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ÖNSÖZ 
 

 

Bir doğrusal olmayan sistem mühendisliği problemi ile karşı karşıya kaldığımızda, ilk 

yaklaşım genellikle doğrusallaştırmaktır. Başka bir deyişle; sorunun doğrusal olmayan 

yönlerini yapmaktan kaçınmaktır. Gerçekten uygun bir  çözüm bu şekilde elde edilir. Sorun 

giderilmediği zaman eğilim tamamen bu durumu önlemek için çalışmaktır. Bu şekilde 

ilerleyen mühendisler genellikle mantıksız olarak gözükür. Doğrusal olmayan sistem 

mühendisliği genellikle zor ve kafa karıştırıcı olarak bilinir. Bu konu üzerinde uzun süredir 

çalışanlar bu konuyu genellikle tehlikeli olarak görürler. 

 

Bu şüphecilik bir ölçüde haklıdır. Doğrusal sistem teorisi mevcut olan tekniklerin 

çeşitliliği ile karşılaştırıldığında, doğrusal olmayan sistemlerin tasarımı ve analizi için 

kullanılan araçlar bir takım özel kategoriler ile sınırlıdır. İlk olarak doğasında şekilci ve 

sınırlı olan faz-düzlem analizi gibi nispeten basit teknikler vardır. Sonra  diferansiyel 

denklemler, fonksiyonel analiz teorisi, ve operatör teorisi gibi oldukça  çözümü zor ve  

genel teknikler vardır. Bu bir dil, bir çerçeve ve varolan/eşsiz deliller ama genellikle bu 

temellerin ötesinde küçük bir problem veya özel bilgiler sağlar. Son olarak ise bilgisayarlar 

üzerindeki bir simülasyon olarak adlandırılabilir. 

 

Bu teknikler veya yaklaşımların yararsız olduğunu söylemiyorum. Faz-düzlem 

analizi, sınır döngüleri ve ikinci dereceden sistemlerin birden fazla dengelerini içeren 

doğrusal olmayan olayları  anlatmaktadır. Diferansiyel denklemler teorisi doğrusal olmayan 

sistemlerin bazı sınıfları için oldukça gelişmiş bir istikrar teorisine yol açmıştır. Fonksiyonel 

analiz ve operatör teorik bakış açıları felsefi açıdan çekicidir ve hiç kuşkusuz gelecekte çok 

daha fazla uygulama alanı bulacaktır. Sonunda herkes yerel bilgisayar merkezi kaynaklı 

başarı öyküsünün farkında olacaktır. 

 

Söylemek istediğim teorinin genellik ve uygulanabilirlik ihtiyacı olduğudur. Böyle bir 

teorinin, matematiksel çalışmalar ve mühendislik tekniklerinin gelişimi için bir başlangıç 

noktası olarak hizmet verebilmesi açısından büyük önemi vardır. Aslında bir köprüyü ya da 

bu iki faaliyetin arasında iletişim bağlantısı işlevi görebilir. 
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1970lerin başında zamanın doğrusal olmayan sistem teorisi için bir orta yol formülü 

olduğu elde edildi. Böyle bir formülasyonun diferansiyel denklemlerin bazı yönlerini 

kullandığı ve sembollerin yanı sıra operatör- teorik tanımlamalara dönüştürdüğü 

görülmektedir. Asıl soru her nasılsa, yapısal varsayımlar yaparak ve patolojileri redderek, 

oldukça basit ve oldukça genel olan doğrusal olmayan sistem teorisinin nasıl geliştiğidir. 

Bu bakış açısı ile doğrusal sistemler için yaklaşımların doğrusal olmayan teoriye 

genişletilebilir olması gerektiğini hissettirmektedir. Bu teorinin uygulamacılar kadar 

araştırmacılar tarafından da kullanılması önemli bir noktadır.   

 

Bu değerlendirmeler beni doğrusal olmayan sistemler için Volterra/Wiener 

tasarımına götürdü.1950’den beri yayınlanan makaleler mühendislik literatüründe düzenli 

bir şekilde bu konunun görülmesine yol açtı. Araştırmalar öyle gösteriyor ki son yıllarda 

doğrusal sistem teorisi çok başarılı oldu. İlk sorun bazı terminolojik karakterize 

belirsizlikleri önlemek  ve doğrusal sistem teknikleri uzantısını kolaylaştırmak  konularında 

uzmanlaşmaktı. Benim yaklaşımım geri beslemesiz doğrusal dinamik sistemlerin 

bağlantılarından oluşmuş sistemleri ve basit statik doğrusal olmayan elemanlar 

değerlendirmek yönündeydi. 

 

Tabiî ki bir çok insan yukarıda özetlenen bir takım ihtiyaçların farkında. Aynı 

zamanda  ben Volterra/Wiener serileriyle çalışmaya başladım ve diğerleri doğrusal 

olmayan diferansiyel denklemlerin yapısında uzmanlaşmak suretiyle kayda değer başarı 

elde ettiler. Bilinear durum denklemlerinin, doğrusal durum denklemleri ile ilgili birçok 

analiz araçlarını kullanarak yapılan analizlerle uyumlu olduğu gözlenmiştir. Ayrıca bilinear 

durum denklemleriyle ilgili çözümleri Volterra/Wiener serileri oldukça basitleştirecektir. 

 

Bilinear durum denklemleri,yapısal ara bağlantı sistemleri, Volterra / Wiener serileri 

bu kitapta anlatılan konular arasındadır. Bu konuların doğrusal olmayan sistemlerle ilgili 

mühendislik ürünlerine katkıda bulunacağına inanıyorum. Belirtmekte yarar var, doğrusal 

olmayan sistemleri analiz etmek çok da verimli olmayabilir. Özellikle  analitik  metot 

verildiğinde belirsiz sistemleri bulmak hiç de zor değildir. İşin kötüsü Volterra / Wiener 

serilerinin ne zaman kullanılacağını kestirmekte güç. Genel kanı eğer doğrusal olmayışlık 

az ise; Volterra / Wiener serileri kullanılmakta. 
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Okuyucudan biraz yardım talep ediyorum. Benim tek tavsiyem tüm metotları 

aklınızda tutmanızdır. Sorular genellikle diferansiyel denklemleri temel alan metotların 

uygulanması  konusunda olmuştur. Zaman düzlem ve bilgisayar merkezli yöntemlerin yeri 

geldiğinde kullanışlı olduğunu unutmayın.  Buradan anlatılan konuların okuyucular 

tarafından  sorgulanmasını ve tartışılmasını istiyorum. Teori tamamlanmadı ve daha da 

geliştirilebilinir.  Tüm rüzgarlara ve dalgalara rağmen engin denizlere açılan bir yelkenliye 

benzeyen doğrusal olmayan denklemler teorisinin katkılarıyla oluşturulacak  mühendislik 

icatları tüm bu zahmetlere değer gibi görünüyor.  

 

Basit fiziksel örnekler için yapılan araştırmaların daha verimli olduğu kanıtlamıştır. 

Sonuç olarak, kitapta uygulamalardan  hesaplamalar veya teknik özellikler göstermektedir. 

Her bölüm için aynı durumdan söz edilebilinir. Sorunları aydınlatmak ve bu konuya aşinalık 

kazandırmak hedeflenmiştir. Her ne kadar kavramlar Volterra / Wiener serilerine yer verse 

de ve. formülleri oldukça uzun olur ve bilinmeyen özelliklere sahip olma eğilimi gösterse de 

bu yaklaşım hiç de zor değildir. Kanımca çalışkan bir okuyucu bu sorunların üstesinden 

çabucak gelecektir. 
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BÖLÜM 1 
 

Giriş/Çıkışın Zaman Düzleminde Gösterimi 
 

Volterra/Wiener Serileri; Doğrusal olmayan sistemler için Volterra 

fonksiyonlarının matematiksel gösterimidir. Yani matematiksel bir araç gibidir, 

sistem giriş/çıkışındaki bu gösterim matematiksel olmadığı sürece 

tartışılamaz. Bende bu durumu; bilinen doğrusal sistemlerden başlayıp, 

doğrusal olmayan sistemlerin basit örnekleri doğrultusunda  ele alacağım. 

Öncelikle bizler daha alışıla gelen doğrusal sistemleri tekrar gözden 

geçireceğiz, daha sonrasında ise homojen doğrusal olmayan sistemler (birinci 

derece Volterra serileri), Çok terimli sistemler (sınırlı Volterra serileri), ve 

Volterra sistemlerini (Sınırsız seriler) sırasıyla göreceğiz. 

 

Bu bölüm büyük ölçüde terminolojiye ayrılmış olup; sistemlerin nasıl 

formülize edileceği ile doğrusal olmayan sistemlerdeki temel işlemler ile 

ilgilidir. Volterra/Wiener serilerinin yazımı  ile ilgili olarak farklı birkaç yol 

incelenecek ve bunlar arasındaki ilişkiler kurulacaktır.Özellikle ayrıntılı olarak 

ele alınacak olan üç gösterim formu vardır, bunlar: Simetrik Form, Üçgensel 

Form ve Normal Formdur.Bu formların hepsinin kendilerine göre avantajları ve 

dezavantajları olmasına rağmen, hepsi kitabın sonraki bölümlerinde 

kullanılacaktır. Birinci bölümün sonuna geldiğimizde ise Sistemlerin 

gösteriminde kullanılan Volterra serilerinin kökenini tartışacağız. 
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1.1 Doğrusal Sistemler 
Tek girişli,Tek çıkışlı,doğrusal,durağan ve nedensel olarak tanımlanan 

bir sistemin Giriş/Çıkışını düşündüğümde, okuyucunu bu tarz bir gösterime 

aşina olduğunu değerlendiriyorum;  

 

 
 

Formülde bulunan  u(t): giriş sinyalini 

  y(t): çıkış sinyalini 

  h(t): dürtü cevabını gösterir,  

 

h(t) bundan dolayı çekirdek olarak adlandırılır ve t<0 olduğu  durumlarda  

h(t)=0 varsayılır.  

 

Bununla (1) birlikte birkaç teknik varsayım daha bulunmaktadır. 

Genellikte varsayılanlar ise; tƐ(−∞,∞) için h(t)’nin gerçek değerli bir fonksiyon 

olarak tanımlanması ve t=0 anı hariç genellikle kesikli sürekli bir dürtü 

fonksiyonunun oluşmasıdır. Bunun yanında tƐ(−∞,∞) için giriş sinyali gerçek 

değerli bir fonksiyon olarak tanımlanabilir ve genellikle de kesikli sürekli 

olduğu varsayılır, buna rağmen dürtüleri de içerebilir. Sonuç olarak, dürtü 

meselesi bir yana, bu durumlar tƐ(−∞,∞) için çıkış sinyalinin sürekli, gerçek 

değerli bir fonksiyon olarak tanımlandığını ima eder.  

 

Tabiki daha genel varsayımlarda tanımlanabilir ancak şuan burada 

varmak istediğimiz sonuç için bunlar gereksiz olur. Aslında, bu varsayımları 

sonuca varana kadar tekrarlamak sıkıcı olacaktır. Bundan dolayı, bende bu 

konuyu anlaşılmış olarak değerlendiriyorum.Sistem tanımlayıcıları için 

yukarıda kullanılan varsayımların geçerli olduğunu doğrulamanın okuyucular 

için faydalı olabileceğini düşünüyorum. 
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 Tabii ki doğrusallık kavramı integral (1) özellikleriyle iç içedir. Bu 

h(t)’nin tek taraflı varsayımına nedensellik ilkesiyle karşılık geldiğini görmek 

çokta zor değildir. Ayrıca sistemin belirli bir zamandaki çıkışı, girişin gelecek 

değerlerine bağlı değildir. 

 

Daha da doğru şekliyle belirtmek gerekirse, eğer u(t)’nin yanıtı y(t) ise, 

u(t-T)’nin herhangi bir T ≥ 0 anı için yanıtı y(t-T)’dir. Dolayısıyla sistem 

durağandır. 

 

 Tek taraflı bir varsayım olan h(t); (1).denklemdeki sonsuz alt sınırın 0’la 

değiştirilebileceğini gösterir.Sadece giriş sinyalleri dikkate alındığında t=0 ve 

(1).denklemdeki üst limit ise genellikle t olacaktır. 

  

Sınırları sonsuz olan bir ifadenin içindeki fonksiyonun değişkenlerinin 

birçok değişikliğine rağmen sınırlarının değiştirilmesine nadiren ihtiyaç 

duyulması gibi bir avantajı vardır.Bunun yanında yapılan bazı işlemlerde, 

işlemin olduğundan daha zor görülmesi gibi bir dezavantajı da vardır. 

 

Örneğin, (1).denklemdeki herhangi bir değişken değişikliği aşağıdaki 

gibi yazılabilir: 

 
 Bu denklemde(2) tek taraflı bir varsayım olarak h(t); u(t)’nin alt limitinin 

0 olduğu durumlarda üst limitinin de t olabileceğini gösterir. (1).gösterim 

genellikle doğrusal sistemleri göstermek için daha çok kullanılır çünkü 

(2).gösterime göre çekirdeğin daha sade bir şekilde verilmiş olmasıdır. 

  

 Doğrusal sistemlerin giriş/çıkış noktalarının gösterimi için şöyle bir 

diyagram (Şekil 1.1) kullanılabilir.  
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Şekil 1.1.Durağan bir doğrusal sistem 

 

Eğer Sistemin durağan ve taşınabilir olduğu varsayılırsa, giriş/çıkışlar 

şu şekilde elde edilir ve gerçek zamanlı bir fonksiyon olarak h(t,σ);  h(t,σ)=0 

için  tƐ(−∞,∞), σƐ(−∞,∞) şeklinde tanımlanır ve σ > t olduğunda şu şekilde 

yazılır: 

 

 
 

Öncelikle, bu tip bir doğrusal sistem gösterimlerinin kontrol edilmesi çok 

kolaydır ve h(t,σ) nedensel özel bir varsayımdır.Elbette σ= t eşitliği için h(t,σ) 

dürtüler içerir fakat t≥σ≥0 için bu dürtüler kesikli sürekli şekilde olur. Daha 

öncede söylendiği gibi bu denkleminde(3) sınırları değiştirilerek daraltılabilir. 

 

(2). Ve (3). Denklemlerin birleştirilmesi sonucu durağan doğrusal 

sistemlerin durağan olmayan doğrusal sistemlerin özel bir durumu olduğu 

görülebilir. 

 

Bundan dolayı (3).denklemde çekirdek diye adlandırılan h(t,σ), eğer 

aşağıdaki gibi bir g(t) çekirdeğiyle oluşturulursa;  

 

 
 

h(t,σ)’ nin durağanlık kontrolünü kolayca yapmak için   h(0,σ−t)=h(t, σ)’ 

ye bakmak gerekir. Eğer bu durum tatmin ediciyse, g(t−σ)=h(0,σ−t)=h olduğu 

sürece  g(t)=h(0,−t)  olarak  kanıtlanır.  
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Şekil 1.2. Durağan olmayan bir doğrusal sistem 

 

 
1.2 Benzer Doğrusal Olmayan Sistemler 
 
Giriş/Çıkışın doğrusal olmayan sistemlerdeki gösterimi, Bölüm 1.1’de 

sözü geçen basit genellemeleri içerir. Daha zor olanı ise belirtilmemiş ve  bu 

gösterim için sorulabilecek felsefi çoğu soru ve gösterimin kullanılışlığı daha 

sonraya bırakılmıştır. Şu an da ise aşağıda yazacağım gösterimlerde doğrusal 

olmayan sistemlerin bazı özelliklerini ve dikkat çekici bazı örnekleri 

tartışacağız. 

 

 tiσ(−∞,∞) için tanımlanan hn(t1,...,tn) gerçek değerli fonksiyonlardaki n 

değişkenleri; herhangi bir ti<0 zamanında i=1,...,n ve hn(t1,...,tn)=0 eşitliğindeki 

gibi giriş/çıkışla ilgilidir: 

 
 

Bundan önceki kısımda doğrusal sistemlerin gösterimlerinin 

aralarındaki benzerlikler gayet açıktır. Ayrıca kullanılan doğrusal sistemlerin 

gösterimlerin tümü burada da (1).denkleme uygundur. Aslında (5).denklem 

genel bir denklem olarak bilinir ancak ben bu terimi kullanmayacağım.  

 

Konuyla ilgili olarak sorulacak olan ilk soru muhtemelen (5).denklemde 

kullanılan ifadelerin neler olduğudur. Varsayımdaki hn(t1,...,tn); her değişken 

için tek taraflı nedenselliğin karşılığı olduğu açıktır. Bu sistem doğrusal değildir 

ancak durağandır. 
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(5).denklemdeki sistem gösterimi n-dereceli bir benzer(homojen) 

sistem gösterimi olarak adlandırılır. Bu terminoloji α’nın sayısal olduğu her 

değerde uygulama alanı bulur ve y(t)’nin u(t)’nin yansıması olduğu durumlarda 

αnny(t) çıkışını sağlar. Bu terminoloji, 1.dereceden doğrusal sistemlerin 

nedenini içerir. Bu sistem ile, hn(t1,...,tn) doğrusal durumlarda kullanılan 

çekirdek olarak adlandırılır. 

 

Herhangi bir karışıklığın ortada kalmaması ve gösterim kolaylığı için 

(5).ifadeyi aşağıdaki gibi yazabiliriz. 

 

 
 

Çekirdekle ilgili tek taraflı varsayımdan dolayı bu gösterimdeki alt 

limitler 0’a eşitlenebilir. Eğer giriş sinyali tek taraflı bir  varsayım olursa üst 

limit(ler) için t kullanılabilir. Sonuçta; (6).denklemdeki integralin tüm 

değişkenleri için değişimler aşağıda yeniden yazılarak gösterilmiştir. 

 

 
 

Bu noktaya gelindiğinde; n.dereceden benzer(homojen), durağan bir sistemin 

diyagramda gösterimi Şekil 1.3’te yer almaktadır.  Sistem kutusu çekirdeğin 

kendisidir. 

 
Şekil 1.3. Durağan n.dereceden benzer(homojen) bir sistem 
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 Örnek 1.1 Üç doğrusal sistemin çarpımsal bağlantısı Şekil 1.4’te gösterilmiştir. 

 
Şekil 1.4.   Yapılandırılmış bir bağlantı sistemi 

 

Doğrusal alt sistemler şu şekilde tanımlanır: 

 

 
 

Bundan dolayı da tüm sistem ise şöyle tanımlanabilir: 

 

 
 Açıkçası, 3.dereceden benzer(homojen) bir sistemin çekirdeği; 

 

h (t1,t2,t3) = h1(t1)h2(t2)h3(t3) 
 

Doğrusal olmayan bir sistem tanımının, benzer(homojen) sistemlerle 

oluşturulmasının ikinci bir yolu da vardır. Bu tanım için; her değişken xi(t)’nin 

bir popülasyonu gösterdiğini düşünün; eğer xi(t) değerindeki değişmeler diğer 

xi(t) değerlerinin doğrusal değişimine bağlı fakat bir skaler parametrik kontrol 

sinyali ise xi(t), du(t)xj(t)’nin her türlü formunu içerir. Doğrusal olmayan  
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modellerin bu şekildeki yazımına “bilinear durum denklemleri” denir. 

 

 
 

x(t) nx1 vektörü 

u(t) ve y (t) skaler giriş,çıkış sinyalleri 

 

 Bu durum denklemlerinin ayrıntılı olarak gösterimi daha sonra 

yapılacaktır, şimdiyse basitçe benzer(homojen) sistemlerin gösterimini 

belirtmek için nasıl kullanılacağı tartışılacaktır. 

  
 Örnek 1.2 Doğrusal olmayan sistemlerin diferansiyel denklemler ile 

tanımlanması: 

 

 x(t):  2x1 vektörü 

 u(t) ve y(t) skaler ve  

    
 

Kesikli sürekli tüm giriş sinyalleri için t≥0 olan her durumda bu ifade şu 

şekilde yazılır: (Bunun ispatını ise bir çalışma olarak sizlere bırakıyorum.) 

 
 Burada ki exp ifadesinin açılımı açağıdaki gibi olur; 
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D2= 0 özel durumu içinde;  

 

 

 

 

 

 

 

 

Buradan da giriş / çıkış ilişkisi şu şekilde yazılabilir: 

 
 

 Bu gösterimden sistemin homojen ve 2.dereceden olduğu açıkça 

görülebilmektedir. Giriş / çıkış gösterimini daha tanıdık bir formda yazmak 

için, birim adım fonksiyonu; 

 

 

 

Şu şeklinde yazılabilir:  

 

 

 

 
 

Buradan da çekirdek; şeklinde olur. 
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  Bu bölümden sonraki bölümlerde, homojen sistemlerin sabit 

olmayabileceği hususu dikkate alınmalıdır.Aşağıda gösterilen bir sistemin 

giriş/çıkış ifadesi gibi; 

 

 
  

 Her hangi bir σi>t için çekirdeğin h(t,σ1,...,σn)=0 olduğunu varsayalım bu 

durumda sistem nedensel olacaktır.Tabi ki,bunun oluşması için üst limitlerin t 

ile değiştirilir. Eğer tek taraflı bir giriş dikkate alınmışsa; alt limitlerde 0’a 

eşitlenmelidir. 

 

 Doğrusal olmayan benzer(homojen) sistemlere basit bir örnek olması 

için, okuyucular örnek 1.1’i doğrusal sistemlerin durağan olmadığı 

varsayımıyla tekrar edebilirler. Ama ben burada durağan olmayan 

gösterimlerin, durağan bir system yapısından ileri geldiğine değineceğim. 

 

 
 Örnek 1.3 Şekil 1.5’te gösterilen bağlantılar Örnek 1.1’e göre biraz 

daha karmaşıktır. Öncelikle çekirdeği bulmanın kolaylaşması için; giriş 

sinyalini ve tüm sinyallerin gösterimini ve çıkışa doğru nasıl bir yol izlediklerini 

bularak işe başlamanın çok önemli olduğunu belirtmek istiyorum.  

 
Şekil 1.5.  Örnek 1.3’teki sistem 

v(t) sinyali şu şekilde yazılabilir; 
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Benzer  şekilde; 

 
 

Çıkış sinyali; 

 
 

  Böylece 3.dereceden bir sistem için çekirdek bu şekilde yazılır: 

 

 
  

Doğrusal alt-sistem çekirdekleri için yapılan tek taraflı varsayımlarda, 

adım fonksiyonları fazlalık olarak dikkate alınabilir. Daha da önemlisi, Örnek 

1.1 ve 1.3 karşılaştırılınca çekirdeklerin farklı sistem yapıları için farklı  

şekillerde olduğudur. 
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 Durağan olmayan sistemler için (8).denklem ve durağan sistemler için 

(7).denklemin karşılaştırılmasıyla  bir h(t,σ1,...,σn) çekirdeğinin durağan olduğu 

gözükmektedir.  

 

 
 

Eğer tüm t,σ1,...,σn değerlerini içerirse, Genellikle durağanlık kontrolü 

için fonksiyonların ilişkilerinin kontrolü daha uygun olur. 

 

 
 

Buradan da (9).denklem aşağıdaki gibi gösterilebilir: 

 

 
 

(10).denklemide (8).denklemin içerisine yazarsak; 

 

 
 

 Örnek 1.3 için bu hesaplamaların yapılması Şekil 1.5’teki sistem için 

değişmeyen bir çekirdeği verir: 

 

 
Bölüm 1.1’de de belirtildiği üzere doğrusal sistemler teorisi çekirdek için 

dürtü fonksiyonları oluşumuna izin verir. Örneğin (1).denklem, g(t)’nin kesikli 

sürekli bir fonksiyon ve t=0 anındakiδ 0(t) dürtüsünün olduğu durumlarda 

h(t)=g(t)+g0 δ 0(t) şeklinde olur. Dolayısıyla giriş u(t)’nin cevabı ise; 
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 Girişin u(t)=δ 0(t) şeklinde alınması herhangi bir sorun 

yaratmayacaktır.Sonuçta dürtü cevabı:  

 

 
 

Ne yazık ki bu konular n>1. dereceden olan benzer sistemler için çok 

daha dolambaçlıdır. Bu tür sistemler için, iletim oluştuğunda dürtü girişleri 

büyük sorunların doğmasına sebep olur. 

 

Örneğin 2.dereceden sistemlerin giriş/çıkış ilişkisi: 
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 Bu gösterim ise çekirdekteki dürtülere izin verildiğini gösterir. 

 
 ve 

 
 

şeklinde gösterilir. 

 

 

 

1.3 Çok terimli Volterra Sistemleri 
 

  Sonlu bir toplamla tanımlanan sistem: 

 
çok terimli (polynomial) sistem olarak tanımlanır ve hN(t1, . . . , tN) ≠ 0 olduğu 

sürece N.dereceden olur. Eğer bir sistem sonsuz toplam şeklindeyse Volterra 

sistemi olarak isimlendirilir.  

 

 Özel bir durumu göstermek gerekirse; Statik doğrusal olmayan 

sistemlerin girişi, bir polinom ya da güç serisi ile tanımlanabilir  

 

 
  

   Volterra sistemi sonsuz bir dizi ile gösterildiği sürece, anlamlı olduğunu 

garanti etmek için yakınsama koşulları ilişkilendirilmiş olması gerekir. Genellikle 

bu şartları içeren bir zaman aralığı ve buna bağlı bir u(t) olarak gösterilir. Bu 
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genellikle birbirini üzerine kabaca ters bir şekilde bağlıdır. Zaman aralığını 

daha büyük olduğundan, girişin sınırları daha küçük olmalıdır. Hesaplamalar 

uygun sınırları bulmak için sık sık tekrarlanması zorunlu bir gerekliliktir. 

  

1.4 Doğrusal Olmayan Sistemler Bağıntısı  
    
  Doğrusal olmayan sistemlerin üç temel bağlantısı dikkate 

alınacaktır.Bunlar: Katkı ve Çarpımsal Paralel bağlantı ve Cascade bağlantı. 

Elbette, Katkı Paralel ve Kaskad bağlantıları doğrusal sistemlerin teorisi ile, 

tanıdık gelecektir. Çarpımsal paralel bağlantı muhtemelen yabancı gelebilir, 

ancak doğrusal olmayan bağıntılar için doğal bir şey gibi görünüyor olmalıdır. 

  Homojen sistemlerin bağıntılarını ilk önce ele alalım.  

 
Şeklil 1.9. Bir katkı paralel bağlantısı 

 

  İki homojen sistemlerin temel katkı bağlantısı Şekil 1,9 gösterilir. Genel 

bir sistem şu şekilde açıklanabilir: 

 

 
 

  m = n açıkça belli olduğu zaman n.dereceden bir sistem olduğu söylenebilir. 

  

fn(t1, . . . , tn) = hn(t1, . . . , tn) + gn(t1, . . . , tn)          (39)
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Eğer tüm çekirdekler hn(t1,...,tn) ve gn(t1,...,tn) şeklinde olursa, çekirdek fn(t1,...,tn) 

şeklinde simetrik(triangular) olur. m≠n olduğunda ise toplam sistem 

N=max[n,m] dereceden bir çok terimli(polynomial) sistem olur. 

  

  Çarpımsal paralel bağlantısı Şekil 1,10 da gösterilir. Tüm bunların 

matematiksel gösterimi; 

 
 

 
Şekil 1.10. Bir Çarpımsal paralel bağlantı. 

 

  Genel olarak,  simetri bu durumda korunmaz.  

 

  İki sistemin kaskad bağlantısı Şekil 1,11’de gösterilir. Bu bağıntı şu 

şekilde yazılabilir: 
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 j=1,...,m, olduğu yerler için; 

 
 

 
Şekil 1.11. İki sistemin kaskad bağlantısı 

 

Bu verilmiş olan (42). ve (43). denklemleri daha güzel bir ifadeyle yazarsak: 

 
ve buradan da; 
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şeklinde elde edilir. 

 
 

 Bu bağlantıda simetrinin kaybedildiğini söylemeye gerek yok. Yani 

fmn(t1,...,tmn) ayrık bir operatör gibi simetrileştirilmelidir. 

 
 

 



2.BÖLÜM 
 

GİRİŞ/ÇIKIŞIN DÖNÜŞÜM ALANINDA GÖSTERİMİ    
 

 

  Laplace   dönüşümü, genel olarak sabit doğrusal olmayan sistem teorisi 

önemli önemli bir araçtır. Doğrusal sistemlerde olduğu gibi çok değişkenli çekirdeğin 

Laplace dönüşümüne transfer fonksiyonu denir. Bu gösterim  her iki sistem 

özelliklerini karakterize etmek ve sisteme giriş / çıkış davranışı tarif için yararlıdır. 

Ayrıca, sistemleri bağlantılarını tanımlamaya yönelik kurallar transfer fonksiyonlar 

cinsinden ifade edilebilir. Tüm bu özelliklerin temel sebebi, belirli Çok değişkenli 

Laplace dönüşümü ürünleri açısından, tek değişken durumunda da temsil edilebilir. 

 

Her homojen sisteminin çekirdeği için özel formlara karşılık, transfer 

fonksiyonun özel bir şeklidir. Polinom ve Volterra sistemleri transfer fonksiyonlarına 

karşılık gelen  

homojen alt sistemler olarak tanımlanabilir. Tüm bu gösterimler kapsamlı bir 

şekilde anlatılacaktır. 

 

2.1 Laplace Dönüşümü 
 

Laplace tanımı için bir dönüşümü gözden geçirerek başlayalım, gerçek değerli 

fonksiyon  f(t): 

 

 

 

 

 

Genellikle, fonksiyonların üstel formları ile karşılaşılır, başka bir deyişle sonlu 

lineer kombinasyonlar mt teλ şeklinde ifade edilir. λ  karmaşık olabilir fakat  eşlenik 

çiftlerin şartları nedeniyle, fonksiyon gerçek olur. Bu tür integral fonksiyonları(1) ”s” 

leri kompleks düzleme yakınsar ve çıkan dönüşümün ”s”in gerçek katsayısı rasyonel 



işlevi olduğu kesinlikle doğrudur. Bu gözlemlerin sonucu olarak fonksiyonların sınırlı 

sınıflarının düzenlenmesinde kullanılan Laplace dönüşümünün cebirsel bakış açısı 

için uygun olduğudur.  

 

Ters laplace dönüşümü hesaplaması f(t) den  F(s)’e: 

 

 

 

 

 

 Burada σ , F(s) yakınsama bölgesi içerisinde seçilir. Rasyonel Laplace 

dönüşümleri için kısmi kesir genişletme yöntemi kullanılır ve hesaplamalar sorunsuz 

olduğu kadar  yakınsama ilgili sorunlarda vardır. 

 

 n değişkenlerin bir fonksiyonu göz önüne alındığında f (t1, . . . ,tn), her 

değişkenin tek taraflı olduğunu, Laplace dönüşümü şu şekilde tanımlanır: 

 

 

 

 

 

 

 

Bu tanım da yakınsama değerlendirmelerine bağlıdır. f (t1, . . . ,tn)  bu formların 

doğrusal kombinasyonlarıdır. 

 

 
 

İntegral(2) ve integral(1) bir toplamı olarak yazılmış olabilir. Bu yakınsama 

bölgelerinin her zaman var olduğunu gösterir. Entegrasyonlar yürütmek, Laplace 

dönüşümlerinin bir değişkenden daha fazla rasyonel fonksiyondan oluştuğunu 

gösterir. üstel formların Üçgen etki alanında benzer araştırmalar ve simetrik üstel 



formlar benzer sonuçlara yol açar. Ancak yakınsama bölgelerin genel olarak daha 

karmaşık geometrisi vardır. 

 

Örnek 2.1 Laplace dönüşümünü hesaplamak için 

 

 

 

 

Tanıma göre(3): 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Çok değişkenli Laplace dönüşümü ve özelliklerini  sonradan tanımlamak 

ve kanıtlamak oldukça basit. Bu çok değişkenli dönüşüm kullanarak yapılan 

hesaplamaların tek değişken dönüşümü ile ilgili olarak yapılan hesaplamalar kadar 

basit olduğunu ima etmemek lazım. 

 

 Aşağıdaki liste ve devamı boyunca teoremler tek taraflı kabul edilir ve harf 

dönüşümleri için harf gösterimi kullanılır. 

 

 Teorem 2.1 Laplace dönüşümü işlemi doğrusaldır:  

 



 
 
 Teorem 2.2  f (t1, . . . ,tn) iki faktörün bir ürünü olarak yazılabilir 

 

 

 

 

 

 

 

 

                   Teorem 2.3  f (t1, . . . ,tn)  formun bir konvolusyonu şekilde yazılabilir 

 

 

 

 

 

 

             F (s1, . . . , sn) = H (s1+ . . . +sn)G (s1, . . . , sn)                                   (8)            
 

 

                   Teorem 2.4   f (t1, . . . ,tn)  n-form konvolüsyonun bir formu olarak 

yazılabilir 

 

 

 

 

 

 

 



 

 

 

        Teorem 2.5 T1, . . . ,Tn    negatif olmayan birer sabitse  

 

 

 

 

 

       Teorem 2.6  f (t1, . . . ,tn) sonuç tarafından verildiyse 

 

              f (t1, . . . , tn) = h (t1, . . . , tn)g (t1, . . . , tn)         
(12) 

 

 

 

 

 Örnek 2.2  

 

 

 Laplace dönüşümü için tanım(3) uygulanırsa, şu şekilde yazılabilir 

 

 

 

 Teorem 2.2’yi uygularsak, İkinci yaklaşım seçersek tek değişken 

durumunda sonuçları gösterir ki: 

 

 

 

 

 



 Eğer numaratör polinomunun derecesi sj  her j için  denominator polinom 

derecesi  sj ‘den daha az ise  rasyonel , çok değişkenli laplace transformu kesinlikle 

uygundur. 

 

 Bugüne kadar çok değişkenli durumda Laplace da üstel form karşılık olan 

tartışma, kesinlikle doğru olan rasyonel fonksiyonların üstel formlara karşılık geldiğidir  
 

Örnek 2.3  
 

 

 

 

2t1= t2 ilgili Laplace dönüşümü  :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 
 

Örnek 2.4 Dürtü fonksiyonu için 

 

 

  

 

Laplace dönüşümü doğrudan tanımından hesaplanabilir 

 

 

 

 

 

 

 

 

 

Temel ilişki tek taraflı işlevini belirlemek için kullanılır f (t1,...,tn) karşılık gelen 

F(s1,...,sn)  bir formun bir çok satırlı entegrasyonudur. 

 

 

 

 

 

 

 

                      
σ  ’nun  değeri her integralde farklılık gösterir. Genelde uygun yakınsama zorlukları 

önlemek için seçilmelidir. Uygun tekniklerin varsayımları altında doğrusal integraller, 

bromvich eş yükselti eğrisi integralleri ile değiştirilebilinir.  n = 1 için ters dönüşüm 

fonksiyonu, kısmi kesir genişleme yönteminden sonra bahsedilmiştir.Rasyonel ve tek 

değişkenli laplace dönüşümü doğrusal integrasyonda uygulanabilir değildir. Çok 

değişkenli laplace dönüşümü için inversiyon prosedürü uygun değildir. Ama daha düz 

basit bir örnek(14) kullanım hakkında konuşmak için çok daha eğlenceli olabilir.  



Örnek 2.5  Ters Laplace dönüşümü hesaplamak için 

 

 

 

 

 

 

 

 

 

 

 

Parantez içindeki  s1 ve  s2a sabiti tek değişken ters Laplace dönüşümü olarak 

kabul edilebilir.  

 

 

 

İlk terimin tek değişkenli ters Laplace dönüşümü olan 1/(s2
2), yani t2  ise ikinci 

terim ile benzer t1 birimlerinden bir süre belirtilir.  

 

 

 

 

  

 

 

 

 



  

 

 

 

 

 

 

 Sonuç: 

 

 

 

  

 

 

 

 

 

 

 

 

Okuyucu bu örneğin ne kadar basit olduğunu düşünebilir. F (s1,s2)’in 

paydasının ana özelliği basit faktörlerin ürünü olmasıdır. Öyle ki eğrisel integraller, 

kalıntı hesaplamalar veya kısmi kesir açılımları tarafından kolayca değerlendirilir. 

Çarpanlarına ayırmadan tek değişken ters dizisini gerçekleştirmek için çok değişkenli 

ters dönüşümü imkansız olur. 

 

 

Ters dönüştürme işlemi çok nadiren sonradan gereklidir. Öyleki faktoring 

sorunu başka bağlamlarda ortaya çıkacak ve diğer bölümde anlatılacaktır. 

 

 

2.2 Homojen Sistemlerde Laplace Dönüşümü Gösterimi 
 



Sabit bir doğrusal sistem için çekirdek h (t), sistemin Laplace transfer 

dönüşümü fonksiyonu h (t): 

 

 

 

 

 

  

 

 Tek taraflı giriş sinyallerde dikkat sınırlandırılması ve Laplace dönüşümü ile 

kıvrım özelliğini kullanarak, giriş / çıkış ilişkisi 

 

 

 

 

 

 

 Bu şekilde yapılabilir 

 

 

 

 

 

 

Eğer bir sistem transfer fonksiyonu ve ilgi giriş sinyali bilinen bir basit U (s) 

dönüşümü, sonra gelen çıkış sinyali işlem için bu gösterimin yararı açıktır. Transfer 

fonksiyonunun önemini bir diğer nedeni de birçok sistem özellikleri değil ifade olabilir 

basit olarak H (s) özellikleridir.  

Ayrıca, doğrusal sistemlerin bir "doğrusal" arabağlantı ve transfer fonksiyonu 

kolayca alt sistemi transferi fonksiyonlardan hesaplanır. Bir n.derece homojen sistemi 

bir giriş sinyalleri taraflı olarak temsil edilebilir. 

 

 



Çok değişkenli Laplace dönüşümü doğrudan bir şekilde sonuçlanır form (17)ye 

benzer biçimde sonuçlanır. 

 

 

 

 

 

 

 

 ilk denklemi Laplace dönüşümü 2,4 ve 2,2 teoremleri kullanarak (19) ile 

arasında bir ilişki olarak yazılabilir  

 

 

 

 

 homojen sisteminin çokdeğişkenli transfer fonksiyonu. 

 

           Yanıt hesaplanmasında çokdeğişkenli transfer fonksiyonunun programını bu 

noktada çok net. Ancak,      y (t ) öncesi ters Laplace dönüşümü gerekir (19) ikinci 

denklemi adresinden bulunabilir ve hesaplanabilir. genellikle bu kolay değildir. Yanıt 

hesaplama daha da soruşturmaya devam etmeden önce, sistemlerin ara bağlantı 

konusunda çokdeğişkenli transfer fonksiyonu gösteriminin bazı basit özelliklerini 

tartışacağız. Bunu dönüşümü etki sistemi diyagramı Şekil 2.1 'de gösterildiği gibi 

kullanılacaktır. 

 

 

 

 

Şekil 2.1 

 Çok değişkenli transfer fonksiyonu gösteriminin belki de en belirgin özelliği 

aynı derecede homojen sistemlerin paralel bağlantı içermesidir. genel transfer 

fonksiyonu da alt sistem transfer fonksiyonlarının denetimi tarafından yazılmış 

olabilir. 



 n.dereceden  homojen sistemin kaskat bağlantısı olarak takip eden doğrusal 

bir sistem Şekil 2,2 gösterilmektedir. 

 

 

 

 

 

Böylece Teorem 2.3, bir sistem transfer fonksiyonu: 

 

 

 

 

 

Şekil 2.3’te  doğrusal bir sistemin, n.dereceden homojen sistemi takip eden bir 

bağlantısı gösterildi. Bölüm 1.4, çekirdek tarafından verilen komple bir sistem  

 

 

  

 

 

 

Uygulama Teoremi 2, 4 bu ifade bir genel sistemin transfer fonksiyonunu gösterir. 

 

 

 

 

 

 

2.3 Yanıt Hesaplama ve İlişkili Dönüşüm 

  

Çok değişkenli ters Laplace dönüşümü gerçekleştirmek için, tepki hesaplama 

prosedürü Örnek 2.8  kullanılır. Bundan Laplace çıkış sinyal dönüşümünün analiz 

fikrine dayanan alternatif bir yöntem, Y(ls) Yn (S1, ..., Sn). Y (s) ye birleşmiş dönüşüm 

denir. Notasyonu şöyledir: 



 

Y (s ) = An[Yn(s1, . . . , sn)] 

 

Gösterim değişkenlerdeki operasyonları belirtmek için kullanılır. 

 

 

Teorem 2.7 

 

 

 

 

 

  

 İspat 

 

 

 

 

 

 t1= t2= t 

 

 

 

 

 

               s = s1+s2      değişkenleri değiştirirsek 

 

 

  

 

 

 

 

İntegresyon düzeni değiştirerek 



 

 

 

 

 

           Y (s ) = L [y (t)]  ispat tamam.bu farklı formüller integrallerin farklı 

düzenlerinden kaynaklanabilir. 

 

 

 

 

 

İki form aşağıda verilmiştir. 

 

 

 

Bu hesapları kurmak (34) ve (35) detayları da  bir dizi olarak kabul edilebilir. 

  

Teorem 2.8  eğer F (s1, . . . , sn) in formu olarak yazılırsa F (s1,...,sn) = H 

(s1,...,sk)G(sk+1,...,sn) 

 

 

 

 

 

Sonuç 2.1. 

 

 

 



 

 

 

 

Sonuç 2.2.  

 

 

 

 

 

 

 

  

Sonuç 2.3. 

 

 

 

 

 

 

  

 

 

Teorem 2.9       F (s1, . . . , sn)  aşağıdaki formda yazılabilir 

 

F (s1, . . . , sn) = H (s1+ . . . +sn) G (s1, . . . , sn) 

 

F (s) = H (s)G (s ) 

 

Teorem 2.10   n homojen sistemi formunun bir uygun, rasyonel düzenli transfer 

fonksiyonu tarafından açıklanan varsayımı: 

 

   



 

Qj(sj)  tek değişkenli polinom ise, giriş sinyali şu  şekilde ifade edilir: 

 

 

 
 

    Ƴ1……………    Ƴr   farklı olduğundan sistemin cevabı aşağıdaki gibidir: 

 

 

 
 
Kanıt:  (52) deki integraller değerlendirilerek ve tek tek kalıntı hesabı kullanılarak  
kanıtlandı 
 

 
 
 
 
 
 
 

Buradaki önemli olan nokta  1/Qn(s ) integralin paydasında  F(s-sn-1)G(sn-1)’in 

dışında ayrı olarak hesaplanabilir. 

 
 

 

 

Bu şekilde yazılabilir: 

 



 

Kalıntı hesabı yapılarak: 

 

 
 
 

2.4. Üstel Büyüme Yaklaşımı 
 
 
Homojen sistemlerin dönüşümünün gösterimi doğru bir bakış açısı olduğunu 

doğrusal sistemlerin aşağıdaki özelliğinden kaynaklanır. 

 

 

 

 

 

 

 

 tüm t’ler için tanımlıdır. 

 

 

 

 

 

 

 



h (t)’nin tek taraflılığından görüşle alt limit 0 a yükselirse ve h (t) ransfer fonksiyonu 

ise: 

 

 

 

 

     Aslında büyüyen bir üstel giriş sinyali sadece çıkış sinyali üretmek için bir doğrusal 

sistem tarafından ölçeklendirilir bazen doğrusal sistemlerin Öz fonksiyon özelliği 

denir. Ayrıca, büyüyen ekspolensiyel bir doğrusal kombinasyonu için lineer sistemin 

yanıtı: 

 

 

 

 

 

 

  

 

 

Analog şekilde ilerleyeceğim  n > 1 dereceden homojen denklemler için: 

 

 

 

 

 

 

Okuyucu sistemin cevabını şu şekilde görecektir. 

  

 

 

 

Hn(s1, . . . ,sn) transfer fonksiyonu olduğunda,  Hn(s1, . . . ,sn)Çok değişkenli 

fonksiyonun tam karakterizasyonu Hn(λ , . . . , λ )  fonksiyonunun tek değişkenli 

fonksiyonunu içermez. 



 

 

 

     

Hn(s1, . . . ,sn) sistem transfer fonksiyonudur. Anlaşılıyor ki çokdeğişkenli fonksiyonu 

tam bir karakterizasyonu Hn(s1,.. . ,sn) : 

 

 

    Bu önemli özelliğin devamı olarak: 

 

 

Bu çıkış ifadesi açısından bir çok eşitlik vardır. 

 

 

 

 

 

 

 

Sitemin cevabı bu şekilde yazılabilir: 

 

 

 

 



 

Sistemin derecesi n=2 ise şöyle ifade edilir: 

 

 

 

 

 

2.4 Polinom ve Volterra Sistemleri 
 
 
        Sabit polinom veya Volterra sistemlerinin temelde homojen alt sistemi transfer 

fonksiyonlarının dönüşümünü  içerir. Volterra sistemler için bu toplam işlevlerin 

sonsuz serilerinin yakınsaklık özelliklerine dikkat edilmesini gerektirir. Yakınsama  

giriş özelliklerine bağlıdır, örneğin, giriş sinyalinin genliği üzerinde sınırları gibi.  

Artan üstel yaklaşım transfer-fonksiyonu sabit polinom ve Volterra sistemleri 

için çok uygun bir araçtır. N üstel fonksiyonunu incelerken  giriş sinyallerini toplamının 

N üstel ayrık ayrık fonksiyonu olduğunu kabul etmek gerekir. Çıkış artan üstel 

fonksiyonların toplamıysa e(λ
1

, .+ . . , +λ
n

) t   ;  n! Hnsym(λ 1, . . . , λ n )  n=1,2,3……N 

hesaba katılır. 

 
 



	
   1	
  

BÖLÜM	
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FARKA	
  BAĞLI-­‐DENKLEM	
  TANIMLAMALARINDAN	
  

GİRDİ/ÇIKTI	
  TEMSİLLERİNİ	
  ELDE	
  ETMEK	
  

	
  
Sistemler	
   çoğunlukla,	
   bir	
   vektör	
   bakımından	
   tanımlanır,	
   ilk-­‐emir	
   farklı	
   olan	
   denklemi,	
  

resmi	
   denklemi	
   çağırdı.	
   Bu	
   yolda	
   bir	
   sistemin	
   giriş	
   çıktı	
   davranışının,	
   tanımladığı	
   zaman,	
  

ilgiden	
   midir,	
   bir	
   temsil,	
   resmi	
   denklemin	
   çözümü,	
   ihtiyaç	
   duyulduğu	
   için.	
   Bu	
   bölümde,	
  

çekirdekler	
   veya	
   transferi	
   kararlaştırmak	
   için	
   birkaç	
   prosedür,	
   verilmiş	
   resmi	
   bir	
   denkleme	
  

uyuyor	
  olan	
  bir	
  Volterra	
  Wiener	
  temsilinde	
  iş	
  görür,	
  tartışılacak.	
  Genelde,	
  sınırsız	
  bir	
  Volterra	
  

dizisi,	
  gerektirilir,	
  ve	
  bu,	
  yeniden	
  bir	
  noktada	
  birleşmenin	
  çıkışını	
  kaldırır.	
  Genel	
  bir	
  noktada	
  

birleşme	
   sonuçlarının,	
   bahsedilecek	
   olmasına	
   rağmen,	
   tartışmanın	
   çoğu,	
   dolu	
   Volterra	
  

sisteminin	
   derece	
   N	
   polynomial-­‐sistem	
   budamalarını	
   bulmak	
   bakımından	
   sözcük	
   gruplu	
  

olacak.	
  (Bir	
  genel	
  bir	
  noktada	
  birleşme	
  sonucunun	
  bir	
  kanıtı,	
  ek	
  3.1'de	
  verilir.)	
  

Çizgisel	
   olmayan	
   farka	
  bağlı	
   denklemlerle	
  uğraşmakta	
  büyük	
  bir	
   zorluk,	
   o	
   varlık	
   ve	
   veya	
  

çözümlerin	
  benzersizliğidir,	
  yerel	
  bir	
  histe	
  düzenli,	
  bahşedilen	
  için	
  alınamaz.	
  Bazen	
  meydana	
  

gelen	
  kötü	
  şeyler,	
  çok	
  basit	
  gösterilebilir,	
  innocentappearing	
  örnekleri,	
  ve	
  ben,	
  okuyucunun,	
  

durumdan	
  iyi	
  haberdar	
  olduğunu	
  varsayarım.	
  Bütün	
  bundan	
  kaçınmak,	
  o,	
  kendisinin	
  altında	
  

farka	
   bağlı	
   denklemlerin,	
   herkesin,	
   ilginin,	
   özel	
   ilk	
   durum	
   veya	
   (Sözde	
   piecewise-­‐devamlı	
  

olmayı	
   farz	
   etti)	
   giriş	
   sinyali	
   ne	
  olursa	
  olsun	
   zaman	
  arasında	
  benzersiz	
   çözümleri	
   olduğunu	
  

çalıştığı	
  farz	
  edilecek.	
  Bu,	
  iyi	
  büyümede	
  koşulları	
  bileni	
  ifade	
  eder,	
  ve	
  verilmiş	
  farka	
  bağlı	
  bir	
  

denklemde	
   çizgisel	
   olmayan	
   görevlerin	
   düzgünlük	
   malları,	
   kontrol	
   edilmeliydi,	
   metotlar,	
  

Volterra	
  Wiener	
  temsilinde	
  temel	
  almadan	
  önce,	
  kullanıl.	
  Aslında,	
  onlar,	
  kontrol	
  edilmeliydi,	
  

herhangi	
  bir	
  metot,	
  kullanılmadan	
  önce.	
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Takip	
  eden	
  sayfalarda	
  gelişmenin	
  büyük	
  kısmı,	
  zaman-­‐değişken	
  parametrelerle	
  farka	
  bağlı	
  

denklemler	
  bakımındandır,	
  odur,	
  durağan	
  olmayan	
  olay.	
  Bu	
  olayda	
  ilgisiz	
  okuyucu,	
  isteyerek	
  

gelişme	
   uzmanlaşabilir.	
   Gerçekten,	
   çok	
   daha	
   fazlası,	
   doğru	
   yerlerde	
   düşünceleri	
  

düşürmekten	
  gerektirilmez,	
  ve	
  değiştirmek	
   	
  ile	
   .	
  

	
  

	
  

3.1. Giriş	
  

Konuya	
   rahatlatmak,	
   ben,	
   bir	
   tekniğin	
   bir	
   incelemesiyle	
   çizgisel	
   resmi	
   denkleme	
   uyuyor	
  

olan	
  	
  

	
  

bir	
   giriş	
   çıktı	
   temsilini	
   kararlaştırmak	
   için	
   başlarım.	
   Bu	
   ifadede	
   ,	
   n-­‐boyutlu	
   resmi	
  

vektördür,	
   ,	
  yönsüz	
  giriştir,	
  ve	
   ,	
  yönsüz	
  çıktıdır.	
  

Tipik	
  farzlar,	
   	
  bazı	
  sınırlı	
  zaman	
  arasında	
  o	
  olacaktı,	
   ,	
   ,	
  ve	
   	
  devamlıdır	
  ve	
  

giriş	
  sinyali,	
  sınırlanır,	
  ve	
  devamlı	
  piecewise.	
  Böyle	
  farzlar,	
  bütün	
   	
  için	
  (1)'in	
  benzersiz	
  

bir	
  çözümünün	
  varlığına	
  garanti	
  vermek	
  için	
  yeterlidir.	
  Bu	
  standart	
  sonuç	
  genellikle,	
  art	
  arda	
  

gelen	
   tahminden	
   türetilir,	
   o	
   buna	
   rağmen,	
   burada	
   gösterilmeyecek.	
   Benim	
   başlıca	
   ilgim,	
  

çizgisel	
   olmayan	
   resmi	
   denklemlere	
   bir	
   yaklaşıma	
   göre	
   fikir	
   veren	
   bir	
   yolda	
   (1)'e	
   çözümün	
  

formunu	
  almaktır.	
  

İlk	
   olarak	
   bütün	
   	
   için	
   	
   ile	
   (1)'in	
   çözümünü	
   düşün.	
   O	
   taktirde,	
   farka	
   bağlı	
  

denklemin	
  her	
  iki	
  kenarı	
  	
  

	
  

elde	
   etmek	
   için	
   bütünleştirilebilir.	
   Bu	
   ifadenin	
   üzerinde	
   temel	
   alınan,	
   tekrarlayan	
   yer	
  

değiştirmeler,	
  yapılabilir.	
  Özellikle	
  daha	
  çok,	
  	
  

	
  

(1)	
  

	
  

(3)	
  

	
  
(2)	
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yazar,	
  ve	
  (2)'e	
  elde	
  etmek	
  için	
  yerine	
  koyar	
  	
  

	
  

(4)'de	
   	
  için	
  yerine	
  koyarak	
  (3)	
  formun	
  bir	
  ifadesini	
  kullanırken	
  devam	
  etmek,	
  verir	
  	
  

.	
  

Belirsizce	
  bu	
  süreci	
  tekrarlamak,	
  ve	
  son	
  terimin,	
  (Normda)	
  düzenli	
  bir	
  yolda	
  0'a	
  yaklaştığını	
  

göstermek,	
  	
  

	
  

geçiş	
   matrisinin	
   olduğu	
   	
   formda	
   bir	
   çözümü	
   verir	
   	
   herhangi	
   bir	
   sınırlı	
  

karede	
  düzenlice	
  bir	
  noktada	
  birleşen	
  Peano-­‐Baker	
  dizisi	
  olarak	
  bilinen	
  dizi	
  ile	
  	
  

	
  

tanımlan.	
  

Devamında	
   kullanılacak	
   olan	
   geçiş	
  matrisinin	
   önemli	
   bir	
  malı	
   kökenin	
   faydası	
   olmadan,	
  

çarpım	
  formülüdür	
  	
  

	
  

	
   her	
   biri	
   	
   'de	
   invertible	
   ve	
   	
   olan	
   gerçekle	
   bağlaçta	
   bu	
   formül;	
   Ver	
  

.	
   Sonunda,	
   gerçekte	
   bir	
   sabit	
   matrisi	
   ,	
   ne	
   zamandır,	
   bir,	
   	
  

kesinlikle	
  matris	
  üstel	
  olan	
   'i	
  göstermek	
  için	
  zor	
  değildir.	
  Sıfır	
  giriş	
  için	
  (1)'in	
  çözümü,	
  

olabilir,	
   bir	
   temsili	
   elde	
   ederdi,	
   keyfi	
   bir	
   giriş	
   sinyaliyle	
   (1)'in	
   çözümü	
   olduğu	
   için	
   .	
  

(4)	
  

	
  
(5)	
  

	
  
(6)	
  

	
  

(7)	
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,	
   (T)	
   her	
   	
   ve	
   	
   için	
   invertible	
   	
   olduğundan	
   'e	
   değişkenleri	
  

değiştir,	
  ve	
  	
  (1)	
  'i	
  tekrar	
  

	
   	
  

gibi	
  yaz,	
  

	
   	
  

olduğu	
  yerde.	
  

(8)	
   resmi	
   denklemde,	
   	
   formun	
   hiçbir	
   terimi	
   yoktur,	
   hangisi	
   değişken	
   değişikliğin	
  

objektifiydi.	
  Farka	
  bağlı	
  denklemin	
  her	
  iki	
  kenarını	
  içeride	
  bütünleştirmek	
  (8),	
  	
  

	
  

orijinal	
  değişkenler	
  bakımından,	
  hangisinin	
  olduğu	
  	
  

	
  

'i	
  verir.	
  Böylece,	
  	
  

.	
  

'ın	
  olduğu	
  olay	
  için,	
  1-­‐	
  derece	
  homojen	
  giriş	
  çıktı	
  temsilinin	
  	
  

	
  

	
  

(10)	
  

	
  (11)	
  

	
  

(12)	
  

	
  

(13)	
  

	
  
(14)	
  

	
  

(8)	
  

	
  

(9)	
  

	
  



	
   5	
  

çekirdekle	
  elde	
  edilmiştir.	
  Üstelik,	
  eğer	
   	
  ve	
   	
  gerçekte,	
  sabit	
  matrislerse,	
  sonra	
  

'dir,	
  ve	
  (13),	
  bir	
  kıvrım	
  bütünü	
  olur	
  

.	
  

Ben,	
   bilinear	
   durum	
   denklemlerine	
   bu	
   aynı	
   yer	
   değiştirme	
   yaklaşımını	
   alarak	
   çizgisel	
  

olmayan	
  olayın	
  dikkatini	
  başlatacağım.	
  Bu	
  başlayan	
  nokta,	
  kısmen	
  uygundur	
  çünkü	
  bilinear	
  

sınıfı	
  durum	
  denklemleri,	
  kendisi	
   için	
  çekirdekler	
   için	
  genel	
  bir	
  formun,	
  elde	
  edildiği	
  çizgisel	
  

olmayan	
  denklemlerin	
   ilk	
  olarak	
  geniş	
  sınıfıydı	
  —	
  ve	
  kısmen	
  çünkü	
  genel	
  form,	
  matematiğe	
  

ait	
   güzelliğin	
   bu	
   kadar	
   görkemli	
   örneğidir.	
   Üstelik,	
   o,	
   bilinear	
   olayının	
   davranışının,	
   daha	
  

genel	
  gelişmelere	
  bir	
  haberci	
  olduğu	
  daha	
  geç	
  kısımlarda	
  açık	
  bir	
  şekilde	
  olacak.	
  

Bir	
  bilinear	
  durum	
  denklemi,	
  	
  

	
  

formun	
   bir	
   vektör	
   farklı	
   olan	
   denklemidir,	
   nere,	
   önce	
   olduğu	
   gibi,	
   ,	
   'dir,	
   	
  

olurken,	
   ve	
   ,	
   yönsüz	
   niceliklerdir.	
   (16)	
   için	
   tipik	
   farzlar,	
   aynen	
   çizgisel	
   olayda	
   olduğu	
  

gibidir.	
  Problem	
  3.9'da,	
  okuyucu,	
  bu	
   farzların,	
  herhangi	
  bir	
   sınırlı	
   zaman	
  arasında	
  benzersiz	
  

bir	
  çözümün	
  varlığına	
  garanti	
  verdiğini	
  göstermesi	
  için	
  art	
  arda	
  gelen	
  tahmin	
  kanıtının	
  olduğu	
  

astandardı	
  taklit	
  etmek	
  için	
  davet	
  edilir.	
  	
  

	
  değişken	
  değişikliği	
  kullanmak,	
  geçiş	
  matrisi	
   ,	
   'e	
  nereye	
  

uyuyor	
  (16):	
  	
  

	
  

'in	
  basitleştirilen	
  bir	
  formunu	
  verir,	
  	
  

	
  

(15)	
  

	
  

(16)	
  

	
  

(17)	
  

	
  (18)	
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olduğu	
   yerde.	
   Giriş	
   çıktı	
   temsilinin	
   formunu	
   bulmak	
   için	
   çizgisel	
   olay,	
   teknikte	
   olduğu	
   gibi	
  

sadece,	
   (17)	
   farka	
  bağlı	
   denklemin	
  her	
   iki	
   kenarını	
   içeride	
  bütünleştirmektir,	
   ve	
   sonra	
   	
  

için	
  tekrar	
  yerine	
  koyar.	
  Prosedürün	
  ilk	
  adımı,	
  verir	
  	
  

.	
  

Bu	
  aynı	
  formun	
  bir	
  ifadesini	
  kullanırken	
   	
  için	
  yerine	
  koymak,	
  	
  

.	
  

(19)	
  formun	
  bir	
  ifadesini	
  kullanırken	
  (20)'de	
   	
  için	
  yerine	
  koymak,	
  ve	
  bu	
  biçimde	
  devam	
  

etmek,	
  verir,	
   	
  adımlardan	
  sonra,	
  

	
   .	
  

Gerçekte	
  notasyon	
  içeride	
  (21)'dir,	
   	
  için	
  birazcık	
  yoksul,	
  toplamalarda	
  adlandırır.	
  Daha	
  

açık	
  bir	
  ifade,	
  olacaktı	
  	
  

(19)	
  

	
  

(20)	
  

	
  

(21)	
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.	
  

Yine	
   de,	
   ekonominin	
   sebepleri	
   için	
   ben,	
   çöken	
   uyarlamayı	
   içeride	
   kullanmaya	
   devam	
  

edeceğim	
  (21).	
  

Denklem	
  (21),	
  birçok	
  yolda	
  çizgisel	
  olayda	
  (5)'e	
  benzerdir,	
  ve	
  o,	
  o	
  herhangi	
  bir	
  sınırlı	
  zaman	
  

arasında	
  düzenli	
  bir	
  yolda	
  (21)	
  yaklaşımlar	
  0ı'nda	
  son	
  terime	
  gösterilebilir.	
  Herhangi	
  bir	
  sınırlı	
  

zaman	
   arasında	
   bilinear	
   durum	
   denkleminin	
   çözümü	
   bu	
   yüzden,	
   düzenlice	
   bir	
   noktada	
  

birleşen	
  (Vektör)	
  Volterra	
  dizisi	
  ile	
  temsil	
  edilebilir:	
  	
  

.	
  

(3.12	
  ve	
  3.13	
  problemler,	
  akıllıca	
  bir	
  noktada	
  birleşme	
  malını	
  gösterir	
  (22).)	
  

Orijinal	
  değişkenlere	
  çıktı	
  denklemi	
  ve	
  arkada	
  değiştirmeyi	
  birleştirmek,	
  	
  

(22)	
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hem	
   de	
   düzenlice	
   herhangi	
   bir	
   sınırlı	
   zaman	
   arasında	
   bir	
   noktada	
   birleşen	
   Volterra	
   sistem	
  

temsilini	
  verir.	
  

İlk	
  duruma	
  yalnız	
  güvenen	
  (23):	
  onlarda	
  koşulların	
  üç	
  türü	
  vardır,	
  girişe	
  yalnız	
  güvenenler,	
  ve	
  

onun,	
   her	
   ikisine	
   güvendiği	
   onlar.	
   Odur,	
   çizgisel	
   olaydan	
   farklı,	
   yanıt,	
   basitçe	
   zorunlu	
   ve	
  

zorunlu	
   olmayan	
   yanıtların	
   toplamı	
   değildir.	
   	
   Eğer	
   her	
   	
   için,	
   	
   	
   ise,	
   bilinear	
  

durum	
  denklem	
  bakışları,	
  çizgisel	
  resmi	
  bir	
  denklemi	
  beğenir,	
  ve	
  yanıtın,	
  uygun	
  aşina	
  formu	
  

var.	
   Eğer	
   	
   ise,	
   giriş	
   çıktı	
   davranışı,	
  makulce	
   basit	
   bir	
   Volterra	
   sistemi	
   ile	
   tanımlanır.	
  

Sonunda,	
   eğer	
   	
   ayarlanırsa,	
   giriş	
   çıktı	
   davranışı	
   yeniden,	
   bir	
   Volterra	
   sistemi	
   ile	
  

tanımlanır,	
  ama	
  çekirdekler,	
  özel	
  değere	
  güvenir	
   .	
  

O,	
   çizgisel	
   olmayan	
   bir	
   sistemin	
   giriş	
   çıktı	
   davranışının,	
   sistemin	
   ilk	
   durumunda	
   biraz	
  

karışık	
  bir	
   yolda	
  bağlı	
  olduğunu	
   fazla	
   şaşırtıyor	
  olmamalıydı.	
   Tutturulmuş	
   ilk	
  durumla,	
   (23),	
  

bir	
   dereceyle	
   bir	
   Volterra	
   sistem	
   temsilidir,	
   belirtilen	
   bir	
   zaman	
   görevi	
   olan	
   0	
   terimdir,	
   ve	
  

daha	
   yüksek-­‐derece	
   koşullarının	
   çekirdekleriyle	
   tamamen	
   belirtilen.	
   Yine	
   de,	
   o	
   genellikle,	
  

yeni	
  değişkenlerde	
  sıfır	
  ilk	
  durumun	
  seçeneğine	
  izin	
  vermek	
  için	
  bilinear	
  durum	
  denkleminde	
  

değişken	
   bir	
   değişikliği	
   tanıştırmak	
   için	
   en	
   rahattır.	
   Bu,	
   daha	
   genellikle	
   beklemeksizin	
  

tartışılacak,	
   şimdinin	
   dışında	
   basit	
   örnekler,	
   değişken-­‐değişiklik	
   fikirlerinin,	
   nasıl	
   yerine	
  

getirilebildiğini	
  gösterecek.	
  	
  

Örnek	
  3.1.	
   	
   Sıklığı	
  oluşturmak	
  için	
  direkt	
  metot,	
  ayarladı	
  (FM)	
  sinyaller,	
  bir	
  voltajın,	
  

osilatörü	
  kontrol	
  ettiğini	
  kullanmaktır.	
  Odur,	
  bir	
  armonik	
  osilatörünün	
  sıklığı,	
  bir	
  mesaj	
  sinyali	
  

gereğince	
  değiştirilir	
   .	
  Temel	
  farka	
  bağlı	
  denklem	
  modeli,	
  	
  

	
  

	
  nerede	
  oluşturulan	
  FM	
  sinyal	
  olduğudur.	
  Bu	
  model,	
  	
  

(23)	
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elde	
  etmeyi	
  koyarak	
  resmi	
  denklem	
  formunda	
  yazılabilir	
  	
  

.	
  

Şimdi,	
  kendisi	
   için	
   ilk	
  durumun,	
  sıfır	
  giriş	
  yanıtını	
  çıkararak	
  0	
  olduğu	
  yeni	
  resmi	
  bir	
  denklem	
  

tanımlamasını	
  tanıştırır.	
   	
  için,	
  	
  

	
  

böylece	
  izin	
  ver	
  	
  

.	
  

	
  ‘nin	
  terimlerinde	
  diferansiyel	
  denklem	
  yazmak	
  

	
  

verir.	
  Denklem	
  (23)’seki	
  sonuçları	
  bu	
  bilineer	
  durum	
  denklemine,	
  ilk	
  iki	
  üç	
  köşeli	
  çekirdeğin	
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olduğu	
  yerde,	
  uygulamak	
  

	
  

üretir.	
  

Örnek	
  3.2	
   bilinear	
  durum	
  denkleminin	
   formüle	
  etmesinin	
  başka	
  bir	
   resimlemesi	
  olarak,	
  

yapar,	
  ve	
  çekirdeklerin	
  hesabı,	
  ideali	
  düşünür,	
  ayrı	
  olarak	
  heyecanlandırdı,	
  figür	
  3.1'de	
  direkt-­‐

güncel	
  motor	
  diyagramlı.	
  

	
  

Şekil	
  3.1.	
   Bir	
  ideal	
  DC	
  motoru.	
  

Alan	
  devirinin	
  farka	
  bağlı	
  denklem	
  tanımlaması,	
  	
  

.	
  

Armatür	
  devirinin	
  temel	
  karakteristikleri,	
  daha	
  fazla	
  açıklamayı	
  gerektirir.	
  Sözde	
  oluşturulan	
  

voltaj	
   ,	
  alan	
  akımı	
  ve	
  motor	
  hızının	
  ürününe	
  orantılıdır:	
  

.	
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Motor	
   ile	
   oluşturulan	
  manyetik	
   tork,	
   alan	
   ve	
   armatür	
   akımlarının	
   ürününe	
   benzer	
   şekilde	
  

orantılıdır:	
  

.	
  

Böylece,	
  armatür	
  deviri,	
  

	
  

ile	
  tanımlanır,	
  ve	
  mekanik	
  yük	
  sistemi,	
  TL'in,	
  mekanik	
  yük	
  torku	
  olduğu	
  

	
  

geçerek	
  tanımlanır,	
  ve	
  J,	
  ataletin	
  anıdır.	
  

Hız	
   için	
  basit	
   bir	
  metot,	
   kontrol	
   eder,	
   bir	
  DC	
  motorunda,	
   armatür	
   voltaj	
   sabitini	
   tutmaktır,	
  

,	
  ve	
   	
  alan	
  devirinde	
  değişken	
  bir	
  direnç	
  yoluyla	
  ben	
  alan	
  akımını	
  kontrol	
  eder.	
  

Özel	
  bir	
  olayda	
  bu	
  planı	
   temsil	
  etmek,	
  gevşeten	
  bir	
  alet	
  olarak	
  motor	
  yük	
   işlerini	
   varsayar.	
  

Odur,	
   'i	
  varsayar,	
   'in,	
  nerede	
  ağdalı	
  gevşeten	
  katsayı	
  olduğu.	
  (Örneğin,	
  motor,	
  

bir	
   akışkan	
   maddeyi	
   karıştırıyor	
   olabilirdi.)	
   Sonra	
   	
   giriş,	
   	
   çıktı	
   ve	
  

durum	
  vektör	
  	
  

	
  

ile	
  	
  

	
  

tarafından	
  tanımlanan	
  sistemdir.	
  

Bu	
  bilinear	
  durum	
  denklemi,	
  tamamen	
  doğru	
  tarafta	
  sabit	
  terimden	
  dolayı	
  (16)'in	
  formunda	
  

değildir.	
  Bu	
  terimi	
  çıkarmak,	
   'le	
   farka	
  bağlı	
  denklemin	
  çözümü	
   	
  olmak	
  ve	
   izin	
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verir	
   .	
  Sonra	
  olduğu	
  (Bir)	
  isteyerek	
  doğrulanandır.	
  Şimdi	
   	
  izin	
  ver,	
  ve	
  

	
  için	
  farka	
  bağlı	
  bir	
  denklem	
  :	
  hesapla	
  	
  

.	
  

Bu,	
   (16)	
   standart	
   formda	
   bir	
   bilinear	
   durum	
   denklem	
   tanımlamasıdır,	
   ve	
   (23)	
   yoluyla	
  

çözümün	
  hesabı,	
  açıktır.	
  Örneğin,	
  eğer	
  ilk	
  koşullar,	
  0sa,	
  sonra	
  ilk	
  üç,	
  üç	
  köşeli	
  çekirdeklerin,	
  

olduğu	
  	
  

	
  

'dir.	
  

3.2. Notasyonda	
  bir	
  uzaklaşma.	
  

Daha	
   genel	
   çizgisel	
   olmayan	
   farka	
   bağlı	
   denklemler	
   olarak	
   düşünül,	
   notational	
  

karmaşıklıkları,	
   gözükmeye	
   başlar.	
   Bunlar,	
   birkaç	
   değişken	
   ve	
   onların	
   güç	
   dizi	
  

genişlemelerinin	
   görevleriyle	
   yapmak	
   zorunda.	
   Zorluklar	
  muhtemelen,	
   alışılmamış	
   değildir,	
  

ama	
   onların	
   kararlılığı	
   (Tensor)	
   ürünler	
   burada	
   Kronecker	
   bakımından,	
   biraz	
   nadirdir,	
   bu	
  

yüzden	
  bu	
  uzaklaşma.	
  	
  

	
   ve	
   	
  matrisler	
   için,	
   sırasıyla	
   boyut	
   	
   ve	
   ,	
   Kronecker	
   ürünü,	
  

geçerek	
  tanımlanır	
  

.	
  

(24)	
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Açık	
   bir	
   şekilde	
   'in,	
   	
   boyutu	
   olduğudur,	
   ve	
   herhangi	
   bir	
   iki	
   matrisin,	
   bu	
  

ürüne	
   göre	
   itaatkar	
   olduğu.	
   Kronecker	
   ürünü,	
   associative	
   öyledir	
   ki	
   	
   belirsizlik	
  

olmadan	
   yazılır.	
   Takip	
   eden	
   ilişkiler,	
   kolayca	
   kanıtlanmıştır,	
   sıradan	
   matris	
   toplaması	
   ve	
  

çarpıma	
  göre	
  uyulabilirliği	
  farz	
  etmek.	
  

	
  

aslında	
   bu	
   mallar,	
   Kronecker	
   ürününün,	
   matris	
   toplaması	
   ve	
   çarpımdan	
   daha	
   yüksek	
   bir	
  

öncelik	
  verildiğinden	
  beri	
  daha	
  basit	
  formlarda	
  yazılabilir:	
  

.	
  

Kanıtlamak	
  için	
  sert	
  olmayan	
  ekstra	
  mallar,	
  aşağıda	
  listelenir.	
  

Özellik	
  1	
  Ürün	
   ,	
  eğer	
  ve	
  ancak,	
   	
  ve	
   .	
  

Özellik	
  2	
  Eğer,	
  A	
  ve	
  B,	
  invertibledir,	
  sonra	
   ,	
  invertible	
  ve	
   .	
  

Özellik	
  3	
  Eğer	
   	
  sıraysa,	
  ve	
   	
  sayar,	
  sonra	
  sayar	
   .	
  

Kronecker	
  ürün	
  notasyonu,	
  polynomials	
   için	
  kullanılacak,	
  veya	
  birkaç	
  değişkende	
  güç	
  dizisi.	
  

Örneğin,	
  eğer	
   	
  ise,	
  sonra	
   'in	
  güç-­‐dizi	
  genişlemesi	
   	
  	
  etrafta,	
  	
  

	
  

her	
  biri	
   'nin,	
  özel	
  olmak,	
  nerede	
  uygun	
  boyutun	
  bir	
  katsayı	
  matrisi	
  olduğu	
   	
  yazılır.	
  

Ben	
   genellikle,	
   biraz	
   	
   (i	
   terimleri)	
   koyarak	
   notasyonu	
   basitleştireceğim,	
   ve	
  

yazarak	
  	
  

	
   .	
  

Daha	
   yakın	
   bir	
   bakışı	
   almak,	
   lüzumsuzluklar	
   olduğunu	
   gösterir,	
   bu	
   notasyonda	
   sakladı.	
  

Özellikle	
   ,	
  bir	
   	
  vektörüdür,	
  ama	
  tek	
   	
  girişleri,	
  ayrıdır.	
  

Örneğin,	
  yazmak,	
  boşluğu	
  kurtarmayı	
  yer	
  değiştirir,	
  eğer	
  	
  

(25)	
  

	
  

(26)	
  

	
  

(27)	
  

	
  (28)	
  

	
  (29)	
  

	
  

(30)	
  

	
  
(31)	
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sonra	
  	
  

	
  

lüzumsuzluk,	
   tekrarlayan	
   girişler	
   ve	
   kullanmayı	
   silerek	
   çıkarılabilseydi,	
   de,	
   kalan	
   için	
  

emrederken	
  bir	
  lexicographic.	
  

Sonuç	
  için	
  bir	
  kare-­‐parantez	
  notasyonunu	
  benimsemek,	
  bu	
  prosedür,	
  	
  

	
   	
  

verir,	
  birçok	
  maksat	
  olduğu	
  için,	
  bu	
  azaltılan	
  Kronecker	
  ürünü,	
  tercih	
  edilirdir	
  çünkü	
  boyutlar,	
  

daha	
  küçüktür.	
  

Yine	
   de,	
   bazı	
   açıklık,	
   genel	
   hesapların,	
   yapıldığı	
   zaman	
   boyutun	
   ekonomisi	
   için	
   feda	
   edilir.	
  

Örneğin,	
  varsay,	
   	
  ve	
   	
  mı.	
  

Sonra	
  	
  

	
   	
  

Orada,	
  	
  

	
  

başka	
   bir	
   örnek	
   olarak	
   .'in	
   açık	
   koşullarında	
   	
   yazmak	
   için	
   zor	
   olduğu	
   bir	
   (Daha	
   küçük	
  

boyut)	
  matrisi	
   	
  böyle	
  var	
  olduğu	
  açık	
  olurken,	
  	
  

	
  

yeniden	
   	
  bir	
   	
  matrisiyle	
  çizgisel	
  farka	
  bağlı	
  denklemi	
  düşün.	
  	
  

(32)	
  

	
  

(33)	
  

	
  

(34)	
  

	
  

(35)	
  

	
  (36)	
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  için	
  farka	
  bağlı	
  bir	
  denklemin,	
  	
  

	
  

	
  kimliğidir	
  formda	
  yazılabildiği	
  ürün	
  kuralını	
  doğrulamaktan	
  sonra.	
  	
  Onun,	
   	
  hem	
  de	
  

çizgisel	
  farka	
  bağlı	
  bir	
  denklem,	
  ve	
  daha	
  aşağı	
  boyutun	
  birini	
  tatmin	
  eden	
  gösterilebilmesine	
  

rağmen,	
   A.	
   bakımından	
   açıkça	
   katsayı	
  matrisini	
   yazması	
   için	
   hiçbir	
   açık	
   yol	
   yoktur	
   (Olması	
  

beklenence,	
   notasyon,	
   'in,	
   iyi	
   sebep	
   için	
   kaçınmış	
   oluyor	
   olduğudur.	
   'in,	
  

'den	
   çok	
   farklı	
   olduğunu	
   fark	
   et,	
   ve	
   böylece	
   nokta	
   notasyonu,	
   belirsizliğe	
  

yönelir.)	
  

Bu	
  farka	
  bağlı	
  denklem	
  örneği,	
  adil	
  notational	
  sebeplerinden	
  daha	
  çoğu	
  için	
  ilgidendir.	
  Ne	
  

gösterildi	
  ki	
  eğer	
   ,	
  çizgisel	
  farka	
  bağlı	
  bir	
  denklemi	
  tatmin	
  ederse,	
  sonra,	
  bundan	
  dolayı	
  

yap	
   .	
   Açıkça,	
   bu	
   düşünce,	
   	
   çizgisel	
   farka	
   bağlı	
   bir	
   denklemi	
   tatmin	
   edeni	
  

göstermek	
  devam	
  edilebilir	
   .	
  Çok	
  benzer	
  bir	
  gözlem,	
  anahtarı	
  sağlar,	
  kısım	
  3.3'te	
  

tartışılması	
   için	
   metotlar	
   olduğu	
   için.	
   Bu	
   dikkatlerin	
   sonucu,	
   benim,	
   bu	
   bölümde	
   genel	
  

gelişmeler	
  için	
  Kronecker	
  ürün	
  notasyonunu	
  kullanacak	
  olduğumdur.	
  Yine	
  de,	
  açık	
  bir	
  şekilde	
  

daha	
  tutumlu	
  notasyonun,	
  açıklıkta	
  birlikte	
  olan	
  bir	
  kayıpla	
  yerine	
  koyulabildiğidir.	
  Daha	
  fazla	
  

gitmek,	
  basit	
  örneklerde	
  o	
  muhtemelen,	
  hem	
  bu	
  özel	
  notasyonları	
  bırakmak	
  için	
  kazançlıdır,	
  

hem	
  de	
  serbest	
  çalışmak.	
  	
  

3.3. Carleman	
  Linearization	
  Yaklaşımı	
  	
  

Çekirdekleri	
  hesaplamak	
  için	
  Carleman	
  linearization	
  metodu,	
  ilk	
  olarak	
  	
  

	
   	
  

’nin	
   	
   resmi	
   vektör	
   ve	
   	
   giriş	
   ve	
   	
   çıktının	
   yönsüz	
   sinyaller	
   olduğu	
   yerde	
  

formun	
   resmi	
   denklemlerinin	
   bağlamında	
   düşünülecek.	
   Bu	
   özel	
   formla	
   başlamak	
   için	
   bir	
  

(34)	
  

	
  

(37)	
  

	
  

(38)	
  

	
  (40)	
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sebep,	
   uygun	
   çekirdeklerin,	
   uyarıları	
   içermediğidir.	
   Bu,	
   onun	
   olduğu	
   gerçeğin	
   direkt	
   bir	
  

sonucudur,	
   giriş	
   içeride	
   (40),	
   çizgiselce	
   gözükür.	
   Kısmın	
   sonuna	
   doğru	
   ben,	
   bu	
   kısıtlamayı	
  

çıkaracağım,	
  ve	
  kısaca	
  daha	
  genel	
  bir	
  olayı	
  tartışacağım.	
  	
  

Form	
  için	
  başka	
  bir	
  sebep	
  içeride	
  (40),	
  bir	
  noktada	
  birleşen	
  bir	
  Volterra	
  sistem	
  temsilinin	
  

varlığının,	
   genel	
   hipotezlerin	
   altında	
   garanti	
   verilebildiğidir.	
   	
   ve	
   	
  

fonksiyonlarının	
   	
   'de	
  analitik	
  ve	
   	
   'de	
  devamlı	
  olduğunu	
  varsay,	
   (40)	
  çizgisel-­‐analitik	
   resmi	
  

bir	
  denklem	
  hangi	
  olayda	
  çağırılır.	
   Sonra	
  çeşitli	
  metotlar,	
  olabilir,	
   takip	
  edeni	
  kurardı,	
  biraz	
  

gevşekçe	
   belirtti,	
   sonuç	
   verir.	
   (Teknikleri	
   kullanıyor	
   olan	
   bir	
   kanıt,	
   tartıştı,	
   kısım	
   3.4'te,	
   ek	
  

3.1'de	
  verilir.).	
  	
  

Teorem	
  3.1	
   Zorunlu	
  olmayan	
  çizgisel-­‐analitik	
  resmi	
  denkleme	
  bir	
  çözümün,	
  için	
  var	
  olduğu	
  

'i	
  varsayar.	
  Orada	
  sonra,	
  bir	
   	
  böyle	
  var	
  olur	
  ki	
  orada	
   ’i	
  tatmin	
  ediyor	
  

olan	
  bütün	
  girişler	
   için,	
  üzerinde	
  bir	
  noktada	
  birleşen	
   	
  resmi	
  denklem	
  için	
  bir	
  Volterra	
  

sistem	
  temsilidir.	
  	
  

Uygun	
   sonuçla	
   bunu	
   kıyaslamak	
   için	
   ilginçtir,	
   bilinear	
   durum	
   denklemleri	
   olduğu	
   için.	
  

Çizgisel-­‐analitik	
   resmi	
   denklemler	
   için,	
   bir	
   noktada	
   birleşen	
   bir	
   Volterra	
   sistem	
   temsilinin	
  

varlığı,	
   sadece	
   garanti	
   verilir,	
   yeterince	
   küçük	
   giriş,	
   işaret	
   ettiği	
   için,	
   bilinear	
   durum	
  

denklemleri	
  için	
  giriş	
  sinyalleri,	
  ihtiyaç	
  duyarken,	
  sadece,	
  sınırlan.	
  	
  

Çekirdekleri	
  gerçekte	
  hesaplamakta	
  ilk	
  adım,	
  daha	
  basit	
  bir	
  forma	
  resmi	
  denklemi	
  koymak	
  

için	
  bazı	
  değişken	
  değişiklikleri	
  yapmak	
  olacak.	
  Bunlar,	
  zorunlu	
  değildir,	
  ama	
  onlar,	
  müteakip	
  

kökeni	
   daha	
   az	
   telaşlı	
   yapar.	
   Olması	
   beklenence,	
   açık	
   bir	
   şekilde	
   böyle	
   değişken	
  

değişikliklerin,	
   her	
   zaman	
   büyük	
   bir	
   fikir	
   olduğu	
   değildir.	
   Ne	
   zaman	
   özel	
   problemler	
   veya	
  

örneklerle	
   uğraşmak,	
   önemli	
   özellikler,	
   gizlenebilir.	
   Ama	
   ben,	
   kökenlerin	
   basitliğini	
  

sürdürmeye	
   veririm,	
   Volterra	
   sistem	
   temsilinin	
   formunun,	
   değişken	
   değişiklikler	
   olmadan	
  

türetilebildiği	
  yorumla.	
  	
  

İlk	
  basitleştirme,	
  görevin	
   	
  içeride	
  (40),	
  genelliğin	
  küçük	
  kaybıyla	
   'de	
  çizgisel	
  olmak	
  

alınabildiği	
  odur.	
  Kendisiyle	
   	
  devamlı	
  olarak	
   	
  için	
   'te	
  farklı	
  olan	
  farzın	
  altında	
  çıktı	
  

denklemini	
  ayırmak,	
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için	
  farka	
  bağlı	
  bir	
  denklemi	
  verir	
   	
  ile.	
  (41)'in	
  doğru	
  tarafından	
  çizgisel-­‐analitik	
  

forma	
   sahip	
   olduğu	
   için,	
   ,	
   'in	
   altına	
   yeni	
   bir	
   vektörü	
   oluşturmak	
   için	
   bitişik	
   olmuş	
  

olabilir	
   .	
  Sonra	
  resmi	
  denklem,	
  	
  

	
  

	
  bir	
   	
  vektörüdür	
  formda	
  yazılabilir.	
  Bu	
  olayda	
   .	
  Ben	
  hem	
  de,	
  

onu	
   farz	
   edeceğim,	
   'la	
   farka	
   bağlı	
   denklemin	
   çözümünün	
   içeride	
   (42)	
   olduğu	
  

.	
  Bunu	
  göstermek,	
  genelliğin	
  hiçbir	
  kaybını	
  gerektirmez,	
  onu	
  varsayar,	
   	
  için	
  

yanıt,	
   'dir.	
  Sonra	
   	
  koyarken,	
  (42),	
  formda	
  yazılabilir	
  	
  

.	
  

uygun	
   tanımlarıyla	
   yazılabilir	
   	
   ve	
   .	
   Böylece,	
   notasyonu	
  basitleştirmek,	
   formun	
  

resmi	
  denklemleri	
  	
  

	
  

(41)	
  

	
  

(42)	
  

	
  

(43)	
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düşünülecek.	
   ,	
   	
   resmi	
   bir	
   vektör	
   buradadır,	
   ,	
   	
   ve	
   	
  	
  

ima	
  eder,	
  ve	
   	
  değişken	
  değişiklikten	
  dolayı,	
  çalıştırdı.	
  O,	
  bu	
  son	
  değişken	
  değişiklik	
  

için	
   ödemesi	
   için	
   bir	
   bedel	
   olduğu	
   not	
   edilmeliydi.	
   Yani,	
   zorunlu	
   olmayan	
   çözüm	
   ,	
  

basitleştirilen	
   farka	
   bağlı	
   denklemin	
   doğru	
   tarafını	
   içeride	
   elde	
   etmek	
   için	
   hesaplanmalıdır	
  

(43).	
   Bu,	
   zorunlu	
   olmayan	
   sistemin,	
   içeride	
   	
   çizgisel	
   olduğu	
   zaman	
   sert	
   bir	
   problem	
  

olamazken,	
   açıkça	
   daha	
   genel	
   bir	
   durumda	
   'in	
   hesaplaması,	
   keyfi	
   olarak	
   zor	
   olabilir.	
  

Amaç	
   şimdi,	
   için	
   derece	
   boyunca	
   koşulları	
   bir	
   polynomial	
   giriş	
   çıktı	
   ifadesinin	
   'ne	
  

kararlaştırmaktır	
  (43).	
  Odur,	
  formun	
  bir	
  giriş	
  çıktı	
  temsilini	
  kararlaştırmak	
  	
  

	
  

Tabii,	
  genelde	
  orada,	
   içeride	
  görmezlikten	
  gelmiş	
  olan	
  (44)	
  daha	
  yüksek	
  derecenin	
  koşulları	
  

olacak.	
   Resmi	
   denklemin	
   (43),	
   bir	
   noktada	
   birleşen	
   bir	
   Volterra	
   sistemi	
   olarak	
   (Koşulların	
  

altında,	
   daha	
   önce	
   belirtti)	
   temsil	
   edilebildiğinden	
   beri,	
   dizinin	
   bir	
   polynomial	
   budaması,	
  

yeterince	
  küçük	
  olan	
  girişler	
  için	
  doğru	
  bir	
  tahmin	
  olacak.	
  	
  

Gerçekte,	
  polynomial	
  sistem	
  temsilini	
  kararlaştırmak	
  için	
  düşünülmesi	
  için	
  metot,	
  için	
  bir	
  

polynomial	
   temsilini	
   oluşturur	
   .	
   Odur,	
   vektör	
   çekirdeklerinin	
   bir	
   takımı,	
   formun	
   bir	
  

ifadesi	
  için	
  kararlaştırılır	
  	
  

.	
  

Sonra,	
   o	
   zamandan	
   beri	
   ,	
   'in	
   çizgisel	
   bir	
   görevidir,	
   çekirdekler,	
   giriş	
   çıktı	
   temsili,	
  

isteyerek	
  hesaplanan	
  olduğu	
  için.	
  

Carleman	
  linearization	
  metodu,	
  (43)	
  resmi	
  denklemin	
  doğru	
  tarafının	
  değiştirmesiyle	
  güç	
  

dizi	
  temsilleri	
  ile	
  başlar.	
  Kronecker-­‐ürün	
  notasyonunu	
  benimsemek,	
  	
  

	
  

koşulların,	
   nerede	
   göstermediğini	
   yazar,	
   gösterilen	
   koşullardan	
   'de	
   daha	
   yüksek	
  

derecedendir.	
  Böylece,	
  (43),	
  kendisinin	
  benim	
  	
  

(44)	
  

	
  

(45)	
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açıkça,	
   derece	
   boyunca	
   koşulları	
   ’in	
   genişlemesinde	
  N'e	
   tuttuğum	
   formda	
   yazılır,	
   ve	
  

	
  derece	
  boyunca	
  genişlemesinde	
  adlandırır	
   .	
  Bu	
  genişlemelerde	
  daha	
  yüksek-­‐

derecenin,	
   adlandırdığı,	
   katkıda	
   bulunmayacak,	
   ilk	
   	
   çekirdeklerine,	
   beklemeksizin	
  

görülecek.	
  Temsil	
  içeride	
  (46),	
  uygun	
  ilk	
  bir	
  adımdır	
  çünkü	
  o,	
  daha	
  yüksek-­‐derece	
  koşullarıyla	
  

(46)'in	
   çıktısının,	
   sildiği	
   gösterilebilir,	
   	
   onu	
   çağırabilir,	
   	
   herhangi	
   bir	
   giriş	
   için,	
   ne	
  

zaman,	
   	
  yanıta	
  bu	
  aynı	
  girişe	
  (43)'den	
  kıyasladı,	
  	
  

	
  

'in,	
  bir	
  sabit,	
  ve	
  nerede	
  olduğu	
  	
  

	
  

'i	
   tatmin	
  eder.	
  Şimdi,	
   	
  ve	
   	
   	
   formun	
  girişleri	
   için	
  yanıtları	
  düşünür,	
   	
  herhangi	
  

bir	
  gerçek	
  sayı	
  olduğu	
  yerde.	
  Bu	
  durumda,	
  	
  

	
  

bundan	
   dolayı	
   (Budamalar)	
   	
   için	
   polynomial	
   temsillerinin	
   olduğu	
   o,	
   ve	
   ,	
   (46)'e	
  

uyuyor	
   olan	
   ilk	
   	
   çekirdeklerini	
   kararlaştırması	
   için	
   .'in	
   olduğu	
   derece	
   boyunca	
   aynı	
  

olmalıdır,	
   farka	
   bağlı	
   bir	
   denklem,	
   	
   için	
   geliştirilir,	
   açık	
   dikkatten	
   düşürmek,	
   yol	
  

boyunca	
  dereceden	
   'den	
  daha	
  büyük	
  adlandırır.	
  

(46)	
  

	
  

(47)	
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Böylece	
   ,	
   	
   için	
   farka	
  bağlı	
  denklem	
  olarak	
  aynı	
  genel	
   forma	
   içeride	
  sahip	
  olan	
  

(46)	
  farka	
  bağlı	
  bir	
  denklemi	
  tatmin	
  eder.	
  Bu	
  modada	
  devam	
  etmek,	
  farka	
  bağlı	
  bir	
  denklemi	
  

verir,	
  notasyonla	
   	
  dereceye	
   	
  olduğu	
  için	
  formun	
  	
  

	
  

	
  

	
  geçerek	
  tanımladı,	
  ve	
   	
  için,	
  	
  

	
  

(Her	
  terimde	
  ve	
   	
  terimlerinde	
  Kronecker	
  ürünleri	
  vardır.)	
  Benzer	
  bir	
  notasyon,	
  için	
  kullanılır	
  

.	
  Şimdi,	
  önemli	
  gözlem,	
  koyarak	
  odur	
  	
  

(48)	
  

	
  

(49)	
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.	
  

Ben,	
  (49)	
  daha	
  yüksek-­‐dereceyle	
  (Bazı	
  düşünceleri	
  düşürmek)	
  beraber	
  büyük	
  bilinear	
  durum	
  

denkleminin,	
  adlandırdığı	
  gibi	
  farka	
  bağlı	
  denklemlerin	
  toplamasını	
  içeride	
  yazabilirim:	
  	
  

	
  

Bütün	
   daha	
   yüksek-­‐derece	
   koşullarını	
   silmenin	
   üzerinde,	
   elipsler	
   ile	
   temsil	
   etti,	
   bu	
   resmi	
  

denklem,	
   çizgisel-­‐analitik	
   resmi	
   denklemin	
   budanan	
   bir	
   Carleman	
   linearizationu	
   içeride	
  

çağırılır	
  (43).	
  (O	
  hem	
  de,	
  bir	
  bilinearization	
  (50)	
  çağırmak	
  için	
  uygun	
  olabilirdi	
  (43).)	
  Derece	
   	
  

polynomial	
   temsilini	
   bulmak	
   için	
   ilkede	
   açıktır,	
   bilinear	
   durum	
   denkleminin	
   giriş	
   çıktı	
  

davranışı	
   olduğu	
   için	
   (50).	
   (50)'in	
   giriş	
   çıktı	
   davranışından	
  beri	
   derecenin	
   koşulları	
   boyunca	
  

(43)'in	
   olanla	
   'i	
   kabul	
   et,	
   derecenin	
   polynomial	
   temsili,	
   (50)	
   için	
   'in,	
   kesinlikle	
   aynen	
   o	
  

olarak	
  için	
  olduğu	
  (43)'dir.	
  Bu	
  yaklaşımın,	
  kısım	
  3.1'den	
  (22)	
  yoluyla	
  üç	
  köşeli	
  formda	
  bütün	
   	
  

çekirdeklerini	
  verdiğini	
  not	
  et.	
  	
  

Örnek	
  3.3	
   FM	
   sinyallerin	
   demodülasyonu	
   için	
   evre-­‐kilitlenen	
   bir	
   ilmik,	
   figür	
   3.2'de	
  

diyagramlıdır.	
  Giriş,	
  	
  

,	
  

(50)	
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olduğu	
  yerde	
  bir	
  FM	
  sinyaldir	
  Ve	
   ,	
  (modülayon)	
  mesaj	
  sinyaldir.	
  

	
  

Şekil	
  3.2.	
   Bir	
  faz-­‐kilitli	
  döngü.	
  

Döngü	
  filtresi,	
   	
  transfer	
  görevi	
  ile	
  tanımlanır,	
  ve	
  voltaj-­‐kontrol	
  edilen	
  osilatör,	
  	
  

,	
  

	
  

olduğu	
  yerde	
  ve	
   	
  evre-­‐kilitlenen	
  ilmiğin	
  çıktısıdır	
  sinyali	
  üretir.	
  Çoğaltanın	
  çıktısı	
  sonra,	
  iki	
  

koşuldan	
  dayanır:	
  	
  

	
  

bir	
  yüksek-­‐sıklık	
  terimi,	
  ve	
  bir	
  alçak-­‐sıklık	
  terimi	
  	
  

.	
  

Döngü	
   filtresinin,	
   yüksek-­‐sıklık	
   terimini	
   çıkardığını	
   farz	
   etmek,	
   sinyal	
   ,	
   alçak-­‐sıklık	
  

teriminin	
  olduğu	
  tek	
  içermek	
  düşünülebilir.	
  Odur,	
  	
  

	
  

evre	
  hata	
  sinyalinin	
   ,	
  geçerek	
  verildiği	
  	
  

	
  

Sonra,	
  hem	
  de	
  evre-­‐kilitlenen	
  döngünün	
  çıktısı	
  olan	
  döngü	
  filtresinin	
  çıktısı,	
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.	
  

Evre	
  hatasını	
  tanımlayan	
  bu	
  ilişkilerden	
  farka	
  bağlı-­‐gerekli	
  bir	
  denklem,	
  	
  

.	
  

Bu	
  denklem,	
  figür	
  3.3'te	
  gösterilen	
  modeli	
  akla	
  getirir.	
  Ne	
  zaman	
   ,	
  döngünün,	
  kilitlenmek	
  

için	
  dendiği	
  sıfırdır,	
  ve	
   .	
  	
  

	
  

Şekil	
  3.3.	
   	
  Faz-­‐kilitlenmiş	
  döngü	
  için	
  nonlineer	
  bir	
  model.	
  

Modeli	
   analiz	
   etmekte	
   zorluk,	
   genellikle	
   ilmik-­‐filtre	
   transfer	
   görevinin	
   doğasında	
   'e	
  

bağlı	
   olur.	
   Basitlik	
   için,	
   ben,	
   sözde	
   ilk-­‐emir	
   evre-­‐kilitlenen	
   ilmiğin	
  olduğu	
   tek	
  düşüneceğim,	
  

nerede	
   	
   (veya	
   ).	
   Sonra	
   evre	
   hatası	
   için	
   farka	
   bağlı	
   denklem	
  

tanımlaması,	
  	
  

	
  

'e	
  basitleştirir	
  ve,	
  eğer	
  ilmik,	
  kilitlenirse,	
   .	
  Bu	
  basit	
  olayda	
  çekirdekleri	
  hesaplamak,	
  

genel	
   notasyonu	
   kullanması	
   için	
   hiçbir	
   ihtiyaç	
   yoktur.	
   Farka	
   bağlı	
   denklem,	
   denklem	
   ile	
  

değiştirilebilir	
  

	
  

sadece	
  ilk	
  üç	
  çekirdeğe	
  katkıda	
  bulunan	
  o	
  koşullar,	
  açıkça	
  nerede	
  tutuldu.	
   	
  o	
  zamandan	
  

beri	
  yönsüz	
  nicelik	
  için	
   ,	
  izin	
  verir	
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.	
  

Sonra	
  (50),	
  	
  

	
  

evre-­‐hata	
  sinyalinin,	
  nerede	
  resmi	
  denklemin	
  çıktısı	
  olmak	
  için	
  alındığı	
  olur.	
  Kısa	
  bir	
  hesap,	
  	
  

	
  

verir,	
  ve	
  (23)'den	
  ilk	
  üç,	
  üç	
  köşeli	
  çekirdeklerin,	
  olduğu	
  	
  

	
  

'dir.	
  (Ünite	
  adım	
  görevleri,	
  bunların,	
  üç	
  köşeli	
  çekirdekler	
  olduğu	
  onu	
  sadece	
  vurgulamak	
  için	
  

oradadır.)	
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formundaki	
   durum	
   denklemini	
   bu	
   bölümün	
   yaklaşımını	
   uzatmak	
   	
   ve	
   ’nin	
   yönsüz	
  

sinyal	
  olduğu	
  yerde	
  sert	
  değildir.	
  Kesinlikle	
  olmak,	
  özellikle	
  düzensizdir,	
  ne	
  zaman,	
  ayrıntıda	
  

çalıştı,	
   ama	
  makineciler,	
   aşinadır.	
  Denklemin	
  bir	
   güç	
  dizi	
   formu,	
  elde	
  edilir,	
   ve	
   sonra	
   'i	
  

tanımlıyor	
   olan	
   vektör	
   çekirdeklerinin	
   bir	
   takımı,	
   hesaplanır	
   çok	
   aynı	
   yolda	
   öyle,	
   yapıldı,	
  

bilinear	
   durum	
   denklemleri	
   olduğu	
   için.	
   Ama	
   şimdi	
   'in	
   üzerinde	
   	
   in	
   çizgisel	
  

olmayan	
   bağımlılığı,	
   çekirdeklerin,	
   uyarıları	
   içermeli	
   olduğunu	
   ifade	
   eder.	
   Saydam	
  bir	
   olay,	
  

neden	
  olduğunu	
  gösterecek.	
  

Örnek	
  3.4	
   	
  

	
  

yönsüz	
  resmi	
  denklem	
  için	
  bütünleştirmenin	
  dosdoğru,	
  verdiği	
  	
  

.	
  

Bir	
  derece	
  olarak	
  bunu	
  yazmak	
  2	
  homojen,	
  	
  

	
  

düşüncesiz	
  çekirdeği	
  gerektirir	
  	
  

.	
  

Böylece,	
  çıktı,	
  açıkça	
  sistemin,	
  derece	
  6ı'ndan	
  homojen	
  olduğunu	
  gösteren	
  	
  

	
  

(51)	
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  geçerek	
   verilir.	
   (51)'de	
   farka	
   bağlı	
   denkleme	
   dönmek,	
   ben,	
   	
   onu	
   farz	
   ederim,	
   ve,	
  

alışıldığı	
   gibi,	
   	
   kendisi	
   için	
   varlığın	
   hakkında	
   endişeler	
   ve	
   çözümlerin	
   benzersizliğini	
  

çıkarmaya	
  yeten	
   	
  malları	
  olduğu.	
  Takip	
  eden	
  gelişmeyi	
  tamamlamak	
  için	
  yeterli	
  farklılık,	
  

farz	
   edilecek,	
   ve	
   	
   'in,	
   kısmen	
   düşürülecek	
   olduğu	
   düşünce	
   çünkü	
   hesaplar,	
   aslında	
   aynen	
  

durağan	
  ve	
  durağan	
  olmayan	
  olaylar	
  içindir.	
  Kronecker	
  ürün	
  notasyonunu	
  kullanmak,	
  derece	
  

	
  boyunca	
   in	
  genişlemesi	
   	
  etrafta,	
  formda	
  yazılabilir	
  	
  

	
  

Bu,	
  	
  

.	
  

olduğu	
   	
   formun	
  xi	
   için	
   farka	
  bağlı	
  bir	
  denklemi	
   sağlar.	
   	
   için	
   farka	
  bağlı	
  

denklemleri	
  geliştirmek	
  için	
  prosedür,	
  önce	
  olduğu	
  gibi	
  sadecedir.	
  Şimdi,	
  yine	
  de,	
  	
  

	
  

için	
  denklem,	
  birkaç	
  ekstra	
  koşula	
  sahip	
  olacak:	
  	
  

	
  

Bu	
   noktadan,	
   fikir,	
   bilinear	
   olayında	
   gelişmeyi	
   taklit	
   etmektir.	
   	
   için	
   geçiş	
   matrisini	
  

karıştırırken	
  değişkenlerin	
  bir	
  değişikliğini	
  kullanmak,	
  ve	
  sonuç	
  veren	
  resmi	
  denklemin	
  her	
  iki	
  

kenarını	
  sonra	
  bütünleştirmek,	
  tekrarlayıcı	
  yer	
  değiştirme	
  prosedürünü	
  kurar.	
  Tabii,	
  burada	
  

daha	
  birçok	
  koşul	
   vardır,	
   ama,	
  notasyonun	
  bu	
  düzeyinde,	
  doğru	
   formda	
  homojen	
  koşulları	
  

yazmak	
   için	
   prosedür	
   ve	
   sokma	
   uyarılarını	
   uygulamak,	
   ilkede	
   açıktır.	
   Bu	
   bir	
   defa,	
   yapıldı,	
  

dereceye	
  çıktı	
  denklemini	
   'e	
  genişletmek,	
  	
  

(52)	
  

	
  (53)	
  

	
  



	
   27	
  

	
  

elipslerin	
   silmesinin	
   üzerinde	
   bir	
   polynomial	
   giriş	
   çıktı	
   temsiline	
   götürür.	
   Bu	
   son	
   adımın,	
  

hiçbir	
   şeyin	
   daha	
   çok,	
   Kronecker	
   ürününün	
   mallarını	
   kullanmaktan	
   güçleştirmediğini	
  

gerektirdiğini	
  fark	
  etmez.	
  Özellikle	
  hiçbir	
  ekstra	
  uyarı	
  ihtiyacı,	
  sokulmaz.	
  	
  

Örnek	
  3.5	
   Figür	
   3.4'te	
   gösterilen	
   çizgisel	
   olmayan	
   geri	
   besleme	
   sisteminin,	
   yönsüz	
  

çizgiselliğin,	
  (Veya	
  güç	
  dizileri)	
  	
  

	
  

geçerek	
  tanımlandığı	
  

bir	
  polynomial	
  olduğu	
  	
  

	
  

yerde.	
  

	
  

Şekil	
  3.4.	
   	
  Örnek	
  3.4	
  için	
  nonlineer	
  sistem.	
  

Yaklaşımı	
   sadece	
   kullanmak,	
   ana	
   hatlarını	
   çizdi,	
   ben,	
   kapalı-­‐ilmik	
   sistemi	
   için	
   ilk	
   ve	
   ikinci	
  

derece	
  çekirdekleri	
  hesaplayacağım.	
  (53)'e	
  uymak,	
  koşullar,	
  ihtiyaç	
  duydu,	
  ilk	
  iki	
  çekirdek,	
  	
  

	
  

koymayı	
   karıştırdığı	
   için	
   ve	
   formun	
   resmi	
   bir	
   denklemi	
   ile	
   verilmiş	
   resmi	
   denklemi	
  

değiştirmek	
  	
  

(54)	
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.	
  

O,	
  açık	
  bir	
   şekilde	
  daha	
  yüksek-­‐derecenin,	
   içeride	
  adlandırdığı	
   	
  olmalıydı	
  Ve	
   sen,	
   ihtiyaç	
  

duyulmayacaksın.	
   Üstelik,	
   o,	
   kendisi	
   için	
   farka	
   bağlı	
   denklemde	
   çalıştırılıyor	
   olan	
   	
   genel	
  

notasyonun	
  olduğunu	
   kapatacak	
  Öyle	
   ilk	
   iki	
   çekirdeğin,	
   ilgilendiği	
   gibi	
   gereksiz	
   uzakta	
  olan	
  

koşullar	
  boyunca	
  taşı.	
  Özellikle,	
   	
   için	
  denklem	
   	
   	
  ve	
   ilgili	
   terimleri	
  	
  

içerir.	
   	
   koşulları,	
   ihtiyaç	
   duyulmaz,	
   ve	
   0'a	
   katsayıları	
   keyfi	
   olarak	
   koymak,	
   meseleleri	
  

basitleştirebilir.	
  

X	
  için	
  farka	
  bağlı	
  denklem,	
  kendisine	
  girmeyen	
   	
  	
  

	
  

	
  

yazması	
   için	
   Kronecker	
   ürün	
   notasyonunu	
   kullanıyor	
   olan	
   ve	
   nokta	
   koşullarına	
   düşürüyor	
  

olan	
  formda	
  yazılabilir	
  Denklem,	
  verir	
  	
  

	
  

	
  için	
  farka	
  bağlı	
  bir	
  denklemi	
  geliştirmek,	
  ürün	
  kuralı,	
  verir	
  	
  

	
  

Yeniden	
   son	
   sonuca	
   katkıda	
   bulunmayacak	
   olan	
   koşullar,	
   düşürüldü.	
   (53)	
   bakımından	
  

böylece	
  resmi	
  denklem	
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Şimdi	
   yer	
   değiştirme	
   prosedürü,	
   uygulanabilir,	
   sadece	
   öyle,	
   yapıldı,	
   bilinear	
   durum	
  

denklemleri	
   olduğu	
   için,	
   uyarıların,	
   doğru	
   formun	
   koşullarını	
   elde	
   etmek	
   sokulmalı	
   olduğu	
  

istisnayla.	
  Üç	
  köşeli	
  çekirdeğin,	
  hesabı	
  	
  

	
  

tamamlamak	
   için	
  geçerek	
  verildiği	
  genel	
  notasyonda	
  ona	
  göstermek	
   için	
  kolay	
   ilk	
   ikidir,	
  bu	
  

çekirdekler,	
  verilmiş	
  resmi	
  denklem	
  bakımından	
  onu	
  göstererek	
  ifade	
  edilebilir	
  	
  

.	
  

Sonra	
  ilk	
  iki,	
  üç	
  köşeli	
  çekirdeğin,	
  olduğu	
  	
  

	
  

'dir.	
  Öyle	
  başlangıçta	
  bahsetti,	
   	
   karıştırıyor	
  olan	
   koşullar,	
   diğer	
   sözcüklerde,	
   'in	
   ikinci	
  

blok	
  sütununda	
  koşullar,	
  sonuca	
  girmez,	
  ve	
  basitlik	
  için	
  sıfıra	
  koyulmuş	
  olabilirdi.	
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3.4. 	
  Variational	
  denklem	
  yaklaşımı	
  

Variational	
   denklem	
   yaklaşımında,	
   bir	
   resmi-­‐denklem	
   tanımlaması,	
   her	
   derece	
   için	
   k	
   elde	
  

edilir,	
  giriş	
  çıktı	
  temsilinde	
  homojen	
  subsystemdir.	
  O,	
  onu	
  kapatır,	
  k	
  subsystemin,	
  çizgiselce	
  

daha	
   aşağı-­‐derece	
   için	
  denklemlere	
   subsystems	
  birleşildiği	
   derece	
   için	
  denklemin	
  olmasına	
  

rağmen,	
  denklemlerin	
  her	
  birinin,	
   aynı	
  birinci	
   derece	
   (Çizgisel)	
   koşulları	
   var.	
  Böylece	
   çeşitli	
  

çekirdekler,	
   çizgisel-­‐resmi-­‐denklem	
   çözümünün,	
   kısım	
   3.1'de	
   incelediğini	
   kullanmak	
  

hesaplanabilir.	
  Önceki	
  kısımda	
  olduğu	
  gibi,	
  ben,	
  kendisine	
  	
  

	
  

	
   olduğu	
   çizgisel-­‐analitik	
   resmi	
   denklemi	
   düşünerek	
   başlarım,	
   bundan	
   dolayı	
  

’ye	
   yanıt	
   .	
   Analitiklik	
   farzı,	
   sadece	
   çekirdeklerin	
   sınırlı	
   bir	
  

sayısının,	
  hesaplanacak	
  olduğundan	
  beri	
  zayıflatılabilir,	
  ama	
  burada	
  basitlik	
  için	
  tutulur.	
  Daha	
  

genel	
   resmi	
   denklemler	
   zorunlu	
   olmayan	
   yanıtta	
   özel	
   farzlar	
   olmadan,	
   kısımda	
   sonra	
  

tartışılır.	
  

Homojen	
  alt-­‐sistem	
  durum	
  denklemleri,	
   form	
   'in	
  girişlerine	
   farka	
  bağlı	
  denklemin	
  yanıtını	
  

içeride	
  düşünerek	
  (55)	
  türetilir;	
   	
  Keyfi	
  bir	
  yönsüz	
  nicelik	
  midir.	
  Yanıt,	
  parametrede	
  bir	
  

genişleme	
   olarak	
   yazılabilir	
   	
   Formdan	
   (Mevcut	
   bağlamda,	
   subscripts,	
   bir	
   vektörün	
  

bileşenlerini	
  göstermez.)	
  Noktaların,	
  içeride	
  derecenin	
  koşullarını	
   'den	
  daha	
  büyük	
  içerdiği	
  

	
  	
  

.	
  

Güç	
  dizisi	
  bakımından 	
  ve	
   	
  analitik	
  görevleri	
  görmek,	
  (55)'e	
  (56)	
  yerine	
  koymak,	
  

ve	
  katsayılar	
  güçleri	
  gibi	
   'i	
  eşit	
  saymak;	
   	
  her	
  biri	
   için	
  farka	
  bağlı	
  bir	
  denkleme	
  kurşun	
  

tabakalar,	
   'in	
   	
  derece	
  	
  bileşeni.	
  

Carleman	
  linearization	
  yaklaşımında	
  olduğu	
  gibi	
  sadece,	
  ilk	
  adım,	
  (55)	
  güç	
  dizi	
  temsilleri	
  ile	
  

koşulları	
   içeride	
   değiştirmektir.	
   Açıklamanın	
   rahatlığı	
   için,	
   sadece	
   ilk	
   üç	
   çekirdeğin	
   hesabı,	
  

(55)	
  

	
  

(56)	
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davranılacak.	
  Böylece	
  resmi	
  denklem	
  (57),	
  düşünülecek.	
   	
  hem	
  farz	
  edilen	
  giriş,	
  hem	
  de	
  

farz	
  edilen	
  yanıt	
  içeride	
  (56),	
  yerine	
  koyulur	
  	
  

	
   	
  

Kronecker	
  ürünleri	
  için	
  hesabın	
  kurallarından	
  onu	
  not	
  et,	
  olduğu	
  	
  

	
  

yeniden,	
  sadece	
  derece	
  3ü'nün	
  koşulları	
  veya	
  daha	
  az,	
  açıkça	
  tutulandır.	
  (58)'den	
  düşürülen	
  

'de	
   daha	
   yüksek	
   derecenin	
   koşulları,	
   daha	
   aşağı-­‐derece	
   koşullarına	
   içeride	
   katkıda	
  

bulunmayacaktı	
   .	
  Odur,	
   'in	
  bir	
  derece	
  k	
  görevine	
  (56)	
  yerine	
  koymak,	
  derecenin	
  koşullarını	
  

'e	
  verir,	
  ve	
  daha	
  yüksek	
  içeride .	
  Şimdi,	
  (57),	
  formda	
  yazılabilir	
  	
  

	
  

Bu	
   farka	
   bağlı	
   denklem	
   için	
   ve	
   denklemden	
   ilk	
   durum,	
   herkes	
   için	
   tutmalı	
   olduğu	
   için	
   	
  	
  

Katsayılar,	
  güçleri	
  beğenir	
   	
  Eşit	
  sayılabilir.	
  Bu,	
  ilk	
  üç	
  variational	
  denklemlerini	
  verir:	
  	
  

(58)	
  

	
  

(57)	
  

	
  

(59)	
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İlk	
  denklem	
  içeride	
  (60),	
  farka	
  bağlı	
  denklemin	
  linearized	
  uyarlaması	
  içeridedir	
  (55).	
  	
  

	
   	
  

,	
   	
  için	
  geçiş	
  matrisidir	
  vektör	
  çekirdeğini	
  tanımlamak,	
  temsili	
  verir	
  

.	
  

(60)'de	
  ikinci	
  denkleme	
  devam	
  etmek,	
  terim	
   ,	
  formda	
  yazılabilir	
  	
  

.	
  

(60)'de	
   ikinci	
  denkleme	
  (62)	
  ve	
   (63)	
  yerine	
  koymak,	
  bunun,	
  çizgisel	
   farka	
  bağlı	
  bir	
  denklem	
  

içeride	
  olduğu	
   	
  o	
  bulunur.	
  (O,	
  açık	
  bir	
  şekilde	
  bu	
  çizgisellik	
  özelliğinin,	
  metoda	
  anahtar	
  

olduğu	
  olmalıydı.)	
  Böylece	
  	
  

	
  

	
  	
  gerçeği	
  kullanmak	
  o,	
  eğer,	
   	
  ise,	
  (64),	
  formda	
  yazılabilir	
  	
  

(60)	
  

	
  

(61)	
  

	
  

(62)	
  

	
  

(63)	
  

	
  

(64)	
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Böylece	
   'in	
  2	
  bileşeninin,	
  	
  

	
  

geçerek	
  verildiği	
  derece	
  olduğu	
  	
  

	
  

böylece	
   derece	
   yazılabilir,	
   aynı	
   prosedür,	
   'ü	
   tanımlayabilen	
   	
   3	
   vektör	
   çekirdeğinin	
  

olduğu	
  bir	
  dereceyi	
  türemek	
  için	
  kullanılır.	
  Açık	
  bu,	
  ama	
  düzensiz	
  hesap,	
  okuyucuya	
  soldur.	
  

Dereceyi	
  giriş	
  çıktı	
  davranışı	
  için	
  3	
  polynomial	
  temsiline	
  kararlaştırmak,	
  açık	
  bir	
  şekilde	
  vektör	
  

çekirdeklerinin	
  o	
  her	
  biri,	
  geçerek	
  çoğaltılmalıydı	
   .	
  	
  

Örnek	
  3.6	
   Variational	
  denklem	
  yaklaşımını	
  kullanmak	
  için	
  örnekte	
  ilk-­‐emir	
  evre-­‐kilitlenen	
  

ilmiği	
   3.3	
   tekrar	
   ziyaret	
   etmek,	
   bir	
   daha	
   çokta	
   makinecilerin,	
   modayı	
   görevlendirdiğini	
  

gösterecek,	
   mukayeseye	
   ek	
   olarak	
   iki	
   metot,	
   şimdiye	
   kadar	
   tartıştı.	
   İlk	
   üç	
   çekirdeği	
  

hesaplamak,	
  başlayan	
  nokta,	
  resmi	
  denklemdir,	
  güç	
  dizi	
  formunda	
  evre	
  hatası	
  olduğu	
  için:	
  	
  

.	
  

Farz	
  edilen	
  girişle	
  resmi	
  denkleme	
  	
  

(65)	
  

	
  

(66)	
  

	
  

(67)	
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genişlemeyi	
  yerine	
  koymak	
   ,	
  ilk	
  üç	
  variational	
  denklemlerini	
  verir:	
  	
  

	
  

İlk	
  variational	
  denklemini	
  çözmek,	
  basit	
  bir	
  meseledir:	
  	
  

.	
  

Böylece,	
  derece,	
  sistem	
  için	
  1	
  çekirdeğin,	
  olduğu	
  	
  

	
  

'dir.	
  İkinci	
  variational	
  denklemi,	
  hatta	
  daha	
  basittir,	
  her	
   	
  için	
   	
  vermek.	
  Böylece	
  

derece,	
  2	
  çekirdeğin,	
  aynen	
  0	
  olduğudur.	
  Üçüncü	
  variational	
  denklemi,	
  verir	
  	
  

.	
  

Standart	
  derecede	
  bunu	
  yazmak	
  3	
  homojen,	
  oluşturur,	
  alacak,	
  biraz	
  daha	
  çok,	
  çalışacak.	
   İlk	
  

adım,	
  yazmaktır	
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   için	
   ifadeye	
   bu	
   ifadeyi	
   yerine	
   koymak,	
   ve	
   bütünleştirmenin	
   emrini	
   yeniden	
  

düzenlemek,	
  verir	
  	
  

	
  

Şimdi	
  bir	
  derece,	
  sistem	
  için	
  3	
  çekirdeğin,	
  açık	
  olduğudur.	
  Fark	
  et,	
  yine	
  de,	
  bu	
  sonucun,	
  onla	
  

örnek	
  3.3'te	
  kabul	
  ettiği	
  hemen	
  açık	
  olmadığı.	
  Variational	
  denklem	
  yaklaşımının	
  makinecileri,	
  

en	
  genel	
  resmi	
  denklemlerin,	
  düşünüldüğü	
  zaman	
  az	
  değiştirir.	
  Aslında,	
  yanıtın,	
  acıya	
  sebep	
  

olmadan	
  gevşetilebildiği	
  çıktının	
  ve	
  sıfır-­‐girişte	
  çizgiselliğinde	
  özel	
  farzlar.	
  Bazı	
  ayrıntıda	
  bunu	
  

resimlemek,	
  	
  

	
  

	
  olduğu	
  genel	
  resmi	
  denklemi	
  düşünür,	
  ve	
   ,	
  yönsüz	
  niceliklerdir.	
   	
  tutturulmuş	
  ilk	
  

durum	
   ve	
   girişle	
   onu	
   varsay,	
   yanıt,	
   .	
   Bu	
   koymada,	
   ilgiden	
   girişin	
   sapması	
  

bakımından	
   kendisinden	
   'den	
   çıktının	
   sapmasını	
   tanımlayan	
   bir	
  

polynomial	
  giriş	
  çıktı	
  temsilini	
  bulmak	
  içindir	
   .	
  

(68)	
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Bu,	
   benim,	
   bütün	
   değişkenler	
   değişikliklerinin	
   önceden,	
   notasyonları	
   temizler	
   olduğunu	
  

bırakıyor	
  olduğumu	
  ifade	
  eder.	
  Derece	
  boyunca	
   ,	
  farka	
  bağlı	
  denklemin	
  doğru	
  tarafı	
  içeride	
  

(68),	
  etrafta	
  bir	
  Taylor	
  dizisi	
  	
  

	
  

yoluyla	
   ( 'inki	
   en	
   düşürmek)	
   geçerek	
   değiştirilebilir	
   .	
   Şimdi,	
   	
   formun	
   sapma	
  

girişlerini	
  düşünür,	
  nere	
   	
  Keyfi	
  bir	
  yönsüz	
  nicelik	
  midir,	
  ve	
  kendisi	
  bakımından	
  sonuç	
  veren	
  

sapma	
  yanıtının,	
  genişletildiği	
   	
  'i	
  farz	
  eder	
  mi	
  :	
  	
  

.	
  

	
   teriminin,	
   	
   girişin,	
   	
   olduğunu	
   ima	
   ettiğinden	
   beri	
   kaçırıyor	
   olduğunu	
   not	
   eder,	
  

hangisi,	
  yanıtın,	
  olduğu	
   'i	
   ima	
  eder.)	
  Farka	
  bağlı	
  denkleme	
  yerine	
  koymak,	
  verir,	
   (Yeniden)	
  

derece	
  3ü	
  boyunca	
  	
  

	
  

Katsayıları	
  eşit	
  saymak,	
   'in	
  güçlerinin,	
  ilk	
  üç	
  variational	
  denklemlerinin,	
  aşağıda	
  listelediğini	
  

verdiğini	
  beğenir.	
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Ama	
   önce	
   olduğu	
   gibi	
   şimdi	
   her	
   değişme	
   hasılatı	
   için	
   vektör	
   çekirdeklerinin	
   hesaplaması	
  

sadece,	
   ara	
   sıra	
   olan	
   bir	
   uyarının,	
   homojen	
   bir	
   terimin	
   standart	
   formunu	
   elde	
   etmek	
  

sokulmalı	
   olduğu	
   dışında.	
   Sonra	
   süreç,	
   çıktı	
   denklemini	
   genişleterek	
   tamamlanır,	
   o	
  

genişlemeye	
   yerine	
   koymak,	
   ve	
   çıktının,	
   (68)'in,	
   girişe	
   güvenmek	
   için	
   izin	
   verildiğini	
   içeride	
  

haritaya	
  döktüğünden	
  beri	
  daha	
  çok	
  uyarının	
  muhtemelen	
  bazı	
  sokmasıyla	
  derece	
  gibi	
  tekrar	
  

toplayan	
  koşulları.	
  	
  

Örnek	
  3.7	
   Variational	
   denklem	
   yaklaşımı,	
   örnek	
   3.5'in	
   çizgisel	
   olmayan	
   geri	
   besleme	
  

sistemine	
  uygulanacak:	
  	
  

	
  

ve	
  nere	
   	
  ve	
   	
  her	
   	
  için	
  	
  

	
  

olduğu.	
  Derece	
  2i	
  boyunca	
  çekirdekleri	
  hesaplamak,	
  sistem,	
  öyle	
  yazılır	
  	
  

.	
  

Onun,	
  hiçbir	
  özel	
  avantajı	
  teklif	
  etmediğinden	
  beri	
  bu	
  örnek	
  için	
  genel	
  notasyonu	
  düşürmek	
  

için	
  uygundur.	
   	
  girişi	
  farz	
  etmek,	
  ve	
  	
  

	
  

yerine	
  koyarken	
  yanıt,	
  ve	
   	
  güçlerinin,	
  variational	
  denklemlerini	
  verdiği	
  gibi	
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katsayılarını	
  eşit	
  saymak.	
  

İlk	
  denklem,	
  	
  

	
  

'den,	
  ve	
  çıktı	
  denkleminin,	
  çizgisel	
  olduğundan	
  beri,	
  derece,	
  polynomial	
  giriş	
  çıktı	
  haritasında	
  

1	
  çekirdeğin,	
  olduğu	
  	
  

	
  

'dir.	
   İkinci	
   denklem,	
   benzer	
   bir	
   modada	
   çözülür,	
   koşulların,	
   karıştırmasına	
   rağmen,	
   daha	
  

karışıktır.	
  	
  

	
  

2	
  böylece	
  derece,	
  adlandırır,	
  giriş	
  çıktı	
  haritasından,	
  	
  

	
  

'dir,	
  nere,	
  son	
  terimde	
  değişkenlerin	
  biraz	
  tekrar	
  etiketlemesiyle,	
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2	
  çekirdeğin,	
  açık	
  yolda	
  verilmiş	
  sistem	
  parametreleri	
  bakımından	
  yazılabildiği	
  bu	
  derece.	
  

3.5. Büyüyen	
  Üstel	
  Yaklaşım	
  

Bölüm	
   2i'nde	
   tartışılan	
   exponentialsı	
   büyümenin	
   malları,	
   isteyerek	
   sabit-­‐parametreden	
  

transfer	
   görev	
   tanımlamalarını	
   (Durağan)	
   resmi	
   denklemlere	
   bulmanın	
   problemine	
   adapte	
  

edilebilir.	
  	
  

	
  

	
  ve	
   	
   içeride	
   	
  analitik	
  ve	
   	
  genel	
  formu	
  düşün.	
  Kısaca	
  belirtti,	
  simetrik	
   ilk	
  

,	
   (69)'e	
  uyuyor	
  olan	
  görevleri	
  transfer	
  eder,	
  takip	
  eden	
  gibi	
  hesaplanır.	
   İlk,	
   	
   	
  ve	
   	
  

'da	
  bir	
  güç	
  dizisi	
  ile	
  değiştirir.	
  Sonra,	
  	
  

	
  

formun	
  bir	
  girişini	
  farz	
  eder,	
  ve	
  	
  

	
  

notasyonun,	
  kesinlikle	
  bölüm	
  2i'nin	
  olan	
  olduğu	
   formun	
  bir	
   çözümünü	
   farz	
  eder,	
  ve	
  vektör	
  

katsayıları,	
   kararsızdır.	
   Farka	
   bağlı	
   denkleme	
   yerine	
   koymak,	
   katsayıların,	
   üstelleri	
  

beğendiğini	
  eşit	
  sayarak	
  	
  

	
  

için	
  çözer.	
  Sonra	
  çıktının,	
  çizgisel	
  bir	
  görev	
  olduğundan	
  beri	
  	
  

(69)	
  

	
  

(70)	
  

	
  

(71)	
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.	
  

Ben,	
   emekte	
   oldukça	
   büyük	
   tasarrufun,	
   fark	
   edildiğini	
   not	
   etmeliydim,	
   eğer	
   açıkça	
   ilginin	
  

koşullarına	
   katkıda	
   bulunmayacak	
   olan	
   exponentials,	
   hesabın	
   her	
   sahnesinde	
   düşürülürse.	
  

Örneğin,	
  en	
  az	
  biri	
  için	
   'le	
  hiçbir	
  terim	
   	
  ihtiyaç	
  içeride	
  (71),	
  taşınmaz.	
  	
  

Örnek	
  3.8	
   İlk	
  üçü	
  simetrik	
  bulmak,	
  şimdi	
  aşina	
  resmi	
  denklem	
  tanımlamasına	
  uyuyor	
  olan	
  

görevleri	
  transfer	
  eder	
  	
  

	
  

	
  

formun	
  bir	
  girişini	
  farz	
  eder,	
  ve,	
  basitlik	
  için	
  düşünceleri	
  düşürmek,	
  formun	
  bir	
  çözümü	
  	
  

.	
  

Tabii,	
  çıktıyla	
  bu	
  yönsüz	
  olayda	
  duruma	
  aynı,	
   	
  notasyonu,	
  simetrik	
  transfer	
  görev	
  notasyonu	
  

ile	
  değiştirilebilirdi.	
  Hem	
  de	
   	
  	
  koşullarının,	
  onların,	
  gereksiz	
  olduğu	
  bir	
  örneğin	
  

bağlamında	
   sadece	
   göstermek	
   için	
   kapsandığını	
   not	
   eder.	
   Herhangi	
   bir	
   oranda,	
   kolay	
   bir	
  

hesap,	
  verir	
  	
  

.	
  

Farka	
  bağlı	
  denkleme	
  yerine	
  koymak,	
  ve	
  sırasıyla	
  	
  

	
  

(72)	
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'in	
  katsayılarını	
  eşit	
  saymak,	
  denklemlerin	
  olduğu	
  	
  

	
  

hasılatlar.	
  Dönüşte	
  bunları	
  çözmek,	
  verir	
  	
  

.	
  

Açık	
  gerçekleri	
  kullanmak:	
  Simetrik	
  	
  

	
  

ilk	
  üç,	
  görevlerin,	
  olduğu	
  	
  

(P)	
   	
  

'i	
  transfer	
  eder.	
  

Örnek	
  3.9	
   Yeniden	
   formun	
   en	
   basit	
   genel	
   çizgisel	
   olmayan	
   denklemini	
   düşünür	
   (69);	
  

Bilinear	
  durum	
  denklemi	
  	
  

.	
  

İlk	
  ikiyi	
  simetrik	
  bulmak,	
  görevleri	
  transfer	
  eder,	
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izin	
  verir,	
  ve	
  onu	
  farz	
  eder	
  	
  

.	
  

Farka	
  bağlı	
  denkleme	
  yerine	
  koymak,	
  ve	
  katsayıları	
  eşit	
  saymak,	
  eğer	
   	
  verirse	
  	
  

.	
  

Bu	
  çizgisel	
  denklemi	
  çözmek,	
  	
  

	
  

öyle	
  verir	
  ki	
  1	
  derece,	
  görevin,	
  olduğu	
  	
  

	
  

'i	
  transfer	
  eder.	
   ’in	
  katsayıları,	
  benzer	
  bir	
  modada	
  denklemi	
  vermek	
  için	
  eşit	
  sayılır	
  	
  

.	
  

	
  ve	
   	
  yerine	
  koymak,	
  ve	
  çözmek,	
  verir	
  	
  

.	
  

2	
  simetrik	
  böylece	
  derece,	
  görevin,	
  olduğu	
  	
  

(S)	
   	
  

'i	
   transfer	
   eder.	
   Daha	
   basit	
   asimetrik	
   bir	
   uyarlamanın,	
   denetleme	
   ile	
   yazılabildiğini	
   not	
   et,	
  

yani	
  	
  

(V)	
   .	
  	
  

Ben,	
  okuyucuya	
  3	
  asimetrik	
  bir	
  derecenin,	
  görevin,	
  yazılabildiği	
  	
  

	
  

'i	
   transfer	
   ettiğini	
   göstermesi	
   için	
   onu	
   bırakırım.	
   Bundan,	
   daha	
   yüksek-­‐derece	
   transfer	
  

görevleri	
  için	
  bir	
  desen,	
  açık	
  bir	
  şekilde	
  olmalıydı.	
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Bundan,	
  daha	
  yüksek-­‐derece	
  transfer	
  görevleri	
  için	
  bir	
  desen,	
  açık	
  bir	
  şekilde	
  olmalıydı.	
  	
  

3.6. Sistem,	
  N'inci-­‐Emir	
  Farklı	
  Olan	
  Denklemleri	
  İle	
  Tanımladı.	
  	
  

Tartışılan	
   metotların	
   çeşitli	
   uyarlamaları,	
   zaman	
   zaman	
   edebiyatta	
   gözüktü.	
   Bunlar	
  

çoğunlukla,	
   'inci-­‐emir	
   için	
   kuruldu,	
   daha	
   yaşlı	
   edebiyatta	
   çizgisel	
   olmayan,	
   farka	
   bağlı	
  

denklemler.	
  Bazı	
  problemlerin,	
   tamamen	
  doğal	
  olarak	
  bu	
  koşullarda	
  tanımlandığından	
  beri,	
  

ben,	
  	
  

	
   	
   	
  

	
  

olduğu	
   denklem	
   için	
   variational	
   genişleme	
   metodunu	
   inceleyeceğim,	
   bundan	
   dolayı	
   o,	
  

	
  için	
  çözümün,	
  olduğu	
   	
  dır.	
  Tabii,	
  bu,	
  özel	
  bir	
  olaydır,	
  ama	
  fikirler,	
  saydam	
  

bir	
  modada	
  geneller.	
   	
  girişe	
  yanıtı	
  düşün,	
  nere	
   	
  Bir	
  yönsüz	
  nicelik	
  midir,	
  ve	
  	
  

	
  

nerede	
  sadece	
   'in	
  veya	
  daha	
  azın,	
  açıkça	
   tutulan	
  olduğu	
  derecenin	
  koşullarının	
  olduğunu	
  

yazar.	
  Farka	
  bağlı	
  denkleme	
  yerine	
  koymak,	
  	
  

	
  

	
  nerede	
  olduğunu	
  verir,	
  ve	
  ilk	
  koşullar,	
  	
  

.	
  

Katsayıları	
  eşit	
  saymak	
   	
  Her	
  iki	
  kenarda,	
  	
  

	
  

ver,	
  ve	
  bu	
  çizgisel	
  farka	
  bağlı	
  denklemin	
  çözümü,	
  formda	
  yazılabilir	
  	
  

(73)	
  

	
  
(74)	
  

	
  

(75)	
  

	
  

(76)	
  

	
  

(77)	
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.	
  

'in	
  katsayılarını	
  eşit	
  saymak,	
  verir	
  	
  

	
  

Bu	
  farka	
  bağlı	
  denklemin	
  çözümü,	
  formda	
  yazılabilir	
  	
  

.	
  

Olağan	
   derecede	
   bunu	
   yazmak	
   2	
   homojen,	
   oluşturur,	
   	
   için	
   bir	
   yer	
   değiştirme:	
  

gerektirir	
  	
  

.	
  

Ünite	
  adımını	
  sokmak,	
  iş	
  görür,	
  bundan	
  dolayı	
  bütünleştirmenin	
  sınırları,	
   'e	
  kaldırılabilir,	
  ve	
  

değişkenleri	
  tekrar	
  etiketlemek,	
  	
  

	
   	
  

nerede	
  olduğu	
  	
  

	
  

'i	
  verir.	
  

(78)	
  

	
  (79)	
  

	
  

(80)	
  

	
  

(81)	
  

	
  
(82)	
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Ben,	
   benzer	
   bir	
   yolda	
   (Budanan)	
   polynomial	
   giriş	
   çıktı	
   temsilinde	
   daha	
   yüksek-­‐derece	
  

çekirdeklerini	
  hesaplamak	
  için	
  devam	
  edebilirim.	
  Genel	
  bir	
  formüle	
  etmeye	
  tek	
  engel,	
  çizgisel	
  

olmayan	
  terimde	
  içeride	
  yalan	
  söyler	
  (76).	
  Bu,	
  	
  

	
  

yazarak	
  tutulabilir,	
  ve	
  koşullar	
  boyunca	
  bir	
  lanet	
  etmeyi	
  türemek	
   .	
  İzin	
  ver	
  	
  

	
   .	
  

Sonra,	
   ,	
  öyle	
  	
  

	
  

ve	
  yazılabilir	
  	
  

.	
  

'i	
   izole	
   etmek,	
   bu	
   denklemin	
   her	
   iki	
   kenarında	
   adlandırır,	
   göre	
   her	
   iki	
   kenar	
   	
  	
  

zamanını	
  ayırır	
   	
  ve	
  koy	
   .	
  	
  

	
  

ürün	
  kuralını	
  kullanmak,	
  verir	
  	
  

.	
  

(83)	
  

	
  

(84)	
  

	
  

(85)	
  

	
  

(86)	
  

	
  

(87)	
  

	
  

(88)	
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Ama	
   toplamda	
  daha	
   aşağı	
   sınır,	
   o	
   zamandan	
  beri	
   1'e	
   kaldırılabilir	
   .	
   	
   olduğu	
  

için,	
   ve	
   sıfır	
  olmayan	
   summand-­‐lar	
   'e	
  uyduğu	
   için	
   toplamda	
  üst	
   sınır,	
   geçerek	
  

değiştirilebilir	
   .	
  Böylece,	
  kendisi	
  için	
  olduğu	
  	
  

	
  

.	
  

Yakında	
  probleme	
  şimdi	
  dönmek,	
  denklemin	
  her	
  iki	
  kenarında	
   'in	
  katsayılarını	
  eşit	
  sayar	
  	
  

	
  

Bu,	
  	
  

	
  

bütünüyle	
  ilk	
  koşulların,	
  nerede	
  sıfır	
  olduğunu	
  verir.	
  Çözüm,	
  formda	
  yazılabilir	
  	
  

	
   	
   	
  

Lanet	
  etmeler	
  sadece,	
  	
  

	
  

hasılatı	
  geliştirdi,	
  bundan	
  dolayı	
  o	
  	
  

	
  

Şimdi	
   bir	
   derecenin	
   formuna	
   bunu	
   koyması	
   için	
   (78),	
   (80)'den	
   	
   için	
   yer	
  

değiştirme	
  adil	
  meselesi,	
  ve	
  bütünlerin	
  bazı	
  idaresi	
  3	
  homojen	
  subsystemdir.	
  

(89)	
  

	
  

(90)	
  

	
  

(91)	
  

	
  

(92)	
  

	
  

(93)	
  

	
  

(94)	
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Ben	
  hem	
  de,	
  büyüyen	
  üstel	
  metodun,	
  tamamen	
  kolayca,	
  takip	
  eden	
  örneğin,	
  gösterdiği	
  gibi	
  

n'inci-­‐emir	
  farklı	
  olan	
  denklemlerine	
  adapte	
  edilebildiği	
  ona	
  dikkat	
  çekmeliydim.	
  	
  

Örnek	
  3.10	
   Basit	
   pandülün,	
   dayandığı	
   bir	
   kütleden	
  m,	
   uzunluğun	
   kütlesiz	
   bir	
   çubuğunda	
  

.'i	
   astı,	
   eksende	
   giriş	
   torkunun,	
   	
   olduğudur,	
   eksende	
   gevşeten	
   katsayıdır,	
   bir,	
   ve	
   çıktı	
  

,	
  dikey	
  açıdır.	
  Kuyu,	
  bu	
  sistemi	
  tanımlıyor	
  olan	
  farka	
  bağlı	
  denklemi	
  bildi,	
  	
  

	
  

'dir,	
  ve	
  ilk	
  koşulların,	
  sıfır	
  olduğu	
  farz	
  edilir.	
  İlk	
  üçü	
  simetrik	
  hesaplamak,	
  büyüyen	
  üstel	
  metot	
  

ile	
   görevleri	
   transfer	
   eder,	
   ilk	
   adım,	
   onun	
   güç	
  dizi	
   genişlemesi	
   ile	
   değiştirmektir.	
  

Tabii,	
   sadece	
   adlandır,	
   emir	
   boyunca	
   üç	
   ihtiyaç,	
   açıkça	
   tutulur,	
   bundan	
   dolayı	
   ilginin	
   farka	
  

bağlı	
  denklemi,	
  	
  

.	
  

Büyüyen	
   üstel	
   metot,	
   tartışarak	
   bu	
   olayda	
   basitleştirilebilir,	
   	
   düzenli	
   derecenin	
   hiçbir	
  

homojen	
   koşulunu	
   içermeyecek	
  olan	
  durumun	
   veya	
   farka	
  bağlı	
   denklemden	
   fiziğinden	
  her	
  

biri.	
  

Odur,	
   eğer	
   giriş	
   sinyali	
   ,	
   	
   çıktı	
   sinyalini	
   üretirse,	
   sonra	
   giriş	
   sinyali	
   ,	
   	
  

üretir,	
   ve	
   o,	
   sadece	
   garip-­‐derece	
   koşullarının,	
   mevcut	
   olabildiğini	
   izler.	
   Simetrik	
   transferi	
  

hesaplamak,	
  derece	
  üçü	
  boyunca	
  iş	
  görür,	
  formun	
  bir	
  giriş	
  sinyalini	
  farz	
  eder	
  	
  

.	
  

2	
  koşulun,	
  sıfır	
  olmak	
  için	
  bilindiği	
  bütün	
  derecenin,	
  	
  

	
  

yanıtı	
   farz	
   ettiğinden	
   beri	
   nere,	
   alışıldığı	
   gibi,	
   sadece	
   son	
   sonuca	
   katkıda	
   bulunuyor	
   olan	
  

koşullar,	
  tutuldu.	
  (Simetrik	
  transfer	
  görev	
  notasyonunun,	
   -­‐notasyondan	
  ziyade,	
  hesapların,	
  

dosdoğru	
   çıktıyı	
   karıştırdığından	
   beri	
   kullanıldığını	
   fark	
   et.)	
   Farka	
   bağlı	
   denkleme	
   yerine	
  

koymak,	
  verir,	
  birçok	
  koşulla	
  yeniden,	
  düşürdü,	
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.	
  

'in	
  katsayılarını	
  eşit	
  saymak,	
  verir	
  	
  

.	
  

Böylece,	
  1	
  derece,	
  görevin,	
  olduğu	
  	
  

	
  

'i	
  transfer	
  eder.	
  	
  

	
  

	
  hasılatlarının	
  katsayılarını	
  eşit	
  saymak,	
  veya,	
  daha	
  sıkı	
  formda,	
  	
  

.	
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BÖLÜM 4 
 

GERÇEKLEŞTİRME TEORİSİ 
 

Giriş/çıkış için verilen verilen  problemin gerçekleştirimi 3.bölümdeki problemin tersi olarak 
düşünülebilir.bu gerçekleştirme teorisi hesaplama ve homojen polinomal ya da Volterra 
sistemiyle belirtilen durum-eşitlik gösteriminin özellikleriyle uğraşır.  

Tabi ki belirtilen sistemin kabuklar ve transfer sistemine göre tanımlandığı kabul 
edilir.Özellikle,buradaki tartışmaların birçoğu,düzenli çekirdek ve transfer fonksiyonları 
gösterimiyle tanımlanan sabit sistemler için olacaktır. 

Doğrusal gerçekleştirme teorisini tekrar gözden geçirdikten sonra ,gerçekleştirilebilirlik 
durumları ve çiftdoğrusal durum eşitliği hesaplama prosedürleri sabit homojen sistemler için 
tartışılacak..Sonra sabit polinomal ve Volterra sistemleri anlatılacak.Çift doğrusal durum 
eşitliklerinin yağısal özelliklerini tartıştıktan sonra ,çift doğrusal durum eşitliklerine göre sabit 
olamayan sistemler için gerçekleştirebilirlik durumları tartışılacak.Bu gelişme boyunca 
,sadece sonlu-boyutsal gerçekleştirmelerle ilgilenilecek-Sonsuz boyutsal gerçekleştirmelerden 
bahsedilmeyecek.Ayrıca minimal boyutlu çift doğrual gerçekleştirmelerin özellikleri ve 
yapısına vurgu yapılacak. 

 

4.1 Doğrusal Gerçekleştirme Teorisi 

 

Doğrusal sistem teorisindeki  temel problem gerçekleştirimi şöyle ifade edilebilir.Doğrusal 
transfer fonksiyonu H(s) olarak verilip,sonlu-boyutsal doğrusal durum eşitliğini bul,bu 
bulunan bu içerikte doğrusal gerçekleştirme olarak adlandırılır. 

Doğrusal  durum eşitliği şu formu alacaktır: 

  X(t) =A(x) +bu(t) ,  t>0 

 Y(t) = cx(t) , x(0)= 0   (1) 

X(t ) m x 1 durum vektörü iken,her t bir sabit uzay R^m elamanı,ve u(t) ve y(t) 
skalerdir.Doğrudan iletim terimi,du(t),temel gelişmeyi değiştirmeden çıkış eşitliğine 
eklenebilir,ancak bunu burada yapmayacağız.Doğrual durum eşitliği (1) kısaca (A,b,c,R^m) 
olarak gösterilir. 
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Gerçekleştirme problemini iki kısımda düşünmek doğaldır.Birincisi,doğrusal gerçekleştirme 
için H(s) deki ihtiyaçları ve durumları bulmaktır.Bu doğrusal gerçekleştirmenin var olduğu 
sistemlerdeki durumları bulmaktır.İkincisi,doğrusal gerçekleştirilebilir A,b,c yi hesaplama 
metodunu bulmaktır. Genellikle minimal doğrusal gerçekleştirme bulunur,bu m boyutunun 
olabilecek en küçük değerindeki gerçekleştirmedir. 

 

Doğrusal gerçekleştirilebilirlik sorusu okuyucuyu şüpheye düşürmeyecek kadar 
basittir.H(s)transfer fonksiyonunun tam-gerçek mantıklılığı sistemin doğrusal 
gerçekleştirilebilirliği için gerekli durumdur.Çünkü transfer fonksiyonu ,(1)  için tam gerçek 
rasyonel fonksiyon  c(sI -A)^-1 b dir. Bu durum da yeterlidir.bilindik durum eşitliği(1) ile 
kullanarak gösterilebilir.Tabi H(s)nin katsayılarından denetimle yazarak.Bu bildik gelişme 
minimal doğrusal gerçekleştirmenin  

peşinden izlenebilirken,farkı bir yaklaşım sunacağım. 

Bu doğrusal olmayan durumlarda daha basit bir erişim sağlar.Aslında doğrusal ve doğrusal 
olmayan gerçekleştirme teorilerinin benzerlikleri fikrinde dolayı doğrusal durum gözlemleri 
olağandan daha çok detaylandırılacak. 

    

   Bilindik seri genişlemesini kullanarak 

       

Doğrusal durum eşitliğinin transfer fonksiyaonu(1) negatif power serisiyle yazılabilir. 

  

(gösterimin basitleştirilmesi için,özdeşlik matrislerinin boyutlarını ,uyabilirlik gereksinimiyle 
sabitlemek için ihmal ettim.)Bu doğrusal gerçekleştirebilirlik için daha açık olur.Negatif 
power serileri formunda gösterilen H(s) transfer fonksiyonlarını düşünmeye yeter. 

 

Başka bir deyişle,sadece sonsuzda analitik sonsuzda sıfır olan transfer fonksiyonları 
düşünülmeye gerektir.(3) ve (4) ün karşılaştırılması şunu gösterir:seri bakış açılarından 
,doğrusal gerçekleştirme teorilerindeki temel matematiksel problemler S,b,c matrislerini 
bulmayı kapsar.yani m x m,m x 1,1 x m boyutları şunu verir. 

 

Bu temel problemi çözecek ilk adım ,belirli basit  soyut gerçekleştirme olacaktır.Bu   özel 
seçilmiş doğrusal uzay ya da durum uzayı kapsayan doğrusal operatörler olarak belirtilen 
A,b,c deki gerçekleştirmedir.Sonra matrix gösterimi ,durum uzayı  R^m olarak değiştirilen 
doğrusal operatörler için hesaplanabilir.    
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Bu iki hesaplamadan açıktır ki her hangi  için  çok uygun bir rasyonel 
fonksiyon aynı  paydalı. Kaydırma işlemiyle sadece sayısal polinom değişir. Böylece 
tüm elementler rasyonel bir fonksiyon olarak gösterilebilir aynı uygun paydalı. Sadece 
elementten elemente sayısal kısım farklılık gösterir. m-1 dereceli polinomlar doğrusaş bir 
uzay oluşturduğundan ,  boyutları ve böylece  doğrusal gerçeklenebilirdir.  

Örnek. 4.1 katıca uygun rasyonel aktarım fonksiyonu 

  

Basit hesaplamalar verir ki, 

  

ve  

  

Şu açıktır ki  ve  doğrusal olarak U dan bağımsızdırlar, ama bir fazla hesaplama 
gösterir ki, 

  

Bu nedenle,  terine U konabilir, standart sıralı temel elementleri şu şekilde seçersek 

 . 

 Temelde ki başlatma işlemi için bir matris gösterimi  

 

Ayrıca, kaydırma işlemi için matrisin şunu tatmin etmesi lazım, 

  

Şöyle devam eder, 
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Son olarak  ve  olduğundan, değerlendirme işlemcisi için bir matris 
gösterimi, 

  

2 boyutlu bir gerçekleştirme 3-derece bir aktarım fonksiyonu için elde edilebilir, payı ve 
paydayı  ile çarparak, 

   

Doğrusal kaydırma gerçekleştirmesini kurmada dâhil edilen bağımsızlık hesaplamaları 
otomatik olarak payda ve payda ki yaygın faktörü iptal eder. 

 Gerçekleştirme teorisi iyi bilinen bir sıra koşullu testi vermeye yeniden 
ifadelendirilebilir. U yu negatif üslü serilerin doğusal uzayı olarak gösterirsek, element 

  

İlişkili dizinin katsayılarıyla değiştirilebilir 

  

U nun sonlu boyuta sahip olduğu açıktır ancak ve ancak bu dizinin bir sonlu sayısı doğrusal 
bağımsızsa.  

 Teori 4.3 

  aktarım fonksiyonuyla belirlenen bir doğrusal sistem doğrusal 
gerçekleştirilebilirdir ancak ve ancak davranış matrisi 

  

sonlu sıraya sahipse. Dahası, bir doğrusal gerçekleştirme sistemi için  sırası nin 
minimum doğrusal gerçeklemesidir. 

Burada davranış matrisinden minimal gerçeklemenin yapısını özetleyebilirim. Ancak bu kısa 
bir göz gezdirme olarak tasarlandı, böylece tamamı referanslara bırakıldı. Ayrıca verilen  
nin minimal denklik özelliklerini bakmayı da geçeceğim. Bu konular kısım 4.4 de çift 
doğrusal gerçeklemelerde anlatılacak ve şimdi  alarak bir çok doğrusal teori atlanacak.  

 Ancak, sabit doğrusal gerçekleme konusunu bırakmadan önce, verilen aktarım 
fonksiyonu yerine başlangıç noktası verilen çekirdek olursa, oluşan değişklikleri 
açıklayacağım. Uygun rasyonel aktarım fonksiyonu üssel çekirdek şekli ile ilişkilediğinden,  
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 , 

Açıktır ki,  bir doğrusal durum eşitliği ile gerçeklenebilir ancak ve ancak 16 daki şekle 
sahipse. t≥0 için verilen çekirdek analitik kabul edilebilir, diğer türlü bir doğrusal durum 
eşitliği tarafından gerçeklenemeyecektir.  yi t=0 kuvvet dizileriyle genişletirsek, Laplace 
dönüşüm şekli  şu şekilde yazılabilir.  

  

Şöyle ki, 

  

Böylece, 4 deki girişler 0 da değerlendirilen çekirdek türevleri tarafından belirtilebilir. Bu 
noktadan, kaydırma gerçeklemesinin yapısı biraz önce bahsedildiği gibidir. 

 Çok girişli-çıkışlı doğrusal sistemler için, gerçekleme teorisi daha hafiftir. Tek girişe 
sahip olmasına rağmen, tek giriş sistemler temel doğrusal gerçekleme sonuçları çok 
değişkenli sistemler için teknik yoğunlaşma olarak kısım 4.2 de bilinecek. Bu nedenle, kısa 
bir yorum uygundur. 

 Doğrusal durum eşitliğini düşün, 

  

, , giriş  bir  vektör ve bir  vektörü olmak üzere.  

İlintili aktarım fonksiyonu  matrisi  

  

Teori 4.4 bir doğrusal sistemin  aktarım fonksiyonu matrisi  için tanımlandığını 
varsayalım.  bir katı uygun rasyonel matrisse, sistem bir sonlu boyut doğrusal durum 
eşitliği tarafından gerçeklenir. Yani, ancak ve ancak  nin her elementi  katı uygun 
rasyonel fonksiyonsa. 

 Teori 4.4 ün gerekli kısmı  yazarak açıklanabilir. Yeterlilik eşit olarak 
kolaydır: her güçlü uygun , rasyonel  1 in bir durum eşitliği tarafından gerçeklenebilir. 
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Ve tüm bu durum eşitlikleri r giriş q çıkış değerini vermek için birleştirilebilir.  

 Gerçekleme sorusu sabit olmayan sistemler içinde ilginçtir. 1. Bölümden sabitliğin 
tanımını hatırla, sonuçlar giriş/çıkış gösterimi şeklinde durumlanacak 

  

Sabit olmayan durumda, doğrusal durum eşitlik gerçeklemesi zaman değişkenli katsayıalarla 
birlikte, 

  

Teknik nedenlerden dolayı  ve  nin sürekli matris fonksiyonu olması gerekir. 
Yani, her giriş bu katsayı matrislerindeki bir sürekli fonksiyondur. 

Teori 4.5 çekirdek  sonlu boyusal, zaman değişkenli doğrusal durum eşitliği tarafından 
gerçeklenebilir ancak ve ancak ayrılabilirse. 

Kanıt, çekirdek doğrusal gerçeklenebilirse ve 21  nin gerçeklemesi ise,  

  

Yazarak, 

 gösterir ki  ayrılabilir 
form da. 

  

Ayrılabilmeden kaynaklanan süreklilik, doğrusal durum denkli üzerinde ki süreklilik 
varsayımlarından sağlanır.  

 nin ayrılabilir olduğunu varsayalım ve 22 de verilen gerçekle. Daha sonra 
kurulum, 

   

21 deki  için bir gerçekleme verir.  
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 Önemli bir soru şunla uğraşır bir çekirdek sabit parametre bir doğrusal durum 
denkliği tarafından ne zaman gerçeklendiği. Diğer bir değişle, bir giriş çıkış gösterimi 
gerçekleme sistemi tarafından ne zaman oluşturulur.  

 Teori 4.6: çekirdek  bir sonlu boyutsal tarafından gerçeklenebilir ancak ve 
ancak sabit ve farksal olarak ayrılabilirse. 

Kanıt, koşulların gerekliliği doğrudan formundan takip edilir. Etkili bir kanıt  hafiftir, u 
nedenle çekirdekin sabit, farksal ayrılabilir ve şu şekilde 

  olduğu özel durumu düşünerek başlıyorum. 

İlk adım T>0 almaktır, böylece, 

  

Tabiî ki, bu gibi bir T nin var olduğu kabul edilebilir, diğer durum da  dır ve teori 
enteresan değildir. Şimdi, sabit  tarafından, böylece 

  

Veya  

  

Bu eşitliği  la çarparak ve –T den T ye integralini almak verir ki, 

  

Şöyle ki, 

  

Ama  böylelikle farksal eşitlik açık değildir ve böylece üssel  

  

Daha sonra sabitlik koşulu verir ki, 
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Diğer bir deyişle çekirdek sabit farksal olarak ayrılabilir ve tek terim ise, basit üssel olmak 
zorunda. Açıkçası bu çekirdek doğrusal durum eşitliği tarafından gerçeklenebilir. Eğer her 

 ve  gerçek değerli ise, doğrusal durum eşitliğinin toplanabilir paralel bağlantıları 
bir doğrusal durum eşitliği tarafından gösterilebilir.  Eğer 22 deki fonksiyonlardan bazıları 
karmaşık değerli ise, eşlenikler kapsanmak zorunda olduğundan gerçek katsayı metrisli bir 
doğrusal durum eşitliği gerçekleşmesi bulunabilir. 

4.2 Sabit Homojen Sistemlerin Gerçeklemesi 

Özellenmiş homojen doğrusal olmayan sistem için, tartışılacak olan problem iki-doğrusal 
durum eşitliği şeklinde bulunan gerçeklemelerin problemidir. Yani, formun  durum eşitliği  

  

, durum vektörü olmak üzere, her t için  durum boşluğunun ve giriş çıkış bir 
elementi skalardır.  

 Tabi ki, bir iki-doğrusal durum eşitliği genelde homojen bir giriş çıkış gösterimine 
sahip değildir. Bu nedenle, bu kısımda ki sonuçlar daha çok özellenmiş iki-doğrusal durum 
eşitliğini içerir.  

 23 de ki birletim e kullanılan giriş çıkış gösterimi bölüm 3 de türetildi. İki-doğrusal 
durum eşitliği bir Volterra sistem gösterimi tarafından tanımlanır, 

  

Çekirdek şu şekilde verilmek üzere 

  

Bir iki-doğrusal gerçekleme teorisini geliştirmek amacıyla, ana yoğunlaşma düzenli çekirdek 
ve düzenli aktarım fonksiyonları üzerinde olacak. 25 den düzenli çekirdeği elde etmek için ilk 
adım kısım 1.2 de tanımlandığı gibi sabitliği yüklemektir. Bu da sabit bir üçgensel çekirdek 

  

yi verir.  Esişlik 26 yı ilk üçgensel payda üzerine bir üçgensel çekirdek olarak yeniden 
yazarsak 

 verir. 
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Böylece, n dereceli düzenli çekirdek homojen alt sistemi iki-doğrusal durum eşitliği 23 e 
ilintili olan  

  

Tabi ki, skalar terimler  şeklinde yazılan çıkış daha ağırdır. Gerçekte bu tür 
terimler gösterir ki bir iki-doğrusal durum eşitliğinle ilintili düzenli çekirdek şu şekilde 
yazılabilir.  

  

Çeşitli katsayılar ve üsler bu ifade deki karmaşık olabilir, ama düzenli çekirdek gerçek olduğu 
için, eşleme koşulları tatmin edilmeli. 

Açıkçsı, bir iki doğrusallı durum eşitliği için düzenli çekirdek kısımsal olarak basit şekildir. 
Düzenli aktarım fonksiyonu da ayrıca  basit şekildedir, adlandırılan 

  

İki doğrusal durum eşitliği için Bir düzenli aktarım fonksiyonları şu şekilde gösterilen, 

 dir. 

Böylelikle, n derece homojen sistem bir katı uygunluk tarafından tanımlanan düzenli aktarım 
fonksiyonu 31 den , 

  

Ve  bir tekil  dereceli polinomudur. Bir ilintili iki-doğrusal gerçeklemeyi 
oluşturmak için matrisin faktoryelinde payda doğruluğu yazılarak, 

 dir. 

Örnek 4.2  polinomu için 

üzerine bağımlılığı etkenlemek için 

 yazılır. 
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Şimdi, her polinom üzerinde ki  bağımlılığı bu ifadenin sağ tarafında ki aynı şekilde 
etkenlenebilir 

  

Son adım şöyle olmalı ki 

 

33 ün genel gösterimi için32 takip eden şekilde gider.  

  olsun 

Ve  için i tanımla  matrisi i. inci satırdan 

  

Daha sonra P sütün vektörüdür 

  

tarafından özellenir. 

 Bu pay faktoryelleme prosedürünün sonucu şu şekilde yazılabilen düzenli aktarımdır 

  

Öyle ki, 

  

katı şekilde uygun matris fonksiyonları. Bu nedenle her  bir doğrusal gerçeklemeye 
sahiptir ve şu şekilde yazılabilir 

  

Şimdi iki doğrusal durum eşitliğini düşünelim 
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tarafından özellenen.  

Bu iki doğrusal durum eşitliği için düzenli aktarım fonksiyonları 30 aracılığıyla 
hesaplanabilir. A daki blok köşegeninden dolayı 

  

Böylece ileri doğru hesaplaması verir ki, 

  

Böylece, 40,verilen aktarım fonksiyonu için n-dereceli homojen iki-doğrusal gerçeklemedir. 
Gelişme takip eden şekilde sonlandırılabilir. 

 Teori4.7 Bir n derece homojen sistem  düzenli aktarım fonksiyonu 
tarafından tanımlanan iki doğrusal gerçekleşmedir.  

 Teori 4.7 deki gerçekleşebilme koşuluna ek olarak yukarıdaki gelişme şunu belirtirtir 
ki, bir n derece homojen sistem için iki-doğrusal gerçekleme problemi temel olarak bir n 
doğrusal gerçekleme problemi dizisi içerir. Ama basit faktoriyelleme prosedürü genellikle 
yüksek değerli bir iki doğrusal gerçeklemeye yol açar minimal doğrusal gerçekleme her 

için kullanılsa bile. Bir minimal kenar iki doğrusal gerçekleştirme yapmak için, daha 
karmaşık faktoriyelleme fonksiyonu prosedürü kullanılabilir. 

 31 de verilen bir düzenli aktarım fonksiyonu için iki doğrusal gerçekleme teorisine 
alternatif bir yaklaşım doğrusal durumdaki ile aynı, bir soyut kaydırma gerçeklemesinin 
kavramını içerir. Doğrudan minimal-kenar iki-doğusal gerçeklemesini sağladığından ve 
polinomik ve Volterra sistemleri için ana gereç olacağından bu yaklaşımı detaylı bir şekilde 
göstereceğim. Bu kayma gerçeklemesi yaklaşımı  nin negatif kuvvet serisi 
gösterimi şekliyle en basit şekilde tanıtılabilir, şöyle ki, 
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30’un katı uygun, fark edilebilir aktarım fonksiyonları için, bu seri gösteriminin geçerliliği (2) 
genişlemesinin tekrar eden kullanımıdır. Kayma gerçekleme yaklaşımı için genel ayarlar 
düzenli aktarım fonksiyonu sınıfından alınabilir, öyle ki teori 4.7 den açık olduğu gibi 
sonsuzda analitik olan, her değişken için sonsuzda sıfırlara sahip olan. Her hangi bir oranda, 
şekil 30 için serileri ve 42 yi karşılaştırmak gösterir ki takip ettiği şekilde tamel matematik 
problemleri durumlanabilir.  ve  kenarlarının A, D, b ve c matrislerini 
bul şöyle ki, negatif olmayan tüm tamsayılar için, 

  

Doğrusal durumla benzer olarak,  verilen düzenli aktarım fonksiyonuna ilintili bir m-kenarlı 
iki-doğrusal gerçeklemeyi göstermek için  kavramı ile gösterimi uygundur. 

 K değişkenli her hangi bir negatif kuvvet serisi için  

   

 Kayma işletmeni S yi tanıt 

  

Şuna dikkat et ki, kayma sadece değişkenini içerir ve için kısım 4.1 de tanımlanan 
kayma işletmenine alçalır. Açıkça, S bir doğrusal işletmen, ve  bir k değişkenli negatif 
kuvvet serisidir, böylece  iyi tanımlanmıştır. 

 Ayrıca 44 de üzerinde belirlenmiş bir indeks işlemcisi T,  

  

 k>1 için ve  k=1 için. T bir doğrusal işlemci ve  k – 1 değişkenli bir 
negatif kuvvet değişkeni. Böylece, çoğu k adımından sonra 0 elde edilse bile, T tekrarlı bir 
şekilde uygulanabilir. Takip eden gelişme doğrultusunda, negatif kuvvet serilerinin alanına ve 
değişken sayılarına aldırmayarak semboller S ve T kullanılacaktır.  

 Şimdi, verilen bir n derece homojen sistemi negatif kuvvet serileri şeklinde 
 düzenli aktarım fonksiyonu tarafından belirlensin. Negatif kuvvet serilerinin 

bir doğrusal uzay belirle şuna göre, 
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  notasyonunu T altında ki U1 görüntüsü için  

  

olsun.Daha sonra U1 ,  ,  ve  değişkenli bir negatif kuvvet 
serisinin doğrusal uzayıdır. Dahası,  ve  olan S ye göre değişmezdir. 

 Şimdi doğrusal uzay  

  yi düşünelim.  

U nun elementleri n değişkenli veya daha az değişkenli negatif kuvvet serileridir ve S ve T 
her ikisi de U dan U ya doğrusal işlemler olarak gösterilebilir. İnitilizasyon işlemcisini 

 i verilen düzenli aktarım fonksiyonu şeklinde tanımla, 

  

Ve değerlendirme işlemcisini   

  

 , 10 da tanımlanan doğrusal durum için değerlendirme işlemcisi olmak üzere. 

Kolayca türevlenen formülleri 

  

Bu yorumlar hesaplamalar için çok önemlidir, negatif kuvvet serisi gösterimleri gerçek işlem 
için yeterli olmadığından dolayı. 

 Verilen düzenli aktarım fonksiyonu (S,T,L,E,U) bir soyut gerçekleme olduğunu 
göstermek olağanüstü şekilde basittir. Özdeşilk, 
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Takip eden hesaplama dizisinde doğrulanır.  

  

Şunu göstermek kolay ki, 43 de ki kalan terimler gerçekte 0 dır. Eğer k<n ise, bağımsız 
değişkeni bir değişkenden fazla olacağından, E işlemcisi işi yapar. Eğer k>n ise, T ler 0 
verecektir. Şimdi gerçekleme prosedürü tanımlamayı içerir eğer U sonlu kenarlı ise ve 
doğrusal operatörler S,T,E, ve L için matris gösterimlerini bulmak, U,  le tarafından 
yerleştirildiği zamanda öyleyse. Takip eden sonuç ve onun kanıtı 4.1 i anımsatmakta, kanıt  
4.3 e kadar ertelenmesine rağmen.  

 Teori 4.8 düzenli aktarım fonksiyonu tarafından belirlenmiş bir n 
derece homojen sistem iki doğrusal gerçekleyebilirdir ancak ve ancak U bir sonlu kenarlı ise. 
Dahası, sistem iki doğrusal gerçekleyebilirse,  minimal iki doğrusal gerçeklemedir. 

  

U  bir sonlu kenarlı olduğu zaman matris gerçeklemesini bulmak için, U yu takip eden şekilde 
değiştirmek uygundur. Eğer kenar U=m,  için standart sıralanmış temelleri seç şöyle ki, 

 , U1 in doğrusal olarak bağımsız elementlerini gösterir, , U2 nin 
doğrusal olarak bağımsız elementlerini gösterir ve bu şekilde devam eden. Daha sonra şu 
gerçekten,  bağlantısızdır ve daha önce değişmez özeliklerden bahsedildiği gibi, S 
ve T için matris gösterimleri  
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Ayrıca, L nin görüntüsünün ve E nin boş uzayının özel şeklinden, matris gösterimi şu şekilde 
olacaktır,  

  

 Örnek 4.3 verilen iki doğrusal gerçeklemeli düzenli aktarım fonksiyonu  

  

Gerçekleme yapımında ki ilk adım U1 ve U2 uzaylarını hesaplamaktır.  

  

olduğundan şu açıktır ki 

 . 

U2 yi hesaplamak için, kaydet ki, 

  

Böylece, 

  

Ve değiştirmeyi yaparak 

  

Metris gösterimi S,T,L ve E takip eden şekilde hesaplanabilir. eğer S için A metris 
gösterimiyse, daha sonra 

  

Böylece,   
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Eğer D, T için matris gösterimiyse, 

  

Böylece, 

  

Şu açıktır ki L nin matris gösterimi, 

  

Ve son olarak,   

  

olduğundan, E için matris gösterimi, 

  

Şu açıktır ki, homojen sistemler için tartışılan iki gerçekleme problemi için iki yaklaşım, 
doğrusal gerçekleme teorisi için iki ana yaklaşıma paraleldir. Kaydırma gerçeklemesi 
yaklaşımı rasyonal fonksiyonların seri gösterimleri üzerine temellenmiştir, diğer yaklaşım 
rasyonal aktarım fonksiyonlarında doğrudan polinomların kullanımları dayanmaktadır. Ek 
olarak, doğrusal olmayan sistemler için kayma gerçeklemesi yaklaşımı doğrusaldan farkı 
olmayan davranış metrisi terimi şeklinde yeniden ifadelendirilebilir. 4.3 de formulleme 
gösterilecektir.  

 Durum vektörü  yi şu şekilde bölümlersek, 

  

  ,  olmak üzere, blok şekil gerçekleme durum eşitliği seti şeklinde 
tanımlanabilir:  
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Daha sonra gerçekleme fig.4.1 de gösterilen çoklu-giriş, çoklu-çıkış, doğrusal sistemler ve 
vektör çarpılarının ışın bağlantısını ilişkiler.  

 

 

 

 

4.3 Durağan Polinomsal ve Volterra Sistemlerinin Gerçeklemesi 

Polinomsal sistem durumları öncelikli ve çok detaylı olarak tartışılacak. Tekrar sonlu-kenar 
iki-doğrusal durumlar eşitlik gerçeklemeleri ilgi alanımızda, özellikle minimal kenarlar.  

 Düzenli aktarım fonksiyonu dizisi tarafından belirlenen bir N derece polinomik 
sistemi varsayalım.  

  

N den büyük dereceli aktarım fonksiyonları sıfırı işaret etmek üzere. İlk sonuç şunu gösterir 
ki, temel gerçekleyebilme durumu polinomlar için doğrudan takip eder.  

Teori 4.9-- 58 de özellenen polinomsal sistem iki-doğrusaldır ancak ve ancak her düzenli 
aktarım fonksiyonu katıca uygun gerçeklenebilir fonksiyonsa. 

 Kanıt: her  aktarım fonksiyonunun katıca uygun ve gerçeklenebilir 
olduğunu varsayalım. Daha sonra kısım 4.2 den şu açıktır ki, her biri j-derece homojen iki-
doğrusal durum eşitliği tarafından gerçeklenebilir.  

  

 ve  olmak üzere. şimdi de bu durum eşitliklerinin toplamsal paralel bağlantı 
hesaba kat. Böyle bir bağlantı blok köşegensel iki doğrusal durum eşitliği  
tarafından tanımlanabilir.  



	
   18	
  

  

Blok köşegensel şeklini A ve D için kullanarak, şu açıktır ki k-derece aktarım fonksiyonunu 
hesaplamak 

  

Ama j.inci iki-doğrusal durum eşitliği j derecenin homojenidir, şöyle ki sağ taraftaki bütün 
toplamlar j=k hariç sıfırdır. Böylece, 

  

Ve  bir iki-doğrusal gerçeklemedir verilen polinomsal sistem için. 

Şimdi polinomsal sistemin iki doğrusal olduğunu varsayalım ve dahası  böyle bir 
gerçekleme. Daha sonra, her n derece düzenli aktarım fonksiyonunu hesaplayarak katıca 
uygun fark edilebilir fonksiyondur. 

  

böylece kanıt tamamlandı. Bir N derece polinomsal sistemi iki-doğrusaldır ancak ve ancak ger 
düzenli kernel 28 ve 29 da verilen üssel şekle sahipse. 

 Polinomsal sistemler için temel iki-doğrusal gerçeklenebilme sonuçları ayrıca bir 
kayma gerçeklemesi yaklaşımıyla da geliştirilebilir, şu varsayıma dayanarak ki 58 deki her 
düzenli aktarım fonksiyonu negatif kuvvet serisi şeklinde yazılabilir 

  

Tabi ki, bu varsayım iki doğrusal gerçeklemelere kalırsa hiçbir genelleme kaybı olmaksızın 
yapılabilir. Kısım 4.2 deki formüllemeden açıktır ki, tüm negatif olmayan  
tamsayıları için bir iki doğrusal gerçekleyici oluşturmak A,D,b ve c matrislerini bulmayı 
içerir.  
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Bu bölümde genelde olduğu gibi, ilk adım bir soyut kayma gerçeklemesi oluşturmaktır.  

Verilen herhangi negatif kuvvet serilerinin sonlu dizisi 

  

Kayma işlemcisi S yi belirle  

   

tarafından. 

, 44 ve 45 de belirlenen kayma işlemcisi olmak üzere. Benzer olarak, indeks 
işlemcisi T yi 

 

   

 

tarafından , 46 da belirlenen indeks işlemcisi olmak üzere tanımla.  

Daha fazla ilerlemek için, şu notasyonu kullanmak uygundur 

  

Daha sonra, takip eden negatif kuvvet serilerinin sonlu dizisinin doğrusal uzayını tanımla 

  

 olarak, S ve T, U dan U ya işlemler olarak gösterilebilir. Başlangıç 
yapma işlemcisi  yi verilen  şeklinde tanımla 

  

Ve değerlendirme işlemcisi  yu 
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 doğrusal durumda tanımlandığı gibi olmak üzere.  

Şimdi hesaplamalar, , verilen nin soyut iki doğrusal gerçekleme 
olduğunu göstermek için homojen durumun içindeki hesaplamalardan doğruca takip eder. 

Örneğin,	
  

 

Teorem 4.10 : Düzenli  fonksiyonları transferinin dizisi olarak tanımlanan 
bir  derece polinom sistemi çift doğrusal gerçekleştirebilir ancak  sınırlı ebatlıdır. Bunun 
yanında , eğer sistem çift doğrusal gerçekleştirebilirse , sonra en az çift 
doğrusal gerçekleştirebilir. 

 İspatsa , tarafından tanımlanan polinom sistem çift doğrusal 

gerçekleştirebilir , bu  hiç çift doğrusal sistem gerçekleştirmez, ve bu 

sistemin değişimi gerçekleşir. W, negatif güç serilerinin bütün dizilerinin 
doğrusal uzayı (62) gibi izin verir. Sonra  

 

tarafından kısalık için  bir doğrusal operatör   tanımlamayı kesinlikle uygun bir 
dizi gibi sağ taraf yazarım , benzer negatif güç serilerinin yerine fonksiyonlar tanımlanabilir. 
Bundan başka , homojen durumda değişim operatörün tanımını kullanma, 

  

 

Düzenli transfer fonksiyonların  dizisine bu hesaplamayı uzatmaya bu 
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gösterilir. T’nin tanımını kullanmada bir benzer  yolda ,  

 

Tekrar , 

   

 e göre genişletildiğinde bu hesaplama ,  

anlamına gelir. Bu sonuçları birleştirme   
gösteren  

 

verir. Sonra , bir ebatlı boşluğun üstünde bir doğrusal haritadır , o ebat  takip 
eder. Böylece ,  sınırlı ebatlıdır , ve ayrıca soyut değişim gerçekleştirme en azdır ondan 

sonra ’nun ebatı ’nin herhangi bir diğer çift doğrusal tanılamanın uzay 
hacimli durumundan daha büyük değildir. 

 Şimdi farz edelim ki ,  sınırlı boyutta ’ye sahip , aşağıdaki çizim 

’nin en az çift doğrusal gerçekleştirme ’ı sağlar. Standart 
düzenli esas seçimlerle alan  ‘ı yenisiyle değiştirmek ’in doğrusal olarak 

bağımsız elementleri için  , ’nin fazladan doğrusal olarak bağımsız 
elementleri için ,vesaire , aşağıdaki gibi bir gerçekleştirme verir. 

’den sonra , o matris temsili belli olur zira  
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 olan üç köşeli blok şekline sahip olacak. Ayrıca 

  matris temsili anlamına gelir zira   

 

 

 

 ’da bunlara göre kısımlara ayrılmış bloklar olan blok (hemen hemen üç köşeli) şekline 

sahip olacak. ( Uyarı: Bu  bloklar ’den daha az ziyade gerekli olur. 

Sebebi bir özellik  ,  içermelidir.) için matris temsili 
açıkça blok biçiminde olacak  

 

Ve   için matris temsili , her  ,  olarak elde edilen  

 

her  de ’ye etkisi hesaplama tarafından bulunur.  

Örnek 4.6: 2 derece polinom sistemi göz önüne alarak düzenli transfer fonksiyonları 
tarafından tanımla  
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 bul , hesapla                                             

               

Böylece ,  

 

’nin altında  için bu temel elementlerin görüntüsü ’i bulmak için hesaplanmalı , ve  
sonra daha sonraki görüntü tekrarlanan vardiyaların altında hesaplanmalı.  

                    

 

Böylece,  
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Şimdi  tarafından  yerine koyulur ve standart düzenli temel 
elementlere göre seçmek      

 

Bu matris temsilleri sağlar            

 

Hesaplamalar verir       

 

Ve , sonuç olarak,                                                                               

 

Şimdi verilmiş Volterra sistemi için çift doğrusal gerçekleştirme problemini göz önüne almalı. 
O farz edelim ki gösterimde yazılı düzenli transfer fonksiyonlara göre belirlenmiş bir sistem. 

                       
 
Her zaman olduğu gibi , negatif güç serilerinin bir dizisi gibi gözükecek , her biri 
(60)’daki şekli alır. Bu perspektiften , bulunmuş  A, D, b matrislerini içeren Volterra sistemi için 
çift doğrusal gerçekleştirme problemi açıktır , ve c öyle ki bütün k = 1,2, . . .  , ve bütün negatif 
olmayan numaralar  içindir ,  

                                                                    
 

 için soyut değişim gerçekleştirmenin yapımı polinom sistem 
durumundayken aynı sıra boyunca ilerler. Bu yüzden sadece mekaniklerin kısa bir 
incelemesine istenir. Değişim ve indeks operatörler polinom durumdayken şu şekilde 
tanımlanır ,  
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Bu operatörler ve belirlenmiş Volterra sisteme göre , bir takım doğrusal boşluklar şu şekilde 
tanımlanır ,  

                             
Ve , sonuç olarak ,  

                    
 
Açıktır ki , S ve T  U’dan U’ya doğrusal operatörlerdir. Belirlenmiş sistemlere göre başlatma 
operatörü  şu şekilde ,  
                   

                    
 
ve değerlendirme operatörü şu şekilde ,  
 

                   
                     
tanımlanır. 
 
 Bu ispat (S,T,L,E,U) şimdiye kadar standart hesaplamalardan takip edilen belirlenmiş 
Volterra sistem için bir soyut çift doğrusal gerçekleştirme sistemidir. Ayrıca , çift doğrusal 
gerçekleştirebilirliğe ve en az sorulara bir cevap kolayca elde edilir. Eğer U  sınırlı boyuta 
sahipse , o zaman belirlenmiş sistem çift doğrusal gerçekleşebilir olan yenisiyle değiştirme 
yapımı tarafından açıktır. Diğer taraftan , bir basit tez teorem 4.10’un ispatında gösterilen ona 
benzer bir operatörden yararlanır , eğer belirlenmiş sistem çift doğrusal gerçekleşebilirse o 
zaman U sınırlı boyutludur. (Ve eğer öyleyse değişim gerçekleştirme sistem için en az çift 
doğrusal gerçekleştirmedir.) Böylece Volterra sistemin çift doğrusal gerçekleşebilirliği 
doğrusal boşluk U’un sınırlı boyutuna eşdeğerdir. Daha fazla doğu nitelendirme için araştırma 
teorem 4.9’un yönünde başlar.  
 
Teorem 4.11: Eğer (74)’de tarafından belirlenmiş  Volterra sistemi çift 
doğrusal gerçekleşebilirse , o zaman her düzenli transfer fonksiyonu Hreg(s 1, . . . ,sk) kesinlikle 
uygun tanınabilir fonksiyondur.  

 Teorem 4.11’in ispatı  ‘nın çift doğrusal gerçekleştirmesini almadan 
daha fazla hiçbir şey oluşmaz ve her Hreg(s 1, . . . ,sk) hesaplama tarafından gözlem kesinlikle 
uygun tanınabilir fonksiyondur. Bu inceleme , teorem 4.9’la birlikte , ayrıca aşağıdaki ilginç 
bilgi üretilir.  
 
Sonuç 4.1: Eğer Volterra sistem çift doğrusal gerçekleşebilirse , o zaman herhangi bir 
polinom sistem Volterra sistem ucunu kesme tarafından şekillenir ayrıca çift doğrusal 
gerçekleşebilir.  
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 Maalesef , Volterra sistemler için çift doğrusal gerçekleşebilirin daha fazla direkt 
belirlemesini arama teorem 4.11’in tersinin başarısızlıkla sonuçlandığı gösterir.  
 
Örnek 4.5: Volterra sistemi hesapla 
 

 
 
İndeks operatör defalarca   j = 1,2, . . . için uygulama verir ,  
 

 
 
Alt sistemin numaraları beklenilen yönde davranan tüm fonksiyonları aktarır. Ama numaraları 
koleksiyonundan beri  

 
 
sonsuz ebatlıdır , değişim operatörün hareketi düzgün hesaplama olmadan açıktır , 

 sonsuz ebatlı olacak. Böylece çift doğrusal 
gerçekleşemez. 
 Farz edelim Volterra sistem her alt sistem düzenli transfer fonksiyonu , kesinlikle 
uygun ve tanınabilir olarak belirlenmiştir. Çift doğrusal gerçekleşebilirliği kontrol etmek için , 
örnek 4.7 seçim olmadığını gösterir , ama U’nun boyutunun hesaplaması boyunca çalışır. 
Tabii , düzenli transfer fonksiyonların dizisi için genel şekle sahip problem ortaya çıkarır. 
Genel şekil gibi elde edildiğinde , çift doğrusal gerçekleştirmenin hesaplaması boyutlar 
küçükse kolay olabilir.  
 
Örnek.4.6: Volterra sistem için  
 

 
 
Hızlı hesaplama gösterilir , bu  
                   

                               
 
ve 
 

                               
 
Bundan dolayı boyut U =1 , ve başka kolay hesaplama gösterilir bu , en az çift doğrusal 
gerçekleştirme şöyledir 
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 Resimle göstermeye ek olarak bir bakıma en kolay mümkün Volterra sistemi 
gerçekleştirme problemi  , örnek 4.5 ‘le  birlikte alt sistem profirtlerin karşılıklı bağımlılığını 
gösteren bu örnek sınırlı ebatlı gerçekleşebildiğinde önemli rol oynar. Diğer deyişle , çift 
doğrusal gerçekleşebilirlik Volterra sistemde düzenli transfer fonksiyonların numaralarında 
sadece değişim sayıları tarafından yaratılan ya da imha edilen olabilir. Diğer ilginç inceleme 
örnek 4.6’da sistemin iki dereceli polinom budamaya karşı yapılabilir , yani ,  
 

 
 
Bu polinom sistem için en az çift doğrusal gerçekleştirme boyutu iki boyuta sahiptir. Böylece 
budama en az çift doğrusal gerçekleştirmenin boyutu artabilir.  
  
Belki belirlenmiş Volterra sistemin çift doğrusal gerçekleşebilirliği için durumun temizleyici 
anlatımı ( ya da , bu konu için , polinom ya da homojen sistem ) değişim gerçekleştirme bakış 
açısından gelişebilir. Yaklaşım aşamayla negatif güç serilerinin yerini içerir bundan dolayı U  
bu ilerlemelerin sisteme düzenlemesi ilerlemenin doğrusal uzayı gibi görülür , ve sonra 
matrisin ilerlemelerini not alma U’nun sınırlı boyutluluğa eşdeğerdir. Ayrıca , o doğrusal 
duruma pek çok benzer şekildir.  
  
Düzenli transfer fonksiyonların  sırasını gösterme negatif güç serilerin sırasına 
benzer 
 

                
ve şeklin anlatımı  
                            

                             
 
aynı yolda görülebilir. Örneğin ,   

    
Negatif güç serilerinin ilerlemelerinden her biri ilerlemelerin dizisi gibi görülebilir. Örneğin ,  

 

Tabii , çok indeksli ilerlemeler sistematik olarak bir çok yola sahiptirler , ama özel düzenleme 
hepsi aynı yolda listelendiği sürece önemsizdir.  

 Bu bakış açısından , (77)’de her  ve (78)’de  her  ilerlemelerin doğrusal uzayı 
gibi dikkate alınmalı. Değişim ve indeks operatörleri üstteki gibi açıklanır , ve L ve E 
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operatörler dizi açıklaması için benzer şekilde değiştirilmiştir. Daha sonra belirlenmiş sistem 
için bir davranış matrisi dizi yorumu açısından şu şekilde tanımlanır ,  

 

Ve şimdi aşağıdaki gerçekleşebilir durum doğrusal boşluk U üstünde sınırlı boyutsal durumun 
apaçık yeniden ifadesi olmalı.  

Teorem 4.12:  tarafından tanımlanan Volterra sistem ancak ve ancak uygunsa 
çift doğrusal gerçekleşebilir. Davranış matrisi  sınırlı sıraya sahip. Bunu yanında , çift 
doğrusal gerçekleşebilir sistem için , ’nin sırası en az çift doğrusal gerçekleşmenin 
boyutudur.  

 

4.4 Çift Doğrusal Durum Denklemlerin Özellikleri 

 Çift doğrusal gerçekleştirme sorusunda doğrudan dikkate sahip olma , böyle durum 
eşitlemenin ayırıcı özelliğin bazıları tartışmaya uygundur. Önceden bahsedilmiş gibi , çift 
doğrusal durum eşitlemeleri bir çok yapısal karaktere sahiptir , bu doğrusal durum 
eşitlemelerin iyi bilinen karakterlerine dikkat çekici şekilde benzerdir. Bu özellikler çift 
doğrusal durum eşitlik temsilleri olan Volterra sistemin genel durumunda ispat edilecek. 
Homojenik ya da polinom sistemin özel durumların ayrı olarak dikkate alınmasına gerek yok. 

 Sık sık karşılaşılan bir soru belirlenmiş çift doğrusal eşitliğin en az olup olmadığıdır. 
Diğer bir deyişle , durum denklemin girdi-çıktı tanımlamanın en az çift doğrusal gerçekleşme 
olup olmadığıdır. Bu soruya uygun yol uygun fikirler boyunca ulaşılabilir ve gözlenebilir. Bu 
fikirler en aza geliştirilecek ve bağlanacak. Aynı zamanda , en az çift doğrusal 
gerçekleştirmelerin kesin denklik özellikleri ele alınacak.  

 Çift doğrusal durum denklemi için ulaşılabilirliğin uygun tanımı 



	
   29	
  

                            

ulaşılabilir durumun kavramıyla başlar. Her zaman olduğu gibi , ,  ve  
sayısallardır.  

Tanım 4.1: Çift doğrusal durum denkleminin (85)  durumu parça parça sürekli giriş sinyali 
varsa öyle ki bazı ,  için ulaşılabilir( ’den) adlandırılır.  

 Aşağı yukarı uygunluk sorunu olan giriş sinyali için parça parça sürekliliğin özelliğini  
not almalı. Girişlerin daha çok genel ve kısıtlayıcı sınıfları sabitken sonuçlar seçilmiş olmalı. 
(Ama kabul edilebilir girdilerin açıkça belirtilen sınıfı değil zayıf tatta olacaktı.) 

 Çift doğrusal denklemi için ulaşılabilir durumların seti ,  durum boşluk ’nin 
doğrusal alt uzayı şekli verilmesi hoş olurdu. Maalesef  bu durum değil ; ulaşılabilir 
durumların doğrusal bileşenleri ulaşılabilir olmamalı. Bu yüzden , doğrusal cebirin teknikleri 
için uygulanabilen ulaşılabilirliğin biraz daha güçsüz kavramı kullanılır.  

Tanım 4.2: Çift doğrusal durum denklemi ,  ulaşılabilir durumların sürelerinin 
 setine rağmen süre ulaşılabilir olarak adlandırılır.  

 Belirlenmiş sistemin süre uygulanabilirliği için bir kriterin ilk adımı , ulaşılabilir 

durumların karakter süresidir. Son olarak , izin vermek ’nin en az boyut alt uzayı 
belirtmek b ve değişmez A ve D’nin altını kapsar.  

Yardımcı teorem 4.1: ’nin ulaşılabilir durumları tarafından sürelenen  alt uzay 

  , tarafından belirlenmiştir. 

 İspat bazı girdi ve bazı  için ,  ulaşılabilir durumdur. Sonra 
çift doğrusal durum denklemin çözümü  için bölüm 3’te türetilmiş ifade kullanma 

yazılabilir.  ‘nın  durumu ve sabit kat sayı matrisleri için , ilk birkaç şartlar  

                             

Bu ifade  için , A ve D çarpı b’nin ürünlerinin doğrusal bileşimin gösterir. Bu 
sonuçla ’den beri ulaşılabilir durumların seti için bu temel şekiller vardır.  

 Ters kapsamayı elde etme  , bütün  için  kapsanan  alt uzaysa  gösteri zor 
değildir. Böylece , herhangi bir sabit girdi   ,ve herhangi bir ulaşılabilir durum  için, 
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Özellikle ,  ulaşılabilir , ve bu yüzden . Bundan dolayı , eğer u herhangi bir reel 
sayıysa , ve herhangi bir ulaşılabilir durumsa ,  

                                                     

Sonra ulaşılabilir durumların bu sürelerinin seti  ,  altında ’nın herhangi bir u 
görüntüsü içindir.  

                                                    

Bu ima etmeleri göstermek için soru 4.14 ‘e bakılır , bu  her iki A ve D ‘nin altında 
sabittir. Sonra  b’yi içerir ve A ve D ’nin altında sabittir. Bu 
tamamlamaların ispatı , 

 ’nın bir nitelendirmesi tekrarlanarak tanımlayan tarafından elde edilebilir.  

                                    

Ve müsaade eder. 

                                                         

Yardımcı teorem 4.2:  ve  doğrusal alt uzaylar özdeştir. 

 İspat doğrusal alt uzay  , ’nın kolonları tarafından alt uzay sürelidir. ’nın 
kolonları bu  ’ı kapsar , ve ekstra kolonlar A ve D tarafından çarpılarak üretilir. Bu 
yüzden ,  

                                             

Özellikle , bir  vardır , öyle ki,  

                      

ve bu yüzden  A ve D ve b kapsamaların altında sabittir. O gösterir ki  
alt uzay gibi en az boyuttur. Bundan dolayı farz edelim  b’yi içeren  ve A ve D ‘nin 
altında değişmeyen herhangi bir alt uzaydır. Ama X ,  olan   ‘i 
içermeli. Sonuç olarak  en az boyuttur.  

 Bu sonuç süre uygulanabilirliği için ölçüte direkt olarak yol açar çünkü rütbe , 
’nın kesinlikle boyutudur.  

Teorem 4.13: m-ebatlı çift doğrusal durum denklemi (85) ancak ve ancak rütbe ’yse 
süre ulaşılabilir.  
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 Şimdi çift doğrusal durum denklemleri için bir uygun gözlenebilirlik özelliği 
geliştirmenin problemine dönerim. Tekrar , kullanılan kavram doğrusal durum denklemleri 
için gözlenebilirlik olan biraz güçsüz biçimde tanımlanacak.  

Tanım 4.3: Çift doğrusal durum denklemin (85)  durumu seçilemez (0’dan) olarak 
adlandırılır eğer  ile cevap her parça parça sürekli giriş sinyali için ile 
cevaba özdeşse.  

 Burada , önceden olduğu gibi , parça parça devamlılık sadece kesinlik için 
belirlenmiştir. Uyarı , bu tanım cevap ’nin bilgiden görülebilir başlangıç durumu 
hesaplama kabiliyeti hakkında hiçbir şey ima etmez. Bu konu tartışma altında yapı kuramla 
ilgili olmadığı için dikkate alınacak.  

Tanım 4.4: Çift doğrusal durum denklemi (85) gözlenebilir olarak adlandırılır  eğer seçilemez 
durumlar yoksa.  

 Çift doğrusal durum denklemi  için gözlenebilirliğin kavramını 
nitelendirmek , A ve D’nin altında sabit olan en geniş alt uzay kapsanan , 

izin vermesi uygundur.  

Yardımcı teorem 4.3: ’in bütün seçilemez durumların alt kümesi   
tarafından belirlenmiş olan doğrusal alt uzaydır.  

 İspat (taslak) bölüm 3’te türetilmiş gösterimi kullanma , gelişigüzel başlangıç durumu 
 ve girdi ’a çift doğrusal sistemin cevabı seriler gibi yazılabilir , ilk birkaç şartlar ;  

                 

Büyüyen matris ülserleri şekilden şartlar sağlar 

                                      

Seçilemez durumlar şekiller bir doğrusal alt uzayın seti olan bu anlatımdan açık olmalı. 
Ayrıca eğer  görülmesi kolaysa , o zaman  seçilemez. Diğer deyişle, 

. Ters kapsama bütün reel sayılar u için gösterildiğinden elde edilendir ,  

                                                          

ve bu  

                                                            

Detaylar tamamlamada güçtür , ve böylece çıkarılır.  
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 Şimdi  tanımlama  tanımlamayı içerir.  

                                              

ve  

                                             

Sonra aşağıdaki sonuç yardımcı teorem 4.2 ‘ye benzer tarzda ispatlanmıştır.  

Yardımcı teorem 4.4: Doğrusal alt uzaylar  ve  özdeştir. 

 Şimdi doğrusal cebirin açık uygulaması bir gözlenebilirlik kriteri verir. 

Teorem 4.14: m-ebatlı çift doğrusal durum denklemi (85) ancak ve ancak rütbe  ise 
gözlenebilir.  

 Bu kavramlar kendileriyle ilgilendiğinde , burada ki amaç en az çift doğrusal 
gerçekleştirmelerin teoriyle birlikte onları kullanmak içindir. Sonuçta çok önemli olan  ve 

matrisleri hakkında daha fazla olgu vardır. 

Yardımcı teorem 4.5: Herhangi bir ürün için belirlenmiş sistemin bütün 
çift doğrusal gerçekleştirmeleri aynıdır.  

 İspat varsayalım  ve  ikisi de belirlenmiş sistemin çift 
doğrusal gerçekleştirmeleridir. Sonra iki sistemin düzenli çekirdekleri  için  bütün 

için aşağıdakini verir. 

                             

Onun güç serilerinin genişlemesi tarafından her matris üssel yerine koyma ve benzer tezlerin 
katsayılarını eşitleme her  ve her  için şunu gösterir. 

                                             

Bu tam ispattan sonra ürün ’in her elementi kesinlikle bu şekle sahiptir.  

 Bu noktada , hemen hemen bütün araçlar çift doğrusal gerçekleştirmeler için gerek 
duyulan en az karaktere yakındadır. Bir kalıcı hesaplama gösteri içerir eğer  
belirlenmiş sistem için bir gerçekleştirmeyse o zaman herhangi bir tersine çevrilebilir ,  
matris de sistem için gerçekleştirmedir. Bu bir kolay alıştırma 
gibi bırakılır. 
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Teorem 4.15: Belirlenmiş Volterra sistemin çift doğrusal gerçekleştirmesi ancak ve ancak 
süre ulaşılabilir ve gözlenebilirse en az dır.  

 İspat (85) varsay belirlenmiş Volterra sistem için boyut m’in çift doğrusal 
gerçekleştirmesidir , ama bu süre ulaşılamaz. Boyut ’in başka çift doğrusal gerçekleştirme 
yapımı nasıl göstereceğim. Sonra süre ulaşılamaz ,  ve 

 yazabilirim , doğrudan toplamı gösterir , ve  en azından boyut 1’in 
doğrusal alt uzayıdır. için temel seçim ,  için temel  ve V için temel 

’in birleştirmesidir.  ‘e izin vermek kolon   ile    matrisi olur , 
sonra da belirlenmiş Volterra sistemin m-ebatlı çift doğrusal 
gerçekleştirmesidir. Bundan başka ,   için b ‘i kapsar , ve A ve D ‘in altında sabittir , bu 
yeni gerçekleştirmenin kısımlara ayırmada ki şekli  

                                     

 ve  de 0 blokları  dır ,  de 0 bloğu  dır , ve   dır. 
Şimdi   ve   için gösterilen kolay hesaplama şudur         

                         

Böylece  boyut  ‘ın çift doğrusal gerçekleştirmesidir. Çok benzer bir 
biçimde gösterilebilir eğer çift  doğrusal gerçekleştirme gözlenebilir değilse , o zaman en az 
değildir. 

 Şimdi ve  belirlenmiş sisteme göre , sırasıyla , boyut m ve 
 ‘in çift doğrusal gerçekleştirmeleri süre-ulaşılabilir ve gözlenebilir. ’e izin 

vermek , yardımcı teorem 4.4 ‘ü verir 

                                                                 

Ama ’in m sıraları ve ’in m kolonları doğrusal bağımsızdır , ve ’in sıraları 

ve ’in  kolonları doğrusal bağımsızdır. Böylece , (94)  anlamına gelenler 
okuyucuya detaylar bırakır. Bütün bunlar , belirlenmiş Volterra sistemin  süre-ulaşılabilir ve 
gözlenebilir gerçekleştirmeleri aynı boyuta sahiptir. İspatın ilk bölümünde gözlenen en az çift 
doğrusal gerçekleştirme süre-ulaşılabilir ve gözlenebilir. Böylece belirlenmiş Volterra 
sistemin  bütün süre-ulaşılabilir ve gözlenebilir gerçekleştirmeler en azdır.  

 En az çift doğrusal gerçekleştirmenin nitelendirmesinde son adım belirlenmiş Volterra 
sistemin böyle bütün gerçekleştirmeleri değişkenin değişimi tarafından bağlantılı olarak 
gösterilecek.  
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Teorem 4.16:  belirlenmiş sistemin en az çift doğrusal gerçekleştirmesidir. Sonra 
 de ancak ve ancak ters çevrilmiş matris  öyle ki 

  varsa belirlenmiş sistemin en az çift doğrusal 
gerçekleştirmesidir.  

 İspat eğer böyle  varsa , o zaman yeterli miktar öneriyi daha erken kolay 
alıştırmadan izler. Zorunluluk için , her iki durum denklemleri de belirlenmiş sistemin en az 
çift doğrusal gerçekleştirmeleridir. Sonra yardımcı teorem 4.4 tarafından  , 

                                                           

ve , bütün teorem 4.15 ,  ve tarafından rütbe ’ye sahiptir. Özellikle ,  
olan bu ima etmeler ters çevrilmiştir , bu yüzden eğer  

                                                     ise  

o zaman  

                                                    

ve  

                                   

Ondan sonra  ters çevrilmiş olabilir , bu ters çevrilmiş olan T’’yi verir , ve  

                                                       

Şimdi (95) de  ile ’i ima eder , buda ’i verir. ’in kolonlarını 
not almak ’in kolonlarını kapsar , ve ’in kolonları ’in kolonlarını kapsar. 
Böylece (95)’deki ima etmeler  

                                        

Örneğin , bu denklemlerin ilkini alma , 

                                               

ya da  

                                   

İkinci eşitliğin benzer hesaplaması ispatı tamamlar. 

4.5 Sabit Olmayan Durum 
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 Dönüşüm-bölge araçlar önceki bölümlerde çok geniş ölçüde kullanıma sahipti ama 
sabit olmayan durumlarda başarılı biçimde kullanılamadı. Ayrıca , düzenli çekirdek sabit 
sistemler için sadece geliştirilmektedir. Bu yüzden sabit olmayan sistemlerin girdi-çıktı 
gösteriminde ya üç köşeli ya da simetrik çekirdekleri kullanmanın seçimi ayrılır. Sonra çift 
doğrusal gerçekleştirmeler ilginçtir , bölüm 3’te üç köşeli çekirdek gelişti çünkü bu şekilde 
durum denklemleri kullanılacak , sonuçlara rağmen simetrik çekirdeklere göre kolayca tekrar 
ifade edilebilir.  

 Sabit olmayan çift doğrusal durum denklemi şu şekli alır  

                                                

bütün boyutlarda alışıldığı gibidir , ve katsayı matrisleri t’in varsayılan  sürekli fonksiyonları 
olmaya önemsizcedir. Bölüm 3’te  ile böyle durum denklemi Volterra sistem 
gösterimi sağladığını gösterir 

                            

üç köşeli çekirdek olan  şu şekilde verilir 

                                 

ve   olan  için geniş matristir.  

 Şekil (97)’nin genel Volterra sistemi için çift doğrusal gerçekleştirme problemini 
hesaba katmak zor iştir. Bunlar hakkında şimdi söylenebilir ki Volterra sistem çift doğrusal 
gerçekleşebilir ancak ve ancak eğer  uygun bir şekilde boyutlu , sürekli matris fonksiyonları   

ve  öyle ki çekirdekler şekil (98)’de yazılabilir ; daha doğrusu söyleyişmiş 
gibi çift doğrusal gerçekleşebilirdir ancak ve ancak çift doğrusal gerçekleşebilirse. Zorluk 
sabit durumda meydana çıkan zorluklara doğada benzerdir. Volterra sistemin çift doğrusal 
gerçekleşebilirliği kişisel çekirdeklerin özelliğine ve çekirdeklerin karşılıklı bağlantı yoluna 
bağlıdır. Ancak görünüş türdeş ve polinom sistemler için daha parlaktır , ve bu durumlarda 
yoğunlaşacağım.  

Teorem 4.17: n-dereceli türdeş sistem şöyle tanımlanır 

                                 

çift doğrusal gerçekleşebilir ancak ve ancak  çekirdek  ayrılabilirse.  

      İspat eğer sistem çift doğrusal gerçekleşebilirse , o zaman çekirdek şekil (98)’de 
yazılabilir. Geçiş matrisin özellikleri nedeniyle , bu yüzden çekirdek ayrılabilir.(Doğrusal 
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durumdaki gibi , süreklilik çift doğrusal durum denkleminde sürekli tahminler tarafından 
döşenmiş olması gerekli.) 

 Şimdi bu varsayımda çekirdek ayrılabilir ,  

                                    

Durum m = 1 için , çift doğrusal durum denklemin gösterisi açıktır ki  

                              

çekirdekle n –dereceli türdeş bir sistemdir 

                                     

İspat genel durumda kullanılabilen bu basit çift doğrusal durum denklemlerin bir katkısal 
paralel bağlantısından sonra şimdi hemen hemen tamdır. İspatın sebebi tam değildir 

olduğunda  reel fonksiyonlar olmalı , ama  için onlar karmaşık olmalı. Bu 
detayları göz önünde tutma okuyucuya bırakılır.  

 Ayrıca bu türdeş sistemleri nitelendirmek ilgi çekicidir , sabit olmayan üçgensel 
çekirdeklere göre temsil edildiği halde , gerçekten sabit-parametre çift doğrusal durum 
denklemi tarafından gerçekleşebilir. Bir daha , sonuçlar doğrusal-sistem sonuçlara bezerlerdir. 

Teorem 4.18: Şekil (99)’un n-dereceli türdeş sistemi sabit-parametre çift doğrusal durum 
denklemi tarafından gerçekleşebilir ancak ve ancak çekirdek  sabit ve farklı 
olarak ayrılabilirse.  

 İspat eğer n-dereceli türdeş sistem bir sabit-parametre çift doğrusal gerçekleştirmeye 
sahipse , o zaman sabitsel ve diferansiyelleşebilir  ayrılmış olabilenler çekirdeğin bilinen 
genel şeklinden kolaylıkla takip edilir.  

 Şimdi varsayalım üç köşeli çekirdek sabit ve diferansiyelleşebilir ayrılabilirdir. 

Basitliğe göre her  reel fonksiyon olan  özel durumu hesaplayacağım 

                                      

(Doğrusal durum gibi , ispatın genellemesi karmaşık-değerli fonksiyonlar gereken hariç 
kolaydır. Sonra daha fazla telaşlı tartışmalar reel-katsayı gerçekleştirme elde edilebilen 
gösteriye gereklidir.) İspatın ana bölümü  reel numaralar için şekilde yazılabilen 
çekirdeği göstermeye adayacaktır.  
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Buda kurulmuştur , çift doğrusal gerçekleştirme alışılagelmiş hesaplama tarafından isteyerek 
doğrulanmış olduğu gibi şu şekilde belirlenmiştir. 

          

Temel yaklaşım ilk önerinin sabit-katsayı doğrusal diferansiyel denklemi tahmin eden her 

 ‘in ispatlamasını içerir. Buna göre göster , söyle ,  , izin ver 

                                 

T  için seçilir. Eğer T’nin böyle olmadığını not alırsak , o zaman çekirdek bir önemsiz 
durum aynı0 dır. Şu şekildedir 

                                          

çünkü  

                                   

Ayrılabilir şekil kullanarak türevler hesaplama şunu verir  

                

 ve yeniden düzenleme tarafından bu denklemi çarpma şunu verir 

               

Bu anlatımın her iki yanı da ’in açık tanımıyla elde etme ’e göre 
birleştirilebilir. 
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Böylece  basit-parametre doğrusal diferansiyel denklem (  için önemli) tahmin 
edilir. Bu yöntem uygun  ve  içindir. Bir benzer gelişme   için 

 olan gösteriye gerçekleşebilir. Şimdi durum  

                                                         

veren  

                               

gibi yazılabilir. Böylece ’in tekrar uygun tanımlama  

                           

ve ispat tamdır. 

 Türdeş sistemler için bu sonuçlar direkt olarak polinom sistemler için çift doğrusal 
gerçekleşebilirlik sonuçları sağlar. Bu , polinom sistem için çift doğrusal gerçekleşebilirlik 
çift doğrusal gerçekleşebilirliğin her birine ve her bir türdeş alt sisteme bağlıdır. Aşağıdaki 
biçimleştirmenin kolay ispatı bölüm 4.7’ye bırakır , teorem 4.9’nin ispatını ip ucuyla elde 
edebilir.  

Teorem 4.19: N-dereceli bir polinom sistem (sabit-parametre) çift doğrusal gerçekleştirmeye 
sahiptir ancak ve ancak N üç köşeli çekirdeklerin her biri ayarlanabilirse (sabit ve farklı olarak 

4.6 Görüşler ve Kaynaklar 

Görüş 4.1: Doğrusal gerçekleştirme probleminde materyalin bolluğu vardır ve sadece birkaç 
kaynaklar burada listelenecek. Sabit sistemler için bir basit inceleme , çok-girdi , çok-çıktı 
kapsayan durum , bulunmuş olabilir,  

C. Chen , Doğrusal Sistem Kuramına Giriş , Holt , Rinehart ve Winston , New York , 1970. 

Bir temel işlem olan vurgular  Hankel (Behavior) matrisleri ve rasyonel fonksiyonların 
cebirsel özellikleriyle bağlantılar kitapta belirlenmiştir bu alçak gönüllülük beni hemen hemen  
anmanın önene geçer : 

W. Rugh , Doğrusal Sistemlerin Matematiksel Tanımı , Marcel Dakker , New York , 1975. 

Hankel sistem yaklaşımın daha çok araştırma-yönlü incelemesi , perspektifler ve açık 
problemlerin bir ilginç tartışmasıyla birlikte verilmiştir 

R. Kalman , “Doğrusal Dinamik Sistemlerin Gerçekleştirme kuramı” , Fonksiyonel Analizde 
Kontrol Kuramı ve Konuları içinde , Cilt 2 , Uluslar arası Atom Enerjisi Temsilcisi , Viyana , 
sf. 235-256 , 1976. 
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Bölüm 4.1 de kullanılan soyut değişim gerçekleştirme şu yaklaşımdan gelişmiştir 

E. Gilbert , “Doğrusal Sistemler için  Gerçekleştirme Algoritmaları ve Sınırlı Geri Kalmış 
Değişim Gerçekleştirmenin Rolü” , Bilgi Bilimleri ve Sistemlerinde 1978 Konferansının 
Yöntemleri , Elektrik Mühendisliği Bölümü , Johns Hopkins Üniversitesi , Baltimor , sf. 145-
151 , 1978. 

Son olarak , sabit olmayan doğrusal sistemler için gerçekleştirme problemi şunda ele alındı 

L. Silverman , “Doğrusal Dinamik Sistemlerin Gerçekleştirmesi” , Otomatik Kontrolde  
Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-16 , sf. 554-568 , 1971. 

R. Brockett , Sınırlı Ebatlı Doğrusal Sistemler , John Wiley , New York , 1970. 

Görüş 4.2: Doğrusal sistemlerin ve çarpanların birbirine bağlı olmalarına göre doğrusal 
olmayan gerçekleştirme problemin önceki işlemi şunda verilmiştir 

M. Schetzen , “Doğrusal Olmayan Sistemlerin Bir Sınıfının Sentezi” , İdarenin Uluslararası 
Dergisi , Cilt 1 , sf 401-414 , 1965. 

İki dereceli durumda , temel birbirine bağlı olma durumu doğrusal sistemin bir kas kat 
bağlaması aşağıdaki iki doğrusal sistemin çarpımsal paralel bağlantısıdır. Bu temel yapıların 
katkı maddesi paralel bağlantıları da kullanılır. Gerçekleşebilir testler ve gerçekleştirme 
yöntemleri aktarım işlevi için yapısal şekilde dayanan gelişmişliktir ,  
birbirine bağlı olan sonuçlardan doğal olarak meydana çıkar. Transfer fonksiyonu için 
standart şekle göre gerçekleşebilirliğin konusu (simetrik transfer fonksiyonu demek) 
tartışılamaz. 

 Daha fazla gerçekleştirme fikirlerin gelişimi doğrusal sistemler ve çarpanların az çok 
birbirine bağlı olma özelliğin simetrik transfer fonksiyonların yapısal özelliklerine dayanma 
aşağıdaki sayfalarda desteklenebilir. 

W. Smith , W. Rugh , “Doğrusal Olmayan Sistemlerin Bir Sınıfının Yapısında” , Otomatik 
Kontrolde  Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-19 , sf. 701-706 
, 1974. 

K. Shanmugam , M. Lal , “Doğrusal Olmayan Sistemlerin Bir Sınıfının Analizi ve Sentezi” , 
Devrelerde ve Sistemlerde Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt 
CAS-23 , sf. 17-25 , 1976.  

T. Harper , W. Rugh , “Volterra Sistemlerin Faktörlerin Yapısal Özellikleri” , Otomatik 
Kontrolde  Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-21 , sf. 822-832 
, 1976. 

Birbirine bağlı olan gerçekleştirme problemin işlemleri dikkate değer birbirine bağlı olan 
yapılara dayanmaması iki dereceli türdeş sistemler için şunda verilmiştir 
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G. Mitzel , W. Rugh , “Homojen Doğrusal Olmayan Sistemler için Çok Boyutlu S-Dönüşüm 
ve Gerçekleştirme Probleminde” , Otomatik Kontrolde  Elektrik ve Elektronik Mühendisliği 
Enstitüsü  İşlemleri , Cilt AC-22 , sf. 825-830 , 1977. 

E. Gilbert , “Çift Doğrusal ve 2-Güç Girdi-Çıktı Haritaları:Fonksiyonel Serilerin Sınırlı Ebatlı 
Gerçekleştirmeleri ve Rolü” , Otomatik Kontrolde  Elektrik ve Elektronik Mühendisliği 
Enstitüsü  İşlemleri , Cilt AC-23 , sf. 418-425 , 1978. 

Bu sayfaların ilkinde , Laplace dönüşümüne bir cebirsel yaklaşım resmi seriler gösterimine 
dayanan gelişmedir. Tanınabilir özelliği kullanma , birbirine bağlı olan gerçekleştirmeler 
belirlenmiş transfer fonksiyonun kısmi bölüm genişlemeden gelişmiştir. İkinci sayfa birbirine 
bağlı olan yapının uzmanlığını kullanır sözde çift doğrusal girdi-çıktı haritaları ( bölüm 6’da 
tartışılmış olan) türdeş durumda gerçekleştirmelere varmak içindir.  

Görüş 4.3: Çift doğrusal denklemlerin burada adlandırılan yazında birçok isimler vardır, 
“düzenli sistemler” , “içten çift doğrusal sistemler” ve  “içten iki-afin sistemler” dahil. 
Bunların herhangi biri için iyi sonuçları vardır , ve okuyucu anahtardan daha ziyade savaşa 
teşvik olur. Daha anlamlı konularda , belirlenmiş Volterra sistem için çift doğrusal 
gerçekleştirme problemin önceki işlemi şunda görünür 

A. Isidori , A. Ruberti , “Belirlenmiş Sistemlerin Gerçekleştirme Kuramı” , Sistem Kuramında 
Geometrik Metodlar içinde , D. Mayne , R. Brockett , D. Rediel , Dordrecht , Hollanda , sf. 
81-130 , 1973. 

Probleme iki yaklaşım sunuldu. İlki üç köşeli çekirdeklerin zinciri için çarpanlara ayırma 
yaklaşımı (yapıcı olmayan) , ikincisi sözde bölüm 4.3 de aslında Behavior matrisiyle aynı 
genelleştirilmiş Hankel matrisi içerir. O bu gelişmede düzenli çekirdeğin dahili kullanma nota 
ilgi çekicidir. Süre ulaşılabilirlik ve gözlenebilirliğin kavramları tanıtılandır , ve 
gerçekleştirme kuramında zorunlu araçlardır. Bu sayfaların temel içeriklerin çoğu da 
sayfalarda bulunabilir 

P. D’Alessandro , A.Isidori , A. Ruberti , “Çift Doğrusal Dinamik Sistemlerin Gerçekleştirme 
ve Yapı Kuramı” , Kontrolde Dergi SIAM , Cilt 12 , sf. 517-535 , 1974. 

A.Isidori , “En Az Çift Doğrusal Gerçekleştirmelerin Direkt Yapımı” , Otomatik Kontrolde  
Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-18 , sf. 626-631 , 1973. 

Çift doğrusal gerçekleştirmeyle başka erken sayfa yaklaşımı 

R. Brockett , “Çift Doğrusal Sistemlerin Cebirsel Yapımında” , Değişken Yapı Sistemlerin 
Kuram ve Uygulama içinde , R. Mohler , A. Ruberti , Akademik Basın , New York , sf. 153-
168 , 1972 

Süre ulaşılabilirlik ve gözlenebilirliğin çift doğrusal durum denklemleri ve kavramların çeşitli 
şekilleri için eşdeğerlikler bu sayfada vurgulandı. 

Görüş 4.4: Çift doğrusal gerçekleştirme problemine çok farklı yaklaşım şunda verilmiştir 
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M. Fliess , "Sur la Realization des Systemes Dynamiques Bilineaires" , C. R. Akademik Bilim , 
Paris , Seri A , Cilt 277 , sf. 122-148 , 1973. 
 
Her ne kadar daha az özlü hesaplamada önersem 
 
M. Fliess , "Un Outil Algebrique: les Series Formelles Noncommutatives" , Matematik Sistem 
Kuramı içinde , G. Marchesini , S. Mitter , eds. , Ekonomi ve Matematik Sistemlerinde Ders 
Notları , Cilt 131 , Springer-Verlag , New York , sf. 122-148 , 1976. 
 

Bu yaklaşım değiştirilemeyen değişkenlerde resmi serilere göre temsil edilen girdi-çıktı 
davranışları içerir. Formüllemenin basit şartlar doğasında göstermek , üç köşeli şekilde bir 
Volterra  sistem gösterimi hesaba katar: 

           
 
Varsayalım   için analitiktir , ve bu çekirdeklerin her biri şahsi bölge 

 de analitiktir. Sonra şeklin güç serilerinin gösterimi kullanılabilir. 
 

                          
Bu çekirdek gösterimler iki değişkende değişmeli olmayan resmi seriler sistemine 
birleştirmenin yöntemini sağlar ( ya da iki değişmeli olmayan değişkenlerde resmi seriler), 

             
 
Volterra sistem gösterme ve değişmeli olmayan seriler gösterme arasında uygunluk sadece bu 
ilk “birkaç” şartlardan açık hale gelmeli. Değiştirilebilirlik olmayan bu bildiri çok önemlidir , 
eğer  ve değişirse , o zaman terimler arasında ayırt etme imkansızdır. Örneğin , 
değiştirilebilirlik şu anlama gelir 
 

                                         
 
Şimdi , sistemin girdi-çıktı özellikleri serilerin özellikleri gibi yorumlanabilir. Örneğin , W  
doğrusal girdi-çıktı davranışı temsil eder ancak ve ancak W ‘da her sıfır olmayan terimse 
değişken ile sonlanır , sabit terim hariç. Diğer bir deyişle , ancak ve ancak W  şu şekle 
sahipse 

                         
 
Sistem için çift doğrusal gerçekleştirme problemi şeklin çift doğrusal durum denklemlerine 
göre çok doğal olarak kurulan W tarafından tanımlanır 
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Bu durum eşitlemeyi tekrar yerine koyma yöntemini uygulamak şekilde yazılabilen bir seriler 
anlatımını verir 
 

                   
                             
Uyarı katsayı matris ürünleri 1 ya da  ‘in tekrarlanan integrallerin düzenine doğal bir yolda 
uyuşur. Bu tekrarlanan integraller  çift doğrusal sistemin cevabı için değişmeli olmayan seriler 
gösterimi sağlama iki değişkende ,  ve   , tek birimli tarafından gösterilebilir 

                    
 
Tabii , bu değişmeli olmayan serilerdir çünkü o  dır. 

                                        
              
 
 Şimdi çift doğrusal gerçekleşebilir bir sonuç hemen belirlenmiş olabilir.  tarafından 
bir temsil edilmiş sistem çift doğrusal gerçekleşebilir ancak ve ancak iki  matrisler A 
ve D varsa , bir  vektör , ve bir vektör  öyle ki da  ‘in 
katsayısı  tarafından belirlenmiştir. Bu şart değişmeli olmayan serilerin 
cebirsel kuramında rasyonellik durumuna eşdeğerdir , ve referanslara hızlı bakış sadece 
hikayenin başlangıcında olanı gösterir. En az olan kavramlar , süre gerçekleşebilirliği , 
gözlenebilirlik , ve hatta bir Behavior matrisi , hepsi kuramda formüle edilebilir. Gerçekten 
sabit Volterra sistemler için düzenli transfer fonksiyonu gösterimi  2-değişken değişmeli 
olmayan tek terimliye  k-değişken değişebilir tek terimliyi  
birleştirmek yoluyla elde edilen  değişmeli seriler gibi tanımlanır. Bu bağlantı şunda tartışılır 
 
M. Fliess , “Homojen Sürekli-Zaman Sistemleri Gerçekleştirme ve Transfer Fonksiyonlara Bir Görüş” 
, Otomatik Kontrolde  Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-24 , 
sf. 507-508 , 1979. 
 
Görüş 4.5: Çok geniş ölçüde kullandığım çift doğrusal gerçekleştirme kuramına değişim 
gerçekleştirme yaklaşımı şuna dayanır 
 
A. Frazho , “Çift Doğrusal Sistem Kuramına Değişim Operatör Yaklaşımı” , Kontrol ve 
Optimizasyonda Dergi SIAM , Cilt 18 , sf. 640-658 , 1980. 
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Homojen sistemler için polinom çarpanlara ayırma yaklaşımı şundan alınmıştır 
 
G. Mitzel , S. Clancy , W. Rugh , “Homojen Doğrusal Olmayan Sistemler İçin Transfer 
Fonksiyon Gösterimlerde” , Otomatik Kontrolde  Elektrik ve Elektronik Mühendisliği 
Enstitüsü  İşlemleri , Cilt AC-24 , sf. 242-249 , 1979. 
 
Görüş 4.6: Çift doğrusal sistemlerin önemi tahmin sonucuna göre daha fazla 
doğrulanabilirliği şunda oluşmuştur 
 
H. Susman , “Yarıgrup Temsilleri , Girdi-Çıktı Haritaları ve Genelleştirilmiş Girdilerin Çift 
Doğrusal Yaklaşımı” , Matematiksel Sistem Kuramı içinde , G. Marchesini, S. Mitter, eds. , 
Ekonomi ve Matematiksel İşlemlerde Ders Notları , Cilt 131 , Springer-Verlag , New 
York , 1976. 
 
Tek-girdi , tek-çıktı sistemleri için , sonuç aşağıdaki gibi özetlenebilir. Girdi boşluk U , [0,T ] 
de tanımlanan bütün ölçülebilir  fonksiyonları oluşur ve T ve M değişmeyen  bütün 

 için  tatmin edicidir. Çıktı sinyali  tarafından operatör kayıtta 
belirlenmiştir. Varsayılan F nedenseldir , ve  çıktı sinyallerin sırası olan 
kanıda sürekli   da  daima aynı tarzda bir araya gelir , her neyse girdi sinyallerin serisi 
girdi u da güçsüzce bir araya gelir. Sonra her  için operatör gösterim   her 

 ve her  için  olarak tahmin edilen çift doğrusal 
gerçekleştirme vardır. 
 Benzer sonuçlar görüş 4.4 ‘de tartışılan değiştirici olmayan seriler gösterimleri 
kullanarak elde edilir. Görelim  
 
M. Fliess , “Series de Volterra et Series Formelles Non Commutatives” , C. R . Akademik 
Bilim  , Paris , Seri A , Cilt 280 , sf. 965-967 , 1975. 
 
M. Fliess , “Topologies pour Certaines Functions de Lignes Non Lineaires; Application aux 
Asservissements” , C. R . Akademik Bilim  , Paris , Seri A , Cilt 282 , sf. 321-324 , 1976. 
 
Görüş 4.7: Tabii , az çok diğer gerçekleştirmeler çift doğrusal gerçekleştirmelere ek olarak 
tartışılabilir. Doğrusal-analitik durum denklemleri bu saygıda çalışılır , yine de çift doğrusal 
durum denklemlerin yaklaşık olarak uzunluğu değildir. Görelim 
 
R. Brockett , “Volterra Serileri ve Geometrik Kontrol Kuramları” , Otomatik , Cilt 12 , sf. 
167-176 , 1976 (E. Gilbert , Cilt 12 , sf. 635 ile birlikte) 
 
Göstermesi zor olmayan homojen ya da polinom sistem ancak ve ancak çift doğrusal-analitik 
gerçekleşebilirse. En az çift doğrusal-analitik gerçekleşebilir olan nokta en az çift doğrusal 
gerçekleştirmeden daha düşük boyutlu olabilir. Homojen durum için , çift doğrusal-
gerçekleşebilir sistem için en az doğrusal-analitik gerçekleştirme hesaplamaya göre yöntem 
şunda verilmiştir  
 
M. Evans , “k-Güçlerin En Az Gerçekleştirmeleri” , Bilgi Bilimleri ve Sistemlerinde 1980 
Konferansının Yöntemleri , Elektrik Mühendisliği ve Bilgisayar Bilimi Bölümü , Princeton 
Üniversitesi , Princeton , New Jersey , sf. 241-245 , 1980. 
 
Polinom sistemler için , en az doğrusal-analitik gerçekleştirme problemi şunda tartışılır 
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P. Crouch , “Sınırlı Volterra Serinin Dinamik Gerçekleştirmeleri” , Kontrol ve 
Optimizasyonda Dergi SIAM , Cİlt 19 , sf. 177-202 , 1981. 
 
Volterra sistem durumunda , bir çok kalıntılar bitmiştir. Az çok doğrusal-analitik 
gerçekleştirmelere göre olan gidişatlar daha çok benzer örneğe göre gösterilir. Girdi-çıktı 
davranışıyla sistem hesaplamak  

                                                  
 
0 hakkında hiperbolik tanjantın güç seri genişlemesini kullanma şeklin Bir Volterra sistem 
gösterimini verir  

                             
 
Alfalar kullanılır çünkü gerçek katsayılar oldukça karışıktır. Üç köşeli şekilde , Volterra sitem 
şu şekilde tekrar yapılabilir 

                            
 
Volterra sistem sayısal doğrusal-analitik gerçekleştirmeye sahiptir , yani , 

                                                   
 
ama sınırlı-ebatlı çift doğrusal gerçekleştirme yok. Volterra sistemleri için doğrusal-analitik 
gerçekleştirebilir ve çift doğrusal gerçekleştirebilir gösterime ek olarak denk değildir , bu 
örnek sonsuz-ebatlı çift doğrusal gerçekleştirmelerin nasıl gösterileceği ilginç olmalı. Üç 
köşeli çekirdeklerin basit hesaplaması için gösterilen Volterra sistemi şeklin 
gerçekleştirmesine sahiptir 

                           
 
 
  Sonsuz-ebatlı çift doğrusal gerçekleştirmeler görüş 4.5 de Frazho tarafından bahsedilen 
sayfada tartışıldı , ve şunda 
 
G. Koch , “Sonsuz Ebatlı Çift Doğrusal Sistemler için Gerçekleştirme Teoremi” , Ricerche di 
Automatic , Cilt 3 , 1972. 
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R. Brockett , “Sınırlı ve Sınırsız Ebatlı Çift Doğrusal Gerçekleştirme” , Franklin Enstitüsünün 
Dergisi , Cilt 30 , sf. 509-520 , 1976. 
 
W. Wong , “Volterra Serisi , Evrensel Çift Doğrusal Sistemler ve Fock Gösterimleri” , Bilgi 
Bilimleri ve Sistemlerinde 1979 Konferansının Yöntemleri , Elektrik Mühendisliği Bölümü , 
Johns Hopkins Üniversitesi , Baltimor , sf. 207-213 , 1979. 
 
Tabii , durum denklemleri açısından gerçekleştirmeler doğrusal-analitikten daha çok genel 
olsa da dikkate alınabilir. Çok genel durum denklemleri açısından 2-dereceli homojen 
sistemler için gerçekleşebilir ve en az olmanın dönüşüm-bölge nitelendirmesi şunda 
verilmiştir 
 
E. Gilbert , “Doğrusal Olmayan I-O Haritaları için En Az Gerçekleştirmeler:Sürekli-Zaman 2-
Güç Durumu” , Bilgi Bilimleri ve Sistemlerinde 1978  Konferansının Yöntemleri , Elektrik 
Mühendisliği Bölümü , Johns Hopkins Üniversitesi , Baltimor , sf. 308-316 , 1978. 
 
Daha fazla sonuçlar , en az gerçekleştirmelerin durum boşlukları olan olgu ve en az 
gerçekleştirmeler için doğal biçimi kapsayarak benzer şekilliliğin dikkate değer türü 
tarafından ilişki kurulur , şunda ortaya çıkar  
 
E. Gilbert , “Sürekli-Zaman 2-Güç Girdi-Çıktı Haritaları için En Az Gerçekleştirmeler” , 
Otomatik Kontrolde  Elektrik ve Elektronik Mühendisliği Enstitüsü  İşlemleri , Cilt AC-26 , 
1981. 
 
 
 



	
  
	
  

	
  
	
  

BÖLÜM 5 
 

 

SABİT SİSTEMLERİN KARAKTERİSTİK KARŞILIKLARI 

 

Özel bir giriş sinyali için bir homojen sistemin karşılığını hesaplama metotları önceki 
bölümde ele alındı. Bütünleşmeler zaman-alan temsilinde dışarı taşınabilirler yada değerler 
metodunun birliği dönüşen alan içinde kullanılabilir. Düzenli transfer fonksiyonunun 
süresinde daha açık bir yaklaşım, girişin üslerin toplamı olduğu zamanda kullanılabilir. Bir 
polinomial sistem için yanıt hesaplaması, uygun bir simgeyi bulmak zor olmasına rağmen, 
basitçe homojen altsistem yanıtlarını ekleme meselesidir. Aynısı, aynı noktada birleşmiş 
noktaların ilave karışıklığı ile birlikte Volterra sistemlerin doğruluğudur. 

Giriş sinyallerinin özel tipleri için, homojen bir sistemin karşılığı, genellikle doğrusal 
sistemlerin iyi bilinen özellikleri gibi özel nitelikleri vardır. Bu özellikle sabit sabit sistem 
durumlarında doğrudur, ve böylece, ben sadece o durumu ele alacağım. İmpuls girişlerine 
yanıt, sinuzoidal girişlerine sabit durum yanıtı, ve stochastic girişlerinin yanıtlarının 
özellikleri dikkate alınacak. Görüşlerin çoğu simetrik çekirdek ya da simetrik transfer 
fonksiyonunun dönemlerinde olacak. Bu, hem alışma meselesi hem de formüllerin genellikle 
simetrik göstergeler bakımından ifade edildiğinde basit bir formda gözüktüğü gerçeğinin bir 
sonucudur. Bu bölümdeki maddeler bölüm 7 deki tartışma problemleri ile bağlantıda yararlı 
olacak. 

 

5.1. Impuls Girişlerini Yanıtlamak: 

 

Bu bölümde impuls fonksiyonlarının girişler birleşimi için olan homojen sistemlerin 
yanıtları hesaplanacak. Polynomial veya volterra sistem durumları için, homojen-alt sistem 
yanıtlarını eklemekten daha fazlası yapılamazdı. Simetrik çekirdek simgesi bu bölümün 
başından sonuna kadar kullanılacak. Tabii ki, bu çekirdekler impuls’ı serbest bıraktıkları farz 
edilecek, böylece impuls yanıtını tanımlamak garanti olur. 

 
Kesinlikle, doğrusal sistem için bunu hatırlatarak okuyucuyu sıkacağım. 

    (1) 
giriş )()( 0 ttu δ= , y(t)= h(t), 0≥t sonucunu verir. Bu, doğrusal bir sistemin impuls yanıtı 
çekirdeği ortaya çıkarır. Bir n(>1) derecesi için homojen sistem 

        (2) 
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giriş )(0 tδ , 0),,...,( ≥ttthsym sonucunu verir. 
İmpulsların toplamının meydana getirdiği girişler dikkate alındığı zaman daha ilginç 

hesaplamalar ortaya çıkar. Örneğin, (2)deki girişi şöyle farz edelim 
        (3) 
sonucu hesaplamanın bir yolu terimleri toplamak 
                (4) 
ve her terimi eklemek. Bu zor değil çünkü, simetrik ve bazı basit kombinasyonlar yardımcı 
olur.  İndeksler değişik sıraya koyulabilir, böylece (4)de ortaya çıkan genel terim şu biçimi 
alır; 

 
bütünleşmelerin sonucundaki değişmeler olmaksızın. Aslında, (4)den )(nm terimleri olacak ki 
bunlar bu ayrıntılı formda yazılabilir. Böylece, sonuç şöyledir: 

                              (5) 
şimdi derece-n (2) sistemindeki girişin olduğu yerdeki genel durumu göz önünde 

bulundurursak  

                                         (6) 
11,..., −pTT ’nin farklı bir pozitif sayılar kümesi olduğu yerde. Tekrar, prosedür sonucu büyütür; 

 
ve sonra bütünleşmeler her bir terimi işletir. Fakat, indislerin permutasyonu bu bütünleşmeleri 
etkilemez, ve böylece sonuçtaki genel terim formda yazılabilir; 

    
pmm ,...,1 parçası için bu yolla yazılabilen terimlerin numaralarını hesaplamak multinominal 

katsayıları ortaya çıkarır, ve sonuç bu yolla verilir;  

                                   (7) 
∑
m

’nin p-bağ özeti tüm tamsayı indisler pmm ,...,1 gibi olduğu yerde şöyledir; 

      

 
 
5.2. Sinuzoidal Girişler için Hazır-Durum Yanıtı 
 

Bu bölümün geri kalanı için, sabit durum yanıt özellikleri esas yararın nesnesi olacak. 
Böylece sabit durum yanıtlarının sınırlandırılmasını garantilemek için giriş-çıkış süreklilik 
özelliklerinin gözönünde tutulmasına ihtiyaç duyulur. Zaman alanında, 

olan bir derece-n homojen sisteminin sınırlı giriş, sınırlı çıkış 
sürekliliği için yeterli bir şart olan bölüm 1.3’teki sınırlı hesaplamalardan anlaşılırdır. 
 

Fakat, simge dönüşüm dönemlerinde, şartlar bulmak için daha zordur. Doğrusal 
sistemler için iyi bilinen bir durum bir sistemin garantili giriş, garantili çıkış sabiti olduğu, 
eğer ve sadece eğer transfer fonksiyonlarının tüm kutupları gerçek negatif parçalara sahip 
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olan transfer fonksiyonlarındaki makul azalma tarafından tanımlanmıştır. Derece-n 
durumlarında(n>1), benzer tiplerin yeterli bir durumu sistemlerin tanımlanması için tam 
doğru, tanımlanabilir, düzenli transfer fonksiyonları(problem 4.16) tarafından verilebilir. 
Maalesef, bu sonuç simetrik transfer fonksiyonlarının dönemlerindeki durumlar için çok az 
basittir. Üstelik, genel simetrik polinomlardaki zorluk, faktörlerdeki kontrolü zorlaştırır. 
Böylece, süreklilik özellikleri, basitçe varsayılacak bir makul sabit durum analizleri için 
ihtiyaç duyulur. 

Sabit bir doğrusal sistem  

                                                          (8)                        
tek kenarlı giriş sinyaline yanıtı göz önünde tutmakla tanımlanır. 
                                                                      (9) 
Karmaşık üs formundaki bu girişi yazmak daha uygundur 

                           (10) 
sonra 

                    (11) 
yada  

                          (12) 
sistemin sabit olduğunu farzetmek, ∞→t integraller H(iω) ve H(-iω) bir noktada birleştirir, 
anılan sıraya göre sistem transfer fonksiyonunun olduğu yerde. 

                                           (13) 
Böylece, T yi yeteri kadar büyük seçerek, bütün Tt ≥  için sistem yanıtı bilinen sabit durum 
yanıtının belirtilen toleransı içinde olması garanti edilebilir. 

                                               (14) 
Tabii ki standart benzerlikleri kullanmak bu sabit durum yanıtı formlarda tekrar yazılabilir 

                                         (15) 
ya da 

               (16) 
standart rakamlar ve işaretler sistemlerinin gerçek kısım, sanal kısım, büyüklük ve açı için 
kullanıldığı yerde. Bu hesaplamalar iyi bilinen bir gerçeği açık hale getirir ki ω sıklığındaki 
sinüs girdisinde bir doğrusal sistemin sabit durum yanıtı, s=iωnin değerlendirildiği transfer 
fonksiyon açısı ve büyüklüğü tarafından karar verilen evre ve genişlik ile aynı sıklıktaki 
sinüsdür. (şunu belirtmeliyim ki, sabit durumu görmek için bir başka yol var. Giriş −∞=t da 
başlamak için dikkate alınabilir ve sonra sınırlı herhangi bir t’deki yanıt sabit durum 
yanıtıdır.) 
 Şimdi bu sonuçların genelleştirilmesi şu formül tarafından tanımlanan homojen 
sistemler için göz önünde tutulur: 

                                    (17) 
fakat ben başlamadan önce, sinüzoidal girişler için doğrusal olmayan bir sistemin yanıtını 
tartışmaktaki ortak bir güçlüğü belirtmek mantıklı görünüyor. Doğrusal sistemlerle çalışırken, 

tiAe ω2 faz açısının gerçek kısmı olarak (9)’daki girişi göz önünde tutmak ortaktır. Sonra bu 
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karmaşık giriş için olan sistemin yanıtı hesaplanır, ve sonra (9) için olan sistemin yanıtı faz 
açısı için olan yanıtın gerçek kısmını alarak basitçe bulunur. Aslında,  bu kısayol 
doğrusallığın üzerine önemine dayanır, aşağıdaki örneklerin gösterdiği gibi. 
 
Örnek 5.1: giriş (9) için sistem tuty 2)( = ’nin yanıtını hesaplamak için, giriş 

tiAetu ω2)(1 = ’nin uygulaması tieAty ω2
1 4)( = yanıtını verir.  Sonra (9) için sistem yanıtı olan 

bir hatalı sonuç y(t)=4A²cos(2ωt)’dur. Bu hatalıdır çünkü direkt (9)’un uygulaması 
y(t)=4A²cos²(ωt)= 2A²+2A²cos(2ωt)dir. 
Tek kenarlı giriş sinyali (10) ile (17)nin yanıtı şundan hesaplanabilir: 

                 
  (18) 

bu ifadeyi daha yararlı bir şekle sokmak için, bölüm 2.4’ün çift-üs-giriş geliştirmesini taklit 
edeceğim. bu gelişmelere ωλ i=1  ve ωλ i−=2  yararları izin vermek, sonra 

         

 (19) 
Doğrusal durum için benzer bir davranışta, t’nin büyük değeri için yanıtı gözönünde tut. 

Sistemin sürekliliğini farzetmek, (19) daki desteklenmiş dönem ∞→t  gibi 
),...,(

1 nkksymH λλ ’ye yaklaşır. Böylece (19)’daki y(t), (14)’e benzerliği açık bir ifade tarafından 
sabit-durum yanıt tanımı için keyfi kapalı olur. 

                                     (20) 
benzer üslerle ])([ 21 λλ knk −+  birlikte bu terimleri birlikte toplamak ve λ1 ve λ2 nin 
tanımlarını tekrar almak, (20)de yazılabilen 

                                                    (21) 
gibi şunun olduğu yerde 

                                              (22) 
(22)den takip edilen bir yararlı benzerlik şudur: 

                                                  
  
(21)’deki terimler aşağıdaki gibi yeniden düzenlemek mümkündür. İlk önce şu yazılır: 
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                        (23) 
 

                                  
  
Şimdi, standart benzerlikleri kullanmak, 
 

                     (24) 
 
Böylece, frekans ω’nin bir cosinuzoidal girişine olan bir derece-n homojen sisteminin sabit-
durum yanıtı frekans nω’deki (n-2) ω,....,0(n herhangi) ya da ω(n eski) cosinüzoidal 
bileşenlerinden meydana gelir. 

 
Şimdi bir derece-N polinamial sistemi giriş sinyali u(t)=2Acos(ω t) ile birlikte 

    (25) 
göz önünde tut. Sabit-durum yanıtı her homojen alt sisteminin katkılarının eklenmesiyle 

elde edilir.  n’nin tek sayı olduğu yerdeki her derece-n alt sistemi ω, 3 ω,...,n ω 
frekanslarındaki dönemlere katkıda bulunur. n’nin çift sayı olduğu yerdeki her derece-n alt 
sistemi 2ω, 4 ω,....,n ω frakanslarındaki bir değişmez dönem ya da dönemlere katkıda 
bulunur. nk ≤  ve k ve nin aynı eşitliğe sahip olduğu farzedilerek, k ω frekansına olan derece-
n alt sisteminin (23)’teki katılım şudur: 

             A n G
2
kn+
, 

2
kn+ (i ω, -i ω)e tikω  + A n  G

2
kn+
, 

2
kn− (-i ω, i ω)e tikω         (26) 

( alt sistemin derecesini belirten G üzerindeki altscriptlerin toplamına ve altscriptler 
harmoniğinin farkına  dikkat etmek yararlıdır.) Böylece k gibi aynı eşitlikle birlikte N k ’nın en 
büyük tamsayı N≤ olmasına izin vermek , (25)in sabit-durum yanıtı şöyle yazılabilir 

 ∑
=

−−++=
N

k

tik
k

tik
kss eiAfeiAfiAfty

1
0 ]),(),([),()( ωω ωωω     (27) 

olduğu yerde 
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 ),(,.........),(),(),(
22

2,2
4

1,1
2

0 22

2 ωωωωωωω iiGAiiGAiiGAiAf NN
N −++−+−=   (28) 

 ),(.........),(),(),(
2
1,

2
11,2

3
0,11 11

1 ωωωωωωω iiGAiiGAiiAGiAf NN
N −++−+−= −+   (29) 

 ),(.........),(),(),(
2
2,

2
21,3

4
0,2

2
0 22

2 ωωωωωωω iiGAiiGAiiGAiAf NN
N −++−+−= −+   (30) 

ve böyle. Genel terimler formlarda yazılabilir 

 ∑
=

−=
2

1

2
0

2

),(),(
N

j
jj

j iiGAiAf ωωω  

 NkiiGAiAf
kN

j
jjk

jk
k

k

,...,2,1,),(),(
2)(

0
,

2 =−= ∑
−

=
+

+ ωωω      (31) 

 
şimdi her zamanki gibi, (27) şöyle yazılabilir: 

  ∑
=

∠++=
N

k
kkss iAftkiAfiAfty

1
0 )],(cos[|),(|2),()( ωωωω     (32) 

Bunun yanında fourier katsayı giriş genişliği A’da giriş frekansı ω’nin fonksiyonları olan 
katsayılarla birlikte polinomialdir. 
Örnek 5.2. Örnek 3.8’deki sarkaç sistemini göz önünde tutun. Derece 3’e doğru simetrik 
transfer fonksiyonları kullanmak, u(t)=2Acos(ωt)’ye sabit-durum yanıtı şundan verilir: 

..)](3cos[|...),,(|2)](cos[|....),,(3)(|2)( 33
3

13
3 ++++++−+= ωφωωωωωφωωωωω tiiiHAtiiiHAiAHty symsymssbu elverişlidir 

   
LgsmLas

LgsW
/)/(

/)( 22 ++
=  

ve şu formda örnek 3.8’deki transfer fonksiyon hesaplamalarını yaz: 

    
)()()()(

)(!3
1),,(

)(1)(

3213213213 sssWsWsWsW
mgL

sssH

sW
mgL

sH

sym ++=

=
 

Sonra 

......)](3cos[|......)3()(
)(3

|2

)](cos[|...)()(
)(2

)(|2)(

3
3

3

3

1
3

3

3

++++

++−+=

ωφωωω

ωφωωωω

tiWiW
mgL
A

tiWiW
mgL
AiW

mgL
Atyss

 

 

Bu formülün basit bir analizi giriş frekansı ω’dan daha yüksek frekanstaki sarkaç 
sistemindeki olağanüstü rezonansın olabilirliğini göstermek için kullanılabilir. Bu fenomen  
çok küçük A giriş genliği için meydana gelebilir, fakat sarkaçın genel doğrusallaşmış modeli 
tarafından önceden bildirilmez. Özel olmak için, farz et ki katsayı a’yi indirmek 21)/( Lg  ile 

ilişkisinde çok küçük olsun. Sonra W(s)’nin kutupları doğal frekans 21
0 )/( Lg=ω ’yi 

indirmemek için çok kapalıdır. Bu durumda, eğer 3/0ωω = ise, sonra | )3( ωiW |, | )3(iW | ile 

mukayesede çok büyük olabilir bu yüzden )(tyss ’deki yüksek olan terim üçüncü harmoniktir. 
Tabii ki, çıkıştaki üçüncü harmonik terim ve esas terimin ikisi birlikte iptal edilmiş daha 
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yüksek derece transfer fonksiyonuna dayanır. Fakat, bu kayıp terimler rezonansın 
olabilirliğini elemeyi göstertilebilir. Aslında, daha yüksek-derece terimler giriş frekansının 
çoğu diğer seçeneklerinde harmonik rezonansın olabilirliğini gösterirler. 

Görüşün simetrik transfer fonksiyonunun terimlerinde çok uzak olmasına rağmen, 
benzer sonuçlar üç köşeli ve düzenli transfer fonksiyonları için elde edilebilir. Bunu yapmanın 
bir yolu, Bölüm 2’de ele alınmış olan çeşitli transfer fonksiyonlarının arasındaki ilişkiyi 
kullanmaktır. Aslında, bilinear-anlaşılabilir düzenli transfer fonksiyonlarının durumundaki 
direk bir geçit yolunu almak ilginçtir, çünkü gerekli süreklilik özelliği belirgin durumda 
olabilir. 

Farz edelim ki 

    (33)  

tamamen doğru, onaylanabilir, düzenli bir transfer fonksiyonudur. 
)cos(2)( tAtu ω= giriş sinyaliyle birlikte bölüm 2.3’teki teorem 2.10 ωγωγ ii −== 21 ,  ile 

birlikte şu formül karşılığını verir: 

]
...
1

...
1[

),,...,...(...)(

1111

111

11

2

1

2

1

ωω iyysiyys

sysyysHAsY

nn

nn

n

iiii

iiireg
ii

n

−+++
+

++++

++++=

−−

−−

−

∑∑
==      (34) 

(34)’deki terimlerin her biri tamamen anlaşılır olduğundan beri, s’de rasyonel fonksiyonlar, 
sabit-durum yanıtı kısmi bölüm genişlemesi yoluyla hesaplanabilir. Eğer ),...,( 1 nreg ssH ’nin 

tüm kutuplarının negatif gerçek kısımlarının olduğu farz edilirse, bu, her bir )( jj sQ ’nin tüm 

köklerinin gerçek kısımlarını olduğudur, sonra kutup faktörlerine, transfer fonksiyonunun 
sabit-durum yanıtının ilişkilendirilmesi gibi görmezden gelinmesiyle yardım edilir. Bunun 
yanı sıra, aşağıdaki formülden meydana gelen (34) deki kutuplara yardım edilmesinden beri 
hazır-durum yanıtının sınırlarının koyulduğu açıktır. 

 

odd 

even 

 

 

⎩
⎨
⎧±−±±=

n
niniins

,0
,,...,)2(, ωωω
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Sabit-durum yanıtını hesaplamak için, )( ωiKA k
n ’nin için kısmi bölüm genleşmesi 

katsayısının (34)ün sağ tarafındaki faktör (s-ikω)’ne benzer olmalı. 

ω

ω

γγγ

ωω

iksiiireg
ii

n

iksk
n

sssHA

sYiksiKA

nn

n

=
==

=

−−

−

++++=

−=

∑∑ |),,...,...(...

|)()()(

111

11

2

1

2

1

 

     ωγγ )1(...
11

+−=++
−

ki
nii  

ωγγγ iksiiireg
ii

n sssHA
n

n

=
==

−

−

+++++ ∑∑ |),,...,...(...
111

11

2

1

2

1

      (35) 

    ωγγ )1(...
11

+−=++
−

ki
nii  

Bu formül iki zorlamalı, çeşitli özetleri tam bir toplamın içinde birleştirilerek basitleştirilebilir 
ve sonra s yerine ikω koyulur. Bu da şunu verir: 

|),,...,...()(
111

ωγωγγωω ikikikHiK
nn iiiregk −−

++++=∑       (36) 

  

 

  

 (36)daki terim karmaşık olduğunda, küçük n için yazmanın zor olmadığına dikkat edin. Ve 
genelde,  

  ),...,2,()( ωωωω iniiHiK regn =  

Son adım kısmi bölüm genleşmesindeki her bir terimin Laplace biçim değiştirmenin tersini 
almak. 

  
)(
)(
ω
ω
iks
iKk

−
 

Standart trigonometrik tanımları kullanmak, sabit-durum yanıtını şu verir: 

 
)]()2cos[(|)(|2

)](cos[|)(|2)(

22 ωωω
ωωω
iKtniKA

iKtniKAty

nn
n

nn
n

ss

−− ∠+−+

∠+=
 

  
   (37) 

ωγγ in ±=−11,...,

ωγγ )1(... 11 ±−=++ − kin
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even	
  
odd	
  

 

  

Polinomial sistemler için, daha erken görüşülmesiyle birlikte çeşitli 
homojen alt sistemlerin katkıları eklenebilir. 

 

5.3. Çok-Tonlu Girişler için Sabit-Durum Yanıtı 

Bir sinüsoydallar toplamı 1’den daha büyük derecenin bir homojen sistemine eklendiğinde, 
yanıt farklı frekansların dönemleri arasındaki doğrusal olmayan etkileşimler tarafından 
zorlaştırılır. Bu konuyu anlatmak için, iki ton giriş ile başlayacağım: 

  
titititi eAeAeAeA
ttAtAtu
2211

2211

2211 0),cos(2)cos(2)(
ωωωω

ωω
−− +++=

≥+=
      (38) 

Tekrar, bölüm 2’deki üslü gelişme büyümesi kullanılabilir, 4 üslü durum için bu zaman: 

    24231211 ,,, ωλωλωλωλ iiii −==−==  

Simetrik transfer fonksiyonu ),...,( 1 nsym ssH ile birlikte bir derece-n sistemi için, ayrılan 

değişikliklerle birlikte bölüm 2.4’teki kopya(73) şunu verir 

 tmm
mmmm

mmmm
mss eGAAty )...(

432121
4411

4321

4321 ),,,()( λλλλλλ ++++∑=     (39) 

),...,;...,,...,(
!!!!

!),,,(
41

4321 4411
4321

4321 
mm

symmmmm H
mmmm

nG λλλλλλλλ =     (40) 

ve nim ≤≤0 ve nmm =++ 41 ... gibi 41,...,mm üzerine∑
m

’nin bir 4-kat özetinin olduğu yerde. 

λ'lar için yerine koyma şunu verir: 

tmmmmi
mmmm

mmmm
mss eiiiiGAAty ])()[(

221121
243121

4321

4321 ),,,()( ωωωωωω −+−++ −−=∑     (41) 

 

Örnek 5.3: n=2 durumu için (41)Deki katalog terimlere belki öğretici katalogdur. Özette 10 
terim var ve bunlar tablo 5.1’de gösteriliyorlar. Gerçek miktarların terimlerindeki çıkışı 
yazmak, 

4321 mmmmG nin özelliklerini karmaşıklaştırma çekimini ele almakla birlikte 

kullanılabilir. Örneğin, 

 

Ve 

niKAn ),(0 ω

niKtiKAn )],(cos[|)(|2 11 ωωω ∠+

⎩
⎨
⎧

++ ...
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Bu yüzden 10010110 GG =  olduğu açıktır, karmaşık çekmeyi belittiği yerde. Benzer, 

01011010 GG = ,        02002000 GG =  ,              00020020 GG =  

Böylece standart trigonometrik tanımlar şu ifadeyi ortaya çıkarır 

 

Dikkat edilmeliki bu frekans parçaları farklı frekanslarda meydana gelmaya ihtiyaçları vardır. 
Örneğin, 13 3ωω = durumunu ele alın. 

    Tablo 5.1 

  Örnek 5.3 için Frekans-Yanıt Terimleri 

  Özet       indexler  Özet 

                         

 

 Daha yüksek, dereceli homojen sistemler göz önünde tutulduğu zaman, sabit-durum 
yanıtındaki terimlerin numarası düşer. Bu yüzden, çıkıştaki özel bir karmaşık üslü terimin 
katsayısını veren bir ifade elde etmek için daha kullanışlı görünür. Çok yada az terimler 
istenir sonra ele alınabilir ve üslü terimler eğer gerçek form isteniyorsa birleştirilebilirler. 

 Üslü tNMie )[ 21 ωω + , 0,0 ≥≥ NM ’e benzer (41)’deki terimler aşağıdaki gibi yazılabilirler: 
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Fakat şimdi 4-kat özet şunu elde etmek için belirlenmiş kısıtlamaları kullanan 1m  ve 

3m  yerleştirilmesiyle kolaylaştırılabilir: 

    (42) 

Bu rakamlar ve işaretler sistemi ile kontrol için uygun olan G’nin alt scriptlerinde  
birçok ilişki vardır. Alt scriptlerin toplamı sistemin derecesidir ve ilk ikinin farkı 

)( 21 ωω harmoniğiyle birleştirilir. Buna rağmen 0, ≥NM  olduğunu varsaydım, terim 
tNMie ][ 21 ωω +− ’nin katsayısını elde etmek için her G’deki her frekans uyuşmazlığının işaretini 

basitçe değiştirin. 

 

Tabii ki, tNMie ][ 21 ωω +− ’nin katsayısı (40)’ı kullanan simetrik transfer fonksiyonu 
),...,( 1 nsym ssH ’nin terimlerinde direkt olarak belirtilir. Bu transfer fonksiyonunun 

argumentleri için katlanmış bir rakamları kullanımını verir,  

                     (43) 

(42)’deki gibi (43)’te kullanılan aynı kural M ve/veya N negatif olduğu zaman 
katsayıyı bulur. Şunu belirtmeliyim ki frekans terimleri tNMie ][ 21 ωω + farklı olmamalı. Örneğin, 
eğer )2 21 ωω = , sonra 121 2][ ωωω =+ ise böylece bu iki terimin katsayıları birleştirilir. 

 

Örnek 5.4: Bir derece-5 homojen sistemin frekans bileşeni tNMie ][ 21 ωω + ’e katkısı hesaplanacak. 
Bu durumda (43) şunun için özelleşir: 

 

 

Burada özette iki terim var, 0,1 ve 1,0 indeks çiftlerine uyumlu olmak. Böylece özet şunu 
verir: 

 

Frekans bileşenini katsayısını hesaplamak için öğreticidir. 
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),,,,(
!3

!5
22221

4
21 ωωωωω iiiiiHAA

sym −−−  

 ),,,,(
!2!2

!5
221115

2
2

3
1 ωωωωω iiiiiHAA

sym −−−+  

(43)’ün doğru dürüst bir uygulaması dahi çalışır, buna rağmen terimler, formülün tam tipi 
yüzünden oluşan negatif faktöriyeller, negatif güçler ve negatif alt scriptlerle birlikte 
silinmeli. Özellikle, (43) M=1, N=-2 ile oluşur,  

 

Özete katılan indeks çiftleri: 0,3;1,2;2,1; ve 3,0’dır. Fakat son iki çift konu dışı gibi 
düşürülebilir böylece tNMie ][ 21 ωω + ’nin katsayısı şu olur; 

),,,,(
!3

!5
22221

4
21 ωωωωω iiiiiHAA

sym −−−  

 ),,,,(
!2!2

!5
221115

2
2

3
1 ωωωωω iiiiiHAA

sym −−−+ ki bu erken sonuçla katılır. 

Polinomial yada volterra sistemler için, yeni tamamlanmış analizin hazır olarak eklenebilmesi 
açıktır. Sabit-durum yanıtındaki tNMie ][ 21 ωω + ’nin katsayısını elde etmek için, (43)’teki 
katsayılar n=1,2,… için birlikte eklenmiş olmalılar. Böylece, katsayı şunun gibi simetrik 
transfer fonksiyonlarının terimlerindeki bir volterra sistem için yazılabilir: 

!)!(!)!(
)!22(

4422

42

0 02 4
mNmmMm
ANMmm

m m ++
+++∑∑

∞

=

∞

=

 

  );;(
22

42 11)22(
mMm

MMmm iiH
sym

ωω −
+

+++         (44) 

n alt scriptlerin toplamını ayırmakla yerine konulur ve özetlerdeki kısıtlamalar kaldırılır. 

Örnek 5.5: (44)’ün kullanımının bir örneği olarak, giriş (38) için bir derece-3 polinomiyal 
sisteminin yanıtındaki terimleri listeleyeceğim. Karmaşık çekimli terimler bilgi 
eklemediklerinden beri  ihmal edilmiş olacaklar. Derece-1 alt sisteminin katkısı (44)deki 

122 42 =+++ NMmm sınırlamasını büyütmekle bulunur.  

Tablo 5.2 

Frekans-Yanıt Terimleri: Derece-1 Alt sistem* 

  Özet  İndeksler Frekans   
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 *(artı karmaşık-çekimli frekans terimleri) 

 

Derece-2 alt sisteminin katkısı aslında tablo 5.1 tekrarını kapsar. Fakat, rakamlar ve işaretler 
sonraki kontekste farklıdır, böyleki ben önden gideceğim. (44)teki 

222 42 =+++ NMmm katkıyı fazlalaştırmak, tablo 5.3’teki listeyi verir. Bu durumdaki 
önemli dikkat edilecek şey, M ve/veya N E negatif olmaları için izin vermekle oluşan sadece 
bir farklı frekans parçasının olduğudur. Öyle ki bir terim önceki hesaplanmış terimlerden nasıl 
elde edildiğini göstermek için bir işaret anahtarı olarak adlandırılır. 

 

Tablo 5.3 

Frekans-Yanıt Terimleri:Derece-2 Altsistem* 

 Özet İndeksler Frekans  

             

 

Aynı biçimde, 322 42 =+++ NMmm ayarlaması, tablo 5.4’de gösterildiği gibi derece–3 alt 
sisteminin katılımını verir. 

 

Tablo 5.4Frekans-Yanıt Terimleri:Derece-3 Altsistem 

 

 

 Özet  İndeksler  Frekans  
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Tabii ki, bu örneği tamamlamak için, tüm bu terimler birleştirilmeli.  

2 sinüsoydal terimden daha fazlalarının toplamı olan girişleri göz önünde tutmak için, 
aynı yaklaşım takip edilir. Örneğin, takip eden etkenin doğruluğunu kanıtlamak sıkıcı 
olmasına rağmen doğrudur. Bir volterra sisteme giriş için:  

)cos(2)cos(2)cos(2)( 332211 tAtAtAtu ωωω ++=     (45) 

Sabit-durum yanıtında tNMLie ]3[ 21 ωωω ++ , 0,, ≥NML üslüsünün katsayısı belli sayıda -titiz olmak 
için- transfer fonksiyonuna giren çeşitli sayıdaki düşüncelerin girildiği yerde şöyledir: 

!)!(!)!(!)!(
)!222(

664422

2
3

2
2

2
1642

0 00

642

2 64
mNmmMmmLm
AAANMLmmm NmMmLm

m mm +++
+++++ +++∞

=

∞

=

∞

=
∑ ∑∑  

  ),,,,,( 332211)222( 642
ωωωωωω iiiiiiH symNMLmmm −−−+++++     (46) 

L, M ya da N negatif oldukları zaman, katsayı önceki gibi frekans tezlerinin karşılaştırmasının 
işaretini değiştirmeyle bulunur. Hem de önceki gibi , 21,ωω ve 3ω  düzenli değerlere dayanan 
frekans bileşenleri farklı olmayabilir. Şunun üzerinde durmalıyım ki, (46) karmaşık bir 
üslünün katsayısını verir. Böylece, toplam sabit-durum yanıtı hakkında ne söylenebilir?  

 

5.4. Rasgele Girişler için Yanıt 

Önceki bölümlerdeki gibi, genelleşmiş doğrusal teori ilk önce gözden geçirilecek. Sistem için 
girişin kabul edilen değer E[u(t)] ve otomatik bağıntı olasılıksal işlemden gerçek örnek bir 
fonksiyon olduğunu varsayın 
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          (47) 

     (48) 

Sonra çıkış gerçek bir olasılıksal işlemden bir örnek fonksiyondur ve çıkışın E[y(t)], 
giriş/çıkışın, çapraz-bağıntının 

     (49) 

ve çıkış otomatik bağıntının 

         (50) 

beklenen değerini bulmakla ilgilidir, 

Direk hesaplamayla olan işlem, beklentinin aşağıdakiyle bütünleşmesiyle yer 
değiştirilebilirliği  açıktır, 

       (51) 

Böylece,  

      

her iki kenardaki beklenilen değerleri almak şunu verir: 

            (52) 

Benzer şekilde, 

     

ve böylece 

      (53) 

 Şunu belirtmeliyiz ki, teknik konuların bir numarası tekrar görmezden gelinir. 
Örneğin, )]([ tuE  ve ),( 21 ttRuu =  aşağıda gösterilen bütünleşmelere izin vermeye yeterli 
olarak davrandığı tam olarak farz edilir. Bu gibi etmenler doldurmak için çok zor değil ve o 
görev okuyucuya bırakılır, genellikle. 

 Bağlantı ilişkileri çok değişkenli Fourier dönüştürmenin terimlerinde sık sık belirtilir. 
Genel tek-değişkenli Fourier dönüşmeye tam benzerlik için 
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         (54) 

Bir fonksiyon ),...,( 1 nttf ’nin çok değişkenli Fourier dönüşmesi aşağıdakiyle tanımlanır: 

      (55) 

Tabii ki, bu sürpriz değil, bölüm 2’deki çok değişkenli Laplace dönüşmenin verilen 
tartışmasıdır. Bunun yanında, çok değişkenli Fourier dönüşme bölüm 2’deki Laplace 
dönüşmenin özelliklerinin bir gözden geçirmesi sonrasında makul olarak beklenen tüm 
özellikleri gösterir. Ters Fourier dönüşme şöyle verilir: 

    (56) 

Bu bölümün amacı için, h(t)’nin Fourier dönüşmesi sistem fonksiyonu diye adlandırılır ve 
H(ω) şeklinde yazılır. Bu genel durumda, Laplace ve Fourier dönüşme arasındaki doğal ortak 
çarpışmanın okuyucusuna belki hatırlatabilirim. Eğer bir (Laplace) dönüşme fonksiyonu H(s) 
Re[s]=0 için oluşur, sonra sistem fonksiyonu )(|)( ωω iHsH is ==  tarafından verilir. Laplace 
dönüşmenin rasgele giriş sinyalleriyle birlikte madde işleri için yana konulmasından beri, ben 
sistem fonksiyonu ve tüm tek- ya da çoklu – değişkenli Fourier dönüşmeler için H(ω) 
rakamlar ve işaretler sistemini kullanacağım. Bu arada,  Fourier dönüşmenin var olmasını 

garantilemiş hipotezler varsayılacaktır. Örneğin, sistem sabitlik özelliğinin ∞<∫
∞

∞−

dtth |)(|  

uyması, sistem fonksiyonu )(ωH ’nin varolmasına garanti olduğu farz edilebilir.  

 Diğer bağıntı fonksiyonlarının dönüşümleri için aynı tanımlarla birlikte 

 

(57)‘e izin vermek 

(52) ve (53)’te gösterilen bir doğru hesaplama aşağıdakiyle gösterilebilir: 

 

       (58) 

                                                                          

 Bu genel kavramlar gerçek rasgele işlem u(t)’nin sabit olduğu durumdaki en ilgincidir. 
Bunun için, −∞=t ’da giriş sinyalinin eklendiğinin farzetmek, çıkış dahi gerçek bir sabit 
rasgele işlemdir. Diğer bir deyişle, burada tam bir sabitlik farzetme var.  

 Sabit giriş durumunda, E[u(t)] bir değişmezdir, böylece 
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          (59) 

 

Ayrıca, otomatik bağıntı fonksiyonu ),( 21 ttRuu , sadece 21 tt −  farkına dayanır. 

τ+== tttt 12 , değişkenlerini değiştirmeyle genel rakamlar sistemini takip etmek, otomatik 
bağıntı ),( ttRuu τ+ sadece τ’nin bir fonksiyonudur ve bundan dolayı )(τuuR şeklinde yazılır. 

Yeni değişkenlerin terimlerinde giriş/çıkış çapraz-bağıntıyı belirlemek için, (52) şöyle 
yazılabilir 

 

ve sağ tarafın t’nin bağımsızı olduğundan beri, şu şekilde yazılabilir: 

      (60) 

Benzer şekilde, çıkış otomatik bağıntı şöyle yazılabilir 

            (61) 

Bu ilişki tek-değişken Fourier dönüşümü kullanan frekans domaininde belirtilebilir. Bu kolay 
bir biçimde doğruca sonuçlanabilir. Aslında, sonraki gelişmeler için ısıtmak için, (58)deki 2-
değişkenli Fourier dönüşüm formüllerinden olan ifadeleri belirteceğim. Aşağıda gösterilen 
yeni değişkenleri kullanmak, 

          

τ’e uymakla bütünleştirme sabit rasgele işlemin güç gerçek olmayan yoğunluk olan Fourier 
dönüşüm )]([)( 1 τω uuuu RFS = ’yi verir. Sonra iyi bilinen dönüşümü kullanmak 

 

aşağıdakine götürür: 
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2ω ’ye uyan iki tarafın bütünleşmesi aşağıdakini verir: 

      (62) 

Bu formül o işlemin genel otomatik fonksiyonunun 2-değişkenli Fourier dönüşümünün bir 
sabit rasgele işlemin güç gerçek olmayan yoğunluğunu belirtir. Tabii ki, benzer bir ilişki 
(58)’de verilen ),( 21 ωωyuS ’nin terimlerindeki çapraz gerçek olmayan yoğunluk )( 1ωyuS  için 

elde edilir. Böylece (58)’deki ilk denklem aşağıdaki gibi olur: 

 

böylece giri/çıkış çapraz-gerçek olmayan yoğunluk giriş güç gerçek olmayan yoğunluğun 
terimlerinde şu sayede verilir: 

  (63) 

(58)’deki ikinci ilişki için benzer bir tarzda işleme aşağıdaki giriş güç gerçek olmayan 
yoğunluğun terimlerindeki çıkış güç gerçek olmayan yoğunluğu şöyle verir: 

   (64) 

Ben bu noktada belitmeliyim ki ergodik tarzları ayırma, sabit durumdaki çeşitli bağıntılar ve 
gerçek olmayan yoğunluk ortalam bir zamanda anlatılır. Bu gerçek teşhis teknikleri tartışıldığı 
zaman bölüm 7’de çok önemli olacak. Ayrıca şuna da dikkat edilmeli ki, sistem 
fonksiyonlarının terimlerinde, (59)’da verilen çıkışın beklenen değeri şu şekilde yazılabilir: 

    (65) 

Şimdi aşağıdakiyle tanımlanmış doğrusal olmayan sistemler için gözden geçirilmiş fikirlerin 
genelini göz önünde tutalım: 

       (66) 

Polinomiyal ya da Volterra sistemlerin tartışması bu homojen durum ele alınana kadar 
ertelenmiş olacak. 
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 u(t) gerçek bir rasgele işlem olduğu zaman, doğru hesaplama aşağıdakini verir, 

     (67) 

girişin thn -dizi otomatik fonksiyonunun aşağıdaki tarafından tanımlandığı yerde. 

 

Benzer bir tarzda giriş/çıkış çapraz-bağıntı ve çıkış otomatik bağıntı aşağıdaki biçimde 
yazılabilir: 

 (68) 

 (69) 

n=1 için bu ifadeler önceki tartışmalardır. Fakat n>1 için çıkışın beklenen değeri ve çıkış 
bağıntısı daha yüksek dizi giriş otomatik bağıntıya dayanır. Diğer bir deyişle, karakterize 
edinmeye ihtiyaç duyan daha fazla değişmeyen bilgiyi n düşürür, örneğin, çıkış otomatik 
bağıntısı. 

 (67), (68), (69) ifadeleri değişken birliklerini izleyen kat biçiminde yazılabilirler, bir 
biçim ki katların ve çok değişkenli Laplace dönüşümünü kullanan bir homojen sistemin 
giriş/çıkış işaretini göz önünde tutmakla ortaya çıkan değişken birliklerinin benzeridir. Fourier 
dönüşümlerin terimlerindeki (68) ve (69) ifadeleri ile ilgili olduğundan beri, bölüm 2’de 
yapıldığı gibi birlik görünüşünden kat görünüşünü ayırmak için uygundur. Bunu yapmak için, 
çok değişkenli giriş/çıkış çapraz-bağıntı aşağıdaki tarafından tanımlanır: 

     (70) 

böylece 

       (71) 

Benzer şekilde, çok değişkenli çıkış otomatik bağıntısı şöyle tanımlanır, 
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    (72) 

böylece 

   (73) 

 Bu orta çok değişkenli değerin Fourier dönüşme yolu ile simgeyi kolaylaştırmaktan 
başka anlamı yoktur. Çıkışın düzen-n otomatik bağıntısının Fourier dönüşmesi şöyle olsun, 

      (74) 

ve çıkışın çok değişkenli bağıntı ve otomatik bağıntısının Fourier dönüşümü şöyle olsun,  

  (75) 

bunlar çok değişkenli gerçek olmayan yoğunluklar olarak adlandırılırlar,  yine de gerçek 
olmayan yoğunlukla yapmak için az ya da hiçbir şeyleri yoktur. Sistem fonksiyonunun 
terimlerinde olan Fourier dönüşmelerin kolayca kurulmuş kat özelliğini takip eder, 

     (76) 

                 (77) 

n=1 için düzeltme imleri sol taraftan kaldırılabilir ve sonra bu ifadeler (58)dekilerle birlikte 
katılır. Şimdiki önemli problem n>1 için çok değişkenli gerçek olmayan yoğunlukların 
terimlerindeki ),( 21 ωωyyS ve ),( 21 ωωyuS ’yi belirtmektir. Bu, Fourier dönüşmenin 

terimlerindeki (71)ve (73)deki değişken birliklerini belirtmektir. Bunu başarmak için az bir 
manevra alır, fakat manevralar bölüm 2’deki değişkenler formülü birliğinin ispatından bildik 
olmalı.  

 Ters Fourier dönüşme ilişkisi çok değişkenli çapraz-bağıntı için şöyle yazılabilir: 

 

Şundan 
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İki kenarın Fourier dönüşümünü almak aşağıdakini verir 

 

Ve 1t ve 2t ye uymakla bütünleşme,  

       

                                                 (78) 

 

Otomatik bağıntı çıkışı için bu prosedürü tekrar etmek aşağıdakini verir 

  (79) 

Buradaki benzerlikler bölüm 2’deki değişkenler formülleri birliği ile birlikte henüz 
görünmedi, fakat ben kısaca bahsedeceğim. 

 Gerçek hesaplamalar veya uygulamaların üzerinde düşünülüp tartışıldığı zaman çıkış 
gerçek olmayan yoğunluk için bu ifadeler ve çapraz-bağıntı yoğunluğunun zorlu olması ile 
ilgili hiç soru yok. Fakat giriş rasgele işlemi üzerindeki çok daha fazla üzerine almanın 
işlemiyle kolaylaştırılabilirler. Doğrusal durumdaki gibi, bunun ilk öncesi sabitlik. Bir sabit 
giriş −∞=t da bir sabit homojen sisteme eklendiği zaman, alışılmış ve oldukça basit zaman-
değişimi tezi çıkış rasgele işlemin sabit olduğunu gösterir. Böylece, çıkış otomatik bağıntı ve 
giriş/çıkış çapraz-bağıntı gözden geçirilmiş teknikleri kullanan tek bir değişkenin 
fonksiyonları olarak belirtilebilir. Ben Problemler için bağıntıları bırakmayı ve gerçek 
olmayan yoğunluklar için hesaplamaları yapacağım. 

 Çapraz-gerçek olmayan yoğunluk için, form (62)nin bir ilişkisi yazılabilir, aşağıda 
verilen 
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   (80) 

Bütünleşme ilk 2ω  çıktılarına uymakla  

        (81) 

ya da, sistem fonksiyonunun terimlerinde ve sıra n+1’in giriş gerçek olmayan yoğunluğu, 

   (82) 

 Dikkat edilmeli ki, (82)deki 1γ ’e uymayla bütünleşme  

  (83) 

 bölüm 2.3’teki bir değişkenler formülü birliği gibi olan bir ifadeyi verir. Aslında, (82)’deki 
bütünleşmemiş form daha fazla gelişmeler için daha fazla hızlı ve verimli olacak.  

 Çıkış güç gerçek olmayan yoğunluk için benzer bir hesaplama aşağıdakini verir 

 (84) 

Tekrar, bu bir değişkenler formülünün birliği olarak yorumlanabilir. 

 Daha fazla basitleşmeyi elde etmek için, gerçek, sabit, rasgele işlem girişinin sıfır-
ortalama ve Gauss dağılımı olduğu farz edilir. Bu durumda giriş işleminin daha yüksek dizi 
otomatik bağıntıları dizi-2 otomatik bağıntının terimlerinde belirtilebilir. Bu etkinin kökeni 
verilmeyecek, daha doğrusu, ben basitçe formülleri vereceğim. 

 Bir sabit, sıfır-ortalama, Gauss rasgele işlemi u(t)’nin dizi-n otomatik fonksiyonu 
şöyle yazılabilir 
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       (85) 

∏
n

kj ,

’nin 1,2,…,n’den bir dizi tamsayı n/2 çiftlerinin üzerinde  bir ürün olduğu yerde ve 

∑
p

aşağıdaki gibi tüm ürünlerin  

(n-1)(n-3)(n-5)…(1)= 2/2)!2/(
!
nn

n  

toplamı olduğu yerde. Daha fazla bir belirgin rakamlar ve işaretler sistemi kabul 
edilebildiğinde, karmaşıklaşır ki, ben (85)i kullanacağım ve örneklerle daha fazla 
açıklayacağım. 

 

Örnek 5.6  n=2 için sadece bir çift var, yani (1,2). Böylece 

 

Bu, genel dizi-2 otomatik bağıntıdır. n=4 için 3 tane 2 çift dizisi var yani, 
(1,2),(3,4);(1,3),(2,4) ve (1,4),(2,3). Böylece 

    (86) 

Benzer biçimde daha yüksek sıra geçek olmayan yoğunluklar dizi-2 güç gerçek olmayan 
yoğunluğun terimlerinde belirtilebilir. (85)in Fourier dönüşme n-değişkenini alma aşağıdakini 
verir: 

                         (87) 

 

Örnek 5.7 n=2 için bu formül  

 

Bu bölümün başında elde edilmiş bir ifadeyi verir. N=4 için hesaplamayı bir örnekle 
bırakacağım ve sonucu sağlayacağım: 
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                           (88) 

 

Örnek 5.8 bu formüllerin kullanımını örneklemek için, çıkışın beklenen değeri, giriş rasgele 
işlemin gerçek, sabit, sıfır-ortalama, Gauss ve beyaz olduğu durum için birim yoğunluk ile 
hesaplanacak. Bu, )()( 0 τδτ =uuR ’dir. Ayrıca, sistemin simetrik kernel ya da simetrik sistem 
fonksiyonlarının terimlerinde tanımlandığı farzedilecek. Bu durumda (85)in (67) nin yerine 
konması n tek olduğu zaman ,1≥n  için 0)]([ =tyE ’i verir ve  

  

Şimdi toplamın her bir teriminde n/2 impulsları tümleşik olabilir ve bu kernel’ı sadece n/2 
farklı iddialarla bırakacak. Kernel’ın simetriliği sayesinde, aynı iddialar çiftlere düzenlenebilir 
ve bütünleşmenin değişkenleri olduklarından beri, form hsym****’de etiketlenebilirler. Bu 
tipin (n-1)(n-3)…(1)terimleri olacak, böylece sonuç  

  

(82)’yi kullanmak, çapraz-bağıntı yoğunluk ve çıkış güç gerçek olmayan yoğunluk bir gerçek, 
sabit, sıfır ortalama, Gauss-rasgele-işlem girişi ile simetrik transfer fonksiyonuyla 
tanımlanmış bir derece-n sistem için şimdi hesaplanacak. Çapraz-gerçek olmayan yoğunluk 
için, n+1 tek için 0)( 1 =ωyuS olduğu (87)den bellidir, ki bu herhangi derecenin bir homojen 

sistemi içindir. n+1 olduğu zaman, basit bir yerine koyma aşağıdakini verir 

                      (89) 

Genel durumda bu ifade üzerinde çalışmadan önce, bir örnek öğreticidir. Ve, tabii ki, doğrusal 
sistemler için tanımlanmış verilen n+1=2 durumu çok basittir. 
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Örnek 5.9  n+1=4 için, (89) aşağıdaki sonucu verir 

 

 

 

 

 

 

 

Bu terimlerin her birindeki 4γ ’ye uymakla bütünleşmek aşağıdakini verir 

 

 

 

 

 

 

 

Aşağıdakini elde etmek için şimdi 3γ ’ye uymakla ilk terimi bütünleştirme, 2γ ’ye uymakla 

ikinci terimi bütünleştirme ve 1γ ’e uymakla üçüncü terimi bütünleştirme 
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Son olarak, ifadenin γ2 göre integrali ve geri kalan iki ifadenin γ3 göre integrali, 

 

Ama Hsym(w1,w2,w3) simetrik olduğundan giriş/çıkış çapraz-spektral yoğunluk ifadesinin daha 
açık şekli, 

                                                       (90)         

Hsym(w1,w2,w3) simetrik olduğu için bu örnekteki  tüm ifade ile (89) daki ifade özdeştir. 
Böylece n+1 in çift olduğu durumda çapraz spektral yoğunluğunun genel ifadesini elde etmek 
için, sadece tek bir terimli ve çok sonuçlu toplamlar ile çalışmak gerekir. (1,2), (3,4), . . . , 
(n,n+1) çiftlerinin ayarlanmasına ilişkin ifade, 

 

γ2 ye göre daha sonra γ4 göre integral alınırsa, 

 

Syu(w) = 0 iken  n+1 çifttir. 

Gerçel, sabit, sıfır ortalamalı, gaussian girişli homojen sitemin çıkış güç spektral yoğunluğu 
için benzer hesaplama yapacağız. Tekrar simetrik kernel ve transfer fonksiyon ifadeleri 
kullanılır. (84) teki ifadeden  (87) ifadesi çıkarılır ise 
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Ama Hsym(γ1,..,γn)Hsym(γn+1,..,γ2n) simetrik olmadığından bu durum, çapraz-spectral 
yoğunluğundan daha komplekstir. Böylece, farklı koşulların tipleri, toplamda ortaya çıkacak. 
Gerçekte, genel form Syy(w) için çok karışıktır. Ben, n= 2 ve n= 3 için sonuçları bir örnekle 
vereceğim. 

Örnek 5.10  n=2 için (92) deki ifade 

 

Herbir ifadenin integralini γ4’e göre alırsak 

 

Nasıl devam etiği açık olmalı. İlk terimin γ2 ye göre son iki terimin γ2 ve γ3 e göre integrali 
alınırsa   

  

n= 2 için sistem fonksiyonunun simetriği kullanılarak son iki terim birleştirilip çıkış güç 
spektral yoğunluğu ifadesi yazılırsa; 
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Bu örnek genel formüldeki faklı tipte oluşan ifadeleri tanımlar. Ayrıca üçüncü dereceden 
homojen sistemlerin sonuçlarını listeledim. 

 

Örnek 5.11        Şekil-5.1 sistem giriş  güç spektral yoğunluklu bir gerçel, durağan, sıfır-
ortalama, rastgele Gaussian  işlemidir. 

                                         

                                            Şekil-5.1  2. Dereceden homojen sitemler 

Çıkış güç spektral yoğunluğunu bulmak için, önce simetrik sistem fonksiyon yazılırsa; 

                                             

Böylece, 

 

İntegral tabloları kullanılırsa 
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Çıkış spektral yoğunluğunu yeniden yazacak olursak, 

                        

Şimdi, rasgele girişli Volterra ve polinomlu sistemlere bakalım. Çıkış güç spektral yoğunluğu 
hesaplanmasında sadece  bir kaç ifade için sonuçlar verilecektir. 

Kullanmak için gerekli notasyon 

                                                                                               (95) 

Burada yn(t)  n. Dereceden homojen  ifadenin çıkışı. n ise kernel transfer fonksiyonunun 
derecesi. Giriş keyfi, rasgele gerçel bir fonksiyondan oluşuyor ise, giriş/çıkış çapraz-
korelasyonu aşağıdaki gibi yazılabilir. 

     (96) 

Burada Ryu(t1,t2) çapraz-korelasyonu göstermektedir. Çapraz-korelasyon ve çapraz-spectral 
yoğunluk ifadeleri  polinomlu ve volterra sistemleri için n ile türetilmiş ifadeler toplanarak 
bulunur. Örneğin giriş gerçel, sıfır-ortalamalı ve gaussian is giriş/çıkış çapraz-spectral 
yoğunluğu; 

 

Rastgele gerçel bir giriş durumuna dönülürse, otokorelasyonu çıkışının veya güç spektral 
yoğunluğunun hesaplanması daha da zorlaşır. 
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Bu ifade notasyonda yazılırsa, 

          

 

Burada Rynym(t1,t2) =E[yn(t1)ym(t2) kısmi çıkış otokorelasyonu olarak bilinir. Bu ifadenin 
hesaplanması diğer hesaplamalardan biraz farklı. 

Bazı hesaplamalar, kısmi çıkış otokorelasyonu verir, 

 

Bu formun açıklamalarıyla baktığımızda, çok değişkenli kısmı çıkış oto korelasyonunun 
aşağıdaki şekilde tanımlanması uygundur, 

 

Olduğu için 

 

 

 

Ayrıca, bu notasyonun  avantajı fourier transformunun konvolüsyon özelliğinin direk 
uygulanabilmesi ve  değişken associcationların ayrı ayrı ele alınmasıdır. 

 

ve önceden tanımlı sitem fonksiyonları kullanılırsa 
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(79) ifade tekrar türetilirse 

 

Bu yüzden rastgele işlem girişleri için kısmi çıkış güç spektral yoğunluğu aşağıdaki şekilde 
verilir. 

 

Elbette m=n durumu için bu formül (84) ifadesi ile kontrol edilebilir. 

Şimdi girişin gerçel, duragan, sıfır-ortalamalı, gaussian ve güç spektral  yoğunluklu Suu(w) 
olduğunu var sayalır.(106) ifadesinden  (87) ve (104) ifadeleri çıkarılırsa, 

                                                                        

 

ve 

 

 

Bu ifadenin çok daha açık bir formla yazılması biraz komplex bir problemdir. 

Örnek 5.12      3. Dereceden polinomlu sitem durumları için Syy(w)’nin hesaplanması için 
n,m=1,2,3 için Synym(w)  ifadeleri hesaplanmalıdır. 

 

n=m=1,2,3 için kısmi çıkış güç spektral yoğunlukları önceden hesaplandı ve (64),(93) ve (94) 
ifadeleri de veridi. n=1 ve m=3 için (108)  ifadesi; 

 



	
  
	
  

31	
  

 

İntegral ifadesi alınır 

              

 

Benzer şekilde Sy3y1 hesaplanabilir. Başka bir şekilde elde etmek için  Syy(w)=Syy(-w) 
ifadesi kullanılabilir. 
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Örnek 5.13 Örnek 3.3 de faz kilitlemeli loop tanımlandığı için örnek 3.8 deki ilk üç simetrik 
transfer fonksiyonun gösterilişi, 

 

Varsayalım mesaj işareti, gerçek , durağan, sıfır-ortalama,A hasalı Beyaz Gaussian gürültülü. 
Böylece 

 

Üçüncü dereceden ifadenin içinde Hata sinyali x(t) sıfır ortalalıdır. 65 den X(t) nin 1. 
Dereceden bileşeni ve örenek 5.8 den 2.derece ve üçüncü derece bileşeni de ayrıca sıfır 
ortalamalıdır. 

 

Açık şekli, 

                               

 

İntegral ifadesi, 

       

 

w yerine –w konarak ikinci terimden üçüncü terim elde edildikten sonra hatanın güç spektral 
yoğunluğu; 

                       

 

 

5.5 Wiener Orthogonal Gösterimi 
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Polinom veya Volterra sistemi için, çıkış gücü spektral yoğunluğu ya da öz ilinti 
hesaplamadaki temel zorluk, bölümsel çıkış spektral yoğunlukları ya da öz ilintilerin 
fazlalığıdır. Bu sebeplerden ve 7. bölümde tartışılacak olan sebeplerden dolayı,  cevabın 
istatistiksel tanımı uyarınca mutlak diklik özelliklerine sahip olan bir seriler gösterimini göz 
önünde bulunduracağım. Uygun yakınsama şartları altında, bu Wiener serileri, Volterra 
serileri gösterimindeki terimlerin yeniden düzenlenmişi gibi gösterilebilir. Buna rağmen, bu 
bakış açısı şaşırtıcı olabilir ve muhtemelen bu Wiener gösteriminin farklı bir başlık olarak 
kabul edilmesi için en iyi bakış açısıdır. 

Bu bölüm boyunca, giriş işaretinin gerçek, durağan, zero-mean bir A yoğunluklu beyaz gauss 
rastgele işleminden elde edilmiş basit bir fonksiyon olduğu farzedilecek. Bu ifade, yakınsama 
sonuçlarının olağan engellemeleriyle, sonsuz seriler şeklini alacaktır. Aslında, Wiener 
gösteriminin yakınsama özellikleri “square sense” olarak adlandırılır ve ortaya çıkan şartlar, 
Voltera seriler için olanlardan daha az kısıtlayıcı olduğunu gösterebilir. Bu sonuçlar bölüm 
5.6 da incelenecek. 

Bir sistem için Wiener gösterimi, 

 

   biçimini alır.        

Burada her bir Wiener operatorü Gn[kn,u (t)] , simetrik bir Wiener kernel kn(t 1, . . . ,tn) 
tarafından belirlenmiş n-ninci dereceden bir polinom operatörüdür. Operatörün polinom 
derecesini belirten altsimgenin 1.Bölümdeki operatör gösteriminden çok az farklı olduğuna 
dikkat edin. Kn’e bağlılık görülmektedir. Ayrıca simetrik olmasına rağmen Wiener kernel’de 
“sym” altsimgesi yoktur. Bu, geleneksel gösterime uymaktadır ve Wiener kernel’i simetrik 
Volterra serisi kernel  hnsym(t1, . . . ,tn) den ayırt etmeye yarar. 

Düzenlenecek olan önemli koşul, aşağıdaki eşitliği sağlayan bu yeni gösterimdeki kısmi çıkış 
öz ilintileri olarak adlandırılabilenlerdir. 

 

Elbette,  bu koşul belirtildiğinde, çıkış öz ilintisi aşağıdaki şekilde verilir, 

   

Wiener gösterimi yalın ve genel bir ispat ile saptanabilmesine rağmen, bir başlangıç üslubu 
içinde başlamak aydınlatıcı olacaktır. Yaklaşım, aşağıdaki eşitliği sağlayan n-ninci dereceden  
bir polinom operatörü yardımıyla Gn[kn,u (t)]’yi bulmaktır. 
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Burada Fj[u (t)] j-ninci dereceden herhangi bir homojen operatördür. Elbette, bu koşul n-1 ya 
da daha az dereceli polinom operatörüne dik Gn[kn,u (t)] yi sağlamaktadır. Aşağıdaki 
hesaplamalar aşığında, Fj[u (t)] ye uygun simetrik kernel j=0,1 olduğu zaman “sym” gereksiz 
olması durumu dışında,  fjsym (t1, . . . ,tj) şeklinde ifade edilecektir.  

Sıfırıncı dereceden Wiener operatörü basit bir biçimde  G0[k 0,u (t)] = k0 şeklinde tanımlanır. 

Birinci dereceden Wiener operatörü aşağıdaki formda ifade edilir. 

 

Burada  k1(t), birinci dereceden Winer kernel,  k1,0  ise seçilmiş bir sabittir. Bu operator her 
hangi bir homojen operatör F0[u (t)] = f 0 ‘ a dik olmalıdır. Şöyle ki, her hangi bir fo için, 

 

Mademki, birinci terimde beklenen değer sıfır, bu koşul k1,0=0 için sağlanabilir. Bu, birinci 
dereceden Wiener operatörünü aşağıdaki biçime dönüştürür. 

 

Kernel’lerin farklı olabilmesi dışında Wiener gösterimi Volterra serileri gösterimine 
benzemektedir. 

Şimdi 2 inci dereceye geçelim, burada çok ilginç şeyler olmaya başlayacak. G2[k 2,u (t)]’nin 
genel biçimi 

 

Burada k2(t1,t2) simetriktir, sağlanan koşullar aşağıdadır. 

 İlk koşul 
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ifadesini sağlar. 

f 1(t) ne olursa olsun k 2,1(t) = 0 olması durumunda bu koşul sağlanır. 117 deki ikinci koşul, 

 

ifadesini sağlar. Bu  

        

için sağlanır. İkinci dereceden Wiener operatörü, 

 

olur. 

 

Bu, bir tek kernel tarafından Wiener polinom operatörlerinin nasıl sağlandığının ilk örneğidir. 
Ayrıca, burada kesin bir teknik varsayımın olduğuna dikkat edin yani k2(t1,t2) nin integrali  
sonludur. 

Üçüncü derecedenWiener operatörünün genel formu, 
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biçimindedir.       

Burada üçüncü dereceden Wiener kernel  k3(t1, t2, t3) simetriktir. Bütün fo lar için 

 

eşitliğini sağlanmalıdır. Bu koşulu sağlamak için, 

 

olmalıdır. 

Birinci dereceden homojen operatör için diklik  

 

eşitliğini sağlar. 

Bu koşulu sağlamak için, 

 

olmalıdır. 

Şimdiye kadar üçüncü dereceden Wiener operatörünün, 

 

eşitliği üzerinde duruldu. 

Bütün ikinci dereceden homojen operatörlere dik olan eşitlik (120) koşulunu empoze etmek  
bizi k3,2(t 1,t 2) = 0 seçimine götürür. Böylece (110) eşitliğinde verilen üçüncü dereceden 
Wiener operatörü, 
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olur.       

Genel sonuç aşağıdakiler gibi ifade edilebilir. 

Teorem 5.1  n inci dereceden Wiener operatörü, 

 

 

biçiminde ifade edilir. 

Burada [n /2], n/2 den küçük ya da eşit en büyük sayıyı göstermektedir. Wiener kernel         
kn(t 1, . . . ,tn) simetriktir. A; gerçek, durağan, sıfır ortalamalı ve Beyaz-Gaussian gürültü 
girişinin şiddetidir. 

İspat: n; çift tamsayıdır. n tek sayı içinde kanıt benzerdir. Kareli parantezin karesi toplamanın 
üst limit işaretinden  silinebilir. Ayrıca notasyonu kaldırarak Fj[u (t)] gelişi güzel homojen 
operatör değeri j ile birlikte simetrik kernel için 

 

Bunun sebebi tüm terimler, gausian rastgele değişken modeli ürününün beklenen tek sayı 
değerini içermesi. Böylece bu kalanları göstermektedir. 

 

E[Gn[kn,u (t)]] = 0 , n > 0 için  bu şartlar indirgenmesini gösterir. Direkt hesaplama (85) te 
bize şunu verir. 

 

Her bir sabit i için her bir ifadedeki (n −2i)/2 impuls’ları tümleştirilerek sonuçtaki her bir etki 
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Benzer sonuçlar getirecektir sebebi wiener temeli simetrisidir. Bundan dolayı (85) ten 

 

i teriminin içindeki sonucun  toplamıdır. Bu yüzden değişkenlerin sınıflandırması şu şekilde 
yazabilirim 

 

Ama  

 

Bundan dolayı sonuç aşağıdaki gibidir, 

 

J=1 için şu  göstermeli, n > 2 varsayılmalıdır. 

 

Burada F2[u (t)] 2. Dereceden operatör keyfidir. Hesaplamalar tekrar yapılırsa, 

 

öncelikle her bir sabit i için türetilmiş terimleri ∑p  içinde dikkate almak gerekir. Bu etkiyi 
entegre etmek her bir terimde bize özdeş bir sonuç vermektedir. 
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(n-2i) /2 ürünleri  σ1,..,σn-2i  den argüman çiftlerine sahip olacaktır. Böylece bu terim şunu 
verir. 

 

Tekrar belirtmem gerekir ki asıl bulgular henüz kullanılmıştır. Bütün terimlerin 
(formüllerin,eşitliklerin) kümesi (takımı) grup içindedir. 

 

şöyle ki δ0(σn −2i +1−σn −2i +2) form’unun impuls’ı şöyle yazılabilir. 

 

Bu sonuç devamda kullanılabilir. Şimdi (Burada), her sabit i için takip eden 
terimleri,(formüller, eşitlikler) dikkate almalıyız Bu terimlerin hepsi j,k ≤ n −2i için form 
δ0(σj−σn −2i +1)δ0(σk−σn −2i +2)’nın etkenlerini içerir. Bu ifade n< n/2 için, 

 

i’nin her terimi için böyledir. Simetriden dolayı, impuls’larınn integralini aldıktan sonra tüm 
ifadeler özdeş(benzer) olacaktır. Böylece, bu terimler, 
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İfadesinden 

 

 

Genelde dikey durumu doğrulamak için j’nin daha geniş değerleri için bu tip hesaplamaları 
gerektireceği şimdi daha açıktır.  

Gn[kn,u (t)’yi hesaba katmak için bazı genel özellikler vardır. Bu derece n;n-2,….,1 (n tek) 
veya 0 (n çift) gibi homojen dereceleri içeren n.derece bir polinom operatörlü. Fakat tüm bu 
homojen terimler(eşitlikler) derece-n, simetri, Wiener kernel kn(t1, . . . ,tn) ve A’nın girdi 
yoğunluk gürültüsü ile belirlenmiştir(çerçevelenmiştir).Terimin(eşitliğin) doğru olduğu 
(122)’deki i=0 eşitliği okuyucuyu yanlış anlamaya sokmasın. 

 

Sonuç olarak, seziyi teknik olarak oluşturmak için Wiener Kernel’deki bilinen bütünleşik 
şartları elde tutmanın gerekliliği açıktır. 

Şimdi (111)deki Wiener sunumunda tanımlanan bir sistem varsayalım. Böylece dikey 
özellikle çıktı oto korelasyonu 

 

Genel terimi hesaplamadan önce, ilk bir kaçını çözmek öğretici olacaktır. n=0 için açıktır ki; 

 

n=1 için hesaplama sadece biraz karışıktır çünkü bu genel lineer durumdur. 
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 Tüm daha önce en azından bir kez yapılmasına rağmen n=2 için hesaplama biraz daha 
önemlidir,  

 

Hedeflerin artmasıyla,  kolaylıkla doğrulanmış sonuçlar (veya sonucu kolaylıkla doğrulayan) 
hesaba katılmayarak terimlerin hesaba katılmaz. 

 

Genel sonuç çok biçimsel olarak sunulmuş olacaktır. 

Teorem 5.2 Wiener polinom operatörü Gn[kn,u (t)] için (burada u(t) gerçek, sabit (durağan), 
sıfır ortalamalı, A’daki beyaz gürültü yoğunluklu Gaussian)  

 

İspat : Yazımı basitleştirmek için, Wiener operatör derece-n’i aşağıda gösterilen genel 
polinom formunda yazılabilir. Burada sadece n’nin Gn[kn,u (t)] ’dan oluştuğu derece ile aynı 
pariteye sahip homojen terimleri hatırlayın. 

 

Daha sonra dikey özellik kullanılır (kullanılarak) 
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Kth   beklenen değer (n+k)/2 impuls’larının toplamını içerecektir ve her impuls’ların argümanı  
(t+τ−σ1), . . . , (t+τ−σn), (t −τ1), . . . , (t −τk).’dan seçilen argüman çiftlerinden farklılık 
gösterecektir.  Öncelikle K= n özellikle bu beklenen terimlerin değerinin her tepkide σi 
değişkenlerinin bir parçası olduğunu ve argümanında  τi değişkenlerinden  biri olduğunu  
dikkate alın.Umulan değerde  n! gibi ürünler olacaktır, burada n σi değişkeni ile çift 
oluşturması için τi den, n-1 ikinci σi değişkeni ile çift oluşturması için τi den seçilir ve böyle 
devam eder. Böylece  bu durumda ürün sıralanmamış çiftlere geçer, burada σi´nin sırası 
önemsizdir. gn(t1, . . . ,tn) simetrik olduğu sürece, impuls’lar bütünleşik değilken sonuç 
terimleri benzer olacaktır. Böylece k = n teriminin katkısının payı şöyle yazılabilir: 

 

Elbette, orijinal gösterimde bu tam olarak (128) dir, ve ispatın kalan kısmı,  (129) daki diğer 
bütün ifadelerin sıfır olduğunu gösterilmesine bağlıdır. k=n olduğu durumdaki impulsların 
kalan sonuçları en az σi  nin 2 farklı değerlerinden oluşan kalanlı  bir impuls içerecektir. Bu 
niteleme (129) daki bütün k<n ifadesi için geçerlidir. 

 

(129) daki her bir k değerleri için terimler toplanır σn e göre integral alınırsa ve Gn[kn,u(t)]’nin 
ortoganel özellikleri ile 
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Şimdi (129) k sabiti için, δ0( σn-3- σn-2) faktörünü içeren δ0( σn-1- σn) faktörünü içermeyen 
beklenen değerdeki her bir impuls ifadesini dikkate alıcaz. δ0( σn-3- σn-2) formunu bir  
faktörünü içeren toplam ifade eksi . δ0( σn-3- σn-2) δ0( σn-1- σn) formunun bir faktörü yazılabilir. 

 

k’nın her bir değeri için (129) daki ifadeller toplanır ve impuls faktörü integral dışına alınırsa 

 

Bener şekilde geri kalan ifade 

 

İspatın devamında ifade δ0( σn-5- σn-4) faktörünü içerirken δ0( σn-3- σn-2) ya da δ0( σn-1- σn) 
faktörlerini içermez. 

kn(t1,..,tn) Wiener  kernelleri ayırma için kullanılan Metotlar 7. bölümde bilinmeyen sistemler 
için  ana başlık olacaktır. Fakat diğer bir yol bilinmeyen sitemlerin wiener kernelleri için 
wiener kernelleri ve volterra kernelleri arasındaki ilişkiyi tanımlamaktır. Wiener ortogonal 
ifadesi ve ayrıca simetrik kernel volterra serileri tarfından tanımlanmış bir sistem düşünün. 

 

Teorem 5.3    

Simetrik volterra sitemi ve wiener ve dikey temsili tarafından tanımlanan bir sitem farz 
edelim. Daha sonra N’inci dereceden simetrik volterra aşağıdaki denklem verir. 

 

İspat 110’dan 120’ye kadar sistem için Wiener tasarımı şudur. 
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HNsym (t1,….tN) için bir açıklama bulunmak isteniyorsa N’inci dereceden tüm terimler 
açıklanmalıdır. Bu terimler kesinlikle n-2m=N birliktedirler öncelikle N’nin(çift,tam) 
olduğunu farz edelim, eğer n-2m=N ise n(çift,tam) olduğu açıktır ve n≥N’dir. Bu nedenle 
N’inci dereceden terimler(winner tanımında) aşağıdaki denklemde verilir. 

 

Bunu düzenli bir forma sokarsak, toplam indeksi (n-N)/2 yerine j yazarsak formül aşağıdaki 
gibi olur. 

 

N’nin durumu için bilinen bir değişiklikte wienner sunumunun aynı olduğudur. 

Simetrik volterra kernel ifadesindeki wienner kernellerinin açıklanması messier tasktır. Takip 
eden ispatta kullanılan bu yaklaşım simetrik kerneller için hNsym(t1,..,tN), h(N-2)sym(t1,..,tN,σ1,σ1), 

h(N-2)sym(t1,..,tN,σ1,σ1,σ2,σ2)  dir. Wienner kernelleri bu açıklamaları kullanılarak kN(t1,..,tN)  
isole edilebilir. 

Teorem 5.4   

Volterra sisteminde (130) ve wienner dikey sisteminde (110) (122) açıklanan bir sistem farz 
edilin N’inci dereceden wienner kernel ifadesi, 

         

 

İspat,uygunluk için  

                            

 

(131) şöyle yazılabilir 
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k≥1 için, 

 

Bazı başlangıç moniplasyonları ve değişken etiketleri kullanılırsa, 

 

(132) nin sağ yanı yazılırsa tekrar 

 

Formun genel terimi 

 

q≥1 ile birlikte eşitlik 

 

Basit özdeşlikler kullanıldığında eşitlik 0 olur.Böylece ispat tamamlanır. 
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Örnek 5.14 

3.dereceden polinom sistemleri şekil 5.2 de gösterilmektedir. 

                                           

 

                                               Şekil 5.2  3.dereceden polinom sistemi 

Wienner kernelleri simetrik volterra kernellerinden kolayca hesaplanılabilir. 

 

(132) kullanılarak, 2 sıfırsız wienner kernel ifadesi 

 

olur. 



 1 

BÖLÜM  6   
(W.J.RUGH) 

 
 

DİSCRETE-TİME SYSTEMS 
 

SAYISAL ( AYRIK)  SİSTEMLER 
 

Devamlı zamanlı sistemler için tartışılan Doğrusal olmayan sistem teorilerinin çoğu 
zaman bölmeli sistemler için geliştirilebilir. Farklılıklar vardır tabii ama bu farklılıklar teknik 
detaylarda veya sonuçların yorumundadır. Doğrusal durumlarda Tek zamanlı ve zaman 
bölmeli teoriler birbirine benzerdir. Bu bölümde zaman bölmeli doğrusal olmayan sistemleler 
için volterra serileri metotlarını anlatacağım. Basitlik için sadece kararlı sistemler burada 
incelenecek. Zaman bölmeli ve tek zamanlı sistem teorilerinin arasındaki farka özellikle 
dikkat edilecektir. Ve sonuçların raporlarının çoğu okuyucuya bırakılacaktır. Ek olarak 2 yeni 
sistem sınıfı anlatılacaktır. Bunlar çift doğrusal giriş-çıkış sistemleri ve 2 boyutlu doğrusal 
sistemler. Çoklu zamanlı giriş-çıkış sistemlerinin ve çok boyutlu doğrusal sistemlerin genel 
sınıfları kendi hakları ile ilgilenir. Burada bu ikisinin en basit halleri heterojen sistemlerin 
benzer sınıflarına sunum ve analiz metotlarının benzerliği işlenmiştir.  
 
6.1 Zaman bölgesinde Giriş-Çıkış sunumları: 
 
 Aşağıdaki formülde gösterilen Zaman bölmeli bir sistem düşünün 
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Giriş sinyali u(k) çıkış sinyali y(k) k<0 için 0 olan gerçek dizilerdir. Çekirdek (kernel) 
),...,( nn iih kadar gerçektir ve herhangi bir in değeri negatif ise 0 ‘a eşittir. 1 numaralı 

formülde belirtilen sistemin kararlı nedensel ve n dereceli homojen olup olmadığını 
belirlemek basit bir işlemdir. Toplamın üst limiti en az k olabilir fakat sonsuz üst limiti formül  
olarak basitleştirilebilir. Herhangi bir k değeri için 1 numaralı formüldeki y(k)  değeri belirli 
bir toplamı gösterir. Teknik bir hipotez bildirmeye gerek yoktur. Başka bir değişle 
integrallenebilirliği ve devamlılığı tek zamanlı sistemde 1 nolu formüldeki gibi düşünülmez. 
Aynı zamanda direk iletim terimleri 1 nolu formülde ayrılmış olarak gösterilmiştir ve işaretsel 
çekirdeği (kernel) düşünmeye gerek yoktur. Örneğin eğer formül  
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Yukarıdaki sitem aşağıdaki gibi yazılabilir  
 

( ) ,...2,1,0),( == kkuky n  
Benzer permitasyon elemanlarının toplamı gösterir ki 1 nolu formüldeki çekirdek 

simetrik çekirdek ile değiştirilebilir aşağıdaki gibi  
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( ) ),....,(
!
1,..., )(

(.)
)1(21 nsym iih

n
iih π

π
π∑=  

Genelliği kaybolmadan ( n! Permitasyonu için toplamı geri çağırır) simetrik çekirdek 
sunumundan üçgen çekirdek bulunabilir. Bununla birlikte biraz dikkat etmek gerekir çünkü 
çekirdeğin belirli argümentlerin de toplama hiçbir etkisi yoktur tek zamanlı durumlarda 
işaretsel olmayan çekirdeğin integralinde yapıldığı gibi. Bu üçgensel çekirdeğin değerleri 
üçgen şeklindeki sınır noktalarında uygun olarak artırılmalıdır. Bu artırımı yapmanın bir yolu 
aşağıdaki notasyonu kullanmak  
 

( ) ( ) ),...,,(ˆ,...,,..., 1322112121 nnsymtri iiiiiiiihiih −−−= −−δ  
 

Çok değişkenli adım fonksiyonu aşağıdaki gibi verildiğinde zaman. 
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N=2 olduğu zaman sonuç simetrik çekirdekten üçgen çekirdeğe 3 nolu formüldeki gibi 

gittiği kolaylıkla belirlenir ve üçgensel çekirdekten simetrik çekirdeğe 2 nolu formül 
kullanılarak geçilebilir. Daha yüksek dereceli durum daha zordur ama yapılabiliyor. Düzeltme 
işaretsiz notasyonlar daha değişik adım fonksiyonlarında aşağıdaki gibi belirtilebilir. 
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 Üçüncü özel form düzenli çekirdek formudur. Formül 5 deki üçgensel eşitliğinden 
başlayarak 
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 Bağımsız değişkenlerin üzerinde yapılan küçük bir değişiklik ile 
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Formül 7 nin geçerli olduğu koşullarda formül 6 daki genel toplam eşitliği elde edilir.  
 

Formül 5 ve formül 6 daki genel toplam eşitliklerinin üst limitlerinin sonsuza kadar 
değil de sonlu bir değerle de bitirilebileceği görülmektedir. Fakat bu formülü daha da 
karmaşık hale getirmektedir ve bundan dolayı da tek zamanlı safhalarda olduğu gibi sonsuz 
üst limit kullanılır.  
 Sadece sabit sistemlerin sonlu değerlerle bitirildiği düşünüldüğünde 
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deki genel toplam eşitliği ortaya çıkacaktır. Tek zamanlı safha ve bir çekirdek ),...,,( nn iikh  
sabitiyle eğer 
 

( ) ( )nn iikhkikih ,...,,,...,,0 11 =−−                   (9) 
 
ve bu ilişkinin geçerli olması durumunda 

 
( ) ( )nn iihiig −−= ,...,,0,..., 11       (10) 

 
da ki eşitliğin yerine konması ile  
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deki genel toplam eşitliği elde edilecektir. 
 
Bu eşitlik formül 8 deki genel toplam eşitliği ile aynıdır. Çünkü; 
 

( ) ( ) ( )nnn iikhkikihikikg ,...,,,...,,0,..., 111 =−−=−−   (12) 
Değişkenler üzerinde basit bir değişiklik yaparak formül 11 yeniden yazarsak  
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deki genel toplam eşitliği elde edilir. Bu formül 1 deki formülle aynıdır. 
 

Elimizdeki bu ana eşitliklere bağlı olarak, polinom ve volterra sistemlerinin 
tanımlaması homojen terimlerin sonlu ve sonsuz toplamlarından başka bir şey değildir. 
Elbette volterra sistemleri için koveryans konusu önem arz etmektedir, fakat tek zamanlı 
safhadaki koveryans olan temel yaklaşım bu sorunu doğrudan halletmektedir. Zaman bölmeli  
homojen, polinom ya da volterra sistemlerinin karşılıklı bağlantıları, gelişmelerin bölüm 1.4 
den kolayca uyarlanabilmesinden dolayı burada ele alınmayacaktır. 
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6.2 Dönüşüm alanındaki Girdi-Çıktı Formülasyonları  

 
Sıfırdan başlayıp negatif yönde olan n değişkenli ),....,( 1 niif =  tek taraflı fonksiyonun z 

dönüşümü formül 14 de tanımlanmıştır 
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Bu koveryans şartlarının dahil edilmesi zorunlu olan karışık değişkenlerin nzz ,....,1  pozitif 
olmayan bir kuvvet serileri olarak görülebilir. Ancak, burada düşünülecek fonksiyonlar için  
(Zaman bölmeli doğrusal sistem teorisinde düşünülen tipik fonksiyonlar için olduğu gibi) 
kovaryans bölgesi daima mevcuttur. Bu nedenle de konuyu dikkatle inceleyeceğiz. Aslında 
formül 14, koveryansın olmaması durumunda n bilinmeyenlerinin cebirsel bir objesi (biçimsel 
serisi) gibi görünmektedir. Böyleyken, beklide daha teferruatlı olan bakış açısı çoğu sonuçları 
tartışılacak model kurmak için kullanılabilir. Biz burada daha klasik yoruma bağlı kalacağız.  
 
Örnek 6.1 : Örnek 2.1 i hatırlayarak λ ’nın sabit olduğu  
 

( ) 0,, 21112,1
2 ≥−= − iiiiiif iλ  

 
Fonksiyonu nu düşünün bu fonksiyonun z dönüşümü şu şekildedir.  
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her bir sonsuz seriyi toplarsak (yada tek değişkenli z dönüşümü ele alınarak)  
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haline gelir. 
 
Formül 14 deki tanıma dikkatli bir bakış açısı ve örnek 6.1 deki hesaplamalar z dönüşümünün 
birkaç özelliğini ortaya çıkarmaktadır.  Bu özellikler Laplace dönüşümünün taşıdığı 
özelliklere doğal olarak çok benzemekte olup aşağıda sunulmuştur. Ve bu özelliklerin genel 
kanıtları kolaydır. Tüm fonksiyonlar tek taraflı olarak varsayılmış ve büyük harfli 
tanımlamalar z dönüşümü olarak ele alınmıştır. 
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Teorem 6.1 Z dönüşü doğrusaldır : 
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Teorem 6.2 Eğer ),....,( 1 niif =  iki çarpanın çarpanı olarak 
 

( ) ( ) ( )nkkn iigiihiif ,..,,..,,.., 111 +=     (16) 
 
Yazılabilirse o zaman  
 

( ) ( ) ( )nkkn zzGzzHzzF ,..,,..,,.., 111 +=    (17) 
 
Olur. 
 
Teorem 6.3 Eğer ),....,( 1 niif =  tek değişkenin katı olarak  
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Verilirse o zaman  
 

( ) ( ) ( )nnn zzGzzHzzF ,..,,..,,.., 111 =     (19) 
 
Olur. 
 
Teorem 6.4  Eğer ),....,( 1 niif =  n katlı (üslü) olarak  
 

( ) ( ) ( )∑ ∑
∞

=

∞

=

−−=
0

1111 ,..,,...,....,..,
j nj

nnnn jijigjjiif γ    (20) 

 
Verilirse o zaman 

 
( ) ( ) ( )nnn zzGzzHzzF ,..,,..,,.., 111 =       (21) 

 
Olur. 
 
Teorem 6.5 Eğer nii ,....,1  pozitif tam sayılar ise  
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l
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1 −−=−−      (22) 
 
Z dönüşümünün tersi için temel formül çok değişkenli bir tam sayı şeklindedir. 
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Her Гj nin Zj karışık düzlemindeki uygun bir çevre çizgisi olması durumunda açıkça görülen 
nedenlerle bu formül kullanılması zor bir formüldür. Bir alternatif yaklaşım ise ),....,( 1 niif =  
fonksiyonun değeri olan nzz ,....,1  nin negatif kuvvetindeki ),....,( 1 nzzF =  fonksiyonun 
genişleme katsayılarının elde edilmesidir. Eğer ),....,( 1 nzzF =  rasyonel bir fonksiyon ise bu 
genişleme katsayıları polinom payının polinom paydasına bölünmesi ile bulunur. Fakat bu 
işlem için biraz dikkatli olmak gerekir çünkü her rasyonel fonksiyon bir z dönüşüm 
benzemez. Bu fark ise bir z dönüşümünün negatif kuvvet serilerine karşılık gelme 
zorunluluğundan oluşmaktadır. İhtiyaç duyulan rasyonel fonksiyonun uygun ya da kesinlikle 
uygun olması bir çözüm değildir. 
 
Örnek 6.2 Rasyonel fonksiyon 
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Bir z dönüşüm değil çünkü bölme sonucu 
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Ya da  
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Ortaya çıkar ve her ikisi de negatif kuvvet serisi şeklinde yazılamamaktadır. Diğer yönden 
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Bir z dönüşümüdür, çünkü negatif kuvvet serisi şeklindedir. 
 

( ) ....1, 2
2

2
1

1
2

1
121 +++= −−−− zzzzzzF  

 
İlgili fonksiyon şu şekilde yazılabilir. 
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Tak zamanlı safhada kullanılan Laplace dönüşü gibi z dönüşümü de n dereceli homojen 
sistemde aynı şekilde kullanılabilir. Bir n dereceli homojen zaman bölmeli sistem için 
dönüşüm fonksiyonu sistem çekirdeğinin bir z dönüşümü olarak tanımlanır. Örneğin simetrik 
dönüşüm fonksiyonu  
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[ ]),...,(),...,( 11 nsymnsym iihZzzH =      (24) 

 
Ne yazık ki her zaman beklenilmesi gereken bir ihtimalle U(z), Y(z) ve ),....,( 1 nsym zzH =  
terimlerinin form 1 deki girdi-çıktı ilişkilerini doğruda doğruya göstermek imkansız 
görünmektedir. Genel yöntem olarak form1 şu eşitlikler şeklinde yazılmalıdır. 
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O zaman teorem 6.4 ilk eşitliği  
 

( ) ( ) ( ) ( )nnsymnn zuzuzzhzzy ...,...,,.., 111 =     (26) 
 
Da ki düzende yazmamızı sağlarken 2. eşitlik  
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De ki integrali içeren bir değişkenler ilişkisi içerisidedir. 
 
Üçgensel transfer fonksiyonuna göre form 1 in gösterimi de aynı düzende olacaktır. 
 
 Düzenli dönüşüm fonksiyon durumunda ise formül 25 ve formül 26 doğrudan 
uygulanamaz. Ancak girdi işaretlerinin uygun olarak sınırlanması ile daha açık ve kesin bir 
formül türetilebilir. Bu sonuç teorem 2.10 ile aynı olmakla birlikte düzenli dönüşüm 
fonksiyonunun formu üzerinde hipoteze gerek duymayan ve tek zaman safhalıdan oldukça 
farklı olan bir ispat ile konuyu detaylı olarak ele alacağız. 
 İlk olarak form 6 da ki girdi-çıktı ifadesinin z dönüşümü için temel bir ifade kuracağız.  
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da ki gibi tanımlanması durumunda  
 

[ ]),...,(),...,( 11 nregnreg iihZzzH =      (28) 
 
deki düzenli transfer fonksiyonu  
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da ki eşitlik şeklinde yazılır. 
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 Yardımcı Önerme 6.1: n homojen dereceli bir çıktının z dönüşüm formuna göre zaman 
aralıklı sistem  
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De ki düzende yazılabilir. 
 
İspat:  y(k) nin z dönüşümü form 6 daki gibi aldığımızda  
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Genel toplam eşitliğinde k yerine nikj −= indeksini koyduğumuzda  
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Şimdi u(k) = 0 ve k <0   varsayımı ile ve formül 30 ile sonuç aydınlığa kavuşur. 
 Bu ön kuram girdi-çıktı hesaplamalarının performansı için kullanılan değişken 
metotların ilişkisine bir alternatif sağlar. Daha da iyisi y(z) için daha net kesin bir ifade hazır 
ve nazır bir girdi takımı ile elde edilmiş olur. 
 
Teorem 6.6 : n homojen dereceli zaman bölmeli sistemin ),....,( 1 nreg zzH =  şeklinde düzenli 
dönüşüm fonksiyonu olarak tanımlandığını varsayın ve girdinin de 
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de verildiğini, o zaman 
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İspat: formül 32 nin z dönüşümü açıkça girdi işaretini ifade eder. 
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,.....1,0,)( λ  

Formül 31 de yerine koyarsak 
 

( )

∑ ∑ ∑

∑∑

∑ ∑ ∑ ∑

∞

=

∞

=

∞

=
−

−

−==

−−−

∞

=

∞

=

∞

++= =

−−−

−

−

−

−

− −

−

−

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

1 1 0
1

11

...

0 0 ... 1

...
...

1 1 1

111

11

12

1 1 11

11

11

)(.............

...

....)(

i i j
niii

k
m

nj

k
jj

m

j

iik
jj

i i iik

m

j

iik
jjii

n

n

nni

n

n n

n

n

ziHaa

zaa

azHzy

λλ

λ

 

 

∑ ∑
=

∞

++=

−−−−−−−

−

−

−−

m

j iik

k
j

iik
j

iik
jj

n

n

nna
1 ...

......

11

1

1211 ...λλλ  

 
Şimdi k dizisini yerine 11 ... −−−−= niikr  koyarsak  
 

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

= =

=

−

=

−−

= =

∞

=

−
∞

=
−

− −−−

−

−

−

−−

− −−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=

m

i

m

i jjjjj
regii

m

j

r

jj

m

r

r
jj

i

j

i

jj

m

i

m

i i

i

jji
niii

n nnn

n

n

n

nn

n nn

n

zUzzzHaa

zazz

zziHaazy

1 1 2

1 02

1 1 0 0
1

1 1 1111

11

11

1

1

2

1

1 1 1

1

111

111

,,...,.......

...

)(.............)(

λλλλλ

λλ
λ

λλλ

λλ

 

 
Elde edilir. 
 

Teorem 6.6 genel olarak geniş bir durumu yeterli bir derecede kapsamaktadır ve 
görünüşte dağınık olmasına rağmen hesaplama sistemi oldukça doğrudur. Örneğin eğer 

),....,( 1 nreg zzH =  uygun bir rasyonel ise o zaman  Y(z) uygun bir rasyonel olacaktır ve kısmi 
kesir genişlemesi Y(k) yı hesaplamak için kullanılabilecektir. 
 Dönüşüm uygulamalarını bitirmeden önce değişik transfer fonksiyonları arsındaki 
birkaç basit ilişkiyi göreceğiz. Form 7 yi kullanarak ve değişkenlerde basit bir değişiklik 
yaparak  
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( ) ( )

( )

( )1121

0 0 111

2
11

0 0
1211

/.../,

.........

...,......,......,..,

1

2

1

1

1

−

∞

=

∞

=

−

−

−
−

∞

=

−
∞

=

−

++=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
++=

++++=

∑ ∑

∑ ∑

nntri

j j

j

n

j
j

ntri

i

i
n

i

i
nnntrinreg

zzzzzH
z
z

z
zzjjH

zziiiiiHzzH

n

n

n

n

 

 
 
Elde ederiz. Bu ilişki kolayca tersine çevrilerek  
 

( ) ( )nregntri zzzzzHzzH ...,...,,,... 12111 =  
 
Elde edilir. Simetrik dönüşüm fonksiyonunu düşünürsek o zaman daha da karışacak form 2 ile 
dolaylı olarak anlatılan temel ilişki  
 

( ) ( )∑=
(.)

1 )()1(
,...,

!
1,...

π
ππ n
zzH

n
zzH trinsym  

 
O zaman formül 35 bize  
 

( ) ( )∑=
(.)

11 ,...,,...,,
!
1,...

)2()1()1(
π

πππ nregnsym zzzzzH
n

zzH  

 
Verir 
 

regH ya da triH  nin symH  then hesaplanması için en iyi yolun simetrik bir çekirdeğin 
bulunması ile başlanacağı görülmektedir. Düzenli yada üçgensel çekirdek elde etmek için 
form 3 ve form 7 yi kullan ve daha sonra z dönüşümünü hesapla. Bu hoş olmasa da yapılacak 
en iyi şeydir. Fakat basit durumlar da kullanılabilecek bazı numaralar vardır. 
 
Örnek 6.3 n=2 durumunda  
 

( ) ( ) ( )

( ) ( )

( ) ( ) 21

1 2

21

1 2

212
0 0

21

211
0 0

21

2122111

,,
2
1

,,
2
1

,
2
1,

2
1,

ii

i i
reg

ii

i i
reg

regregnsym

zzziih

zzziih

zzzHzzzHzzH

−−
∞

=

∞

=

−−
∞

=

∞

=

∑∑

∑∑

+

=

+=

 

 
Böylece, değişkenlerin basit bir değişimi şunu verir 
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( ) ( )

( ) )(
22

0 0
21

21
0 0

21121

211

1 2

21

1 2

,

,/,2

iii

i i
reg

ii

i i
regsym

zziih

zziihzzzH

+−−
∞

=

∞

=

−−
∞

=

∞

=

∑∑

∑∑

+

=

 

 
Açıkça, sağ taraftaki ilk terim ),( 21 zzH reg =  olurken ikinci terim 1z ’in sadece pozitif güçleri 

ile birlikte ilave olarak )/,(2 121 zzzH sym =  deki her 1z  teriminin ½ sini içermektedir. 

Böylece, ),( 21 zzH reg = , )/,(2 121 zzzH sym = ’in bölünmesi 1z ’in tüm pozitif güçlerini içeren 

tüm terimlerin silinmesi ve her 0
1z  teriminin ½ ile çağrılması ile elde edilebilir. Özel bir 

durumda ; 
 

( )
1

,
21

21
1 −

=
zz
zzzzH nsym  

 
Değişkenlerin değiştirilmesi ve bölme sonucu  
 

( ) ( )....12
1

2/,2 2
2

1
2

2

2
121 +++=

−
= −− zz
z
zzzzHsym

 

Daha sonra, z1 terimlerinden oluşan tüm seriler 
 

( )
1

...1,
2

22
2

1
21 −

=+++= −−

z
zzzzzH nreg  

 
Elde edilir. 
 
6.3 Durum Eşitliklerinden Girdi/Çıktı Önermelerinin Elde Edilmesi: 
 
 3. Bölümde anlatılan tüm metotlar oldukça küçük değişkenle zaman aralıklı safhaya 
uyarlanabilir. Bunun için birkaç sayfa doldurmaktan ziyade varyasyonel eşitlik metodunun ve 
Carleman doğrusallaştırma metodunun akıllıca bir kombinasyonuna konsantre olacağız ve 
başlangıçtaki durum eşitliklerinin genel bir takımını düşüneceğiz.  Daha önce bahsedildiği 
gibi zaman bölmeli safhanın güzel bir özelliği itici çekirdekler sorunun ortaya çıkmamasıdır. 
Diğer bir ifadeyle, zaman aralıklı girdi/çıktı önermeleri doğrusal dönüşüm terimlerini 
içermektedir. 

Ancak bu terimlerin çekirdekleri için olan genel formları epeyce zorlaştırdığını 
göreceksiniz. Durum eşitlikleri  
 

  
[ ]
[ ])(),()(

1,0,)(),()1(
kukxhky

kkukxfkx
=

==+
      (34) 

 
de x(k) nın n, x 1 ve u(k) ve y(k) nın sabit olması durumunda yapılacak değişikliklerle daha 
uygun hale gelecektir. Başlangıç durumunda x(0)=0, f(0,0) = 0 ve h(0,0) = 0 olduğu kabul 
edilmiştir. Bu basitlik için yapılmıştır, eğer x(0)=x0 =0 ve 00 )( xxf =  olduğunda 0x  bir 
denge durumudur ve sıfır başlangıç durum formülünü elde etmek için basit bir değişken 
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değişimi kullanılabilir. (Eğer 0x  denge durumu değilse o zaman burada bahsedilen söz 
konusu problemin yeni bir biçime sokulması için daha zor hesaplamalara ihtiyaç vardır.) 

Formül  34 deki son varsayım, f(x,u) ve h(x,u) fonksiyonları, istenilen derecede 
polinomal girdi/çıktı önermesini hesaplamayı sağlayan yeterli derecedeki x=0, u=0 
durumundaki Taylor formülü kullanarak gösterilebilir. O zaman verilen durum eşitliği yerine  

 
( ) ( ) ( )

( ) ( ) ( )∑∑

∑∑

= =

= =

==

==+

N

i

N

j

ji
ij

N

i

N

j

ji
ij

HkukxHky

FkukxFkx

0 0
00

0 0
00

0,)(

0,)1(
    (35)  

 
Gösterilen durum eşitliği bir yaklaşımla geçirilebilir. Standart Kronecker üretim 
notasyonunun kullanıldığı durumda 0)0()( =ix , i=1….N dir. Tek zamanlı safhada olduğu gibi 
önemli olan husus formül 35 de uyarlanan N dereceli çekirdekler ile formül 34 de uyarlanan 
N dereceli çekirdekler aynı olacaktır. ( 3.Bölümde formül 35 deki toplamların üst limitlerin 
çok ciddiye alınmasının gerekli olmadığı deneyimini kazanmıştık. Formül 35 de N dereceli 
polinom önerimi ne katkıda bulunmayan pek çok terim vardır.) 
 Bir sonraki işlem formül 53 deki x(k) için fark eşitliği sağlayacak )2(x (k), )3(x (k) ve 
bu şekilde devam eden fark eşitlikleri geliştirmek olacaktır. Eşitlik formu tek zamanlı 
safhadan farklı olmasına karşın, çünkü )1( −jx (k+1) anlamına gelen )( jx (k+1) ifadesini içeren 
üretim kuralı yoktur. Bu prensipte basit bir meseledir örneğin )2(x (k) için farklı bir eşitlik şu 
şekildedir. 
 

( ) ( ) ( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
=

+⊗+=+

∑∑∑∑
= == =

N

i

N

j

ji
ij

N

i

N

j

ji
ij kukxFkukxF

kxkxkx

0 00 0

2 )1()1()1(
  (36) 

 
Net toplamı kullanarak bu bir fark eşitlik formülüne dönüşecektir. 
 

( ) )()()1(
0,

2 kukxFFkx ji
N

ji
qn

N

jnm
iqk
km∑ ∑

≥
=+
=+ ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⊗=+      (37) 

 
Başlangıç durumunda 0)2( =x  olması durumunda bu eşitlik formül 35 deki )(kx  için verilen 
fark eşitliği ile aynı formdadır ve açıkça )()3( kx , )()4( kx ,… eşitlikleri de aynı olacaktır. Şimdi 
küme  
 

( )

( ) ⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊗

)(
.
.
)(

)(

1

kx

kx

kx

N

       (38) 
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Bu state-affine (durum affinesi) olarak adlandırılan N dereceli eşitlik yaklaşımına kılavuzluk 
eder.  
 

∑∑

∑∑

=

−

=

⊗

⊗

=

−

=

⊗⊗

+=

=+=+

N

i

i
N

i

i

N

i

i
N

i

i

kudkukxcky

xkubkukxAkx

1
1

1

0
1

1
1

1

0
1

)()()()(

0)0(,)()()()1(
    (39)   

 
Toplamdaki üst limitler N den küçük derecenin çekirdeklerini hesaplamaya ihtiyaç 

duyulan terimleri içerecek şekilde seçildiği durumda elbette bu durum eşitliğinin boyutu 
oldukça yüksektir. Fakat genel bir türetme olarak terimlerin istenenden fazla olması sorununa 
karşı bu küçük bir problemdir. Çift doğrusal zaman bölmeli eşitliğin istenilen basit bir olay 
olduğunu hatırlayın. 
 Formül 39 daki state-affine fark eşitliğini çözmek için varyasyonal eşitlik metodunu 
kullanacağız ve şimdiki fazla Kronecker sembolünü iptal edeceğiz. İşlem )(kuα girdi işaretini 
varsaymakta, α isteğe bağlı bir gerçek sayıdır ve formun çözümü 
 

...)()()()( 3
3

2
2

1 +++= kxkxkxkx ααα      (40) 
 
Durum eşitliğinde yerine koyarak ve α nin kuvvetleri gibi katsayıları eşitlemek varyasyonal 
eşitlik olan formül   
 

∑
−

=
− =+=+

=+++=+

=++=+

=+=+

1

0
1

3
3

3
2

122133

2
2

21122

1111

0)0(),()()()1(

.

.
0)0(),()()()()()()1(

0)0(),()()()()1(

0)0(),()()1(

N

i
N

N
N

i
NiN

o

o

o

xkubkukxAkx

xkubkukxAkukxAkxAkx
xkubkukxAkxAkx

xkubkxAkx

       (41)  

 
Bu eşitlikler kolayca çözülebilir ve çözümü tekrar yazarsak (k>0 için) 
 

[ ]

[ ]

∑ ∑

∑

∑

∑

−

=

−

=
−

−−

−

=

−−

−

=

−−

−

=

−−

⎥⎦
⎤

⎢⎣
⎡ +=

++=

+=

=

1

0

1

0

1
0

1

0

3
3

2
1221

1
03

1

0

2
211

1
02

1

0

1
01

)()()()(

.

.

)()()()()()(

)()()()(

)()(

k

i

k

i

N
N

j
jNj

ik
N

k

i

ik

k

i

ik

k

i
i

ik

iubiuixAAkx

iubiuixAiuixAAkx

iubiuixAAkx

iubAkx

    (42) 
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 Bu tekrarlanan setlerin çözümü  varyasyon eşitliği daha karmaşık bir çözüm formülü 
verir. İlk üç ifade aşağıda sıralanmıştır. 
 

)(

)()()()(

)()()()(

)()()()(

)()(

1
3

3
1

0

21
2

1
1

02
1

02
2

12
1

01
1

0

1

0

1

0

1

0
3211

1
01

1
01

1
03

1

0

1

0
1

2
2

1
0211

1
01

1
02

1

0

1
01

2121

1

2

2

3

3221

1

2

21

iubA
iuiubAAAiuiubAAA

iuiuiubAAAAAkx

iubAiuiubAAAkx

iubAkx

ik

iiikiiik

k

i

i

i

i

i

iiiiik

k

i

i

i

ikiiik

k

i
i

ik

−−

−−−−−−−−

−

=

−

=

−

=

−−−−−−

−

=

−

=

−−−−−−

−

=

−−

+

++

=

+=

=

∑∑∑

∑∑

∑

  (43) 

 
Gerek bir sonuca varmadan önce formül 43 deki ilk iki çözüm ifadesini düzenli bir forma 
dönüştürmek uygun olacaktır. Elbette )(1 kx  için çekirdek vektörü düzenli bir formda 
tanımlamak kolaydır. 
 

∑∑
==

− −=−=
k

i

k

i
i

i ikuigikubAkx
0

11
1

1
1

01
11

1 )()()()(     (44) 

 
G(0)=0 olduğunu göstermek için bir basamak fonksiyonu kullanarak yazarsak 
 

)1()( 111
1

01
1 −= −
− ibAig i δ        (45) 

 
Şimdi )(2 kx  üçgensel formda yazılabilir, vektör çekirdek ifadesi 

 

⎪
⎩

⎪
⎨

⎧

≥=>

≥>>

= −−

−−−−

takdirdeaksi
iikbA

iikAAA
iikw ik

iiik

tri

,0
0,

0,

),,( 212
1

0

21
1

01
1

0

21

21

     

olduğu durumda  

∑∑
= =

=
k

i

i

i
tri iuiuiikwkx

0 0
21212

1

2

)()(),,()(        

 
ya da birim adım ve birim işaret fonksiyonlarını kullanarak  
 

0,),()1(

)1()1(),,(

21210112
1

0

21111
1

01
1

021
21

≥−−−=

−−−−=

−
−−

−−
−−−−

iiiiikbA
iiikbAAAiikw

ik

iiik
tri

δδ
δδ

    (46) 

 Sabitliği kontrol etmek için  
 

),,(),,0( 2121 iikwkikiw tritri =−−       (47) 
 
Böylece sabit formdaki bir üçgensel çekirdek 
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0),()1(

)1()1(

),,0(),(

21120112
1

0

211111
1

01
1

0
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−
−
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i
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δδ
δδ     (48) 

 
İlk üçgensel tanım kümesi üzerinde üçgensel çekirdek  
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210212
1

0

211211
1
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−−−

δδ
δδ

    (49)  

 
Böylece düzenli çekirdek  
 

)()1()1()1(
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10212
1
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1
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1

0
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iiigiig
iii
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   (50) 

 
İle 0, 21 ≥ii için verilir. 
 
 Formül 39 daki çıktı eşitliği göz önüne alınarak )(2 ky  nın 2. dereceden çıktısı  
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      (51) 

 
Formül 45 ve 50 den 
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reh       (52) 

 
 

Genel olarak bu hesaplamayı yapmak için çok karışık bir toplama ve indeks işlemleri 
vardır. Bu yüzden detaylara inmeden basitçe sonuçları göreceğiz formül 39 daki durum 
eşitliğinin dereceli düzenli çekirdeğinin state-affine uygun olarak eşitliği şu şekildedir. 
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Her terim için formülde toplanan değerlerin n olduğunu ve sırasıyla gelen her 1

0
−kiA katsayısını 

ise k indeksinin belirlediğini görmekteyiz. Genel bir n dereceli çekirdek için toplam olarak n2  
kadar terim olacaktır. 
 
Örnek 6.4:  Zaman bölmeli state-affene sistemleri örneklem girdi işaretlerine sahip çift 
doğrusal tek zamanlı sistemlerin tanımlamasında doğrudan ortaya çıkmaktadır. 
Anlaşılabilmesi için sadece 2. dereceden homojen olan bir örneği tartışacağız ve örnek işaret 
olarak tepki modeli kullanılacaktır. Sistem şu şekilde tanımlanmıştır. 
 

0,,),( 2121
12 ≥= ttbDecetth AtAt

reg   
 
ve girdi işareti 

∑
∞

=

−=
0

0 )()()(
k

kTtkTutu δ  

 
olduğu durumda  
 

∫ ∫
∞ ∞

−−−=
0 0

1222121 )()(),()( σσσσσσσ dtutuhty reg  

T nin örneklem periyodu olması durumunda. O zaman, thm deki zamanda örnek olayın çıktısı 
şu şekilde verilir 
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0
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k k
reg

k

k
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TkuTkuTkmTTkTkh

dTkmTTku

TkmTTkuhmTy

σσσσδ

σσδσσ

 

 
 
Bu ifadeyi düzenli bir forma çevirmek için toplamadaki değişkenlerin değiştirilmesi (yeniden 
düzenlenmesi) gerekir. Öncelikle 2k  yerine 22 kmj −= ye 1k  yerine 121 kjmj −−=  
yazalım. Daha sonra ise giriş işareti ve düzenli çekirdeğin her ikisinin de negatif değerler için 
sıfır olduğu gerçeğinden hareketle  
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=
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−−−=
0

2121121
01 2

)()(),()(
j j

reg TjmTuTjjTjjmTuTjTjhmTy  

Böylece bu zaman bölmeli için düzenli çekirdeğin gösterimi şu şekildedir 
 

0,,)()(),( 2121
12 ≥= jjbeDecTjTjh jATjAT  

 
Şimdi tanımlarla beraber 
 

cDbdcDccec
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AT
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210

2110
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Son bir yorum olarak formül 53 deki fonksiyonun n. üssünü almak oldukça kolay olmaktadır. 
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0
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0
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1
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n
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i i
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n
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=

−
−

−

−
−

−
−

−
−

−−
∞

=

∞

=
∑∑

 (54) 

 
Her ne kadar bu ifade formül 53 de olduğu gibi çok açık olmasa da n2  li terimleri ortaya 
çıkarmak biraz çalışmayla mümkündür. 
 
Örnek 6.5 Formül 39 daki state-affine durum eşitliğinin 3. dereceden normal fonksiyona 
çevrilmiş formülü 
 

1
1

011
1

021
1

030

2
1

021
1

0301
1

022
1

030

1
1

021
1

0213
1

030

2
1

0221
1

0123311

)()()(

)()()()(
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)()(),,(

bAIzAAIzAAIzc
bAIzAAIzcbAIzAAIzc

bAIzAAIzcbAIzc

bAIzcbAIzcdzzzHreg

−−−

−−−−

−−−

−−

−−−+

−−+−−+

−−+−+

−+−+=

 

Eğer durum eşitliği gerçekten çift doğrusal ise o zaman en son ifade en doğrusudur. 
 
 
6.4 State-Affine uygulama teorisi 

 
Zaman bölmeli sistemler için uygulama problemi temel olarak düzenli dönüşüm 

fonksiyonu girdi/çıktı gösterimi ve state-affine denklemleri ışığında tartışılacaktır. Böylece 
burada bahsedilen uygulama teorisi 4. bölümde anlatılandan daha geneldir. Aslında zaman 
bölmeli sistemler için çift doğrusal uygulama teorisi göreceli olarak daha az karmaşık özel bir 
durum olarak karşımıza çıkacak.(Çift doğrusal uygulama teorisi 4. bölümdeki s’lerin z’lerle 
toptan yer değiştirmesi yolu ile de elde edilebilir). Burada homojen ve polinom sistemlere 
ağarlık verecek ve volterra sistemlerini ise orijinal araştırmada bırakacağız. 

Dönüşüm fonksiyonun eğer polinomların bir kesiri olarak yazılabiliyorsa doğrusal olarak 
adlandırıldığını hatırlayalım.  
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),...,(
),...,(

),...,(
21

21
21 zzQ

zzpzzH =      (55) 

 
Eğer ),...,( 21 zzp  in derecesi ; ),...,( 21 zzQ nin derecesinden küçükse doğrusal dönüşüm 
fonksiyonunu uygun(tamamen uygun) diye adlandırılır. Eğer ),...,( 21 zzQ = )()....( 11 nn zQzQ  
ise tanınabilir diye adlandırılır. 4. bölümdeki gibi numaratör ve denaminatör polinomlar 
göreceli olarak önemsiz konuları dışarıda bırakabilmek için esastır. 
 n. dereceden homojen veya polinom bir sistemin state-affine uygulaması şu şekilde 
olur  
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∑ ∑
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i
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1

1

0
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0 1

)()()()(
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    (56) 

 
Sonlu x(k) durum vektörünün boyutu uygulamanın boyutu olarak adlandırıldığı durumda 
formül 56 daki toplamın üst limitlerinin sistemin derecesi ile uyumlu olduğuna dikkat edelim. 
Bu formülleri kullanarak uygulama üzerinde şu sonuçlara varabiliriz. 
 
Teorem 6.7 :  n. derecen bir homojen zaman bölmeli sistem ancak ve ancak düzenli dönüşüm 
fonksiyonu uygun, tanınabilir fonksiyon ise state-affine tanınabilir olarak adlandırılabilir. 
 
İspat : Eğer sistemin state-affine uygulaması varsa düzenli dönüşüm fonksiyonu formül 54 
deki gibi yazılabilir. Her 1

02 )( −− AIz  i klasik adjoint-over-determinant formunda yazmak ve 
terimleri ortak bir denominatör üzerine yerleştirmek ),...,( 1 nreg zzH  nin uygun, tanınabilir 
fonksiyon olduğunu gösterir.  
 Eğer ),...,( 1 nreg zzH uygun, tanınabilir bir fonksiyon ise o zaman bunu şu şekilde 
yazabiliriz. 
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Burada  
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        (58) 

 
Sürekli zaman durumundaki gibi, payda polinomu matriks faktörlü olarak yazılabilir. 
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 PP zzzzz nn 121 ...),...,( =  

Zj z jmzj,...,0,1, j  ve j=1,...,n değerlerini alırken P katsayılar vektörüdür. Düzenli transfer 

fonksiyonu aşağıdaki gibi faktörlü halde yazılabilir. 
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1

22

2
1 zQ

Z
zQ
Z

zQ
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         )()()...( 1122 zGzGzG nn=  
 
Herbir )(zG jj

 uygun tamsayılardan oluşan bir matrkstir. Böylece, doğrusal farketme 

tekniğiyle aşağıdaki eşitlik çıkartılabilir. 
 
 njI DBAzCzG jjjjjjj ,...,1,()( ˆˆ)ˆˆ 1
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A0 blok köşegeni olsun ve Aj j. blok altköşegeni dışında 0 olsun. 
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 j. blok hariç tüm satırlar 0 olsun, 
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Aşağıdaki eşitliğe göre (n-1). blok hariç tüm cj satırları 0 olsun, 
 

[ ]Cc n
ˆ0..00 =  

 

⎥⎦
⎤

⎢⎣
⎡=

−+−
0)........(0 ˆˆˆ

1CDDc jnjnnj
, j=1,..,n-1 

 
Ve son olarak ....,0... ˆˆˆ

1111 DDDddd nnnn −−
====  Buna benzer düzenli transfer 

fonksiyonları (54)’den hesaplanabilir. Özel blok yapısı yüzünden, derecesi 0 olmayan tüm 
transfer fonksiyonları 0’dır, ve n. derece transfer fonksiyonları aşağıdaki gibi verilmiştir. 
 
 )()...(((),...( 1

1

1111

1

1 )ˆˆ)ˆˆˆ BAzCDBAzCDzzH II nnnnnnreg

−−
−+−+=  

 
     )()...( 11 zGzG nn=  
 
İlginç olmayan bir örnek olarak bu hesaplama ispatı tamamlamaktadır. 
 
Teorem 6.1. Sadece ve sadece sistemin düzenli transfer fonksiyonu kesin uygun, tanınabilir 
fonksiyonsa n. dereceden homojen, ayrı zamanlı sistem çifte lineer olarak tanınabilirdir. 
 
 En düşük durum tanımlarının yapısına başlamadan önce  belki de hafif olarak 
tanımalamada digressiondan bahsetmek iyi olacaktır.Şu ana kadar düzenli transfer 
fonksiyonları cinsinden tüm tanımlama sonuçlarını sundum.Bu sonuçlar kolayca üçgen 
transfer fonksiyonu gösterimine kolayca çevirilebilmektedir çünkü basit bir değişkenlerin 
değişimi iki transfer fonksiyonuyla ilgilidir. Ama simetrik transfer fonksiyonları cinsinden 
tanımlamadan bahsetmek çok zordur. Bu konuya yaklaşımın bir yolu düzenli ve simetrik 
transfer fonksiyonları arasında ilişki kurmaktır. Bu konu bölüm 6.2 de 2. dereceden durumu 
için tartışılmıştır, bu tartışma bu kısımdan sonradır. 
 
Örnek 6.6. İlişkiden yola çıkarak, 
 

 ),(
2
1),(

2
1),( 21221121 zzzHzzzHzzH regregsym +=  

 
Açıktır ki, 2. dereceden homojen sistem için simetrik transfer fonksiyonu aşağıdaki formda 
olmalıdır: 
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)()()(

),(
),(

2122111

21
21 zzQzQzQ

zzzzH
P

sym =  

 
Burada, Q1(z1) ve Q2(z2) tek değişken polinomlar ve P(z1,z2) 2 değişkenli polinomdur. Ama 
payda herhangi bir rakam olamaz, ayrıca P(z1....zn) formunda kısıtlamalar da vardır.  
 

 
1

),(
21

21
21 −
=
zz
zzzzH sym

 

 
 Yukarıdaki simetrik transfer fonksiyonu state-affine tanımlıdır çünkü tekabül eden 
düzenli transfer fonksiyonu uygun, tanımlanabilir kesir fonksiyondur. 
 

 
1

),(
2

2
21 −
=
z
zzzH sym

 

 
 Teorem 6.7’nin ispatında verildiği gibi state-affine tanımlamasının kurumu bu 
durumda oldukça basit. 
 
 1,0 ˆˆˆˆ

1111
==== DBAC  

 
 1ˆˆˆˆ

2222
==== DBAC  

 
Böylece state-affine tanımı aşağıdaki gibidir: 
 

 )(
1
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)(
00
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)1( 2 kkxkx u⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+  

 [ ] )()(01)( 2 kkxky u+=  
 
 )()(ˆ 2 ttu u=  yeni girdisini tanımlayarak bu durum çok kolaydır, tanımlama lineerdir. 
 
 Polinom sistem durumu için, düşünülmesi doğal olan girdi çıktı gösterimi homojen alt 
sistemlerin düzenli transfer fonksiyonlarının sırasıdır.O zaman temel tanımlama basit olarak 
bölüm 4.3’deki teorem 4.9’un tekrar ifadesidir. 
 
Teorem 6.8. Sadece ve sadece her homojen alt sistemin düzenli transfer fonksiyonu 
uygun,tanımalanabilir fonksiyonsa bir polinom ayrı zamanlı sistem state-affine tanımlıdır. 
 
 Polinom sistemler için minimum boyut state-affine tanımlamalar kurmak için, bölüm 
4’deki gibi kaydırma operatörü yaklaşımı kullanılacaktır. State-affine durumuyla ilgilenmek 
için daha fazla terim çeşidi vardır, z-transformu tanımından dolayı negatif güç serileri yerine 
pozitif olmayan güç serileri içerilmektedir. Ama, temel olarak fikirler aynıdır. 
 
 ,...)0),,...,(),...,,(),((),...,(ˆ 12111 zzHzzHzzz Nregregn HH =                                  (59) 
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 zziihzzH ii
ii

k

k

kkregkreg
−−

∞

=

∞

=
∑∑= ...),...,(...),..,( 1

1

11
00

1
                                                     (60) 

 
 Eşitlik (59) verilen düzenli transfer fonksiyonlarının sınırlı uzunluktaki sıra için, 
minimum tanımlama problemi aşağıdaki gibidir. mxm boyutunda A0,....AN-1, mx1 boyutunda 
b1,...bN, 1xm boyutunda c0,...cN-1 ve d1,...dN katsayıları eşitlik (53) n=1,...N için sağlanan, 
eşitlik (53)’de n>N için sağ tarafı 0 yapan ve m’yi olabildiğince küçük yapan matrilerini 
bulun. Bu matrisler m boyutunda eşitlik (56)’da state-affine tanımını belirtmektedir. Bu tip bir 
tanım için (Aj,bj,cj,dj,Rm) kısayol gösterimi kullanılacaktır. 
 
 Aşağıdaki gibi pozitif olmayan güç serisi veriliyor: 
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                                                                     (61) 

 
 Kaydırma operatörü tanımlayın: 
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Kaydırmanın lineer bir operatör olduğunu göstermek kolaydır: 
 
 [ ]),...,(),...(),...( 2111 zzVzzVzzzV kkkkkkS ∞−=                                                (63) 
 
SVk(z1,...zk) ayrıca pozitif olmayan güç serisidir. İndeks operatörü aşağıdaki gibi 
tanımlanmıştır: 
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                                               (64) 

 
 1),,...,,(),...,( 111 >∞= − kT zzVzzV kkkk

                                                                (65) 
 
 T’nin lineer operatör olduğunu görmek zor değil, öyleki TVk(z1,...,zk) pozitif olmayan 
güç serisidir. Aynı S ve T sembolleri kullanılacaktır. Bu tanımlar pozitif olmayan güç 
serilerinde belli uzunluktaki sıralamalara genişletilebilir. 
 

),...),,(),,(),((),...),,(),,(),(( 3213212132132121 zzzVzzVzzzzVzzVz SSSVVS =        (66) 
 

),...),,(),,((),...),,(),,(),(( 32132123212121 zzzVzzVzzzzzVz TTVVT =                        (67) 
 
 Eşitlik (59)’daki gibi tanımlanan N. dereceden polinom sistemi düşünün. Pozitif 
olmayan güç serilerinin belli uzunluktaki dizilerinin lineer uzaydaki toplamı aşağıdaki gibidir. 
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 }{ .),..,...(ˆ),,...(ˆ),,...(ˆ 1

2

111 zzSzzzzU NNN HHSHspan=  
 
 { },...,, 1

2

112 USUUU TSTTspan=  
 . 
 . 

{ },...,, 1

2

11 USUUU NNNN TSTTspan
−−−

=  
 
 { }UUU NspanU ,...,

21
=              (68) 

 
 S ve T lineer operatörler olarak, U da düzlemve aralık olarak görülebilir. 
 
 URLj →:  başlangıç operatörlerini aşağıdaki tanımlara göre yapınız. 
 
     rHSr zzL N),...(ˆ 11 =  
 
     rHSTr zzL N),...(ˆ 12 =  
     . 
     . 
     rHSr zzTL N

N
N ),...(ˆ 1

1−=       (69) 
 

RUEj →:  değerlendirme operatörleri setini aşağıdaki gibi tanımlayın: 
 
 ,...)0),,...,(),...,,(),((),...,(ˆ 1212111 zzVzzVzVzz NNNV =  
 
U’nun bir elemanıdır. 
 )(),...,(ˆ 110 ∞=VzzE NV  
 
 ),(),...,(ˆ),...,(ˆ 21011 ∞∞== VzzEzzE NN VTV  
 . 
 . 
 ),...,(),...,(ˆ),...,(ˆ 1

1
011 ∞∞== −

− VzzTEzzE NN
N

NN VV           (70) 
 
Son olarak, RRd j →:  aşağıdaki gibi tanımlansın: 

 
 Nj

zz j
zzHd jregj ,...,1,|),...,(

...1
1

==
∞===

          (71) 

 
Tüm bunların kendi düzlemlerinde lineer operatörler olduğunu göstermek çok kolay. 
Eğer U sınırlı boyutta ise o zaman (STj,Lj,Ej,dj,U) verilen polinomun sınırlı boyutta, state-
affine tanımıdır. Bu yapıldıktan sonra, tam bir tanım bulmak U’ları Rm’ler ile değiştirmeyi ve 

EcLbTA jjjj
j

j S === ,,  matriks gösterimlerini bulmayı ve dj operatörlerinin sabit 

olarak değerlendirilmesini gerektirmektedir. Bu işlemin verdiği minimum boyut state-affine 
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tanımının ispatı ihmal edilecektir çünkü çok karışıktır. Aslında (STj,Lj,Ej,dj,U) tanım olan 
çoğu ifadeyi ihmal edeceğim. Hesaplamanın nasıl gittiğini göstermek için, N>3 olan N. 
dereceden polinom sistemini durumunu düşünün. 
 
 ),...),,(),,(),((),...,(ˆ 3212111 zzzHzzHzzz regregN HH =  
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 O zaman eşitlik (53) 3. dereceden bir seçimle aşağıdaki gibi yazılabilir. Burada d3 
sabittir. 
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Eşitlik (53)’deki bAc j
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−  terimi aşağıdaki eşitliğe denktir. 
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∞

=

−−
∞

=

∞

=

− ++=
0
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0 0

111

2
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1

21

1 2

1 ,),(,)((
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ih zzijihzjiTE reg
 

    

∑∑∑
∞

=

∞

=

∞

=
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0 0 0

3213211
1 2 3

321 ,...)),,(
i i i

iii zzziijihreg  

          )0,0,(,...)),0,((
11110

1 jhzijhE regreg
i == ∑ −  

 
 Sonuç olarak, bAAAc jj

o 1

1
02

1
0

13
−−  aşağıdaki eşitliğe denktir. 

 

 ),...,(ˆ)( 1
2

01

121

0
1313 zzSTSELSTSE NHjjjSj =−−  

 

         ),...),0,((
0

1110
1

13 ∑
∞

=

−=
i

ij zijhSE reg
 

 

         ),...),0,((
0

13110
1

1∑
∞

=

−+=
i

izjijhE reg
 

 
         ),0,(

31 jjhreg=  
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 Tüm bu kaydırmadan sonra, indeksleme ve değerlendirme çok eğlenceli olmaktadır. 
Ben okuyuculara birkaç örnek daha yapmalarını tavsiye ederim. Ama, tanımlamayı 
genelleştirebilmek için gerekli olan gösterim ve hesaplama yatırımı belki de uymayabilir. 
 
Örnek 6.7 Hesaplamaların doğasını sabitlemek için aşağıdaki gibi anlatılan basit bir polinom 
sistemi düşünün. 
 

 ,...)0,
1

,
1

(),(ˆ
2

2

1

1
21 −−
=

z
z

z
zzzH  

 
(Burada düzenli transfer fonksiyonlarının güç serileri formuyla çalışmayacağım.) Kaydırma 
operatörünün uygulaması aşağıdaki eşitliği vermektedir: 
 

  ,...)0,
1

(),(ˆ
1

1
21 −
=
z
zzzHS  

 
  ),(ˆ),(ˆ 2121

2 zzzzS HSH =  
 
Böylece, 
 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−
= ,...)0,

1
(,...),0,,

1
,
1

(
1

1

2

2

1

1
1 z

z
z
z

z
zU span  

 
İndeks opearatörünün uygulaması aşağıdaki sonucu vermektedir: 
 

 ,...)0,
1

(),(ˆ
1

1
21 −
=
z
zzzHT  

 
 Kolay hesaplamalar gösteriyor ki; 
 
 ),(ˆ),(ˆ 2121 zzzz HTHST =  

 0),(ˆ 21 =zzHTS  
 
Böylece, UU 12

⊂  ve U lineer uzayı U1 olarak alınabilir. U iki boyutlu olduğu için, R2 ile 
değiştirilebilinir. 
 

  ,...)0,
1

,
1

(
0
1

2

2

1

1

−−
=⎥

⎦

⎤
⎢
⎣

⎡

z
z

z
z  

 

  ,...)0,
1

(
1
0

1

1

−
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⎢
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⎡

z
z  
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Bu bazda alınarak, kaydırma ve indeks operatörleri aşağıdaki matrislerle verilmektedir: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=
01
00

S ,     ⎥
⎦

⎤
⎢
⎣

⎡
=
10
00

T  

 
Böylece, 

 ⎥
⎦

⎤
⎢
⎣

⎡
==
11
00

0 SA ,  ⎥
⎦

⎤
⎢
⎣

⎡
==
10
00

1 STA  

 
Başlangıç operatörleri aşağıdaki gibidir: 
  

 ,
1
0

),( 211 ⎥
⎦

⎤
⎢
⎣

⎡
== zzL SH     ⎥

⎦

⎤
⎢
⎣

⎡
==
1
0

),( 212 zzL STH  

 
Böylece, 

    ⎥
⎦

⎤
⎢
⎣

⎡
==
1
0

21 bb  

 
Değerlendirme operatörleri aşağıdaki sonuçları vermektedir: 
 
 1),(ˆ,1),(ˆ 210210 == zzEzzE HSH  
 
 0),(ˆ,1),(ˆ 211211 == zzEzzE HSH  
 
Karşılı gelen matris gösterimleri aşağıdadır: 
 
 [ ] [ ]0.1,..1.1

10
== cc  

 
 Sonuç olarak, sabit terimlerin d1=d2=1 olduğu açıktır. Böylece, verilen sistemin 
minimum state-affine tanımı aşağıdaki gibidir: 
 

 )(
1
0

)(
1
0

)()(
10
00

)(
11
00

)1( 2 kkukukxkxkx u⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=+  

 
 [ ] [ ] )()()()(10)(11)( 2 kkukukxkxky u+++=  
  
 Bu yaklaşımın Volterra sistem durumuna uzantısı kanıtı olmalıdır. Ortaya çıkan zorluk 
çeşitleri bölüm 4.4’de belirtilmiştir, ve genel teori bölüm 6.8’deki araştırma literatüründe 
detaylı olarak tartışılmıştır. 
 
 
6.5. Ayrı Zamanlı Sistemlerin Yanıtlama Karakteristikleri 
 

Homojen ve polinom ayrı zamanlı sistemlerin girdi sinyallerinin çeşitli sınıflara yanıtı 
bölüm 5’deki yaklaşım kullanılarak analiz edilebilinir. Birim pals ve sinuzoidal girdiler için 
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analizin nasıl gittiğini açıklayacağım. Tesadüfi girdi sinyalleri için, devam eden zaman 
durumuna paralel olarak sonuçların bazıları bölüm 5.5’deki bakış açısından daha az resmi 
olarak türetilecektir. 
 Geciken birim palslerin toplamlarının girdi bileşenlerine n. dereceden homojen 
sistemin yanıtını öncelikle düşünün, burada birim pals aşağıdaki gibi tanımlanmıştır: 
 

   
⎩
⎨
⎧

<>
=

=
0,0
0,1

)(0 k
k

kδ                                            (72) 

 
 
 Simetrik gösterim cinsinden, bölüm 5.1’deki hesplamalar direkt olarak çıkmaktadır, ve 
burada tekrarlanmayacaktır. Ama, belki de şaşırtıcı bir özelliği bulunan bir noktayı 
vurgulamak için düzenli gösterim cinsinden bazı basit hesaplamalar üzerinden gideceğim. 
 

 )()......(),...,(...)( 11
0 0

1

iiiiih nnnnreg kuku
i i

ky
n

−−−−=∑ ∑
∞

=

∞

=

         (73) 

 
Yukarıdaki homojen sistem için, girdinin )()(

0
kku δ=  olduğu, basit bir indirgeme ile 

aşağıdaki yanıtı elde ederiz: 
 
 ),,0,...,0()( kky hreg=   k=0,1,...         (74) 

 
 Girdi iki birim palsten oluşursa daha ilginç bir durum ortaya çıkmaktadır: 
 

)()()( 00 Kkakku −+= δδ            (75) 
 
Burada a bir reel sayı ve K pozitif bir tamsayıdır. Aşağıda belirtildiği gibi tekabül eden 
cevabın hesaplaması basittir. Eşitlik (73) ‘teki cevap formülü aşağıdaki sonucu vermektedir: 
 

[ ])...()...(),...,(...)( 10101
00

1

iiiiiih nnnreg Kkak
ii

ky
n

−−−−+−−−= ∑∑
∞

=

∞

=
δδ  

 
[ ][ ])()()()(...

001010 iiiiii nnnnnn KkakKkak −−+−−−−+−−
−− δδδδ  

 
Sağ taraftaki son köşeli parantez içersindeki kısım gösteriyor ki toplam sadece in=k ve 

in=k-K değerleri için sıfır olmamaktadır. Böylece; 
 

[ ])...()...(),,...,(...)( 11011011
00

11

iiiiiih nnnreg Kak
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=
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iiiihii nnregnn KKk
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a
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=
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δδδ  

 
] [ ])()(...)...(

1010110 iiii nnn aKa
−−−

−+−−−−+ δδδ             (77) 
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Eşitlik (77)’de sağ tarafın birinci teriminde, küçük bir düşünüş gösteriyor ki 

0...
11
===

−ii n
 olduğu zaman sadece toplam 0 olmamaktadır. İkinci terimi çözmek daha 

kolay, böylece hesaplamayı bir basamak daha ileri kaydırıyorum. Toplam Kin =
−1

 ve 

0
1
=

−in  için sıfır olmamaktadır. Böylece, 

),0,...,0()( kky hreg=  

 

[ ])...()...(),,,...,(... 21021021
00

21

KaKkK
i

a
i

iiiiiih nnnreg
n

−−−−+−−−−+
−−−

∞

=

∞

=
∑∑
−

δδ  

 

[ ] ),0,,...,(...)()(... 21
0

2

0
2020

21

Kk
ii

Ka iihaii nregnn
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−+−−+−
−

∞

=

∞

=
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δδ  

 
[ ] [ ])()(...)...()..(

2020210210 iiiiii nnnn aKaK
−−−−

−+−−−−+−−− δδδδ  
 
Tekrar birinci toplamdan, sadece 0...

21
===

−ii n
 için toplam sıfır değildir. İkinci 

toplam daha da indirgenebilir, ama bir işlem çabuk olarak sonuç formülünü vermektedir: 
 

),,0,...,0(),0,...,0()( KkKakky hh regreg −+=  

 
         ),0,0,,0,...,0(),0,,0,...,0( 32 KkKKkK haha regreg −+−+  

 
          ),0,...,0(... Kkha reg

n −++                         (79) 

 Yanıt formülü (79) hakkındaki ilginç nokta şudur ki ),...,(
1 iih nreg

 ile anlatılan sistem 

lineer tanımlanabilirse ve n>2 ise o zaman y(k) sıfırdır. Bu şu gerçekten yola çıkılarak 
söylenmektedir; eğer 0 argümanı varsa homojen lineer durum eşitliğine denk düzenli çekirdek 
de sıfırdır. Genel bir ifadeyle, n. dereceden homojen lineer eşitlik en fazla n-1 sıfır olmayan 
değeri olan bir girdiye karşı 0 yanıtlıdır. İki palslı bir durumun ispatı oldukça karışık 
hesaplamalar içermektedir. Oldukça kısa bir ispat Problem 6.4’te önerilmektedir. Her oranda 
ayrı zamanlı lineer durum eşitliğinin özelliği kısıtlı girdi/çıktı hareketini göstermektedir. Tam 
tersi, Bölüm 6.3’ten de anlaşılacağı gibi state-affine durum eşitlikleri oldukça geneldir . 
 Bölüm 5’te tartışıldığı gibi bu tipin frekans yanıt özellikleri ayrı zamanlı duruma az 
yada çok taşımaktadır. Bu durumu göstermek için aşağıdaki girdi işaretine ayrı zamanlı 
homojen sistemin sağlam yanıtını kısaca ele alacağım: 
 
 ee iwkiwk AAwkaKu −+== )cos(2)(            (80) 
 
 Çıktı simetrik çekirdek cinsinden aşağıdaki gibi yazılabilir: 
 

 [ ]∏∑∑
=

−−−

==

+=
n

j

kiwkiw

n
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k

eeiih iAiA
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      (81) 

 



 29 

iw=λ1
 ve iw−=λ2

 yaparak, n. derece ürünü genişleterek ve toplamları yeniden 
düzenleyerek aşağıdaki sonucu elde ederiz: 
 

 ∑ ∑∑∑∑∑
= ===== ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
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j
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 k büyüdükçe köşeli parantez içindeki toplamların bir noktada birleştiğini farz ederek, 
y(k) aşağıdaki eşitlikle tanımlanan sağlam durum yanıtına oldukça yakın olur. 
 

 )exp(),...,(...)(
1

2

1

2

1

1

1

kkkk
k

n

j
nsym

n

ss j
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n

eeHAy ∑∑∑
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 Eşitlik (82)’de birbirine benzer birçok üs bulunmaktadır, bu üsler transfer 
fonksiyonunun simetri özelliği kullanılarak bir arada toplanabilir. 
 

 ),...,;,...,(),( 221121
, eeeeHeeG nsymmnm m

n λλλλλλ
⎟⎟⎠

⎞
⎜⎜⎝

⎛
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λ1
’leri iw ile değiştirirsek ve λ 2

’leri –iw ile, 
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Standart kimlikleri kullanarak ve aşağıdaki eşitliği kullanarak, 
 
 ),(),( ,, eeGeeG iwiw
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−
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Aşağıdaki sağlam durum yanıt ifadesini elde ederiz. 
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Bu hesaplamalar Bölüm 5.2 ve 5.3’teki sonuçların ayrı zamanlı durum için kolaylıkla 
geliştirilebileceğini göstermek için yeterlidir. 
 5. Bölümün son ana konusu olan tesadüfi girdilerle lineer olmayan sistemler ayrı 
zamanlı sistemler için devamlı zamanlı durumundakine paralel olarak kolaylıkla 
geliştirilebilir. Bunu yapmaktansa daha genel bir bakış açısıyla tesadüfi girdilerle ayrı zamanlı 
lineer olmayan sistemler için dikey gösterimler üzerinde duracağım. 
 Tesadüfi girdi işaretleriyle lineer olmayan sistemler için dikey gösterimlerin 
geliştirilmesi tesadüfi bir işlemle dikeyleştirme bazında olacaktır. Ayrı zamanlı tesadüfi işlem 
aşağıdaki formatta yazılmaktadır: 
 
 { },...2,1,0,1...,);( −== kkuu               (86) 
 

Burada u’nun reel sayı olduğu, sabit olduğu ve negatif olmayan tüm n’ler için 
[ ] ∞<|)(| kEun  olduğu kabul edilmektedir. Ayrıca, tüm negatif olmayan n’ler için tesadüfi u 

işleminin n. dereceden bağımsız olduğu da kabul edilmektedir. Farklı indisler ii n,...,
1

 ve 

polinomlar )(),...,(
1

xx pp n
 

 
 [ ] [ ] [ ]))((...))(())(())...((

1111 ipipipip nnnn
uEuEuuE =       (87) 

 
 Bu sınırlayıcı bir kabullenme ama önemli bir rol oynamaktadır. Beyaz Gaussian 
tesadüfi işleminin bu kabullenmeyi sağladığı gösterilebilir, böylece buradaki durum Bölüm 
5.5’te değinilen ayrı zamanlı versiyonu içermektedir. 
 
Tanım 6.1 Eğer aşağıdaki türden reel, simetrik polinom fonksiyonlar varsa tesadüfi u işlemi 
dikeylenebilir polinom olarak adlandırılır. 
 
 ,...2,1,0)),(),...,((),,...,(

11
==ΦΦ nuuu iiii nnnn

       (88) 
 
Tüm tamsayılar jjii mn ,...,,,...,

11
 için, 

[ ]),,...,(),,...,(
11

uuE jjii mmnn ΦΦ  

 
[ ]

⎪⎩

⎪
⎨
⎧

≠

=
= ΦΦ

mn

mnuuE jjii nnnn

,0

,),,...,(),,...,(
11  

Böyle bir kümeye u için polinom dikey gösterimi denmektedir. 
 
 Tesadüfi bir işlem için polinom dikey gösterim bulmaya bir yaklaşım aşağıdaki 
gibidir. Φn

 için kullanılacak gösterim tekrarlanan argümanları bir araya getirmek ve varoluş 
sayılarını göstermektir. Simetri özelliğinden tekrar sıralamanın o kadar da önemli olmadığı 
açıktır. 
 
Yardımcı Önerme 6.2. 1)(0 =Ψ x  olan ,...2,1,0),( =Ψ nxn

 tek değişkenli polinom setini 
düşünün. Burada u tesadüfi işlemi aşağıdaki gibidir: 
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 [ ] [ ]
⎪⎩

⎪
⎨
⎧

≠

=∞<
= ΨΨΨ mn

mnkuE
kukuE n

mn ,0

,))((
))(())((

2

          (90) 

 
O zaman u tesadüfi işlemi dikey polinom ve dikey polinom gösterimi aşağıdaki gibidir: 
 
 ))(())...(();,...,;,...,(

111
1

iiiiii pppn ununu
p

ΨΨΦ =       (91) 

 

ii p,...,
1

farklı tamsayılar ve nnn p =++ ...
1

. 

 
İspat: Eşitlik (91)’de belirtilen her Φn

 simetrik polinom fonksiyondur. Bundan başka, eşitlik 

(91)’deki gibi tekrar eden argümanları toplayarak [ ]),,...,(),,...,(
11

uuE jjii nnnn ΦΦ  

aşağıdaki gibi yazılabilir: 
 
 [ ]),,...,;...;,...,(),,...,;...;,...,(

1111 uuE jjjjiiii qqmppn ΦΦ  

 

           ⎥⎦
⎤

⎢⎣
⎡ ΨΨΨΨ ))(())...(())(())...((
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ijii qp umumununE
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     (92) 

 
nnn p =++ ...

1
 ile ii p,...,

1
 farklı ve mmm q =++ ...

1
 ile jj q

,...,
1

 farklıdır. Eğer nm ≠  

ise { }jjii pp ,...,,,...,
11

 kümesi içinde i1 gibi farklı bir tamsayı var ya da mn 11
≠  olmayan 

ji 11
=  olan iki aynı tamsayı var. Beklenen değerlerin sonucu olarak eşitlik (92)’yi yazmak 

için bağımsızlık kabullenmesini kullanarak, ilk durumda çarpanlardan biri 0 olan [ ]))((
1

1
iunEΨ  çünkü )(

1
xnΨ  1)(

0
=Ψ xn ’e diktir. Sonraki durumda çarpanlardan biri yine 

0 olan ⎥⎦
⎤

⎢⎣
⎡ ΨΨ ))(())...(( 11

1
ii umunE

p
 olacaktır. Böylece eşitlik (89) kanıtlanmış oldu, ancak 

n=m iken, { }jj n
,...,
1

,   { }ii n,...,
1

 ‘nin  permütasyonu olmadığında eşitlik 0 vermektedir. Eğer 

permütasyon durumu tutarsa, o zaman [ ]),,...,(),,...,(
11

uuE jjii nnnn ΦΦ  ifadesi aşağıdaki 

gibi verilebilir: 
 

[ ] [ ] ⎥⎦
⎤

⎢⎣
⎡= ΨΨΦ ))((...))((),,...,;...;,...,( 2

1

2

11

2

1
iiiiii pppn unEunEuE

p
        (93) 

ii p,...,
1

 farklı ve nnn p =++ ...
1

’dir. 

 
 Bu konu boyunca ele alınacak örnek bölüm 5.5’te devamlı zaman durumu için Wiener 
dikey gösteriminde tartışılan örneğe denktir. 
 
Örnek 6.8 Tesadüfi u işleminin ortalamasının 0, Gaussian ve [ ] AkEu =)(2  yoğunluğu ile 
beyaz olduğunu kabul edelim. O zaman u’nun n. dereceden bağımsızlık koşulunu sağladığını 
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kolaylıkla görülmektedir. Dikey polinom gösterimi kurmak için, Hermite polinomlarıyla 
aşağıda verilen eşitliklerde ,...2,1,0, =Ψ nn

 alın. 
 

 
[ ]
∑Ψ
=

−

−

−
=

2/

0

2

)!2(!

!1(
)(

2
)n

r

rn
r

rr

n xA
rnr

n
x          (94) 

 
Burada [n/2]  n/2’den küçük eşit en büyük tamsayıdır. İlk birkaç Hermite polinomu aşağıdaki 
gibidir: 
 
 Axxxx x −=== ΨΨΨ 2

210 )(,)(,1)(  
 
Bu durumda eşitlik (90)’nı doğrulamak referanslar kısmına bırakılmıştır. 
 
 [ ] Ann nkuE !))((2 =Ψ            (95) 
 
 Ama Teorem 5.1 ve 5.2’nin ispatlarının benzer argümanlarının literatürde diğer 
yerlerde kullanılabileceğini vurgulamak isterim. Her oranda Hermite polinomları tanım (91) 
ile beyaz Gaussian tesadüfi işlemleri, 0 ortalama için dikey polinom gösterimine 
ulaşmaktadır. 
 
 Aşağıdaki çalışma tesadüfi girdilerle lineer olmayan sistemler için gösterim 
geliştirmede uygun olacaktır. F[u(k)] tesadüfi işlem u’nun örnek fonksiyon u(k)’nın gerçek 
değerli fonksiyonu olsun. [ ][ ] ∞<)(2 kuE F  olsun ve L2(u)’yu aşağıdaki iç ürün ile F ve G 
fonksiyonlarının Hilbert uzayı olarak ifade edelim. 
 
 [ ][ ])]([)(, kuGkuFEGF >=<          (96) 
 
 Yardımcı önerme 6.2’deki gibi u değişkeni için kurulan dikey polinom gösterimleri 

,..., 10 ΦΦ ’i düşünün. O zaman her n ve ii n,...,
1

 için ),,...,(
1

uii nnΦ  L2(u)’nun bir elemanı 

olsun. Eğer ),...,(
1 iif nn

 gerçek değerli fonksiyon aşağıdaki eşitliği sağlarsa; 
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O zaman yukarıdaki eşitlik L2(u)’nun bir elemanıdır. Bu ifadenin anlatımı ihmal 

edilecektir. Eşitlik (98) formundaki ifadeleri düşünürken ),,...,(
1

uii nnΦ  ‘in simetrisinin 

),...,(
1 iif nn

 genellemeyi bozmayacak şekilde simetrik olduğu kabul edilebilirinin gösterimi 

okuyucuya bırakılmıştır.  
 



 33 

 Şimdi de girdinin reel, sabit, n. dereceden bağımsız olduğu tesadüfi işlem u olan 
)]([)( kuHky =  sistemini düşünün. Sistemi L2(u)’nun bir elemanı olarak göstermek için k’yı 

sabit düşünün, ∞<)]([
2
kE y  ve basit olarak sistem sınırlı bir hafızaya sahip olduğunu kabul 

edin. y(k)’nın sadece u(k), u(k-1),...,u(k-M) değerlerine bağlı olduğu M pozitif tamsayısı var. 
Böyle bir sistem aşağıdaki fonksiyonel ifadeyle gösterilecektir: 
 
 ],...,1,0),([)( MjjkuHky =−=          (99) 
 
 u için dikey polinom gösterimini açıkça içeren eşitlik (99)’daki sistem için gösterimi 
hazırlamaya artık elimizdeki malzeme hazır durumdadır. Aşağıdaki formda bir gösterim 
düşünün: 
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Her bir ),...,(

1 iik nn
 simetriktir. Açık olarak HN L2(u)’ya aittir ve sistem gösterimi sabit, 

sınırlı hafızada ve tesadüfidir. Amaç eşitlik (100) ortalama karede eşitlik (99)’a yaklaşacak 
),...,(

1 iik nn
 katsayı fonksiyonlarını seçmektir. Hatayı en düşüğe indirgemek için 

),...,(),...,(,
1110 iikikk NN

’i seçin; 
 
 >−−=<− )()(),()(|)()(|| |2 kkykkykky yyy NNN
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Tanım 6.2. Eşitlik (101)’i en küçük yapan ),...,(

1 iik nn
 simetrik fonksiyonlarına Fourier 

çekirdekleri denir ve oluşan eşitlik (100)’deki sonuç fonsiyonuna da sistemin Fourier seri 
ifade fonksiyonu denir. 
 
Teorem 6.9. Yardımcı Önerme 6.2’deki gibi ),...(),( 10 xx ΨΨ  polinomlarını kullanarak u 
için dikey polinom gösterimi düşünün. O zaman n. derece Fourier çekirdeği aşağıdaki gibidir: 
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Burada, ii p,...,

1
 ayrı, nnn p =++ ...

1
 ve n=0,1,...,N’dir. 
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İspat: Tüm argümanlar atılarak eşitlik (100) için kısaltılmış bir notasyon kullanarak, eşitlik 
(101)’deki hata kriteri aşağıdaki gibi yeniden yazılabilir: 
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Kolaylıkla elde edilen sonucu kullanarak, ve beklentiler gibi iç çarpımları yazarsak aşağıdaki 
sonucu elde ederiz: 
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 Şimdi de sağ taraftaki terimleri genişletin. 
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 Yardımcı Önerme 6.2’de Φn

 için kurma ve simetriyi özelliğini kullanarak 

)]([ Φnn XyE k ’de aşağıdaki gibi genel bir terim izole edilebilir. np ≤≤1  için ii p,...,
1

 

farklı negatif olmayan tamsayılar ve nnn p =++ ...
1

 ile nn p,...,
1

 pozitif tamsayılarını 

düşünün. O zaman pji j ,...,1, =  argümanının tüm bu terimlerini içeren nj adedi birbirinin 

aynıdır ve bu terimlerin toplamı aşağıdaki gibi yazılabilir: 
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Eğer F bir bilinear operatörse, bu sistemler bilinear giriş/çıkış sistemleri olarak adlandırılırlar, 
burada F herbir argümanda doğrusaldır. Daha kesin bişey söylemek gerekirse, F bir bilinear 
operatördür, eğer;   
 
 F[α1u1 + ά1ΰ1, α2u2 + ά2ΰ2,] = α1α2F[u1,u2] + α1ά2F[u1,ΰ2]  

      + ά1α2F[ΰ1,u2] + ά1ά2F[ΰ1, ΰ2]                                         (109) 
 

Her gerçek α1, ά1, α2, ά2 ve her giriş sinyali u1(k), ΰ1(k), u2(k), ΰ2(k) için. 
 Buradaki tartışmanın ana parçası, giriş/çıkış gösterimi için daha açık bir gösterim 
geliştirmekle ilgilidir. Bunu başarmanın en kolay yolu, durum eşitliğinin genel bir sınıfı 
tarafından anlaşılabilen bilinear giriş/çıkış systemleri düşünmektir. Daha sonra bu durum 
eşitliğinin  özel özellikleri, uygun olan giriş/çıkış gösterimlerinin özelliğini ortaya çıkarmak 
için kullanılabilirler.  
  
  x(k+1) =  f[x(k),u1(k),u2(k)],    k = 0,1,2,…. 
      y(k) =  h(x(k)),  x(0) = 0       (110) 
 
burada x(k) n-boyutlu durum vektörüdür ve f ve h ‘ın tatmin edici analitik fonksiyonlar   
f(0,0,0) = 0 ve h(0) = 0 olduğu varsayılır. Sıfır başlangıç durumundaki dengenin ve analitic 
ihtiyaçların seçimi sonucun önemli özelliklerini değiştirmeden  çeşitli yollarla sağlanabilir. 
Daha genel bir çıkış eşitliği şu formdadır, 
  
   y(k) = h[x(k),u1(k),u2(k)] 
 
 
bu yöntemlerlede idare edilebilir fakat formüller ve blok diyagramlar daha karmaşık 
olmaktadır. 
 Sonraki adım f ve h (110) fonksiyonlarının power serisini kullanarak durum eşitlik 
tanımının yeniden yazılması ve sonra giriş sinyalinin (109) daki belirtilen formda 
yazılmasıdır. x(k) ve y(k) genişletilerek α1, ά1, α2 ve  ά2 cinsinden yazıldığında çok daha basit 
durum eşitliği elde edilir. 
   F(α1, u1, α2, u2) = α1α2F[u1,u2]                                                           (111) 

 
 Bilinen Kronecker ürün gösterimini kullanarak, durum eşitliği (110) şu formda 
yazılabilir. 

 
x(k+1) = A1x(k) + A2x(k) ⊗  x(k) + D1x(k)u1(k) + D2x(k)u2(k) 
            + b1u1(k) + b2u2(k) + b3u1(k)u2(k) + . . . . . .                                                     
    y(x) = c1x(k) + c2x(k) ⊗  x(k) + . . .                                                                         (112) 
 

sadece altküme gelişimine giren terimler gösterilmiştir. Giriş sinyallerini α1u1(k) ve α2u2(k) 
varsayarsak, 
   x(k) = α1x1(k) + α2x2(k) + α1α2x3(k) + . . . . .                                    (113) 
 
Tekrar, bu terimleri α1 ve α2 cinsinden eşitlik (111) ile uyumlu bir y(k) çıktısı üreteceği 
gösteriliyor. Eşitlik (113) ‘ü durum eşitliği ve eşitleme katsayılarını α1, α2 ve α1α2 cinsinden 
yazılırsa bilinear giriş/çıkış sistemleri için aşağıdaki durum eşitliği tanımı eşitlik (110) 
tarafından ifade edilir : 
 
x1(k+1) = A1x1(k) + b1u1(k) , x1(0) = 0  
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x2(k+1) = A1x2(k) + b2u2(k) , x2(0) = 0 
 
x3(k+1) = A1x3(k) + A2[x1(k) ⊗x2(k) + x2(k) ⊗x1(k)] + D1x2(k)u1(k) 
             + D2x1(k)u2(k) + b3u1(k)u2(k),  x3(0) = 0 
 
y(k) = c1x3(k) + c2[x1(k) ⊗x2(k) + x2(k) ⊗x1(k)]                                                                (114) 
 
Bu eşitlikler kümesi daha basit bir forma sokulabilir, ancak boyutlardaki önemli giderlerde 
x3(k) için  Carleman doğrusallığı fikrinin uygulanmalıdır. Şimdi uygulayalım, 
 
   )()()()()( 12213 kxkxkxkxkx ⊗+⊗=                                                   (115) 
 
Daha sonra doğru olan hesaplama x3(k) yı memnun eder, 
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Burada x3(0) = 0 dır. Şimdi  
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Şimdi bunları bütünleştirelim, 
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Şekil 6.1 Bir bilinear giriş/çıkış sisteminin bağlantılar arası gerçekleştirimi. 
 

Elbetteki çıkış eşitliği şu formda yazılabilir 
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    y(k) = [c1    c2]z3(k)                                                               (119) 
 
Özet olarak daha basit bir gösterimle, bilinear giriş/çıkış sistemini eşitlik (110) dan da bir 
durum eşitliği formu tarafından tanımlanabilir. 
 
x1(k+1) = A1x1(k) + b1u1(k) , x1(0) = 0  
x2(k+1) = A1x2(k) + b2u2(k) , x2(0) = 0 
 
x3(k+1) = A3x3(k) + D1x2(k)u1(k)+ D2x1(k)u2(k) + b3u1(k)u2(k),  x3(k) = 0 
y(k) = cx3(k) 
 

Eşitlik (120) nin yapısal formu Şekil 6.1 de bağlantılar arası şekille gösterilmiştir. 
Burada vektör ölçüleri çift okla gösterilmiştir. Elbetteki bu bağlantılar arası gerçekleştirimi 
durum eşitliği (120) nin boyutundan en küçük değerden uzaktır ve 3n + n2 dir. Boyutdaki bazı 
azalmalar azaltılmış Kronecker ürünlerinin kullanılmasıyla elde edilmiş olabilir fakat sonuç 
hala en küçük değerden hala uzakdır.                                                                 

Eşitlik (110) tarafından tanımlanan bir bilinear giriş/çıkış sisteminin somut bir şekli 
Şekil 6.1 de gösterilen bağlantılar arası yapıdan türetilebilir. Bu türetme çıkış işaretine 
ulaşıncaya kadar çeşitli kopya sinyaller boyunca benzer yordamlarla ilgilidir. Açıkca k > 0 
için, 
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Bu eşitlikleri beraber uygularsak bize giriş/çıkış formulünü verir. 
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Bundan dolayı eşitlik (110) da tanımlanan bir bilinear giriş/çıkış sistemi şu formda 
belirtilebilir, 
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Burada, eşitlik (122)’nin yeniden düzenlenmesi ile çekirdek şöyle verilebilir 
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Ek olarak bir giriş/çıkış sistemini belirtmek için, eşitlik (123) sıradan ve durağan bir sisteme 
kolaylıkla uyar. 
 2 değişkenli z-dönüşümünü kullanarak,  bilinear giriş/çıkış sistemleri için bir transfer 
fonksiyon gösterimi tanımlanabilir. 
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Çekirdek için özel yapı eşitlik (124) de gösterilmiştir. Bu ayrıca transfer fonksiyonu için özel 
yapı anlamınada gelir. Eşitlik (124) ‘ü eşitlik (125) de yerine koyarsak , şunu verir, 
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Hesaplamanın kalanını şekillerle ifade edebilmek için eşitlik (126) nın sağ tarafı üzerinde 
detaylı bir çalışma yapacağım. İndisi i2 olan toplam işaretini j2 = i2 – i1 – 1 şu kimliği 
kullanarak değiştirdiğimizde, 
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Bu şu şekilde yeniden yazılmasına izin verir: 
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Bu çeşitli hesaplamaları eşitlik (126) da kalan iki terimde uygularsak kazanç, 
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Bundan dolayı, eşitlik (110) un durum eşitliği tarafından tanımlanabilen bir bilinear giriş/çıkış 
sisteminin transfer fonksiyonu için genel bir formu elde edilir. 
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 Bu konunun daha fazlası  bölüm 6.8 anlatıldığından, bu konunun devamını oraya 
bırakıyoruz. Bu noktada bu tür sistemlerin Volterra/Wiener gösterimi için geliştirilmiş benzer 
metodlar kullanılarak çalışıldığı açık olmalı. Dönüşüm alanındaki giriş/çıkış hesaplamaları 
değişkenlerin işbirliği(association-of-variables) tekniği ile ilgilidir. Belli giriş sinyali türleri 
için açık karşılık formülleri türetilebilir. Transfer fonksiyonunun (yada çekirdeğin) yapısal 
formunu bağlantılar arası yapı cinsinden gerçekleştirimini temel şartları kullanarak 
tanımlayabiliriz. Sonuç olarak okuyucu kesinlikle şunun farkındadır, u1(k) = u2(k) = u(k) 
şeklinde düzenlemeyle bilinear giriş/çıkış sistemi 2. dereceden  homojen bir sisteme dönüşür. 
 
6.7. İki Boyutlu Doğrusal Sistemler  
  
 Çok boyutlu doğrusal sistemlerle ilgili bu teori, doğrusal olmayan sistemlerin 
gösterimi için kullanılan Volterra/Wiener’e benzemektedir. İki boyutlu , durağan, eş zamanlı 
doğrusal sistemler bugün üzerinde ençok çalışılan konuları oluşturmaktadır. Bu teorinin 
temellerini tartışacağız ve sırasıyla doğrusal olmayan sistem teorileri ile ilgili bağlantıları 
ortaya koyacağız. 
 İki boyutlu sabit, eş zamanlı doğrusal bir sistem için temel giriş/çıkış gösterimi şu 
şekilde yazılabilir: 
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Burada girdi ),( 21 kku  ve çıktı ),( 21 kky  tamsayı argümanlar için tanımlanmış gerçek iki 
boyutlu işaretlerdir, fakat her ikiside negatifse, sıfır olarak kabul edilirler. Doğrusallık kolayca 
sağlanır : açık gösterimde, cevap her α  ve β  değeri için ),(),( 212211 kkukku βα +   

),(),( 212211 kkykky βα + dir. Bir gecikmeli değişmez sabit özelliği için durağanlık uyuşması 
eşitlik (129) un içeriğindedir,şu şekilde ifade edilebilir. Eğer 

),(),( 22111212 KkKkukku −−=  ise tüm negatif olmayan 21,KK  tamsayı çifti için 
),(),( 22111212 KkKkykky −−= . Burada nedensellikden bahsedilemediği farkettik, bundan 

dolayı bazı belirsizlikler gösterimlerin içinde ifade edilmektedir.  
 2-değişkenli z-dönüşümünde Teorem 6.4 deki convolution özelliğini kullanarak şu 
giriş/çıkış gösterimini verir. 
 
   ),(),(),( 212121 zzUzzHzzY =                                                        (130) 
 
Burada  )],([),( 2121 kkhZzzH =  ifadesi sistemin transfer fonksiyonu olarak adlandırılır. Giriş 
işaretinin çeşitli sınıfları için sistemin cevaplama özelliğinin araştırılması için daha önceki 
bölümlerden eşitlik (130) un nasıl kullanılacağı hemen açık hale getirilmelidir. 
 
Örnek 6.10 En basit(sıfır olmayan) giriş sinyali birim pals girişidir. Bu iki boyutlu 
sistemlerde şu şekilde tanımlanır. 
 

   
⎩
⎨
⎧ ==

=
otherwise
kk

kku
,0

0,1
),( 21
210  

 
Eşitlik (129) dan cevap açıkca şu şekildedir. 
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  ,.....2,1,0,),,(),( 212121 == kkkkhkkY  
 
Yada 1),( 210 =zzU  den dolayı 
 
   ),(),( 2121 zzHzzY =  
 
Elbette ki bir digital filtre içeriğinde sistemin değişmeyen-durum frekans cevap verme özelliği 
en önemlidir. Bu konu çalışmak için daha kolaydır ve bundan dolayı bu görev bölüm 6.9 da 
anlatılacaktır. 
 Durum eşitlik gösteriminin çeşitli tipleri vardır ve bunlar iki boyutlu doğrusal 
sistemlerin benimsenen çalışmalarıdır. Burada genel bir formül ile çalışacağım. 
 

)1,(),1()1,(),1()1,1( 21221121221121 +++++++=++ kkuBkkuBkkxAkkxAkkx  
          ,...2,1,0,),,(),( 212121 == kkkkcxkky                                                                        (131) 
 
Burada ),( 21 kkx  bir n x 1 vektördür. Bu eşitliği parça parça alırsak, ilk bazı 1k  ve 2k  
değerleri için ilk koşullarını gösterir, daha uygun  olarak sınır koşulları olarak 
adlandırılırlar,çözüm için ),0,( 1kx  ,........1,01 =k  ve ),,0( 2kx  ,........1,02 =k  değerlerine 
ihtiyaç vardır. Sınır şartlarının bu çarpımı ),( 21 kkx  nin sistem için bir durum vektörü 
olmadığını belirtir. ),( 21 kkx  nin değeri ve giriş sinyali bilgileri ),( 2211 KkKkx ++  nin 
değerini ifade etmek için yeterli değildir. Sıralanmış işlemlerin içeriğinde ifade edilen tek 

),( 21 kkx değeri sıranın ‘durum’ unu belirtmez. Daha doğrusu ),( 21 kkx  sıralama içerisinde 
gerektiği takdirde yinelemeyi verir. Bundan dolayı ),( 21 kkx  ‘i iki boyutlu sistem için bir 
yerel durum vektörü olarak adlandırıyorum. Ve n’i sistemin yerel boyutu olarak 
adlandırıyorum.  
 İki boyutlu sistemler için yerel durum eşitliğinin formuna ulaşmak için özsezisel yollar 
vardır. Bu sezgi sistemin bir sıralama işlemi olarak görülmesine bağlıdır, ve sıralamanın 
içinde genelleştirilmiş değerler tarafından çeşitli yöntemler hayal eder. Eşitlik (131) de 
motivasyonu sağlamak için bunlardan bir tanesine doğru gideceğim. 
 
Örnek 6.11 Varsayalım ki ),( 21 kky  değerleri yatay ve dikey  yinelemelerin kombinasyonu 
tarafından üretilmiş belli bir sıranın içinde. Şimdi ),( 21 kkxh  yerel yatay durum ve ),( 21 kkxv  
de yerel dikey durum olsun, ve varsayalım ki yerel durum şu formülle üretiliyor. 
 
 ),(),(),(),1( 21121221121 kkuBkkxAkkxAkkx vhh ++=+  
 ),(),(),()1,( 21221421321 kkuBkkxAkkxAkkx vhv ++=+  
   ,......1,0,),,(),(),1( 2121221121 =+=+ kkkkxckkxckky vh                                    (132) 
 
Elbette giriş sinyali  ),( 21 kku  belirtilmelidir ve  açıktır ki sınır değerleri de belirtilmelidir 
bunlar ),0( 2kxh  ve )0,( 1kxv  (sıralamanın sol ve alt tarafı). Bu yerel durum eşitlikleri eşitlik 
(131) de yerine koyulduğunda ),( 21 kkx  olarak şöyle tanımlanır. 
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Daha sonra daha açık olan şu hesaplamayı verir. 
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          ),(][),( 212121 kkxcckky =    
Eşitlik (132) de bu durum eşitlik (131) in özel bir durumu olarakgösterilmiştir . 
 Transfer fonksiyonu eşitlik (131) deki yerel durum eşitliği benzetmek için kolaylıkla 
Problem 6.3. ün sonucunu kullanarak kolayca hesaplayabiliriz. Sıfır sınır koşulları için durum 
eşitliği dönüşüm-alan formunda şöyle yazılır : 
 

),(),(),(),(),( 21222111212221112121 zzUzBzzUzBzzXzAzzXzAzzXzz +++=             (133) 
 
Çözümü şunları verir, 
 
 ),()()(),( 212211

1
22112121 zzUzBzBzAzAIzzzzX +−−= −                                  (134) 

 
Böylece giriş/çıkış ilişkisi şu formu alır: 
  
 ),()()(),( 212211

1
22112121 zzUzBzBzAzAIzzczzY +−−= −                                 (135) 

 
Bundan dolayı transfer fonksiyonu eşitlik (131)’e benzer şekilde şöyle yazılır: 
 
 )()(),( 2211

1
22112121 zBzBzAzAIzzczzH +−−= −                                               (136) 

 
 Yerel durum eşitliğinin dönüşüm-alan çözümünden, bir ‘sıra-alan’ çözümü aşağıdaki 
gibi türetilir. Eşitlik (127) nin bir kimliğini kullanarak eşitlik (134) ‘ün ters matrisini şu 
formda yazmamıza izin verir. 
 

 ∑
∞

=

+−− −=−−
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)1(
212211

1
221121 )()()(
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ii zzzAzAzAzAIzz    

                                                   ∑ ∑
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=
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∞

=
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2
2

1
1
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2,1

i

ii

i

ii zzA                                                     (137) 

 
Burada 2,1 iiA iki boyutlu geçiş matrisi olarak adlandırılır. Eşitlik (137) nin terimlerinin 
katsayıları 2,1 iiA nin ilk bazı değerlerini verir. 
 
 ,00,,0 == ii AA    i=0,1,2,…… 

 2
1

3,1 AA =  

 ,2
1,2 AA =   ,22

1,3 AA =    1221
2,2 AAAAA +=                                                         (138) 

 
Şimdi convolution özelliğinden, bölüm 6.2 deki Teorem 6.4 de bulunan eşitlik (137) ile eşitlik 
(134) ün bağlanması yerel durum için bir ifade elde edilebilir. İlk not 
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j1 yerine k1= j1+i1 ve j2 yerine k2= j2+i2 yerleştirirsek ve giriş sinyalinin ‘bir-tarafsız’ ının 
kullanılır yapması şunu verir , 
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Şimdi çözümü takip eder. 
  

 ∑ ∑
∞

=

∞

=

++ −−+=
01 02

22112
12,1

1
2,11

21 ),()(),(
i i

iiii ikikuBABAkkx                                    (141) 

 
Eşitlik (131) in yerel durum eşitliğinin bazı yapısal özellikleri vardır bunlar tek boyutlu 
doğrusal sistem teorisindeki özelliklere benzer  özelliklerdir. Şekillendirmek için yerel durum 
eşitliğinin erişilebilirlik ve gözlemlenebilirliklerini kısaca anlatacağım. 
 
Tanım 6.3  Yerel durum eşitliğinin bir x1 durumu  erişilebilirlik durumu olarak 
çağrılır.Eğer bazı K1,K2 < ∞ , x(K1,K2) = x1 için bir giriş sinyali varsa bu erişilebilirdir. Eğer 
her durumu erişilebilir ise yerel durum eşitliği erişilebilir olarak adlandırılır. 
 Eşitlik (141)den x1, sadece ve sadece şu şekilde erişilebilirdir. 
 
 ,.......1,0,|){( 212

12,1
1

2,11
1 =+∈ ++ iiBABAspanx iiii  }                                            (142)   

 
Yardımcı Önerme 6.3 iki boyutlu durum geçişi için matris eşitlik (137) de 
tanımlanmıştır. 
   
 },.......1,0,|{,...}1,0,|{ 21

2,1
21

2,1 niiAspaniiAspan iiii ===                                    (143)       
 
İspat Eşitlik (137) de klasik adjoint-over-determinant formu ters matrisi ifade eder. 
  

2
2

1
1

01i 02

2,1
221121221121 )z-AzA-Izdet(z)z-AzA-Izadj(z ii

i

ii zzA −−
∞

=

∞

=
∑ ∑=  

 
Bu ifadenin sol tarafında  z1 ve z2 nin pozitif olmayan kuvveti yoktur. Sağ taraftta 

)z-AzA-Izdet(z 221121  z1 deki ve z2 deki n in , çift toplam işaretindeki sıfır olmayan terimleri 
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i1,i2 ≥ 1 için bir polinom derecesidir. Bundan dolayı eşitlik katsayıları 2
2

1
1

ii zz −− , 

,021 ≥ii gösterirki ni >1  yada ni >2  olduğu zaman hiçde önemsiz olmayan 2,1 iiA matrisinin  
doğrusal kombinasyonu vardır. Açıkca bu sonuç eşitlik (143) ‘ü içerir. 
 
Teorem 6.10 Yerel durum eşitliği (131) sadece ve sadece matris aşağıdaki gibiyse 
erişilebilirdir. 
  
 [ ]21,

1
,1

2
2,1

1
1,2

2
1,1

21 |...|||| BABABABABABB nnnn ++ ++                                    (144) 
 
İspat seyrek gösterilmesine rağmen, eşitlik (144) deki matris )( 2

12,1
1

2,11 BABA iiii ++ +  ile 

nini ≤≤ 21 ,  formunun tüm  n x 1 vektörleri kolon olarak içerir. Bundan dolayı,sonuç 
yardımcı önerme 6.3 ve durum erişilebilirlik şartı(142) nın basit sonucudur. 
  
 Yerel durum eşitliği (131) in uygun gözlemlenebilirlik tanımı varolmayan sınır 
şartlarına bağlıdır. 
 
Tanım 6.4 Yerel durum eşitliği (131) , sıfır giriş kimliği ile çıkış kimliği sıfır olduğunda 
sıfır olmayan sınır koşulu kümesi yoksa gözlemlenebilir olarak adlandırılır. 
 Şartların gelişimini gözlemlenebilir olarak tanımlanması eşitlik (131) in girişler ve 
sıfır olmayan sınır şartları için cevabının  analizine bağlı olabilir. Böyle bir analiz  teorem 
6.11’e önderlik eden bir yardımcı önerme 6.3’ün bir uygulaması tarafından takip edilir. 
İspatın kalanı okuyucuya kalmaktadır. 
 
Teorem 6.11 Yerel durum eşitliği (131) eğer matris aşağıdaki gibiyse gözlemlenebilirdir. 
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 Bu yazıların yazıldığı sıralarda yerel durum eşitliği (131) cinsinden iki boyutlu 
doğrusal sistemlerin anlaşılması tamamen  mümkün değildi. Eşitlik (136) danda açıkca 
anlaşılacağı gibi anlaşılabilirliği için verilen H(z1,z2)  transfer fonksiyonun gerçek oransallığı 
gerekli bir şarttır. Daha ilerde diğer gerekli şart olan H(z1,z2) nin pay ve payda polinomu 
z1=z2 = 0 olduğunda sıfır olmak zorundadır. Diğer bir deyişle, bu polinomlar sıfır olmayan 
sabit terimlere sahip olmak zorunda değildir. Diğer gerekli şartlar da ayrıca yetersizdir, bir 
genel transfer fonksiyonu tarafından anlaşılabilir bir yapılmayla bir ispat verir. Böyle 
anlaşılabilir bir şey yazmak oldukça sinir bozucu olabilir,  belirsiz olan yerleri bir örnekle 
göstereceğim. 
 
Örnek 6.12 Aşağıda tanımlanan iki boyutlu doğrusal sistemi düşününüz. 
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Bu sistem için bir basit hesaplama gerçekleştirilebilirlik gösterir. 
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          ),(][),( 21100121 kkxbbkky =  
 
Burada tüm ilk şartlar sıfırdır. 
 Elbette iki boyutlu doğrusal sistemler için en küçük boyutlu gerçekleştirimin 
yapılmasının çok ilgili ve daha fazla alan bırakılmış olmalıdır. Tek boyutlu durumda, 
erişilebilirlik ve gözlemlenebilirlik ve erişilebilirlik en küçük gerçekleştirim teorisinin 
geliştirilmesinde faydalı araçlardır. Ancak aşağıdaki örnek iki boyutlu durumlar için daha 
karmaşık olduğunu göstermektedir ve belkide daha önce tanımları verilen erişilebilirlik ve 
gözlemlenebilirlik en iyi seçenek değildir. 
 
Örnek 6. 13 Transfer fonksiyonu için. 
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Örnek 6.12 de verilen gerçekleştirimi olur. 
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Bu hızlı hesaplama, bu yerel durum eşitliğinin erişilebilir ve gözlemlenebilir olduğun 
göstermiştir. Aşağıda verilen gerçekleştirimden beri en küçük değildir. 
 
 )1,(),1()1,(),1()1,1( 2121212121 +−+++−+−=++ kkukkukkxkkxkkx  
         
           ),(),( 2121 kkxkky =  
 
 Sonuç olarak iki boyutlu doğrusal bir sistem kullanarak modellenebilen bilinear 
giriş/çıkış sistemini göstermek çok basittir. Bu sistemin iki sınıfı için dönüşüm-alan giriş/çıkış 
eşitliğinin karşılaştırılmasından daha fazlasını içermez. Böyle bir karşılaştırma bilinear 
giriş/çıkış sistemleri transfer forksiyonu ),( 21 zzH  şöyle görünebilir. )(1 ku  ve )(2 ku  giriş 
işaretlerinden, ))(),( 2211211 kukukku =  array formudur. ),( 211 kky  sırasını elde etmek için 

),( 21 zzH  transfer fonksiyonu ile  iki boyutlu doğrusal sistem ile işleriz. Daha sonra 
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),()( kkyky = , düzenlersek, )(ky  sıranın köşegeni olur. Bu durum Şekil 6.2 de şematik olarak 
belirtilmiştir. 
 

 
 
 
Şekil 6.2 Bir bilinear giriş/çıkış sisteminin, iki boyutlu bir doğrusal sistem kullanarak 

ifade edilmesi 
 

 
 
 
 
 
 
 
 



	
   1	
  

(1)	
  

(2)	
  (2)	
  

7.	
  BÖLÜM	
  
KİMLİK	
  

Kimlik	
   terimi	
   çok	
   geniş	
   anlam	
   doğrultusunda	
   giriş/çıkış	
   deneylerinden	
   bilinmeyen	
  
sistemlerin	
  Volterra/Wiener	
  gösteriminde	
  çekirdek	
  veya	
  transfer	
  fonksiyonları	
  hakkında	
  bilgi	
  
alma	
   anlamına	
   gelmek	
   olarak	
   kullanılacaktır.	
   Bu	
   bilgi	
   genellikle	
   kısmi	
   nümerik	
   bağımsız	
  
değişken	
   değerleri	
   için	
   çekirdek	
   veya	
   transfer	
   fonksiyonlarının	
   değer	
   biçimlerinde	
   olacak.	
  
Bununla	
  birlikte,	
  ben	
  ayrıca,	
  bilinmeyen	
  sistemler	
   için	
  kısmi	
  yapı	
  kabul	
  edildiği	
   zaman	
  veya	
  
bilinen	
  fonksiyonların	
  bilimsel	
  terimleri	
  içinde	
  çekirdeklerin	
  genleşmesi	
  kabul	
  edildiği	
  zaman	
  
meydana	
   çıkan,	
   bazı	
   basit	
   parametre	
   kimlik	
   problemlerini	
   tartışacağım.	
   Yapılacak	
   çoğu	
  
kalıntılar	
  tartışmanın	
  gidişatında	
  netleşecektir.	
  

Durağan	
   polinom	
   sistemler	
   üzerinde	
   düşünülecek	
   ve	
   giriş/çıkış	
   deneyleri	
   5.	
   Bölüm	
  
veya	
   bölüm	
   6.5’de	
   üzerinde	
   düşünülen	
   tiplerden	
   birinin	
   giriş	
   sinyallerinin	
   uygulamasını	
  
içerecek.	
   Uygunluk	
   sorunu	
   olarak,	
   bazen	
   tartışma	
   sürekli-­‐zaman	
   sistemleri	
   terimlerinde	
   ve	
  
bazen	
  ayrık-­‐zaman	
  sistemlerinde	
  olacaktır.	
  

7.1	
  Giriş	
  

Genel	
   giriş/çıkış	
   deneyinden	
   bilinmeyen	
   sistem	
   için	
   çekirdek	
   değerleri	
   belirleme	
   bir	
  
lineer(doğrusal)	
   problemdir.	
   Bu	
   ayrık	
   zaman	
   durumu	
   için	
   son	
   derece	
   basitçe	
   gösterir,	
  
polinom	
   sistem	
   nerede,	
   teknik	
   basitlik	
   için,	
   sistemin	
   sınırlı	
   M	
   hafızaya	
   sahip	
   olduğu	
   ve	
   0	
  
derece	
  teriminin	
  sıfır	
  olduğu	
  kabul	
  edilmiştir.	
  Tek	
  yanlı	
  giriş	
  sinyalleri	
  kabul	
  etmek,	
  üçgensel	
  
çekirdek	
   gösterimi	
   tarafından	
   tarif	
   edildiği	
   gibi	
  

	
  

Şimdi	
   giriş	
   sinyal	
   değerleri	
   	
   için,	
   çıkış	
   sinyal	
   değerlerine	
   ilişkin	
   ’nın	
  

bilindiğini	
  varsay.	
  Sonra	
  bu	
  (1)’den	
  bilinmeyen	
  çekirdek	
  değerleri	
  terimlerinde	
  lineer	
  matris	
  
eşitliği	
  yazmaya	
  kadar	
  doğrudur:	
  

	
  

nerede	
  

	
  

	
  

ve	
  



	
   2	
  

(3)	
  

(4)	
  
(5)	
  (6)	
  

	
  

Eğer	
   K   U’nun	
   kare	
   matris	
   olduğu	
   gibiyse	
   ve	
   eğer	
   U	
   ters	
   çevrilebilirse,	
   o	
   zaman	
   çekirdek	
  
değerlerinin	
  H  =  YU–1	
   ‘da	
   verildiği	
   şimdi	
   açıktır.	
   Eğer	
  K	
   bu	
   değerden	
   geniş	
   veya	
   küçükse	
  
veya	
   eğer	
  U	
   ters	
   çevrilebilir	
   değilse;	
   o	
   zaman	
   en	
   küçük	
   kareler	
   teknikleri,	
   sözde	
   dönüşüm	
  
gibi,	
  çekirdek	
  değerleri	
  için	
  yaklaşım	
  elde	
  etmede	
  kullanılabilir.	
  

Bu	
   gelişmeler	
   çekirdek	
   belirleme	
   probleminin	
   doğasını	
   gösterdiği	
   halde,	
   gereken	
  
boyutların	
   çoğu	
   ilgi	
   durumlarında	
   çok	
   yaygın	
   olduğu	
   netleştirilmelidir.	
   Örneğin	
   (M   +   1)n	
  

düzeninde	
   M	
   bellekle	
   n	
   derece	
   çekirdek	
   değerler	
   vardır.	
   Sonuç	
   olarak	
   Y      =   HU	
   lineer	
  
denklem	
   çözümü	
   oldukça	
   zor	
   olabilir.	
   Bu	
   dikkat	
   edilecekler	
   bilinen	
   fonksiyon	
   terimlerinde	
  
çekirdek	
  genleşmesini	
  kapsayarak	
  yaklaşım	
  teknikleri	
  girişine	
  doğal	
  olarak	
  yol	
  açar.	
  

	
   (1)’deki	
   üçgensel	
   çekirdeklerin	
   her	
   birinin	
   bilinen	
   fonksiyonların	
   ürünlerinin	
   lineer	
  
kombinasyonu	
  φ0(k),	
  φ1(k),	
  …	
  φJ(k)	
  gibi	
  gösterimlenebileceğinin	
  varsayıldığını	
  farz	
  et.	
  Özellikle,	
  

	
  
olduğu	
  varsayılmıştır.	
  	
  Sonra	
  (1)	
  

	
  

	
  

biçiminde	
  veya	
  benzer	
  bir	
  gösterimde,	
  

	
  

	
  

	
   	
  açık	
  tanımıyla	
  tekrar	
  yazılabilir.	
  Bilinen	
  giriş	
  sinyali	
   	
  ve	
  bilinen	
  

ilgili	
  yanıt	
   	
  için	
   	
  ve	
  bilinen	
  katsayılar	
   	
  için	
  lineer	
  denklem	
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(7)	
  

(8)	
  

(9)	
  
(10)	
  

(11)	
  seti	
   kazançları	
   (6)	
   bilinmiştir.	
   Eğer	
   	
   küçükse,	
   o	
   zaman	
   denklem	
   sisteminin	
   boyutu	
   (2)’nin	
  

boyutundan	
   çok	
   daha	
   küçüktür.	
   Yani,	
   çekirdek	
   değerlerinden	
  daha	
   az	
   genleşme	
   katsayıları	
  
bulunabilir.	
  	
  

İleri	
  araştırma	
  genel	
  yaklaşım	
  detayları	
  okuyucuya	
  bırakılacaktır.	
  Bölümün	
  geri	
  kalanı	
  
için	
  giriş	
  sinyallerinin	
  özel	
  tiplerine	
  dayanan	
  kimlik	
  metotlarıyla	
  ilgileneceğim.	
  

7.2	
  Tepki	
  Girişlerini	
  Kullanarak	
  Kimlik	
  	
  

	
   Tepki	
   cevabına	
  dayanan	
   sürekli	
   zaman	
   lineer	
   sistem	
  kimliği	
   genişçe	
   tartışılır,	
   zaman	
  
kullanılsa	
   bile	
   ve	
   böylece	
   lineer	
   olmayan	
   durumlar	
   için	
   ilgili	
   durumları	
   tartışmak	
   gerekli	
  
görülür.	
   Ancak	
   okuyucu	
   teorik	
   tartışmanın	
   uygulama	
   için	
   sadece	
   sınırlı	
   potansiyele	
   sahip	
  
olduğuna	
  dikkat	
  göstermeli.	
  (7)	
  tarafından	
  

	
  
tanımlanmış	
   n	
   derece	
   bir	
   homojen	
   sistem	
   varsay.	
   Sonra	
   bölüm	
   5.1’den,	
   ’e	
  

yanıt	
   ’dir.	
   	
   için,	
   ’in	
  belirgin	
  pozitif	
  numaralar	
  

olduğu	
  yerde	
  

	
  

	
  
‘a	
  cevap;	
   ’in	
  bütün	
  tam	
  sayı	
   değerleri	
  üzerinde	
  toplamı	
  p	
  kat	
  olduğu	
  yerde,	
  

şöyle	
  ki	
   ,	
  ve	
   	
  :	
  

	
  

	
  

Bu	
   yanıt	
   formülleri	
   temelinde,	
   homojen	
   sistemler	
   için	
   kimlik	
   stratejisi	
   2.derece	
   durum	
   için	
  
açıklamak	
  kolaydır.	
  2.derece	
  sistem	
  için	
   	
  ve	
   ’e	
  cevaplar,	
  sırasıyla	
  

	
  

	
  

‘dır.	
   Böylece	
   eşit	
   argümanlarda	
   simetrik	
   çekirdek	
   değerleri	
   	
   değerleri	
   tarafından	
  

doğrudan	
   verilmiştir.	
   İki	
   belirgin	
   argümandan	
   herhangi	
   birinde	
   simetrik	
   çekirdek	
   değerini	
  
belirlemek	
   için,	
   	
   ile	
   	
   ve	
   ’yi	
   söyle,	
   sadece	
   	
   alındığı	
   için	
   (10)	
   basitçe	
  

bunu	
  verir:	
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(12)	
  
(13)	
  

(14)	
  

(15)	
  

(16)	
  

(17)	
  

	
  

	
   Bu	
   çeşit	
   analizler	
   n	
   derece	
   homojen	
   sistemleri	
   genelleştirebilir.	
   Yani	
   belirgin	
  
argümanlarda	
  sistem	
  çekirdek	
  değerleri	
  	
  (8)’de	
  bulunabilir.	
  Genel	
  hesaplama	
  kesin	
  sonuçları	
  
dağınıktır	
  ve	
  ben	
  bu	
  yüzden	
  onları	
  motive	
  olmuş	
  okuyuculara	
  ve	
  literatüre	
  bırakacağım.	
  

	
   Henüz	
   kapsanılan	
   hesaplama	
   çeşidi	
   polinom	
   sistem	
   durumunda	
   da	
   kullanılabilir.	
   2	
  
derece	
  durum	
  tekrarı	
  gelişmeyi	
  gösterecek.	
  

	
  

tarafından	
   tanımlanmış	
   bir	
   sistem	
   düşün.	
   (8)’den	
   	
   ve	
   ’ye	
   cevaplar	
   aşağıda	
  

listelenmiştir:	
  

	
  

	
  

Şimdi,	
  belirlenmiş	
   	
  için	
   	
  2	
  derece	
  çekirdek	
  değerinin	
  nasıl	
  belirleneceğini	
  

göstermek	
  için,	
  2	
  derece	
  homojen	
  durum	
  gibi	
  ilerleyebilirim.	
   	
  ayarlamak	
  basit	
  bir	
  

hesaplama	
  verir	
  

	
  

	
   Fakat	
  1	
  derece	
  çekirdekten	
  ne	
  haber?	
  Bu	
  çekirdeğin	
  değerlerinin	
  eşit	
  argümanlarda	
  2	
  
derece	
   çekirdek	
   değerlerinden	
   ayrılması	
   gerektiği	
   (13)’den	
   açıktır.	
   İnterpolasyon	
   (ara	
  
değerleme)	
  sorunu	
  burada	
  meydana	
  çıkar	
  ve	
   ’nin	
  

	
  

cevabını	
   ürettiğini	
   bildirmek	
   için	
   bir	
   yaklaşımdır.	
   Sonra	
   	
   ve	
   	
   vektör	
   formunda	
  

yazılabilecek	
  bir	
  denklem	
  kümesi	
  üretir	
  

	
  

Ürünlerin	
  çözümü	
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Böylece,	
  bu	
  çekirdek	
  değer	
  tipleri	
   	
  olduğu	
  herhangi	
  bir	
  değerde	
  elde	
  edilebilir.	
  	
  

	
   Yüksek	
  derece	
  polinom	
  sistemler	
  için,	
  bu	
  analizler	
  devam	
  ettirilebilir.	
  Fakat	
  ayrıntılar	
  
artarak	
  titizlik	
   ister	
  hale	
  gelir	
  ve	
   İnterpolasyon	
  (ara	
  değerleme)	
  fikri	
  çeşitli	
  ağırlık	
   tepkilerini	
  
kapsayarak	
  bir	
   fizibilite	
  bakış	
  açısından	
  artarak	
  verimsiz	
  hale	
  gelir.	
  Böylece	
  daha	
  az	
   şiddetli	
  
giriş	
   sinyalleriyle	
   birleşmede	
   benzer	
   fikirler	
   meydana	
   çıktığı	
   halde	
   ben	
   konuyu	
   burada	
  
bırakıyorum.	
   Bu	
   simetrik	
   çekirdek	
   değerlendirmelerinin	
   nasıl	
   kullanılması	
   gerektiği	
   sorusu	
  
eldeki	
   birçok	
   duruma	
   dayanır.	
   Tarih	
   koyma	
   uygulamalarının	
   çoğunda,	
   yeterli	
   değerler	
  
çekirdek	
   çizimleri	
   yapmak	
   için	
   elde	
  edilmiştir	
   ve	
  bunlar	
   sistemin	
   karakteristiğini	
   belirlemek	
  
için	
   analiz	
   edilmiştir.	
   Kısa	
   bir	
   süre	
   için	
   analizlerin	
   modellenmiş	
   fiziksel	
   sisteme	
   çok	
   fazla	
  
dayandığı	
  genel	
  olarak	
  söylenebilir.	
  

	
   Genel	
   bakış	
   açısından,	
   çekirdek	
   değerlerinden	
   bir	
   sistem	
   matematiksel	
   model	
  
belirleme	
  kabiliyeti	
  kritik	
  olarak	
  bilinmeyen	
  sistem	
  hakkındaki	
  varsayımlara	
  dayanır.	
  Örneğin,	
  
çekirdekler	
   için	
  fonksiyonel	
  formda	
  olduğu	
  varsayılmalı,	
  fonksiyonel	
  formda	
  hangi	
  durumda	
  
parametreleri	
   belirleme	
   sistem	
   kimlik	
   işleminde	
   başka	
   bir	
   adımdır.	
   Bu	
   çeşit	
   varsayım	
   bir	
  
bilinmeyen	
  sistem	
  için	
  bir	
  ara	
  bağlantı	
  yapısı	
  varsayarak	
  veya	
  durum-­‐denklem	
  gerçekleştirme	
  
kısmi	
   tipi	
   tarafından	
   tanımlanabilen	
   sistem	
   varsayarak	
   uygun	
   olarak	
   gerçekleştirilebilir.	
  
Mevcut	
   	
   genel	
   durum	
   hakkında	
   kısaca	
   söylenebileceği	
   için,	
   aklıma	
   gelmişken,	
   simetrik	
  
çekirdeğin	
   her	
   zaman	
   en	
   uygun	
   gösterim	
   seçeneği	
   olmadığını	
   gösteren	
   basit	
   bir	
   örnekle	
  
tatmin	
  olacağım.	
  

Örnek	
  7.1	
   Bir	
   sistemin	
   bir	
   diferansiyel	
   denklem	
   formunda	
  

	
  
tanımlanabileceğinin	
   bilindiğini	
   farz	
   et	
   veya	
   eşit	
   olarak,	
   çift	
   lineer	
   durum	
   denklemi	
  

:	
  

	
  

	
  

Önemsiz	
   durumlardan	
   kaçınmak	
   için,	
   	
   varsay.	
   Problem	
   5.1’in	
   sonuçları,	
   genel	
  

formla	
  birleşmede	
  

	
  

sistemin	
  tepki-­‐ünite	
  cevabını	
   	
  ve	
   ’ın	
  kullanıldığı	
  şeklindeki	
  gerçeklerin	
  olduğu	
  

yerde	
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(18)	
  formunda	
   verir.	
   Şimdi,	
   c,   A   ve   B,	
   eşit	
   olarak,	
   	
   ve	
   ’ın	
   bu	
   ünite-­‐tepki	
   yanıtından	
  

hesaplanabileceği	
   lineer	
   sistem	
   teorisinden	
   varsayılabilir.	
   D’yi	
   belirlemek	
   için,	
   yani,	
   ,	
  

sistemin	
   ’e	
  cevabı	
  kullanılacaktır.	
  Bu	
  cevap	
  şu	
  formda	
  

	
  

c,  A  ve  B  bilindiği	
   için	
   ’ın	
  her	
   	
   için	
   	
  değerinden	
  hesaplanabileceğini	
  göstermek	
  

için	
  basit	
  uygulama	
  gibi	
  bırakılmıştır.	
  

7.3	
  Kararlı-­‐Durum	
  Frekans	
  Yanıtına	
  Dayanan	
  Kimlik	
  

	
   Sinüsoid	
   girişler	
   için	
   homojen	
   ve	
   polinom	
   sistemlerin	
   kararlı-­‐durum	
   cevabı	
   başka	
  
kimlik	
  problem	
  yaklaşımı	
  için	
  temel	
  sağlar.	
  Fikirler	
  transfer	
  fonksiyon	
  değerlerini	
  bulmak	
  için	
  
iyi	
   bilinen	
   lineer-­‐sistem	
   frekans	
   yanıt	
  metotları	
   ile	
  benzerdir.	
   Spesifik	
  olarak,	
   	
   transfer	
  

fonksiyonu	
   tarafından	
   tanımlanmış	
   bir	
   oturmuş	
   lineer	
   sistem	
   varsay.	
   Sonra,	
   bölüm	
   5.2’de	
  
takip	
   eden	
   gözden	
   geçirme,	
   onarmak	
   için	
   kompleks	
   	
   değeri,	
   gerçek	
   	
   genliği	
   ve	
  

’a	
   karar	
   durum	
   yanıtının	
   fazını	
   ölçerek	
   belirlenebilir.	
   Gerçekten,	
   iki	
  

değerlendirmeye	
  ölçülen	
  kompleks	
  numara	
   ’nun	
  kompleks	
  eşleniği	
  tarafından	
  verilen	
  
	
  için	
  belirlenebilir.	
  

Tekrar	
   simetrik	
   transfer	
   fonksiyon	
   terimlerinde	
   tanımlanan	
   bir	
   2	
   derece	
   homojen	
  
sistem	
   dikkate	
   alarak	
   nanlineer	
   sistemleri	
   tartışmaya	
   başlayacağım.	
   Bölüm	
   5.2’den,	
  

’a	
  karalı-­‐durum	
  yanıtı	
  

	
  

Böylece	
   	
   ve	
   	
   değerleri	
   belirlenebilir.	
   Fakat	
   bu	
   eşsiz	
   sistem	
  

transfer	
  fonksiyonu	
  belirlemek	
  için	
  genel	
  olarak	
  yeterli	
  bilgi	
  sağlamaz.	
  

Örnek	
  7.2	
   Şekil	
   7.1’de	
   gösterilen	
   2	
   derece	
   sistemler	
   hesaba	
   kat.	
   Ya	
   simetrik	
   transfer	
  
fonksiyonlarını	
   hesaplayarak	
   ve	
   yerine	
   koyarak	
   ya	
   da	
   sistem	
   boyunca	
   	
   girişini	
  

izleyerek	
   tek	
   ton	
   girişler	
   için	
   kararlı	
   durum	
   yanıtlarının	
   özdeş	
   olduğu	
   gösterilebilir.	
   Ayrıca	
  
girişlerin	
   farklı	
   tipleri	
   için	
   yanıtların	
   özdeş	
   olduğu,	
   bu	
   açık	
   olması	
   gerektiği	
   halde	
  
doğrulanabilir.	
  Hesaplamalar	
   sonuçların	
  kötü	
  olduğu	
  kadar	
  sıkıcıdır	
  ve	
  bu	
  yüzden	
  ayrıntıları	
  
atlıyorum.	
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(19)	
  

(20)	
  

(21)	
  

(22)	
  

	
  

Şekil	
  7.1.	
  Örnek	
  7.2’de	
  dikkate	
  alınan	
  sistemler	
  

	
   Bu	
  durumu	
  atlamanın	
   bir	
   yolu	
   daha	
   komplike	
   giriş	
   sinyali	
   kullanmaktır.	
  Örneğin,	
   iki	
  
ton	
  giriş	
  için	
  bir	
  2	
  derece	
  sistem	
  yanıtı	
  dikkate	
  al:	
  

	
  

Örnek	
  5.5’den,	
  simetrik	
  transfer	
  fonksiyon	
  terimlerinde	
  kararlı	
  durum	
  yanıtı	
  

	
  

	
  

tarafından	
  verilmiştir.	
  Şimdi	
   	
  ve	
  	
   ’nin	
  (20)’de	
  görünen	
  diğer	
  frekanslardan	
  farklı	
  olduğu	
  

gibi	
   varsay.	
   sonra	
   bu	
   kararlı	
   durum	
   frekans	
   bileşenin	
   genlik	
   ve	
   faz	
   ölçümü	
   kompleks	
  
	
  değerini	
  verecektir.	
  

	
   Bu	
   değerle	
   ne	
   yapılacağı	
   tartışmasını	
   geciktirme,	
   yüksek	
   derece	
   homojen	
   sistemler	
  
için	
  nasıl	
  ilerleneceği	
  net	
  olmalıdır.	
  3	
  derece	
  durum	
  taslağı	
  çizmek	
  için,	
  üç	
  ton	
  giriş	
  dikkate	
  al	
  

	
  

	
   için	
   bölüm	
   5.3	
   (46)’da	
   uzmanlaşarak	
   	
   katsayısı	
  

	
   ve	
   	
   katsayısı	
  

’dır.	
  Bu	
  gerçek	
  frekans	
  

	
  

terimini	
  verir.	
  Eğer	
   	
  frekansları	
  oransızsa,	
  bu	
  frekans	
  terimi	
  belirgin	
  olacaktır	
  ve	
  

bu	
   yüzden	
   genlik	
   ve	
   faz	
   	
   	
   değerini	
   elde	
   etmek	
   için	
   ölçülebilir.	
   Bu	
  

sonuçlar	
  n	
  ton	
  girişe	
  yanıtın	
   ’nin	
  değerini	
  belirlemede	
  kullanılabileceği	
  yerde	
  

n	
  derece	
  duruma	
  doğrudan	
  genişletilir.	
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(23)	
  

(24)	
  

	
   Yüksek	
   derece	
   homojen	
   alt	
   sistemlerinin	
   düşük	
   derece	
   alt	
   sistemlerinki	
   gibi	
   benzer	
  
frekanslarda	
  kararlı	
  durum	
  yanıt	
   terimlerine	
  katılması	
  şeklindeki	
  gerçek	
  tarafından	
  polinom	
  
sistem	
   durumunda	
   bu	
   transfer	
   fonksiyon	
   değerlendirmelerini	
   bulmak	
   fazlasıyla	
   karışıktır.	
  
Basit	
  bir	
  örnek	
  olarak,	
   sadece	
  1	
  derece	
  ve	
  3	
  derece	
  homojen	
  alt	
   sistemlerden	
  oluşmuş	
  bir	
  
polinom	
  sistem	
  varsay.	
  eğer	
   	
  girişi	
  uygulanırsa	
  o	
  zaman	
  karar	
  durum	
  yanıtı	
  	
  

	
  

	
  

olur.	
  

Tabi	
  ki,	
   	
  frekansındaki	
  iki	
  terim	
  standart	
  özdeşlikler	
  kullanılarak	
  bir	
  terimde	
  birleştirilebilir.	
  

Fakat	
   işaret,3	
   derece	
   homojen	
   alt	
   sistemin	
   	
   belirlemek	
   için	
   ihtiyaç	
   duyulan	
   frekans	
  
bileşenlerine	
  katkıda	
  bulunmasıdır.	
  

	
   Bu	
  örneğe	
  biraz	
  daha	
  fazla	
  devam	
  etmek	
  öğreticidir.	
  Sistemin	
  girişe	
  yanıtı	
  

	
  

	
   frekansında	
   bir	
   terim	
   içerecektir.	
   Bundan	
   başka,	
   eğer	
   üç	
   giriş	
   frekansı	
  
orantısızsa,	
   bu	
   bileşen	
   belirgindir.	
   Bu	
   3	
   derece	
   alt	
   sistem	
   fonksiyon	
   	
  

değerinin	
  tam	
  önceki	
  gibi	
  belirlenebileceğini	
  gösterir.	
  Buna	
  rağmen	
  okuyucu	
  kolayca	
   	
  

değerlerini	
   belirlemede	
   zorlukların	
   devam	
   ettiğini	
   doğrulayabilir.	
   Örneğin	
  
,	
   ve	
   	
  hepsi	
  karar	
  durum	
  yanıtında	
   	
  

frekansına	
   katkıda	
   bulunur.	
   Bu	
   durum	
   simetrik	
   transfer	
   belirleme	
   problemini	
  
değerlendirmelerinden	
   yukarıya	
   getirir,	
   büyütür.	
   Bunların	
   ne	
   olması	
   gerektiği	
   net	
   olmadığı	
  
halde,	
  özel	
  varsayımların	
  transfer	
  fonksiyon	
  yapısında	
  lazım	
  olacağı	
  beklenir.	
  Lineer	
  durumda	
  
transfer	
   fonksiyon	
   ’nin	
   kesinlikle	
   uygun	
   oransal	
   fonksiyon	
   olduğu	
   ve	
   bazen	
   ’nin	
  

bilinen	
   n	
   derece	
   olması	
   varsayıldığı	
   genelde	
   varsayılmıştır.	
   O	
   zaman	
   form	
   	
  

değerlendirme	
  kümesinden	
   transfer	
   fonksiyonu	
  belirlemek	
   için	
  birçok	
  metot	
  vardır.	
  Önceki	
  
çalışma	
   için	
   basit	
   başlangıç	
   noktası	
   sağladığı	
   halde	
   ’in	
   bilindiğini	
   varsaydığınız	
   zaman	
   bu	
  

yaklaşım	
  gerçek	
  dışıdır.	
  Ne	
  yazık	
  ki	
  böyle	
  bir	
  genel	
  başlama	
  noktası	
  lineer	
  olmayan	
  durumda	
  
mevcut	
   değildir.	
   Böylece	
   ben	
   genel	
   durumu	
   terk	
   edeceğim	
   ve	
   bir	
   basit	
   polinom	
   sistemler	
  
sınıfıyla	
   tek	
   yaklaşım	
   göstereceğim.	
   Uygunca	
   seri	
   kısıtlamalar	
   homojen	
   alt	
   sistem	
   transfer	
  
fonksiyonu	
  formunda	
  yüklenecek	
  böylece	
  onlar	
  frekans	
  yanıt	
  ölçümlerinden	
  meydana	
  çıkan	
  
tip	
  değerlendirmelerden	
  basitçe	
  tanımlanabilecek.	
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(25)	
  

(26)	
  
(27)	
  

	
  

	
  

Şekil	
  7.2	
  Bir	
  ara	
  bağlantı	
  basamaklama	
  

Şekil	
   7.2’de	
   gösterilen	
   ara	
   bağlantı	
   yapısına	
   sahip	
   olmak	
   için	
   bilinen,	
   lineer	
   alt	
  
sistemlerin	
   stabil	
   olduğu	
   varsayıldığı	
   yerde	
   bilinmeyen	
   lineer	
   olmayan	
   bir	
   sistem	
   varsay.	
  
Bundan	
  başka,	
   sabit	
   çoklayıcılar	
   yolun	
  her	
  numarasında	
  basamaklamanın	
  başından	
   sonuna	
  
dağıtılabilecekleri	
   için	
   	
   olduğu	
   varsayılır.	
   Sistem	
   için	
   simetrik	
   transfer	
  

fonksiyonlarının	
  form	
  

	
  

‘e	
  sahip	
  olduğunu	
  varsaymaya	
  ara	
  bağlantı	
  yapısı	
  eşittir.	
  Bu	
  yapısal	
  varsayımın	
  bir	
  hayli	
  sert	
  
olduğunu	
   tekrarlamaya	
   şiddetle	
   ihtiyaç	
   duyarım.	
   	
   Ancak,	
   en	
   azından	
   ilkede,	
   kararlı-­‐durum	
  
frekans	
  yanıtı	
  basit	
  ölçümlerinden	
  alt	
  sistem	
  transfer	
  fonksiyonları	
  belirlemeye	
  izin	
  verilecek.	
  
Aslında,	
   ’in	
  değeri	
  ne	
  olursa	
  olsun,	
  sadece	
  tek	
  ton	
  girişler	
  gerekecek.	
  Şekil	
  7.2’de	
  gösterilen	
  

formun	
  bir	
  sisteminin	
  karalı	
  durum	
  yanıtını	
  kolayca	
  hesaplamak	
  için	
  Bölüm	
  5.2’nin	
  sonuçları	
  
uygulanabilir.	
   	
  girişi	
  için	
  kararlı	
  durum	
  yanıtı	
  bu	
  formda	
  	
  

	
  

	
  

yazılabilir,	
  

	
  

	
  

	
  

	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

olduğu	
  yerde,	
   	
  en	
  büyük	
  integer	
  	
   	
  gösterdiği	
  yerde.	
  

	
   Lineer	
   olmayan	
   polinomda	
   katsayılar	
   ve	
   lineer	
   alt	
   sistem	
   transfer	
   fonksiyonları	
  
belirlemek	
  için	
  kullanılan	
  birkaç	
  yaklaşım	
  var.	
  Tek	
  ton	
  girişler	
  (sabit	
  girişler	
  içeren)	
  gerektiren	
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(28)	
  

(29)	
  

ve	
   göreli	
   faz	
   ölçümü	
   gerektirmeyen	
   çok	
   basit	
   bir	
   metot	
   tartışacağım.	
   	
   Ancak	
   kısaca	
  
netleşecek	
   sebepler	
   için,	
   	
   ve	
   ’in	
   minimum	
   faz	
   transfer	
   fonksiyonları	
   olduğu	
  

varsayılmalı.	
  

	
   Çeşitli	
   genliklerde	
   fonksiyon	
   girişleri	
   adımına	
   karar	
   durum	
   yanıtını	
   ölçerek	
  
	
   katsayılarını	
   belirlemek	
   ilk	
   adımdır.	
   Sistemin ’ye	
   karar	
   durum	
  

yanıtı	
   	
  dır.	
  Bu	
  yüzden	
  N	
  farklı	
  giriş	
  genlikleri	
  için	
  	
   ’nin	
  
sabit	
  değerini	
  ölçmek	
  polinom	
  ara	
  değerleme	
  ile	
  katsayı	
  değerlerini	
  verir.	
  	
  

	
   	
  ve	
   	
  lineer	
  alt	
  sistem	
  transfer	
  fonksiyonları	
  belirlemek	
   	
  

formundaki	
   girişlere	
   karar	
   durum	
   yanıtının	
   temel	
   frekans	
   bileşeninde	
   genlik	
   ölçümünden	
  
tamamlanacaktır.	
  Bir	
  başka	
  deyişle	
   	
  	
  ve	
   ’nun	
  çeşitli	
  değerleri	
  için	
   ’nin	
  ölçümleri	
  

kullanılacaktır.	
  Kesinlik	
  için	
   ’in	
  eski	
  olduğu	
  varsayılır	
  böylece	
   	
  formunda	
  

	
  

	
  

	
  
yazılabilir.	
   	
   ’nun	
   bir	
   basit	
   karmaşık	
   fonksiyonun	
   bir	
   ürününün	
   ve	
   ’nun	
   bir	
  

karmaşık	
  reel	
  fonksiyonun	
  formunda	
  verildiği	
  için,	
  ilgili	
  kare	
  genlik	
  fonksiyonunu	
  

	
  

	
  

hesaplamak	
   basit	
   bir	
   maddedir.	
   Şimdi,	
   uygunluk	
   için	
   	
   varsayarak,	
   bir	
   kimlik	
  

stratejisi	
   aşağıda	
   gösterildiği	
   gibi	
   özetlenebilir.	
   Sabit	
   frekans	
   için,	
   	
   ’de	
   bir	
  

polinomdur.	
   Böylece	
   yanıtların	
   temellerinin	
   genlik	
   ölçümü	
   	
   frekansıyla	
   farklı	
   genlik	
  

girişlerinin	
  bir	
  uygun	
  numarası	
  için	
  katsayıların	
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(30)	
  

(31)	
  (32)	
  

(33)	
  

	
  

polinom	
  ara	
  değerleme	
  ile	
  hesaplamasına	
  izin	
  verir.	
  Bu	
  yüzden,	
  

	
  

	
  

’in	
  farklı	
  değerleri	
  için	
  bu	
  işlem	
  tekrarlanabilir	
  böylece	
  lineer	
  alt	
  sistemler	
  için	
  kare	
  genlik	
  

fonksiyonları,	
   ’nun	
   fonksiyonları	
   gibi,	
   tanımlanabilir.	
   O	
   zaman	
   minimum	
   faz	
   varsayımı	
  

kullanmak	
   ve	
   	
   normalizasyon,	
   transfer	
   fonksiyonları	
   ,	
   	
   ve	
   	
  

lineer	
  sistem	
  teorisinde	
  iyi	
  bilinen	
  metotlar	
  kullanarak	
  hesaplanabilir.	
  

7.4	
  Gaussion	
  Beyaz	
  Gürültü	
  Uyarımı	
  Kullanarak	
  Kimlik	
  

	
   Bu	
   teknik	
   sabit	
   lineer	
   sistemin	
   kimliği	
   için	
   iyi	
   bilinen	
   çapraz	
   korelâsyon	
   tekniğinin	
  
uzantısıdır.	
   Kısaca	
   gözden	
   geçirmek	
   için,	
  	
  

	
  

tarafından	
   tanımlanan	
   bir	
   lineer	
   sistem	
   için	
   girişlerin	
   gerçek,	
   sabit	
   Gaussion	
   beyaz	
   gürültü	
  
ortalama	
   sıfır	
   ve	
   yoğunluk	
   A	
   ile	
   olduğunu	
   varsay.	
   sonra	
   ürüne	
   biçim	
   vermek	
  	
  

	
  

ve	
  her	
  iki	
  tarafın	
  beklenen	
  değerini	
  almak	
  	
  	
  

	
  

	
  

‘yi	
  verir.	
  

	
   Böylece	
   çekirdeğin	
   değerleri	
   (32)’ye	
   dayanan	
   belli	
   giriş/çıkış	
   deney	
   çeşidinden	
   elde	
  
edilebilir.	
  Tabi	
  ki,	
  ergodicity	
  varsayımının	
  tamamlanmış	
  olması	
  gerçekleştirme	
  bakış	
  açısından	
  
çok	
  önemlidir.	
  Sonra	
  beklenen	
  değer,	
  bir	
  zaman	
  ortalaması	
  tarafından	
  verildiği	
  an	
  için	
  ve	
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(35)	
  

	
  

formunda	
   tekrar	
   yazılabilir.	
   Bu	
   kimlik	
   yaklaşımının	
   gerçekleştirilmesi,	
   Şekil	
   7.3'te	
  
gösterilmiştir.	
  	
  

	
  

Şekil	
  7.3	
  Lineer	
  bir	
  sistemin	
  çapraz-­‐korelâsyon	
  kimliği.	
  

Çok	
   benzer	
   bir	
   analiz,	
   bir	
   n	
   derece	
   homojen	
   sistemin	
   simetrik	
   çekirdeğinin	
   değerlerini	
  
belirlemek	
   için	
   çok	
   benzer	
   bir	
   prosedüre	
   yol	
   açar.	
   Belirgin	
   özellikler	
   2	
   derece	
   durum	
  
tarafından	
  açık	
  yapılır,	
  böylece	
  sisteme	
  girişin	
  

	
  

	
  

aynen	
   önceki	
   gibi	
   Gaussian	
   beyaz	
   gürültüsü	
   olduğunu	
   varsay.	
   Ben	
   çekirdeğin	
   terimler	
  
(aşağıya)	
   eklendiği	
   zaman	
   açık	
   olacak	
   sebepler	
   için	
   simetrik	
   olduğunu	
   farz	
   ederim.	
   Şimdi	
  

	
  için	
  

	
  

	
  

Sağ	
  taraftaki	
  beklenti	
  

(34)	
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‘ı	
  vermek	
  için	
  genişletilebilir.	
   	
  için,	
  (36)	
  	
  

	
  

	
  

Üretir.	
  Ergodicity	
  varsayımını	
  uygulamak	
  (37)	
  ‘ye	
  zaman-­‐ortalama	
  formunda	
  	
  

	
  

	
  

yazılmaya	
  izin	
  verir.	
  (38)'in	
  gerçekleştirilmesi,	
  Şekil	
  7.4'te	
  gösterilmiştir.	
  	
  

	
  

Şekil	
  7.4	
  İki	
  derece	
  sistem	
  için	
  çapraz-­‐korelâsyon	
  Kimlik	
  metodu.	
  

	
   	
   olduğunda,	
   beyaz	
   gürültü	
   için	
   	
   bulunmadığından	
   bu	
   yaklaşım	
  

bozulur.	
   Geleneksel	
   olarak,	
   bu,	
   taleplerin	
   her	
   biri	
   ile	
   yana	
   adım	
   atılır:	
   1)	
   metodun	
   her	
  

uygulamasında,	
   	
   gerçekten	
   beyaz	
   değildir,	
   2)	
   	
   değerleri	
   	
   için	
  

(36)	
  

(37)	
  

(38)	
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   değerlerinin	
   sürekli	
   uzatmaları	
   ile	
   elde	
   edilebilir.	
   Her	
   iki	
   talep,	
   uygun	
  

durumların	
   altında	
   geçerli	
   olabilir,	
   ama	
   bu	
   "Çapraz	
   değer"	
   konusunun	
   önemli	
   zorluklara	
  

sebep	
  olabileceği	
  sırası	
  gelince	
  görülecek.	
  

	
   Genel	
  n	
  derece	
  homojen	
  sistemler	
  için,	
  çapraz-­‐korelâsyon	
  kimlik	
  metodu	
   'in,	
  

belirgin,	
  negatif	
  olmayan	
  sayılar	
  olduğu	
  yerde	
  

	
  

	
  

ilişkiye	
   dayanır.	
   Bu	
   formülün	
   üretimi,	
   bir	
   alıştırma	
   olarak	
   bırakılmıştır,	
   aslında	
   sonra	
   bu	
  

bölümde	
  bir	
  hesaplamada	
  içerilen	
  çözüme.	
  

	
   Polinom	
  sistemlerine	
  çapraz-­‐korelâsyon	
  yaklaşımının	
  hesaba	
  katılması	
   için,	
  3	
  derece	
  

polinom	
  sistemin	
  kullanılacak:	
  

	
  

	
  

giriş/çıkış	
  çapraz-­‐korelâsyonun	
   	
  hesaplamak	
  

	
  

verir.	
  Böylece	
  belirgin	
   	
  için,	
  3	
  derece	
  polinom	
  durum	
  tam	
  olarak	
  

	
  

verilen	
  3	
  derece	
  homojen	
  durumdaki	
  gibidir.	
  

	
   Çapraz	
  -­‐korelâsyon	
   	
  hesaplamak	
  

(39)	
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‘ı	
  verir.	
  Bu	
  yüzden	
  1	
  derece	
  çekirdek	
  değerlerini	
  belirlemek	
  belirgin	
  bütün	
  argümanlar	
  sız	
  3	
  

derece	
  çekirdeği	
  içerir.	
  (40)’daki	
  integral	
  terimi	
   ’in	
  uygun	
  yaklaşık	
  değerlerini	
  

kullanarak	
  doğru	
  olarak	
  yaklaşıklanamadıkça,	
  1	
  derece	
  çekirdek	
  değerleri	
  izole	
  edilemez.	
  Tabi	
  

ki	
   genellikle	
   tamamen	
   kısıtlayıcı,	
   o	
   durumu	
   düzeltebilir	
   hipotezler	
   vardır.	
   Çoğunlukla	
   bu	
  

hipotezler,	
   bilinmeyen	
   sistem	
   için	
   varsayılan	
   bir	
   ara	
   bağlantı	
   terimlerinde	
   uygun	
   olarak	
  

formüle	
  edilebilir.	
  

Örnek	
  7.2	
   Şekil	
  7.5’te	
  gösterilen,	
  ara	
  bağlantı	
   yapısına	
   sahip	
  olmak	
   için	
  bilinen	
  

bir	
  sistem	
  varsay.	
  

	
  

Şekil	
  7.5.	
  Bir	
  2	
  derece	
  polinom	
  sistem.	
  

O	
  zaman	
  giriş/çıkış	
  gösterimi	
  

	
  

formunda	
   yazılabilir.	
   Sıfır	
   ortalamalıdan	
   örnek	
   fonksiyon	
   olan	
   bir	
   örnekle,	
   A	
   yoğunluk	
   ile	
  

beyaz	
  Gaussian	
  rastgele	
  işlemi,	
  yanıtın	
  ortalaması	
  

	
  

‘dır.	
  Giriş/çıkış	
  çapraz	
  korelâsyon	
  

(40)	
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tarafından	
   verilmiştir.	
   Böylece,	
   çekirdeğin	
   değerleri,	
   giriş/çıkış	
   çapraz-­‐korelâsyonlarından	
  

hesaplanabilir.	
  Ve	
  eğer	
  değerlerin	
  yeterli	
  numarası	
   integrale	
  yaklaşmak	
   için	
  hesaplanırsa,	
  o	
  

zaman	
  yanıt	
  ortalamasından	
  sabit	
   	
  hesaplanabilir.	
  	
  

Polinom	
   sistem	
   durumunda	
   karşılaşılan	
   genel	
   zorluklar,	
   Wiener	
   dikey	
   temsilini	
  

benimseyerek	
  önlenebilir.	
  (	
  Wiener	
  temsilini	
  kullanmak	
  için	
  başka	
  bir	
  önemli	
  sebep,	
  problem	
  

7.5'te	
  önerilmiştir.)	
  Bir	
  sistemin	
  	
  

	
  

	
  

tarafından	
  tanımlanabileceğini,	
  

	
  

	
  

bölüm	
  5.5’de	
  verildiği	
  gibi	
  olduğu	
  yerde	
  varsay.	
  bölüm	
  5.5'te	
  notasyondan	
  sonra,	
  

alt	
  simge	
  "sym"nin	
  yokluğuna	
  rağmen	
  Wiener	
  çekirdekleri	
  simetriktir.	
  Şimdi	
  kimlik	
  problemi,	
  

	
   belirleyen	
   simetrik	
   fonksiyon	
   	
   belirleme	
   problemi	
  

olarak	
  görülebilir.	
  

	
   Prosedür,	
   Gaussian	
   beyaz	
   gürültü	
   girişinin	
   ertelenen	
   versiyonlarının	
   ürünlerini	
  

yeniden	
   içerir.	
   Örneğin	
   bir	
   ürün,	
   	
   girişte	
   bir	
   n	
   derece	
  

homojen	
  operatör	
  olarak	
  görülebilir	
  ve	
  bu	
  bakış	
  açısı	
  Wiener	
  operatörlerinin	
  dikey	
  

özelliğinin	
  kullanımına	
  izin	
  verir.	
  (	
  Homojen	
  operatör	
   	
  itici	
  çekirdekler	
  

kullanarak	
   integral	
   formda	
  yazılabileceğini	
  hatırla,	
   fakat	
   takip	
  eden	
  hesaplamalar	
   için	
  böyle	
  

yapmaya	
  küçük	
  sebep	
  olmaya	
  benzer.)	
  

(41)	
  

(42)	
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(45)	
  

	
   İlk	
  olarak	
  çıkışın	
  beklenen	
  değerinin	
  

	
  

  

olduğunu	
   ve	
   Teorem	
   5.1’in	
   kanıtında	
   kurulmuş	
   sonuçları	
   kullanmak,	
   0	
   derece	
   Wiener	
  

çekirdeğin	
  

	
  

tarafından	
  verildiğini	
  not	
  et.	
  1	
  derece	
  Wiener	
  çekirdeği	
   ’nin	
  değeri,	
   	
  da,	
  takip	
  

eden	
  gibi	
  bulunur.	
  İlk	
  olarak,	
  derece	
   ’in	
  Wiener	
  operatörlerinin	
  şimdiye	
  kadar	
  kullanılan	
  

her	
  1	
  derece	
  operatöre	
  dikey	
  olduğu	
  şeklindeki	
  gerçeğin	
  olduğu	
  yerde	
  

	
  

	
  

Daha	
  açık	
  bir	
  notasyonda	
  

	
  

	
  

Böylece	
  

	
  

  

Tabi	
   ki,	
   bir	
   ergodicity	
   hipotezinin	
   altında	
   bu	
   hesap,	
   bir	
   zaman	
   ortalamasının	
   olduğu	
   gibi	
  

gerçekleştirilebilir.	
  .Ben	
  şimdi,	
  2	
  derece	
  Wiener	
  çekirdeğin	
  belirlenmesine	
  devam	
  ediyorum.	
  

Farklı	
  negatif	
  olmayan	
  sayılar	
   	
  ve	
   	
  için,	
   	
  değerlendirme	
  	
  

(43)	
  

(44)	
  

(46)	
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(49)	
  

(47)	
  

(51)	
  

	
  

  

not	
  ederek	
  bulunabilecektir.	
  Böylece,	
   	
  için,	
  

	
  

	
  

m	
   ( )	
   derece	
  Wiener	
   çekirdeği,	
   benzer	
   bir	
   formda	
   değerlendirilir.	
   Farklı	
   negatif	
  

olmayan	
   sayılar	
   	
   için,	
   hesaplama	
   aşağıda	
   gösterildiği	
   gibi	
   ana	
   hatları	
  

çizilebilir:	
  

	
  

	
  

Dikeysel	
  özellikle,	
  

	
  

	
  

Daha	
  açık	
  bir	
  notasyona	
  dönüştürmek	
  ve	
  (42)	
  kullanmak	
  

	
  

(48)	
  

(50)	
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verir.	
  (51)'de	
  ilk	
  toplamada,	
  beklenen	
  değer,	
  dürtülerin	
  ürünlerinin	
  bir	
  toplamı	
  olarak	
  tekrar	
  

yazılabilir.	
   	
   olduğu	
   zaman	
   entegrasyonun	
   ileri	
   analizleri,	
   terimlerin	
   iki	
   tipinin:	
   bir	
  

çarpan	
   	
  içeren	
  ve	
  hiç	
  dürtü	
  içermeyen	
  fakat	
  tersine	
   	
  argümanlarının	
  bazı	
  

permütasyonu	
   için	
  çekirdeğin	
  bir	
  değerlendirmesi,	
  meydana	
  çıkacağını	
  gösterir.	
   ’ler	
   farklı	
  

olduğu	
   için,	
   dürtüyle	
   çarpanıyla	
   beraber	
   bütün	
   terimler	
   sıfır	
   olacak	
   ve	
   çekirdeğin	
   simetrisi	
  

	
   ile	
  kalan	
  terimlerin	
  verdiği	
  gösterilebilir.	
   (51)’	
  de	
  ilk	
  toplamada	
   	
  

olduğunda	
  iki	
  durum	
  vardır.	
  Eğer	
   	
  tekse,	
  o	
  zaman	
  beklenen	
  değer	
  sıfırdır.	
  Eğer	
   	
  	
  

çiftse,	
  o	
  zaman	
  beklenen	
  değerdeki	
  her	
  terim	
   	
  formunda	
  bir	
  çarpan	
  içerecektir	
  ve	
  

bundan	
  dolayı	
  yeniden	
  sıfır	
  elde	
  edilir.	
  Benzer	
  sebepler	
  için,	
  (51)	
  de	
  ikinci	
  toplamada	
  bütün	
  

terimler	
  0	
  verir.	
  Böylece,	
   ’lerin	
  farklı	
  olduğu	
  hipotezinin	
  altında	
  

	
  

	
  

Okuyucu	
   şüphesiz	
   olarak,	
   şimdiye	
   kadar	
   farklı	
   	
   varsayımının	
   kritik	
   doğasıyla	
   ikna	
  

edilir.	
  Maalesef,	
   o	
   ilgilenilen	
   simetrik	
   Volterra	
   çekirdeği	
   olduğu	
   zaman,	
   önemli	
   bir	
   zorluğa	
  

sebep	
   olur.	
   (41)	
   Wiener	
   gösterimini	
   Volterra	
   serileri	
   gösterimine	
   çevirmek	
   için,	
   (41)’de	
  

olduğu	
   derecede	
   çeşitli	
   terimler	
   beraber	
   toplanmalıdır.	
   Teorem	
   5.3	
   hatırlamak,	
  

(41)’de	
  sistemin	
  bir	
  Volterra	
  serileri	
  gösteriminde	
  n	
  derece	
  simetrik	
  çekirdek	
  	
  

	
  

	
  

(52)	
  

(53)	
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tarafından	
  verilmiştir.	
  belirli	
   argümanlar	
   için	
   simetrik	
  Volterra	
   çekirdek	
   çiftinin	
  değerlerinin	
  

belirsiz	
  argümanlar	
  için	
  Wiener	
  çekirdeğinin	
  değerlerine	
  dayandığı	
  açıktır.	
  	
  

	
   Çapraz	
   zorluktan	
   kaçınmak	
   için	
   bir	
   yol,	
   çekirdek	
   değerlerinin	
   hesaplanmasında	
   tam	
  

	
  yanıtından	
  çok	
  artan	
  	
  

	
  

	
  

‘ü	
  kullanmaktır.	
  Her	
  negatif	
  olmayan	
   	
  için,	
  O	
  gösterilebilir	
  

	
  

	
  

Örnek	
  7.3	
   Belirgin	
  olmayan	
  argümanlar	
   için	
  çekirdek	
  değerleri	
  belirlemede	
  zorluk,	
  ayrık	
  

zaman	
  durumunda	
  ortaya	
  çıkmaz.	
  Giriş	
  durağan,	
  sıfır	
  ortalamalı,	
  A	
  şiddet	
  ile	
  beyaz	
  

Gaussian	
  rastgele	
  işlem	
  olduğu	
  zaman,	
  Teorem	
  6.9	
  takip	
  eden	
  ilişkileri	
  vermek	
  için	
  

Örnek	
  6.8’in	
  sonuçlarını	
  kullanmak	
  basitleştirilebilir.	
  	
  

	
  

	
  

	
  

Daha	
  yüksek-­‐derece	
  çekirdekler,	
  benzer	
  formüller	
  tarafından	
  verilir.	
  

	
   Volterra	
  çekirdeklerinin	
  durumunda	
  olduğu	
  gibi,	
  Wiener	
  çekirdeklerinin	
  değerlerinin	
  

nasıl	
   kullanılması	
   sorusu	
   zordur.	
   Ben	
   özel	
   ara	
   bağlantı	
   yapısının	
   varsayıldığı	
   ileri	
   durumları	
  

araştırarak	
   yeniden	
   bir	
   yaklaşım	
   göstereceğim.	
   Değişimin	
   gidişatında	
   Volterra	
   serileri	
   ve	
  

(54)	
  

(55)	
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Wiener	
  serileri	
  gösterimlerini	
  işlemek	
  için	
  araçların	
  bir	
  numarasını	
  denemeye	
  olay	
  olacağı	
  bir	
  

yan	
  faydadır.	
  	
  

Şekil	
   7.6’da,	
   iki	
   lineer	
   sistemin	
   stabil,	
   minimum	
   faz	
   ve	
   	
   gibi	
  

varsayıldığı	
   yerde	
   gösterilen	
   ara	
   bağlantı	
   yapısına	
   sahip	
   olmak	
   için	
   bilinen	
   bir	
   bilinmeyen	
  

sistem	
   varsay.	
   Burada	
   Fourier	
   dönüşüm	
   notasyonun	
   kullanıldığını	
   böylece	
   lineer	
   alt	
  

sistemlerin	
  sistem	
  fonksiyonlarının	
  terimlerinde	
  belirtildiğini	
  not	
  et.	
  	
  

	
  

Şekil	
  7.6.	
  Bir	
  bilinen	
  ara	
  bağlantı	
  yapısı.	
  

Transfer	
   fonksiyonları	
   durumunda	
   gibi	
   ilerleyerek,	
   alt	
   sistem	
   sistem	
   fonksiyonlarının	
  

terimlerinde,	
  Volterra	
  sistem	
  fonksiyonları	
  	
  

	
  

tarafından	
   verildiğini	
   göstermek	
   basittir.	
   Daha	
   sonra,	
   problem	
   5.14’ten,	
   Wiener	
   sistem	
  

fonksiyonları,	
  Wiener	
  çekirdeğinin	
  Fourier	
  dönüşümleri	
  

	
  

	
  

Tarafından	
  verilir.	
  Tek	
  değişken	
  Fourier	
  dönüşümleri	
  için	
  Parseval	
  bağıntısını	
  kullanmak	
  	
  

	
  

	
  

verir.	
  	
  

	
   Şimdi,	
   çapraz	
   korelâsyon	
   metodunun	
   sonuçlarından,	
   1	
   derece	
   Wiener	
  

çekirdeğinin	
   değerlerinin	
   yeterli	
   bir	
   numarasının	
   ’in	
   hesaplanmasına	
   izin	
  

vermesinin	
  elde	
  edilmesi	
  varsayılacaktır.	
  Sonra,	
  (58)	
  	
  

(56)	
  

(57)	
  

(58)	
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  ‘u	
  verir.	
  Yani	
   	
  ürünü	
  bir	
  bilinmeyen	
  sabite	
  kadar	
  belirlenmiştir.	
  

	
   Ayrıca	
   2	
   derece	
  Wiener	
   çekirdeğinin	
   değerlerinin	
   yeterli	
   bir	
   numarasının	
  

’in	
  hesaplanmasına	
  izin	
  vermesinin	
  elde	
  edilmesini	
  varsay.	
  o	
  zaman	
  (58)	
  

	
  

	
  

‘ı	
   verir.	
   Yani	
   	
   ürünü	
   bir	
   bilinmeyen	
   sabite	
   kadar	
  

belirlenmiştir.	
  	
  

	
   İlk	
   iki	
   Wiener	
   sistem	
   fonksiyonlarından	
   	
   ve	
   ’nin	
   nasıl	
   elde	
   edileceğini	
  

göstermek	
  için	
   	
  ve	
   ’nin	
  bilinmeyen	
  sabit	
  olduğu	
  yerde,	
  

	
  

	
  

yazmak	
  uygundur.	
  O	
  zaman,	
  her	
   	
  için,	
  

	
  

olduğunu	
  kontrol	
  etmek	
  kolaydır	
  böylece	
  	
  

	
  

göre	
   ’nin	
  genlik	
  spektrumu	
  bilinmeyen	
  sabite	
  kadar	
  belirlenir.	
  Tabi	
  ki	
  bu	
  	
  

	
  

göre	
   ’nin	
  genlik	
  spektrumu	
  bilinmeyen	
  sabite	
  kadar	
  belirlendiğini	
  ima	
  eder.	
  Minimum	
  

faz	
  ve	
  normalizasyon	
  varsayımlarını	
  kullanarak	
   	
  ve ’yi	
  hesaplamak	
   lineer	
  sistem	
  

teorisinde	
   iyi	
   bilinen	
   bir	
   problemdir.	
   Kimlik	
   probleminin	
   ileri	
   düşüncesi,	
   özel	
   olarak,	
  

(59)	
  

(60)	
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nonlineerlikte	
   katsayıların	
   belirlenmesi	
   Problem	
   7.8’e	
   bırakılır.	
   Fakat	
   	
   derece	
   polinom	
  

sistem	
   giriş/çıkış	
   çapraz	
   korelâsyonun	
   tam	
   iki	
   çeşidinden	
   belirlenebileceği	
   yerde,	
   lineer	
   alt	
  

sistemin	
  nasıl	
  not	
  edileceği	
  önemlidir.	
  

7.5	
  Wiener	
  Çekirdeklerinin	
  Dikey	
  Genişletilmesi	
  

	
   Wiener	
   çekirdek	
   değerlerinin	
   kullanımındaki	
   zorluklardan	
   dolayı,	
   dikey	
   genişletme	
  

yaklaşımı	
  önemli	
  bir	
  alternatif	
  olabilir.	
  Temel	
  fikir,	
  Bölüm	
  7.1’de	
  kısaca	
  tartışıldığı	
  gibi,	
  bölüm	
  

7.1’de	
   kısaca	
   tartışıldığı	
   gibi,	
   	
  Hilbert	
   alanı	
   için,	
   ortonormal	
   temelinin	
   terimlerinde	
  

bilinmeyen	
   sistemin	
   Wiener	
   çekirdeği	
   gösterimi	
   ve	
   o	
   zaman	
   bu	
   ortonormal	
   genişlemede	
  

katsayıları	
   belirlemedir.	
   Tekrar,	
   kullanılan	
   giriş	
   sinyali	
   gerçek,	
   durağan,	
   sıfır	
   ortalamalı,	
   	
  

şiddet	
  ile	
  beyaz	
  Gaussian	
  rastgele	
  işlemdir.	
  	
  

	
   Bilinmeyen	
   sistemin	
   Wiener	
   dikey	
   gösteriminin	
   terimlerinde	
   tanımlanabileceğini	
  

varsay.	
   bundan	
   başka	
   her	
   bir	
   Wiener	
   çekirdeği	
   ’nin	
   takip	
   eden	
   yolda	
  

gösterilebileceğini	
   varsay.	
   ’ye	
   	
   	
   de	
   ortonormal	
   temel	
   olmaya	
   izin	
   ver.	
  

Yani	
  	
  

	
  

	
  

O	
  zaman,	
  bu	
  temelin	
  terimlerinde	
  her	
  bir	
  Wiener	
  çekirdeğini,	
  	
  

	
  

	
  

formunda	
  

	
  

	
  

olduğu	
  yerde	
  yaz.	
   ’nin	
  her	
  permütasyon	
   	
   için,	
  Wiener	
  operatörlerinin	
  kullanımında	
  

örtülü	
  simetri	
  hipotezleri	
  ile	
  

(61)	
  

(62)	
  

(63)	
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Tabi	
  ki,	
  genişleme	
  (62)	
  uygulamada	
  terimlerin	
  bazı	
  sonlu	
  numarası	
  kırpılacaktır,	
  o	
  sebeple	
  bir	
  

yaklaşık	
   gösterim	
  üreterek.	
  Kimlik	
  problemi	
   şimdi,	
   	
   genleşme	
  katsayıları	
   belirlemenin	
  

terimlerinde	
  poz	
  verir.	
  

	
   0	
  derece	
  Wiener	
  çekirdeği	
  için,	
   	
  olduğundan	
  tartışılacak	
  bir	
  şey	
  yoktur.	
  1	
  

derece	
  Wiener	
  çekirdeği	
  için,	
  	
  

	
  

	
  

katsayısı	
  takip	
  eden	
  çapraz	
  korelâsyon	
  hesaplamasına	
  göre:	
  

	
  

	
  

tanımlanabilir.	
  Notasyonun	
  terimlerinde	
  yüksek	
  derece	
  durumlarda	
  kullanılması	
  için,	
  (66)	
  

	
  

gibi	
   yazılabilir.	
   Eğer	
   ergodicity	
   varsayılırsa,	
   çapraz	
   korelâsyon	
   zaman	
   ortalama	
   ile	
  

hesaplanabilir.	
  O	
  zaman	
  kimlik	
  metodu	
  Şekil	
  7.6	
  gösterildiği	
  gibi	
  bilinen	
  sistem	
   	
  

ile	
  bilinmeyen	
  sistemin	
  çarpılabilen	
  bağlantısının	
  terimlerinde	
  çizilebilir.	
  	
  	
  

	
  

(64)	
  

(65)	
  

(66)	
  

(67)	
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Şekil	
  7.7.	
  	
   	
  için	
  katsayı	
  kimlik	
  metodu.	
  

Wiener	
   çekirdek	
   	
   için	
   katsayısının	
   belirlenmesi,	
   bilinmeyen	
   sistemin	
   Wiener	
  

operatörü	
  

	
  

	
  

tarafından	
  bilinen	
  sistem	
  ile	
  çarpılabilen	
  paralelde	
  bağlandığı	
  yerde	
  Şekil	
  7.7	
  de	
  gösterildiği	
  

gibi	
   çizilebilir.	
   (Wiener	
   operatör	
   notasyonunun,	
   ’nin	
   simetrik	
   versiyonunu	
   yazmaya	
  

kaçınmak	
  az	
  kötüye	
  kullanılır.)	
  

	
  

Şekil	
  7.8.	
   	
  için	
  katsayı	
  kimlik	
  metodu.	
  

Wiener	
  operatörünün	
  dikey	
  özelliklerini	
  kullanarak	
  

(68)	
  



	
   26	
  

	
  

	
  

‘dır.	
  Beklenen	
  değerlerin	
  hesaplanması	
  

	
  

üretmek	
  için	
  alışılagelmiş	
  biçimde	
  gider.	
  Yani,	
  

	
  

	
   	
  n	
  derece	
  Wiener	
  çekirdek	
  için	
  genişleme	
  katsayıları	
  için	
  kimlik	
  

yordamı	
   tam	
  aynı	
   yolda	
   ilerler.	
   (69)’la	
   ilgili	
   hesaplamalar	
   çok	
   karmaşıktır,	
   fakat	
  bu	
   çağrılan	
  

önceki	
  sonuçlar	
  tarafından	
  önlenebilir.	
  Şekil	
  7.9’da	
  gösterilen	
  başlangıç	
  noktası	
  

	
  

Şekil	
  7.9.	
  	
   	
  için	
  katsayı	
  kimlik	
  metodu.	
  

Dikey	
  özelliğin	
  uygulaması	
  hemen	
  

(69)	
  

(70)	
  

(71)	
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Şimdi	
  Teorem	
  5.2’nin	
  kanıtının	
  az	
  farklısı	
  kullanılarak,	
  	
  

	
  

	
  

göstermek	
  kolaydır.	
  Bu	
  genel	
  formülü	
  verir	
  

	
  

(73)	
  

(74)	
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