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A B S T R A C T 

In this study, the effect of waste concrete powder (WCP) on slag-based geopolymer 
composite mortars was investigated. Blast furnace slag (BFS) and WCP were used as 

binders in geopolymer mortars. WCP was substituted into the geopolymer mortar 

composites at rates of 10%, 20%, 30%, and 40% by weight of slag. Sodium hydroxide 

(NaOH) solution was used as the alkali activator in the mixtures and the solution acti-
vator concentration was chosen as 16 molars (M). After the prepared mortars were 

cured at 100°C for 24 hours, they were subjected to flexural strength (ffs), compressive 

strength (fcs), and ultrasonic pulse velocity (UPV) tests. Results showed that ffs, fcs, and 

UPV decreased with the increase in WCP replacement ratio. These decrements were 

seen clearly, especially after the 20% replacement ratio. However, despite these decre-

ments, the compressive strengths of all groups were found to be above 50 MPa. In ad-

dition, it is thought that environmental pollution can be reduced by using WCP in geo-

polymer composite mortars. 
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1. Introduction 

The developments in concrete technology and the 
rapid increase in the global population have also in-
creased housing needs. As a result of this situation, ordi-
nary Portland cement (OPC) has become the world's most 
widely used construction material. A high number of raw 
materials and energy are consumed during the produc-
tion of OPC (Li et al. 2019; Tahwia et al. 2022, Toklu 2021). 
It is also stated that OPC production is responsible for 7% 
of the world's greenhouse gas emissions (Meyer 2009; Se-
vim and Sengul 2021; Toklu and Şimşek 2018). These rea-
sons have led researchers to work on developing more en-
vironmentally friendly and alternative binders to OPC 
(Sahmaran et al. 2013; Mehta and Siddique 2017; Demir 
et al. 2018; Sevim and Demir 2019). Developed as an al-
ternative to OPC, geopolymer binders have been studied 
with increasing interest in recent years, as they consume 
less energy and emit less CO2 compared to OPC (Provis 
2014; Geraldo et al. 2017; Alhawat et al. 2022). 

It has been stated that geopolymers have many ad-
vantages such as superior mechanical properties 
(Mahmoodi et al. 2022), high resistance to elevated tem-
perature (Çelikten et al. 2020), acid (Thokchom et al. 
2009), and sulfate effects (Bhutta et al. 2013), as well as 
environmentally friendly properties. Geopolymers are 
produced as a result of the chemical reaction between 
aluminosilicate sources (precursors) such as me-
takaolin, blast furnace slag (BFS), fly ash (FA), and alka-
line activators such as NaOH, Na2SiO3 (Rakhimova 2020; 
Öztürk and Atabey 2022). These aluminosilicate sources, 
widely used in geopolymers' production, were formerly 
seen as industrial by-products or waste. However, these 
products are no longer considered waste due to their 
successful and widespread use for years (Ulugöl et al. 
2021). This situation has led researchers to investigate 
the use of different waste materials in geopolymer com-
posites (Shoaei et al. 2019; Mahmoodi et al. 2021a).  

Construction and demolition waste (CDW), which is re-
sponsible for most of the global solid waste production, 
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has become a rapidly growing problem worldwide. While 
the 28 member countries of the European Union pro-
duced approximately 1.65 tons of CDW per capita in 2012, 
the United States of America produced approximately 1.7 
tons of CDW per capita in 2015 (Ulugöl et al. 2021). Un-
controllable CDW production will continue to threaten the 
health of living things and the environment day by day 
(Wang et al. 2014). Geopolymers have been produced us-
ing some CDW products (concrete, glass, tiles, bricks, etc.). 

Öztürk and Atabey (2022) produced geopolymer mor-
tars containing recycled ceramic sanitaryware waste 
powder (CSW). NaOH as alkali activators in four different 
molars (10, 12, 14, and 16 M) and two different wa-
ter/binder (w/b) ratios (0.45 and 0.50) were used in the 
mixtures. The increase in NaOH concentration increased 
the workability of the CSW-added mortars while decreas-
ing their porosity and water absorption. The highest 
strength values were obtained from geopolymer mortars 
produced with 16 M NaOH and a 0.45 w/b ratio. Ahmari 
et al. (2012) investigated the combined use of waste con-
crete powder and F class FA as geopolymeric binders. The 
results showed that no significant improvement in com-
pressive strength was achieved with the use of waste con-
crete powder alone, while there was an increase in com-
pressive strength when used together with F class FA. 
Tahwia et al. (2022) produced ultra-high performance ge-
opolymer concrete by using crushed glass (CG), ceramic 
(CC) and crumb rubber (CR) wastes as aggregates in geo-
polymer mortars. According to the results, it was ob-
served that the mechanical and microstructural proper-
ties of the mixtures decreased significantly with the inclu-
sion of CC and CR and increased with the inclusion of CG. 
A denser microstructure was obtained by incorporating 
CG into the mixtures. 

In this study, the effect of waste concrete powder 
(WCP) on slag-based geopolymer composite mortars 
was investigated. Blast furnace slag (BFS) and WCP were 
used as binders in geopolymer mortars. WCP was substi-
tuted into the geopolymer mortar composites at rates of 
10, 20, 30, and 40% by weight of slag. Sodium hydroxide 
(NaOH) solution was used as the alkali activator in the 
mixtures and the solution activator concentration was 
chosen as 16 molars (M). After the prepared mortars 
were cured at 100°C for 24 hours, they were subjected to 
flexural strength (ffs), compressive strength (fcs), and ul-
trasonic pulse velocity (UPV) tests. Finally, the obtained 
results were compared with control geopolymer mor-
tars without waste concrete powder replacement. 

2. Materials and Method 

In the preparation of geopolymer mortars, standard 
sand defined by CEN (Committee of European Norms) in 
TS EN 196-1 was used. The sand was obtained from the 
local source in Turkey. BFS was selected according to 
ASTM C989 (ASTM 2014b). WCP was obtained by grind-
ing the materials collected from the landfill. The ground 
material was used after sieving through the 75 µm sieve. 
The chemical oxide composition and physical properties 
of BFS and WCP are given in Table 1. NaOH in the form 
of white pellets with a purity of about 99% was used as 
an alkali activator in the mixtures. 

Table 1. Chemical oxide composition and physical 
properties of BFS and WCP. 

Chemical composition (%) BFS WCP 

SiO2  35.97 26.38 

Al2O3  16.05 5.23 

Fe2O3  0.66 2.06 

MgO 5.43 9.45 

CaO  37.38 32.96 

Na2O  0.38 0.51 

K2O  0.81 0.75 

TiO2  0.58 0.23 

Physical properties   

Relative density (g/cm3) 3.06 2.69 

Loss on ignition (LOI) 1.18 21.98 

 

Mixing ratios of geopolymer mortars are given in Ta-
ble 2. Fresh geopolymer mortars prepared per TS EN 
196-1 were filled in molds with dimensions of 
40×40×160 mm in two stages and compressed on the 
shaking table. It was then cured in an oven at 100°C for 
24 hours. Ultrasonic pulse velocity (UPV) test was con-
ducted per ASTM C 597-16 standard for the geopolymer 
mortars whose curing process was completed. Table 3 
shows the classification of the quality of concrete as a 
function of the ultrasonic pulse velocity (Whitehurst 
1951; Qasrawi 2000). Afterward, the flexural strengths 
of the samples were determined per TS EN 196-1. In ad-
dition, the compressive strength test was conducted on 
the broken parts of the prismatic samples after the flex-
ural strength test.

Table 2. Mixing ratios of geopolymer mortars. 

Mixture 
Code 

BFS  
(g) 

WCP  
(g) 

WCP ratio 
(%) 

Water  
(g) 

Sand  
(g) 

NaOH  
(g) 

Molarity  
(M) 

Curing time 
(hour) 

Curing temperature 
(°C) 

Ref 450 0 0 

192.60 1350 144 16 24 100 

WCP10 405 45 10 

WCP20 360 90 20 

WCP30 315 135 30 

WCP40 270 180 40 
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Table 3. Quality of concrete as a function of the ultrasonic pulse velocity (Whitehurst 1951). 

 
UPV (km/h) >4.5 3.5⎯4.5 3.0⎯3.5 2.0⎯3.0 <2.0 

 
Quality Excellent Good Doubtful Poor Very poor 

3. Results and Discussion 

3.1. Flexural strength (ffs) 

The ffs test results performed per the TS EN 196-1 
standard are shown in Fig. 1(a). For the mixtures with 
each code, the average of the results of three samples 
was taken as the final ffs results. The percentage of de-
crease in ffs results of slag-based geopolymer mortars in-
corporating WCP compared to control geopolymer mor-
tars without WCP is shown in Fig. 1(b). 

When the ffs results given in Fig. 1 are examined, it is 
seen that the ffs results vary between 12.05 and 10.45 
MPa. The ffs results of the WCP10, WCP20, WCP30, and 
WCP40 decreased by 2.84, 4.07, 7.80, and 13.27%, re-
spectively, compared to the Ref mortars. The rate of de-
crease in ffs results increased with the increase of the 
WCP replacement ratio. BFS particles provide the for-
mation of calcium alumina silicate hydrate (C-A-S-H) 
and/or calcium silicate hydrates in the geopolymeric gel 

system (Rakhimova and Rakhimov 2015; Mahmoodi et 
al. 2021b). As the amount of WCP in the mixtures in-
creases, the amount of BFS decreases. As a result of this 
situation, the hydrated element density in the matrix of 
geopolymer mortars decreases. Tan et al. (2020) stated 
in their study that the geopolymer samples became 
much denser with the addition of BFS. These conditions 
can be shown as the reason for the decrease in ffs results 
with the increase in WCP replacement ratio. 

 
3.2. Compressive strength (fcs) 

The fcs test results performed per the TS EN 196-1 
standard are shown in Fig. 2(a). The fcs test was performed 
on two pieces of samples obtained as a result of the ffs test. 
For the mixture with each code, the average of the results 
of six samples was taken as the final fcs result. The percent-
age of decrease in fcs results of slag-based geopolymer 
mortars incorporating WCP compared to control geopol-
ymer mortars without WCP is shown in Fig. 2(b).

      
Fig. 1. (a) The ffs test results;(b) The percentage of decrease in ffs results. 

      
Fig. 2. (a) The fcs test results; (b) The percentage of decrease in fcs results.  
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When the fcs results given in Fig. 2 are examined, it is 
seen that the fcs results vary between 59.61 and 53.35 
MPa. The fcs results of the WCP10, WCP20, WCP30, and 
WCP40 decreased by 2.40, 3.20, 5.75, and 10.50%, re-
spectively, compared to the Ref mortars. As in the ffs re-
sults, the rate of decrease in the strengths increased with 
the increase of WCP replacement ratio in the fcs results. 
However, considering the results obtained from the fcs 
results, the fcs results of all mixture groups remained 
above 50 MPa. This value is quite sufficient for many 
building applications. It has been noted that the slag 
adds more calcium oxide to the geopolymer matrix. Free 
calcium in the geopolymer matrix increases the reaction 
rate and the geopolymerization process due to the for-
mation of C-A-S-H gel in the early stage (Puligilla and 
Mondal 2013; Tan et al. 2020). The reason for the de-
crease in fcs results as a result of the increase in the re-
placement ratio of WCP in the geopolymer mortars can 
be explained in this way. 

3.3. Ultrasonic pulse velocity (UPV) 

The results of the UPV test performed per the ASTM C 
597-16 standard are shown in Fig. 3(a). For the mixture 

with each code, the average of the results of three sam-
ples was taken as the final UPV results.  

When the UPV results given in Fig. 3 are examined, it 
is seen that the UPV results vary between 4.55 and 4.29 
km/h. The UPV results of the WCP10, WCP20, WCP30, 
and WCP40 decreased by 1.39, 2.75, 3.74, and 5.70%, re-
spectively, compared to the Ref code mortars. As in the ffs 
and fcs results, the rate of decrease in the strengths in-
creased with the increase of WCP replacement ratio in 
the UPV results. According to the Whitehurst (1951) clas-
sification, Ref mortars are in the "excellent" class, while 
WCP substituted mortars are in the "good" class. Song et 
al. (2019) reported that in geopolymer mortars, the slag 
can fill the pores and voids, thus increasing the strength 
of the matrix. For this reason, it was thought that the po-
rosity of geopolymer mortars increased with the in-
crease of WCP replacement ratio, and this situation 
caused decreases in UPV results. Fig. 4 shows the correla-
tions between ffs and fcs results and UPV results. Linear re-
gression was used to correlate the ffs and fcs results with 
the UPV results and the equations obtained are given on 
the graphs in Fig. 4. As seen in Figs. 4(a-b), R2 values were 
obtained as 0.9641 and 0.9566, respectively. These values 
can mean good confidence in the correlation.

      
Fig. 3. (a) The UPV test results; (b) The percentage of decrease in UPV results. 

      

Fig. 4. Relationship between (a) ffs and UPV; (b) fcs and UPV. 
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4. Conclusions 

In this study, the effect of waste concrete powder 
(WCP) on slag-based geopolymer composite mortars 
was investigated. Blast furnace slag (BFS) and WCP were 
used as binders in geopolymer mortars. WCP was substi-
tuted into the geopolymer mortar composites at rates of 
10%, 20%, 30%, and 40% by weight of slag. Sodium hy-
droxide (NaOH) solution was used as the alkali activator 
in the mixtures and the solution activator concentration 
was chosen as 16 molars (M). After the prepared mortars 
were cured at 100°C for 24 hours, they were subjected to 
flexural strength (ffs), compressive strength (fcs), and ul-
trasonic pulse velocity (UPV) tests. The following results 
were obtained from this study:   
 With the increase in WCP replacement ratio, de-

creases in ffs ranging from 2.84 to 13.27% were ob-
served. It has been determined that the decreases in 
ffs results are seen more clearly when the replacement 
ratio rises above 20%. The highest strength loss was 
observed in geopolymer mortars with 40% WCP, and 
this rate was determined as 13.27%. 

 fcs results also decreased with the increase of WCP re-
placement ratio, similar to ffs results. There were de-
creases in fcs results between 2.40 and 10.50%. The 
lowest result in fcs was obtained from geopolymer 
mortars with 40% WCP and was measured as 53.35 
MPa. Although this result is 10.50% lower than refer-
ence mortars, it is a remarkably high value for many 
construction applications. 

 When the UPV results were examined, it was seen that 
there were decreases between 1.39 and 5.70% with 
the increase in the WCP replacement ratio. However, 
according to the Whitehurst (1951) classification, 
mortars with WCP were found to be in the "good" 
class. 

 Finally, it was determined that the relations between 
flexural strength & ultrasonic pulse velocity and com-
pressive strength & ultrasonic pulse velocity parame-
ters exhibited a remarkably high coefficient of deter-
mination (R2). 
When the results from the study are evaluated in gen-

eral, it has been determined that WCP can be used in the 
remarkably high ratio (up to 40% replacement rate) in 
geopolymer mortars. Although it is seen that WCP re-
placement causes decreases in strength, it has been de-
termined that the results are quite sufficient for many 
building applications. In addition, it has been observed 
that a high amount of WCP as a waste material can be 
disposed of using geopolymer mortars. In this way, envi-
ronmental pollution will be reduced, and a sustainable 
environment will be contributed. In further studies, the 
effect of WCP can be examined by changing the molarity, 
curing temperature, and curing time parameters. 
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