' T‘:)

—0oc

‘t vermek icin genigletilebilir. Ty = T, igin, (36)

h, (: 1 T:) =

2sym

7;: Ely(t)u(t — T u(t — T,)]

Uretir. Ergodicity varsayimini uygulamak (37) ‘ye zaman-ortalama formunda

(36)

-+
L

) 1
- lim —
245 T—== 2T

|

Rasym (T1, T2) =

2sym

y(t)u(t — Ty )u(t —T,)dt, T, # T,

yazilmaya izin verir. (38)'in gergeklestirilmesi, Sekil 7.4'te gosterilmistir.

_(37)
»  unknown T o'eibize
degree 2 system —=
o| adjustable | T
B ) 1/
delay, T, (38)
| adjustable
delay. T,

Sekil 7.4 iki derece sistem icin capraz-korelasyon Kimlik metodu.

T, = T, = 0 oldugunda, beyaz giiriiltii icin E[w*(£)] bulunmadigindan bu yaklasim
bozulur. Geleneksel olarak, bu, taleplerin her biri ile yana adim atilir: 1) metodun her

uygulamasinda, u(t) gercekten beyaz degildir, 2) h,.. (T,T) degerleri T; =T, icin

13



Roepm (T1,T,) degerlerinin sirekli uzatmalari ile elde edilebilir. Her iki talep, uygun
durumlarin altinda gegerli olabilir, ama bu "Capraz deger" konusunun 6nemli zorluklara

sebep olabilecegi sirasi gelince gorilecek.

Genel n derece homojen sistemler igin, ¢apraz-korelasyon kimlik metodu Ty, ..., T,,'"in,

belirgin, negatif olmayan sayilar oldugu yerde

(Ty,..,T,) = e E[v(t)u(t — T,) ..u(t— T,:)]

iliskiye dayanir. Bu formilin uUretimi, bir alistirma olarak birakilmistir, aslinda sonra bu

boélimde bir hesaplamada igerilen ¢géziime.

Polinom sistemlerine gapraz-korelasyon yaklagiminin hesaba katilmasi igin, 3 derece

polinom sistemin kullanilacak:

==

y(t) = f hy(oy)u(t —oy)d oy (39)

-—0c

+ [ Rasym (01, 03, 03 ) u(t — oy )u(t — oy )u(t — o3)doydo,do,

giris/cikis capraz-korelasyonun E [v(t)u(t — Ty )u(t — T, )u(t — T;)] hesaplamak

Ely()u(t — Tyu(t — T,)u(t — T3)]
= Ah,(T)8,(T; — T,) + Ah,(T,)8,(T, — T,) + Ah,(T)8,(T, — T,)
+ 31 4%y, (Ty, T,, T3)

verir. Boylece belirgin Ty, T5, T; icin, 3 derece polinom durum tam olarak

h‘35_‘,.'m (:Ti-' TZ-' T3 ) = E [.V (t)u (t - T1:)u(f - T: :)u' (t - TB )]

3143
verilen 3 derece homojen durumdaki gibidir.

Capraz -korelasyon E [y(t)u(t — T,)] hesaplamak

14



Ely(t)u(t —T,)] = Ah,(T,) + 34° f hasym (0,0, Ty)
‘I 'verir. Bu ylzden 1 derece ¢ekirdek degerlerini belirlemek belirgin bitin arglimanlar siz 3

derece cekirdegi icerir. (40)’daki integral terimi th_‘.'m (o,0,T,)in uygun yaklasik degerlerini

kullanarak dogru olarak yaklasiklanamadikga, 1 derece gekirdek degerleri izole edilemez. Tabi
ki genellikle tamamen kisitlayici, o durumu dizeltebilir hipotezler vazg(l)r). Cogunlukla bu
hipotezler, bilinmeyen sistem igin varsayilan bir ara baglanti terimlerinde uygun olarak

formule edilebilir.

Ornek 7.2 Sekil 7.5'te gosterilen, ara baglanti yapisina sahip olmak igin bilinen

bir sistem varsay.

Ll (1) ‘ (T—

ﬂz(-)z J

Sekil 7.5. Bir 2 derece polinom sistem.

h

O zaman giris/gikis gosterimi

y(t) = f h(c)u(t —o)do + f f a, h(oy)h(oy)u(t — o, )u(t — 0,)do,do,

formunda yazilabilir. Sifir ortalamalidan 6rnek fonksiyon olan bir 6rnekle, A yogunluk ile

beyaz Gaussian rastgele islemi, yanitin ortalamasi

Ely(u(t — T ul(t — T,)] E[y(t)]

o

= | K ELue - )ldo
- J. f a,h(oy)h(o,) E[u(t — oy )u(t —o0,)]doydo, = a, A [ h*(o)do

‘dir. Giris/gikis capraz korelasyon

15



Ry, (1) = E[y()u(t — 1)]

yu

= j h(g)E[u(t— o)u(t —1)] do

+ [ [ axhleh(onBlute - sy)ute - )utt — 0] doydes = 4h(2)

—0oC —0OC

tarafindan verilmistir. Boylece, c¢ekirdegin degerleri, giris/cikis capraz-korelasyonlarindan
hesaplanabilir. Ve eger degerlerin yeterli numarasi integrale yaklasmak icin hesaplanirsa, o

zaman yanit ortalamasindan sabit a, hesaplanabilir.

Polinom sistem durumunda karsilagilan genel zorluklar, Wiener dikey temsilini
benimseyerek 6nlenebilir. ( Wiener temsilini kullanmak icin baska bir nemli sebep, problem

7.5'te 6nerilmistir.) Bir sistemin

v(t) —ZG w1 (1)]

tarafindan tanimlanabilecegini,

[n/2] oo (41)
- (—1)'nlAf : , .
Gn [kn! u (t)] = Z lm f kr: (0’1, e Oy 2ip Tea Ty, vee T r:') drl dr:‘ 'll(.t
2¢(n — 2i)!1i! '

- 0y) . u(t — o,_,;) doy ... do,

.....

bolim 5.5’de verildigi gibi oldugu yerde varsay. bélim 5.5'te notasyondan sonra,
alt simge "sym"nin yokluguna ragmen Wiener ¢ekirdekleri simetriktir. Simdi kimlik problemi,
G,lk,, u(t)],n =0,1,..,N belirleyen simetrik fonksiyon k,(t;,...,t,) belirleme problemi

(42)
olarak gorilebilir.

Prosedir, Gaussian beyaz glrilti girisinin ertelenen versiyonlarinin Grinlerini
yeniden icerir. Ornegin bir irin, w(t—T,),..,u(t —T,) giriste bir n derece
homojen operator olarak gorilebilir ve bu bakis agisi Wiener operatoérlerinin dikey
ézelliginin kullanimina izin verir. ( Homojen operatér w(t — Ty), ..., u(t — T,,) itici cekirdekler

kullanarak integral formda yazilabilecegini hatirla, fakat takip eden hesaplamalar icin boyle

yapmaya kii¢cik sebep olmaya benzer.)

16



ilk olarak cikisin beklenen degerinin

N

Ely(©]= ) E[6, [k, u(t)]

n=0
oldugunu ve Teorem 5.1'in kanitinda kurulmus sonuglar kullanmak, O derece Wiener
cekirdegin

ko = Ely(t)]

tarafindan verildigini not et. 1 derece Wiener gekirdegi k4 (t)’nin degeri, 1(43)T1 = 0 da, takip
eden gibi bulunur. ilk olarak, derece = 1’in Wiener operatérlerinin simdiye kadar kullanilan

her 1 derece operatore dikey oldugu seklindeki gercegin oldugu yerde

(44)
N
EL(ult =T = E| )" 6, [k, u()]u(t - m]
n=0
= E[Gy [k, u(t)]u(t — Ty)] + E[G, [ky, u(t)]u(t — Ty)]
Daha acik bir notasyonda
Ely(t)u(t —T,)] = kyE[u(t —T,)] + f ky(o)E[u(t — o)u(t — T,)]do = Ak, (Ty)
e (45)

Boylece

ky(Ty) = A Ely()u(t — T,)]

Tabi ki, bir ergodicity hipotezinin altinda bu hesap, bir zaman ortalamasinin oldugu gibi
gerceklestirilebilir. .Ben simdi, 2 derece Wiener ¢ekirdegin belirlenmesine devam ediyorum.

Farkh negatif olmayan sayilar Ty ve T, igin, k,(Ty,T,) degerlendirme

17



(50)

N
Ely()u(t —T)u(t—T,)]=E Z G, [kpu(t)]u(t — Ty)ult — TZ:)]

n=0

oc

=E |kou(t —T u(t—T,) + f ki(o)u(t —o)u(t —T,)u(t —T,)do
+ f k,(oy,0;)u(t — o )u(t — oy )u(t — T, )u(t — T,)dsjd o,
—A f ky(o,0)dou(t — T )u(t — Tz)‘ = Aky6y(Ty — T,) + 24%k,(Ty, T,)

not ederek bulunabilecektir. Béylece, Ty # T, igin,

1

YT Ely(t)u(t — Ty )u(t — T,)] (47)

k(T Ty) =

m (= N) derece Wiener ¢ekirdegi, benzer bir formda degerlendirilir. Farkli negatif
olmayan sayilar Ty, ...,T,, icin, hesaplama asagida gosterildigi gibi ana hatlar

gizilebilir:
(48)

N
E[.V(t)u(t - Ti) 'll»(t - Tm.)] =E z G, [kr' 'll»(t:)]'u.(t - Tl) u‘(t - Tm)

n=0

Dikeysel ozellikle,

m (49)
Ely@u(t=T)) . u(t =T,)] = ) E[6,lepu(®ult = T,) .. u(t = T,)]
n=0

Daha acik bir notasyona doénustirmek ve (42) kullanmak
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(53)
E[_\'(f)ll(t — T1) u(t - TWL-)]

= Z J. k,(oy,..,0,)E[u(t —oy) ... u(t —o )u(t —Ty) ... u(t

1:C-_I
T,)]do, ..do,
m /2] ( Jon . o
—1)'nl 4 . )
_Z 2i(n— 20)!i! f w(kn (00 020 Ty Ty, o 70 T) Elult

.....

verir. (51)'de ilk toplamada, beklenen deger, dirtilerin Grlinlerinin bir toplami olarak tekrar

yazilabilir. n =m oldugu zaman entegrasyonun ileri analizleri, terimlerin iki tipinin: bir
carpan &, (T; — T;) iceren ve hi¢ dirtl icermeyen fakat tersine Ty, ..., T,,, argimanlarinin baz
permitasyonu icin cekirdegin bir degerlendirmesi, meydana ¢ikacagini gosterir. T;'ler farkli
oldugu icin, dirtlyle carpaniyla beraber bitiin terimler sifir olacak ve cekirdegin simetrisi
m! A"k, (Ty, ..., T,,) ile kalan terimlerin verdigi gosterilebilir. (51)’ de ilk toplamada n <X m
oldugunda iki durum vardir. Eger n + m tekse, o zaman beklenen deger sifirdir. Eger n + m
ciftse, o zaman beklenen degerdeki her terim &,(T; — TJ,.) formunda bir ¢arpan igerecektir ve

bundan dolayi yeniden sifir elde edilir. Benzer sebepler icin, (51) de ikinci toplamada bitin

terimler O verir. Boylece, T’ lerin farkl oldugu hipotezinin altinda

Ky (Ty, eees Tpy) Ely(H)u(t—-Ty) .. u(t—T,)]

m!A™

Okuyucu suphesiz olarak, simdiye kadar farkli T; varsayiminin kritik dogasiyla ikna
(52)
edilir. Maalesef, o ilgilenilen simetrik Volterra gekirdegi oldugu zaman, dnemli bir zorluga

sebep olur. (41) Wiener gosterimini Volterra serileri gosterimine cevirmek icin, (41)’'de
oldugu derecede cesitli terimler beraber toplanmalidir. Teorem 5.3 hatirlamak,

(41)’de sistemin bir Volterra serileri gosteriminde n derece simetrik cekirdek

| . (1) (n+ 2m)1 A7
hns:-'m (-tl-' e t"') - Z

n!lm!l2am
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oc
J' kn*lim (ti’ e tn* 01-' 01 porrer 0?n~' arn.) dal do—m
0

tarafindan verilmistir. belirli argimanlar igin simetrik Volterra gekirdek ¢iftinin degerlerinin

belirsiz arglimanlar igin Wiener gekirdeginin degerlerine dayandigi agiktir.

Gapraz zorluktan kaginmak igin bir yol, ¢ekirdek degerlerinin hesaplanmasinda tam

¥(t) yanitindan gok artan

m-1

y()) = ) 6l u(®)] (54)
n=0

‘0 kullanmaktir. Her negatif olmayan Ty, ..., T,,, icin, O gosterilebilir

m-1

y(t) — Z Gk, u(®)]u(t —Ty) ... u(t —13D)
n=0

) . 1
km (Tl-' e=s Tm-) = mlAm =

Ornek 7.3 Belirgin olmayan arglimanlar igin ¢ekirdek degerleri belirlemede zorluk, ayrik
zaman durumunda ortaya ¢ikmaz. Giris duragan, sifir ortalamali, A siddet ile beyaz
Gaussian rastgele islem oldugu zaman, Teorem 6.9 takip eden iligkileri vermek igin

Ornek 6.8’in sonuglarini kullanmak basitlestirilebilir.

kc, = E[_\’(:kc-:)]

. | L
ky(iy) = A_E[.\"(.ko)'u(ke —i4)]

>a2 Ely(kg)u(ky, —iJulky —i,)], iy #1i,
7 & . ..;.4"
Ka (,11;1-*) = ;

& l s 2 . . . .
a2 Ely(ky)(u* (ko —iy) —A)], iy =1,
Daha yuksek-derece cekirdekler, benzer formiiller tarafindan verilir.
Volterra gekirdeklerinin durumunda oldugu gibi, Wiener g¢ekirdeklerinin degerlerinin
nasil kullanilmasi sorusu zordur. Ben 6zel ara baglanti yapisinin varsayildigi ileri durumlari

arastirarak yeniden bir yaklasim gosterecegim. Degisimin gidisatinda Volterra serileri ve
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Wiener serileri gosterimlerini islemek icin araglarin bir numarasini denemeye olay olacagi bir
yan faydadir.

Sekil 7.6’da, iki lineer sistemin stabil, minimum faz ve G,(0) =G,(0) =1 gibi
varsayilldigl yerde gosterilen ara baglanti yapisina sahip olmak igin bilinen bir bilinmeyen

sistem varsay. Burada Fourier donldsim notasyonun kullanildigini boylece lineer alt

sistemlerin sistem fonksiyonlarinin terimlerinde belirtildigini not et.

L 4

Y

— G(w) ad ¥+ ap (P + -+ ay () Glo)—>

Sekil 7.6. Bir bilinen ara baglanti yapisi.

Transfer fonksiyonlari durumunda gibi ilerleyerek, alt sistem sistem fonksiyonlarinin

terimlerinde, Volterra sistem fonksiyonlari

_ : o o : (56)
Hyoym (@4, o, 0,) = @, Gy (@4) . Gy (@,)63(0y + .t w,),n=12,..,N

tarafindan verildigini gostermek basittir. Daha sonra, problem 5.14’ten, Wiener sistem

fonksiyonlari, Wiener g¢ekirdeginin Fourier déntsimleri

(V=) /2] _
. . (n+2)4a, .-, .
Kooy o) = ) S DB G () 6y (0,)6, (0 +
n n rf!]! 2] n &
j=0
o) = [ 6,096, (=9 d J
"'(U,,__) % 1(}_) 1(_}'.) 4 (57)

Tarafindan verilir. Tek degisken Fourier dontigimleri igin Parseval bagintisini kullanmak

[(N—-n) /2] ) . oc 7
o i (n+2/)1Aa,.,; L o S
K, (wy,.. w,)= Z Y : gi(t)dr| Gy(wy) ... G4(w, )Gy (w, + ...
i=0 i —oc
+w,), n=12,..,N (58)

verir.

Simdi, ¢apraz korelasyon metodunun sonuglarindan, 1 derece Wiener

cekirdeginin degerlerinin yeterli bir numarasinin K, (@) 'in hesaplanmasina izin

vermesinin elde edilmesi varsayilacaktir. Sonra, (58)
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oc j

f 93 (T:)df‘ Gy ()G, (w) (59)

- 0C

[(nN=-1)/2]

o (1+2)) 4 a,..;
K, (@) = Z . J. 1+2;

j127

‘u verir. Yani G, (@) G, (@) Grind bir bilinmeyen sabite kadar belirlenmistir.

Ayrica 2 derece Wiener gekirdeginin degerlerinin yeterli bir numarasinin

K,(w,, w,)’in hesaplanmasina izin vermesinin elde edilmesini varsay. o zaman (58)

[(nv-2)/2] _ w« j
. ) 2+ 2/ Aa,.,; o . o }
Ky(wy, w,) = Z ' ?]".‘ = — J. g1 (t)dr| G,(w,)G, (co:_)g.%Q)wI + w,)
21512
Jv:C' —0c

9 verir. Yani G,(w;)G,(w,)G,(w, + w,) Urinl bir bilinmeyen sabite kadar
belirlenmistir.

ilk iki Wiener sistem fonksiyonlarindan G,(w) ve G,(@)'nin nasil elde edilecegini

gostermek igin @4 ve a,’nin bilinmeyen sabit oldugu yerde,
K,(w) = a,6,(w)G,(w)

Ky(wy, ;) = a,G, (w,) G, (w,) G, (wy + w,)

yazmak uygundur. O zaman, her w igin,

K, (:—w/Z_,co:) _ |a’-1| |K1(‘U:)|
K,(w/2) la,| 16, (@)l

oldugunu kontrol etmek kolaydir béylece

la, | 1K, (—w/2, w)]
|a3| |A'1((U/2)|

IGi (w)|=

gore G, (@) nin genlik spektrumu bilinmeyen sabite kadar belirlenir. Tabi ki bu

|G, (w)] = il K (w)l

lay |16, (w)]

gore G, (w)'nin genlik spektrumu bilinmeyen sabite kadar belirlendigini ima eder. Minimum
faz ve normalizasyon varsayimlarini kullanarak G, (@) veG, (w)’yi hesaplamak lineer sistem

teorisinde iyi bilinen bir problemdir. Kimlik probleminin ileri dislncesi, 6zel olarak,
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nonlineerlikte katsayilarin belirlenmesi Problem 7.8’e birakilir. Fakat N derece polinom
sistem giris/cikis ¢capraz koreldasyonun tam iki cesidinden belirlenebilecegi yerde, lineer alt
sistemin nasil not edilecegi 6nemlidir.

7.5 Wiener Cekirdeklerinin Dikey Genisletilmesi

Wiener cekirdek degerlerinin kullanimindaki zorluklardan dolayi, dikey genisletme
yaklasimi énemli bir alternatif olabilir. Temel fikir, Bolim 7.1’de kisaca tartisildigi gibi, b6lim

7.1’de kisaca tartigildigi gibi, L,(0,22) Hilbert alani igin, ortonormal temelinin terimlerinde

bilinmeyen sistemin Wiener ¢ekirdegi gosterimi ve o zaman bu ortonormal genislemede

katsayilari belirlemedir. Tekrar, kullanilan giris sinyali gercek, duragan, sifir ortalamali, 4

siddet ile beyaz Gaussian rastgele islemdir.

Bilinmeyen sistemin Wiener dikey gosteriminin terimlerinde tanimlanabilecegini

varsay. bundan bagka her bir Wiener c¢ekirdegi k,(t,,..,t,)'nin takip eden yolda

gosterilebilecegini varsay. @,(t), @,(t)’ye L,(0,22) de ortonormal temel olmaya izin ver.

Yani (61)

.. .. 0, 1=
[ e e =
J ,
O zaman, bu temelin terimlerinde her bir Wiener ¢ekirdegini, (62)
kn (.ti-' ey tn ) = Z Z kz’,_‘. in 0;’,_ (-tl) -a):'..,1 (-tn)
=1 ip=1
formunda (63)

==

k:' iy = f kn (:tlv' e tn) .C?):-' (ti) e (p‘ (t“) dti "'dtn

0

oldugu yerde yaz. i, ...I'nin her permitasyon 7 icin, Wiener operatérlerinin kullaniminda
1ly

ortlla simetri hipotezleri ile
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(64)

Tabi ki, genisleme (62) uygulamada terimlerin bazi sonlu numarasi kirpilacaktir, o sebeple bir

yaklasik gosterim Ureterek. Kimlik problemi simdi, k:-,_”;-n genlesme katsayilari belirlemenin

terimlerinde poz verir.

0 derece Wiener gekirdegi iin, k; = E[¥(t)] oldugundan tartisfgspk bir sey yoktur. 1

derece Wiener gekirdegi igin,

= ik:' ¢ (1)
i=1

i “*katsayisi takip eden capraz korelasyon hesaplamasina gore:

Z G, [k, u(t)] f ¢ ()u(t — a:)dkia

¢, (0)Eu(t —o)]do

v (t)f 0. (o)u(t — o)da‘ =

‘Eg

— 1.
= "'C'

0

o

ffkl )¢ (0)E[u(t —)ul(t — o)]drdo = A fk ((é% 1) dt = Ak;
0 0

0

tanimlanabilir. Notasyonun terimlerinde ylksek derece durumlarda kullaniimasi igin, (66)
. 1 : C
k.= 2E[y(0)6,[0, u(t)]]

gibi yazilabilir. Eger ergodicity varsayilirsa, ¢apraz koreldasyon zaman ortalama ile

hesaplanabilir. O zaman kimlik metodu Sekil 7.6 gosterildigi gibi bilinen sistem Gi[,cf)z_,u.(t)]

ile bilinmeyen sistemin garpilabilen baglantisinin terimlerinde gizilebilir.

S, G, [k, u(0)] ——l

¥

u T fime
’ 'MH; *| average

¥

Gyl u(n] 41‘
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Sekil 7.7. k,(t) icin katsayi kimlik metodu.

Wiener cekirdek k,(ty,t,;) icin k:-,_;-:katsaylsmm belirlenmesi, bilinmeyen sistemin Wiener

operatoéri

G, [,cf):.:@:.:,u-(t:)] (68)

[-"Z, (1) ¢ () + 6, (r)0. (-rl)]u. (t —7,)ult —1,)dr,dr,

[SSR

Il
O g

-4[ 6,00,
0
tarafindan bilinen sistem ile ¢arpilabilen paralelde baglandigi yerde Sekil 7.7 de gosterildigi

gibi cizilebilir. (Wiener operator notasyonunun, @ @ ’nin simetrik versiyonunu yazmaya

kacinmak az kotiye kullanilir.)

r

_
3 G,lk,.u()]

) (T ——» . lime

=/ average
Gl 0,,1() ]

Sekil 7.8. k,(t,, t,) icin katsayi kimlik metodu.

Y

Wiener operatérinin dikey 6zelliklerini kullanarak
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E[_v(t)G: [-a)::@i:-"l‘(t ] ZG [k, u(t)] G, [0 ?. u(t)]‘

=E[ lea u(®16; [0, 6, u(e)]]

G, [k, u(t)] J‘% dﬁ_(ri)dﬁ (1) + 0, (r )o. (rl)]u(t—ri)u(t
0

— 1,)dt, dr:]
r 1
= [ Skalovon [0, G0, ) (69)
0
+ 0. (r:)a) (ri)]E u(t — oy )u(t — o, )ul(t — 7, )u(t — 7,)]do,do,dr, dr,

fk (0,0) . (Ti)@ (rn)E[u(t—ri)u(t 1,)]dodt,dT,

0
(70)
‘dir. Beklenen degerlerin hesaplanmasi
E[V(t)Ga [a). ) ,u(t')” = 2A31[k.. otk | =24%,
Yt |G, ¢ UL 5 i, igiy
(71)

uretmek igin aligilagelmis bicimde gider. Yani,
K =2 -
iy EE [}‘(t)G: [Q):.: ,a)i:_, u(.t.)”

k,(ty, .., t,) n derece Wiener gekirdek icin genisleme katsayilari igin kimlik

yordami tam ayni yolda ilerler. (69)’la ilgili hesaplamalar ¢ok karmasiktir, fakat bu g¢agrilan

onceki sonuglar tarafindan onlenebilir. Sekil 7.9’da gbsterilen baslangi¢ noktasi

Y

3 G, Ik, u(]

| nme

(1![\ average
G, [0, -¢,-;|u(a-‘)]j

sekil 7.9. k, (t,, ..., t, ) icin katsayi kimlik metodu.

4

Dikey 6zelligin uygulamasi hemen



E|y(96. [0, -0, u®)]] = E[6. L u(®)]6, [9, 0 u(o)]]

Simdi Teorem 5.2’nin kanitinin az farkhsi kullanilarak,

E [Gn [k, u(t)]G, [45:-,_ ¢in,u(t)”

0 1
=nlA" f Ky (ty ---yf,«.)ﬁz 6, (ten) - 0, (fm:nx-)(%m) wdty,

0 ()
oc

0
(74)
gostermek kolaydir. Bu genel formili verir

Riyin = - E [}’(t)Gn [-a)i,_ 'cb:'n"l"(t)]]

ain Tl Am

Lgenly
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