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A B S T R A C T

Epilepsy is a chronic neurological disease and its treatment requires the use of anti–epileptic drugs. The deter-
mination of anti–epileptic drugs in pharmaceutical and biological samples is carried out using various analytical
methods. Potentiometric methods, which have a very important place in electroanalytical chemistry, are used
extensively in the determination of various drugs in biological and pharmaceutical samples. In this study, we
reviewed potentiometry–based sensors developed for the determination of anti–epileptic drug molecules in
biological and pharmaceutical samples.
1. Introduction

Epilepsy is one of the most common chronic neurological disorders
worldwide, and it requires use of anti–epileptic drugs [1]. Anti–epileptic
drug treatment can be continued for quite a long time or for life [2]. The
concentration of anti–epileptic drugs in various biological samples is
extremely important for effective treatment. To date, the determination
of anti–epileptic drugs in various pharmaceutical and biological samples
has been carried out using various analytical methods such as high-
–performance liquid chromatography (HPLC), liquid chromatogra-
phy–mass spectrometry (LC–MS/MS), gas chromatography (GC) and gas
chromatography–mass spectrometry (GC/MS) [3–7]. Although these
methods give very sensitive and accurate results, they have disadvan-
tages such as the requirement of trained personnel, high cost,
high-energy and time consumption as well as not being suitable for
on–site detection.

Potentiometry has a very important place in electrochemistry and is
based on the measurement of the potential difference between two
electrodes, one being the reference and the other working electrode [8].
Potentiometric methods offer multiple advantages including wide linear
concentration range, low detection limit, short response time, low cost,
long lifetime, low–energy consumption, high selectivity and sensitivity
[9–12]. Potentiometric methods have found applications in many areas
such as routine laboratory analyses, environmental monitoring,
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agricultural analysis, medicinal drug analyses, and process control
[13–16]. As a result, potentiometric methods can be considered as an
alternative to other analytical methods for the quantitative determina-
tion of different drugs to be determined in various biological and phar-
maceutical samples.

In the study, we reviewed potentiometric sensors which were devel-
oped for the determination of anti–epileptic drugs in biological and
pharmaceutical samples, and mentioned their performance
characteristics.

1.1. Potentiometric methods for the determination of anti–epileptic drugs

A potentiometric biosensor for the analysis of human blood samples
was described by €Ozbek et al. for the determination of valproate (VPA)
[17]. The biosensor displayed a linear response over the concentration
range of 1.0 � 10�6 to 1.0 � 10�1 M and exhibited a limit of detection of
9.75 � 10�7 M. The proposed biosensor was shown to be useable in the
pH range of 4.0–11.0 and to have a fast response time of <10 s. A
screen–printed potentiometric sensor with greenness profile evaluation
has been developed by Soliman et al. for rapid and direct analysis of
sodium valproate in different matrices [18]. This sensor was reported to
work in concentration range from 5.96 � 10�5 to 1.0 � 10�2 M. In
addition, the sensor had a pH working range from 3.0 to 7.0 and a
response time of 5–10 s. The authors reported that the sensor they
d 15 December 2022

i Communications Co. Ltd. This is an open access article under the CC BY-NC-ND

mailto:oguz.ozbek@beun.edu.tr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sintl.2022.100224&domain=pdf
www.sciencedirect.com/science/journal/26663511
www.keaipublishing.com/en/journals/sensors-international
https://doi.org/10.1016/j.sintl.2022.100224
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sintl.2022.100224


O. €Ozbek, O.C. Altunoluk Sensors International 4 (2023) 100224
developed can be used for quality control of VPA in different samples
with the advantage of real–time, cost–effective and minimal sample
preparation. Sabah et al. proposed a solid–state valproate–selective
sensor based on conductive polypyrrole (PPy) films for the detection of
valproate in pharmaceutical preparations [19]. The developed sensor
worked in the concentration range of 4.0 � 10�5

– 4.0 � 10�2 M with a
limit of detection of 1.0 � 10�5 M. The selectivity of the sensor in the
presence of diverse epileptic drugs (carbamazepine, phenobarbital and
phenytoin) and inorganic salts was investigated. The proposed sensor
displayed response time of approximately 20 s and lifetime of 4 months.
Valproate selective electrodes based on manganese (III) tetraphenylpor-
phyrin [Mn(III)TPP-Cl] as an ionophore have been reported by Santos
et al. [20]. Poly (vinly chloride) (PVC) and ceramic membranes (sol–gel)
were prepared and their potentiometric performance properties were
tested. These electrodes showed lower detection limit of 5.0 � 10�6 M
and 1.0 � 10�4 M for PVC and sol–gel membrane, respectively. The
prepared valproate–selective electrodes were applied in pharmaceutical
samples.

Jalali et al. described the development of a potentiometric sensor for
gabapentin (GP) determination in pharmaceutical samples and blood
serum [21]. The sensor worked in the concentration range of 1.0 � 10�5

– 5.0 � 10�2 M and had a wide pH working range from 1.8 to 3.2.
Abdallah and Ibrahim showed that potentiometric determination of
gabapentin in pharmaceutical tablets and spiked plasma samples could
be performed using graphene oxide decorated with silver nano-
particles/molecularly imprinted polymer [22]. The sensor displayed a
wide linear response over the concentration range of 1.0 � 10�10

– 1.0 �
10�3 M and exhibited a limit of detection of 4.8 � 10�11 M. Response
time, pH range and lifetime for this sensor was 15s, 1.5–3.0 and 115 days,
respectively.

An ion–selective electrode for the analysis of pharmaceutical formu-
lations was reported by Amorim et al. for the determination of diazepam
(DZP) [23]. In the study, (2-hydroxyproyl)-γ-cyclodextrin was used as an
ionophore. The potentiometric electrode was observed to be useable in
the pH range of 1.9–2.7. In addition, response time of the electrode less
than 30s. Another potentiometric determination of diazepam in phar-
maceutical samples was performed by Ghorbani et al. using carbon paste
sensor prepared with diazepam–tetraphenylborate (DZP–TPB) ion pairs
[24]. The sensor exhibited a Nernstian behaviour (58.6 � 0.2 mV/de-
cade) in concentrations from 1.0 � 10�2 to 5.0 � 10�5 M. Authors
showed a fast response time of 5–10 s and independent in the pH range
from 3.0 to 5.0.

Potentiometric determination of levetiracetam (LEV) in pharmaceu-
tical samples was performed by €Ozbek and Isildak using PVC membrane
ion–selective electrodes [25]. The authors synthesized the levetir-
acetam–tetraphenylborate (LEV–TPB) ion pair and used it as an iono-
phore. This sensor displayed a linear response from 1.0 � 10�5 to 1.0 �
10�1 M with a detection limit of 6.31 � 10�6 M. The sensor displayed a
good selectivity in the presence of common ionic species and some
anti–epileptic drug.

Alrabiah et al. described the development of ionophore-based PVC
membrane potentiometric sensors (β– or γ–cyclodextrin) for the deter-
mination of phenobarbitone in pharmaceutical formulations [26]. These
sensors showed anionic response (�59.1 and�62.0mV/decade) over the
concentration range of 5.0� 10�6

– 1.0� 10�2 M and 8.0� 10�6
– 1.0�

10�2 M for β– and γ–cyclodextrin–based sensors, respectively. They
showed a fast response time of 25 s and worked in the pH range from 9.0
to 11.0.

Potentiometric determination of lamotrigine (LMT) in human urine
and plasma samples was performed by Sadeghi et al. using molecularly
imprinted polymers [27]. The developed potentiometric sensor worked
in the concentration range of 1.0 � 10�6

– 1.0 � 10�3 M. The sensor
works in the pH range of 1.0–5.0 and has a response time of approxi-
mately 30 s. Another LMT potentiometric sensor prepared using
LMT–dodeca-molybdophosphate (PMA) ion–pair complex was reported
in the literature for the determination of LMT in pharmaceutical and
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urine samples [28]. The sensor exhibited a Nernstian behaviour (57.14�
1.0 mV/decade) in concentrations from 5.0 � 10�4 to 9.0 � 10�3 M. The
LMT–selective sensor with a detection limit of 1.3 � 10�5 M exhibited a
response time < 5s.

Al-Bayati and Karabat reported the development of potentiometric
electrode using PVCmembrane for the determination of phenytoin (PHY)
in pharmaceutical preparations [29]. They used four different plasticizers
and investigated their potentiometric performance characteristics. The
electrode using di–octylphenylphosphonate (DOPH) as a plasticizer
works in the concentration range of 1.0 � 10�5

– 1.0 � 10�1 M. The
lifetime of the electrode was shown to be less than 30 days. Another
potentiometric sensor for the determination of phenytoin in pharma-
ceutical preparations and biological fluids was developed by El-Tohamy
et al. [30]. They prepared two different types of electrodes: plastic
membrane and coated wire. These electrodes worked in the concentra-
tion range of 5.0� 10�3 to 5.0� 10�6 M and 1.0� 10�3 to 1.0� 10�6 M,
and had detection limits of 1.3� 10�6 M, and 2.5� 10�7 M for electrode
plastic membrane and coated wire, respectively. In addition, they
observed that the pH ranges of the phenytoin–selective electrodes were
6.0–10.0.

Potentiometric (MIP/PVC/GCE) and voltammetric (MIP/GO/GCE)
sensors for selective and sensitive determination of Topiramate based on
molecular imprinted polymer approach was produced by Khalifa et al.
[31]. The linear concentration ranges and detection limits of the devel-
oped sensors were reported to be as following: 2.7 � 10�10

– 4.9 � 10�3

M, 5.0 � 10�11 M for voltammetric sensor (MIP/GO/GCE); 1.0 � 10�9
–

3.4� 10�3 M, 2.4� 10�10 M for potentiometric sensor (MIP/PVC/GCE).
Electroanalytical topiramate sensors was applied in human serum sam-
ples, urine sample and pharmaceutical tablets.

El-Naby developed potentiometric sensor based on
β–cyclodextrin:phosphomolybdic acid organic–inorganic hybrid material
as a ionophore incorporating a plasticized PVC membrane with dioctyl
phthalate (DOP) or o–nitrophenyloctyl ether (o–NPOE) for the determi-
nation of pregabalin in pharmaceutical formulations [32]. They showed
that this sensor had a linear concentration range of 1.0 � 10�6

– 1.0 �
10�1 M, a detection limit of 6.0 � 10�7 M and response time of 5s.

The chemical structures of the mentioned anti–epileptic drugs are
given in Fig. 1.

The linear concentration range, limit of detection, pH working range,
response time and slope (mV/decade) of anti–epileptic drug sensors are
summarized in Table 1. The gabapentin–selective sensor prepared by
Abdallah and Ibrahim has the widest working range and the lowest
detection limit [22]. The potentiometric valproate biosensor proposed by
€Ozbek et al. has the widest pH working range [16]. The sensors prepared
for the determination of lamotrigine and pregabalin have a very short
response time of 5 s [28,32].

2. Conclusion

In this study, we reviewed potentiometric sensors which were
developed for the determination of anti–epileptic drug molecules in
biological and pharmaceutical preparations. While the determination of
anti–epileptic drugs in pharmaceutical samples is important for content
analysis and drug development, their determination in biological sam-
ples is very important in terms of drug metabolism, availability and
toxicity. Potentiometric methods, which are easier to reach and cheaper
than other analytical methods, can perform these analyzes quantitatively.
Considering their working concentration ranges, response time, detec-
tion limit, selectivity and stability, it will be possible to analyze drug
molecules in biological and pharmaceutical samples, which are other-
wise not easy to perform with other analytical methods. Consequently,
sensors prepared with potentiometry successfully detect drug molecules
in various samples, and these methods will reach more application areas
and more users in the coming years.



Fig. 1. The chemical structures of anti–epileptic drugs.

Table 1
Potentiometric performance characteristics of anti–epileptic sensors.

Anti-epileptic drug Concentration range (M) Limit of detection (M) pH working range Response time (s) Slope (mV dec�1) Ref.

Valproic acid 1.0 � 10�6
–1.0 � 10�1 9.75 � 10�7 4.0–11.0 <10 59.0 � 3.6 [17]

Valproic acid 5.96 � 10�5
–1.0 � 10�2 4.48 � 10�5 3.0–7.0 5–10 �57.099 [18]

Valproic acid 4.0 � 10�5
–4.0 � 10�2 1.0 � 10�5 4.0–7.5 20 47.7 [19]

Valproic acid (PVC membrane) 9.9 � 10�6
–1.0 � 10�1 5.0 � 10�6 4.5–8.4 15 60.8 � 0.9 [20]

Valproic acid (sol–gel membrane) 2.0 � 10�4
–1.0 � 10�1 1.0 � 10�4 3.5–7.5 10 60.3 � 1.0

Gabapentin 1.0 � 10�5
–5.0 � 10�2 1.0 � 10�5 1.8–3.2 10–35 59.8 � 2 [21]

Gabapentin 1.0 � 10�10
–1.0 � 10�3 4.8 � 10�11 1.5–3.0 15 59.86 [22]

Diazepam 1.9–2.7 <30 67.6 � 3.0 [23]
Diazepam 5.0 � 10�5

–1.0 � 10�2 8.0 � 10�7 3.0–5.0 5–10 58.6 � 0.2 [24]
Levetiracetam 1.0 � 10�5

–1.0 � 10�1 6.31 � 10�6 6.0–8.0 25 24.0 � 1.9 [25]
Phenobarbitone 5.0 � 10�6

–1.0 � 10�2 3.50 � 10�6 9.0–11.0 25–30 �59.1 [26]
Phenobarbitone 8.0 � 10�6

–1.0 � 10�2 7.0 � 10�6 9.0–11.0 25–30 �62.0
Lamotrigine 1.0 � 10�6

–1.0 � 10�3 8.0 � 10�7 1.0–5.0 ~30 30.8 � 1.0 [27]
Lamotrigine 5.0 � 10�4

–9.0 � 10�3 1.3 � 10�5 4.6–5.8 5 57.14 � 1.0 [28]
Phenytoin 1.0 � 10�5

–1.0 � 10�1 6.0 � 10�6 2.5–9.0 12–30 26.6 [29]
Phenytoin (I) 5.0 � 10�3

–5.0 � 10�6 1.3 � 10�6 6.0–10.0 �35 30.9 � 0.1 [30]
Phenytoin (II) 1.0 � 10�3

–1.0 � 10�6 2.5 � 10�7 6.0–10.0 �30 28.9 � 0.1
Topiramate 1.0 � 10�9

– 3.4 � 10�3 2.4 � 10�10 �59.2 � 0.4 [31]
Pregabalin 1.0 � 10�6

–1.0 � 10�1 6.0 � 10�7 1.5–3.7 5 59.6 [32]
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