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ABSTRACT

The detection of weeds with computer vision without the help of an expert is important for scientific
studies and other purposes. The images used for the detection of weeds are recorded under
controlled conditions and used in image processing-deep learning methods. In this study, the images
of 3-4-leaf (true-leaf) periods of the wild mustard (Sinapis arvensis) plant, which is the critical
process for chemical control, were recorded from its natural environment by a drone. The datasets
were included 50-100-250-500 and 1 000 raw images and were augmented by image preprocessing
methods. Totally 12 different augmentation methods used and datasets were examined for
understand how to affects the numbers of images on training-validation performance. YOLOV5 was
used as a deep learning method and results of the datasets were evaluated with the Confusion Matrix,
Metrics-Precision, and Train-Object Loss. For results of Confusion Matrix where 1 000 images
gave the highest results with TP (True Positive) 80% and FP (False Positive) 20%. The TP-FP ratios
of 500, 250, 100 and 50 image numbers were respectively; 65%-35%, 43%-57%, 0%-100% and
0%-100%. With 100 and 50 images, the system did not show any TP success. The highest metrics-
precision ratio was found 92.52% for 1 000 images set and for 500 and 250 image sets respectively;
88.34% and 79.87%. The 100 and 50 images datasets did not show any metrics-precision ratio. The
minimum object loss ratio was 5% at 50th epochs in the 100 images dataset. This dataset was
followed by other 50, 250, 500, and 1 000 images respectively; 5.4%, 6.14%, 6.16%, and 8.07%.
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Introduction

There are many smart agriculture applications such as
plant disease detection, crop yield estimation, plant species
detection, weed detection, water, and soil protection are
already performed with computer vision technology
(Tian, et al., 2020) (Mavridou, et al., 2019) (Zhang, et al.,
2021). The control of weed assets is one of the important
ways to increase agricultural production efficiency. Barberi
has suggested sensitive variable spraying methods to avoid
the problems caused by the overuse and residues of
herbicides used in conventional spraying methods (Barberi,
2002). To detect crop plants and weeds in real-time is an
important problem to be able to apply the right amount of
spraying to the right area. Guzel et al. carried out a study that
detected Wild Mustard (Sinapis arvensis) by deep learning
method for real-time detection of this weed (Giizel, et al.,

2021). The detection of plants and weeds by using computer
vision technology can be done with traditional image
processing and deep learning methods (Wu, et al., 2021).
Since the weed detection is done with traditional image
processing technology, features such as color, texture, and
shape of the image are distinguished and combined with
traditional machine learning methods such as Random
Forest or Support Vector Machine (SVM) algorithm (Sabzi,
etal., 2020). The features of plants appearances used in these
methods need to be determined manually. The success rate
in these methods depends on the image acquisition process,
preprocessing methods, and feature extraction quality. With
the improvement in computing power and increase in data
volume, deep learning algorithms can extract multi-scale
and multidimensional spatial semantic feature information
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of weeds through Convolutional Neural Networks (CNNs)
due to their enhanced data expression capabilities for
images, avoiding the disadvantages of traditional methods.
For this reason, deep learning methods attract the attention
of researchers working on the detection of weeds.

In the literature, there are several reviews on the
application of machine learning in agriculture (Liakos, et
al., 2018) and some studies presented on the use of deep
learning methods to accomplish agricultural application
(Kamilaris & Prenafeta-Boldu, 2018). A general
compilation study of artificial intelligence methods applied
by researchers in all areas of agricultural production
(Weng, et al., 2019) and a review that compiles studies
currently carried out on a specific type of technology for a
specific task (Su, 2020). Koirala et al. conducted a study
on the application of deep learning in product detection and
yield estimation, problems that hinder the display of
products and their solutions (Koirala, et al., 2019).
However, this study focused only on crop detection and
yield estimation, ignoring other agricultural tasks
involving multiple objects such as weed detection.
Kamilaris et al. presented a review compiling the
application areas of deep learning methods in agriculture,
including many studies in the fields of weed identification,
land cover classification, plant identification, crop
counting, and crop type classification (Kamilaris &
Prenafeta-Boldu, 2018). Yuan et al. conducted a study
describing the research progress in the field of weed
detection at home and abroad and the advantages and
disadvantages of various segmentation, extraction, and
diagnostic methods (Yuan, et al., 2020). However, there
are different studies for new proposals on the use of deep
learning methods to solve the problem of weed detection.
Hasan et al. has provided a comprehensive review of weed
detection and classification research and focused on deep
learning studies within these studies (Hasan, et al., 2021).

When these studies are examined, there is no study on
the importance of how the number of images used for weed
detection affects the prediction rate and deep learning
achievements. Therefore, different numbers of data sets
were prepared in this study. These datasets have been
tested on the same deep learning architecture (YOLOV5)
and their results were evaluated.

The Wild Mustard (Sinapis arvensis L.) was chosen to
determine the effect of image numbers on deep learning
predictions. Sinapis arvensis is an important weed that is a
member of the Brassicaceae family. It is a plant that is
especially rich in nutrients, like the basic character,
hummus, and clay soils. Although it originates from
Mediterranean countries, it is a plant that is reported to be
frequently seen in fields, gardens, and pastures (Uygur,
1986). The plant forms capsules after seed flower
formation and the existing seeds are formed in these
capsules. It is known that a healthy, properly grown plant
gives approximately 1 200 seeds. If the seeds that have
grown from the plant are not found in suitable conditions,
they can remain without germination for a long time (up to
about 35 years) (Uygur, 1986); (Sin, 2021). This plant is in
the category of invasive plants seen in almost every part of
the world. Although it is assumed that wild mustard came
to North America from Europe in various studies
(Mulligan, 1975) (Rollins, 1981), some archaeological
excavations have encountered fossilized wild mustard

seeds dating back to pre-Columbian times. Studies in
Canada have determined that different wild mustard
species are used as medicine and food by the indigenous
people of Canada (Arnason, 1981). This plant can cause
serious yield losses in field crops in Canadian meadows. A
strong persistent seed bank, competitive growth habit, and
high fertility all add to the nature of the weed and ensure
that weed is an ongoing problem. Before the widespread
use of phenoxy herbicides, S. Arvensis was the worst weed
on grassland plantations (Mulligan, 1975).

The Wild Mustard causes serious economic losses by
being found in various cultivated plant growing areas. If an
example is given for these losses; It has been determined
that there is a product loss of 20% in canola cultivation
areas if there are 10 plants per square meter, and 36% in 20
plants m? (Thomas, 1984) (Blackshaw, 1987) (McMullan,
1994). In wheat-growing areas, according to the
researchers, if there are 11 wild mustards per square meter,
it is stated that it causes a loss of 49.97%. In addition,
various studies have reported that wild mustard
populations have gained resistance to the herbicides used
(Sin & Kadioglu, 2021).

Material and Methods

The application of herbicides against broad-leaved
weeds, especially in the young period with 2-4 leaves (true
leaves), is important for successful control. In this study,
deep learning classification performance was evaluated with
a different number of pictures in the 2-4 leaf period of Wild
Mustard and it was coded as YH-2. Images of the natural
environment of the Wild Mustard plant used in the study
were obtained in the true leaf period. These images were
obtained from the wheat field in the province of Tokat,
which was reviewed for the year 2020. The locations of the
plants, which were determined during the period of
cotyledonous leaves, were marked with the Magellan
eXplrosit 310 Handheld GPS (Figure 1-a) device with 1m
sensitivity, and videos recorded by a drone (the DJI Mavic 2
Pro (Figure 1-b) drone, which has a camera 4K: 3840x2160
30 FPS resolution and quality) when the true leafy period of
the plants. Videos of the plants were taken by flying 1 m
above the ground. A desktop computer with 11 core Intel ®
i7 11700 KF CPU, NVIDIA GeForce RTX 2080 Ti GPU,
32 GB DDR4 3600 MHz RAM, 1 TB Samsung Pro 980 M.2
hardware was used for further processing by transferring the
recorded videos to the computer environment.

To make photo frames from these captured videos and
tagged them to create the data set, random photo frames must
be extracted from the videos. Some distortions or loss of
detail occur in the photo frames extracted from the videos
because of the movements of the drone during the video
recording, the shaking of the plants due to the naturally
occurring wind events, and the air pressure created by the
drone propellers. The photos should be having as possible as
the highest resolution because the deep learning method
automatically finds the attributes (edge, color, area, texture,
etc.). To minimize these losses and make the images clearer,
FrameGui program was used to improve the FPS (Frame per
Second) feature of the videos. The frame rate of the videos
recorded with the drone has been increased from 30 FPS to
60 FPS. The detail-quality difference between the photo
frames taken from the improved videos is given in Figure 2.
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Figure 1. (a) 1m precision Handheld GPS device
Magellan eXplorist 310 (b) DJI Mavic 2 Pro Drone

Figure 2. (a) Random image in motion at 30fps, (b)
Random image from 60 FPS enhanced video
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Figure 4. Comparison of YOLOV5 Libraries with Other
YOLO Versions

Python 3.9 was used to collect random photo frames
from videos with increased frames per second (DeepLabel)
to label Wild Mustard (Sinapis arvensis L.) images on the
obtained photos (LabellmageMaster), and to create training-
validation sets. With this data set, the YOLO-v5 library,

which has instant object detection, was evaluated. The
advantages of the YOLO-v5 library over other deep learning
architectures used in the literature are given in Figure 3 and
Figure 4 (Nepal & Eslamiat, 2022).

Datasets consisting of 50-100-250-500-1 000 raw
images were prepared to evaluate the effects of the number
of images in the dataset on the correct detection and
prediction rates. These datasets were then preprocessed with
data augmentation methods, each of which was increased to
12 folds. The image reproduction methods applied are given
in Table 1.

The created 5 different data sets (1 000, 500, 250, 100,
50 pieces) were evaluated by subjecting them to training and
validation practices in the YOLOVS5 library. To train the
system with these datasets, the images in the datasets were
randomly distributed as 90% training and 10% validation.
For training, the batch size was 12, the number of epochs
chosen as 50, YOLOv5s.pt picked for weight, and
YOLOv5s.yaml deep learning algorithm were used.

Results and Discussion

To compare the correct estimation and detection rates of
the created data sets; The results of the Confusion Matrix
(Figure 5), Metrics-Precision (Figure 6), and Train-Object
Loss (Figure 7) were compared. For the Confusion Matrix,
the success indicators are True Positive; which correctly
classifies the given object, and False Positive means that the
object that needs to be detected (YH-2) is estimated as one
of the other plants existing in the background.

According to Figure 5, neural networks trained with 1
000 images gave the highest results with TP 80% FP 20%.
The TP-FP ratios of 500, 250, 100 and 50 image numbers
were respectively; 65%-35%, 43%-57%, 0%-100% and 0%-
100%. With 100 and 50 images, the system did not show any
TP success.

The test results of the datasets trained with different
numbers of images on the validation dataset are given in
Figure 6. Accordingly, the highest metrics-precision ratio
was 92.52% for 1 000 image sets, while it was 88.34% and
79.87% for 500 and 250 image sets, respectively. Datasets
containing 100 and 50 photos could not make any correct
predictions and remained at 0%.

In Figure 7, different datasets were utilized from the
training-not-evaluated object. Object loss during training
was 5% at step 50 in the dataset with at least 100 images.
This dataset was followed by others 50, 250, 500, and 1000
images respectively; 5.4%, 6.14%, 6.16%, and 8.07%.

The difference between the training and validation sets
of the data sets whose training has been completed is given
as an example in Figure 8, with 2 identical photo sets (a) that
are tagged and uploaded to the system for validation and that
is (b) requested to be labeled automatically by the trained
system.

In this study, the results were evaluated by using data sets
containing different image numbers, the same deep learning
architecture and algorithm, and a computer with the same
hardware features. The highest correct prediction rate among
the datasets and the success of correctly classifying these
predictions belonged to the 1 000 raw image datasets. When
compared with other datasets, as the number and diversity of
images in the dataset increases, although the data loss rate is
higher during the validation phase, the highest and most
accurate prediction number was obtained from the dataset
containing the highest number of images.
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Figure 5. The Confusion Matrix Ratios of Data Sets Containing Different Image Numbers
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Figure 6. Metrics-Precision Rates of Datasets Containing Different Image Numbers
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Figure 7. Train-Object Loss Rates of Datasets Containing Different Image Elements

1444



Mustafa et al. / Turkish Journal of Agriculture - Food Science and Technology, 10(8): 1441-1446, 2022

yh20.7

;r:'z".o.s yh20.7

yhyyhZo

P

Figure 8. (a) Ground Truth labeled Wild Mustard plants sample, (b) Predicted boxes around Wild Mustard plants and
confidence scores generated by model on the same images in (a).

Table 1. Data augmentation methods and explanations used

Data Augmentation Methods

Description

hsv_h: 0.015

image HSV-Hue augmentation (fraction)

hsv_s: 0.7 image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 image HSV-Value augmentation (fraction)
degrees: 0.0 image rotation (+/- deg)

translate: 0.1 image translation (+/- fraction)

scale: 0.5 image scale (+/- gain)

shear: 0.0 image shear (+/- deg)

perspective: 0.0 range 0-0.001 image perspective (+/- fraction), range 0-0.001
flipud: 0.0 image flip up-down (probability)

fliplr: 0.5 image flip left-right (probability)
mosaic: 1.0 image mosaic (probability)

mixup: 0.0 image mixup (probability)
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While the datasets consisted of raw 1 000, 500, 250, 100,
and 50 labeled images, the number of images has increased
to 12 000, 6 000, 3000, 1 200, and 600 using data replication
methods. With the increase in the number of images in the
data set, each repetitive training epoch of the system has
taken longer than the dataset with fewer images. The training
time was for the datasets of 1 000, 500, 250, 100, and 50 has
took for each epoch 18.6, 13.4, 8.2, 5.1 and 2.7 mins
respectively. 90% of the CPU and GPU capacities used in
the study were used and thus the number of images (batch
size) examined at once was 48. Since the training times per
epoch are inversely proportional to the batch size, weights
with faster and higher prediction rates for larger image sets
obtained naturally and/or by data replication methods, on an
equipped computer with a higher-capacity graphics card and
processor can create.

A significant correlation was found between the increase
in the number of images in the datasets and the increase in
the prediction precision and correct classification rates of the
generated neural networks. The satisfying point of the
system should be examined with different numbers of
images, epochs, and batches at the training stage reach. To
carry out this analysis, datasets containing more images
should be obtained and tested on computers with higher
capabilities. In this way, the optimum number of raw-
amplified images will be known by other researchers at the
ten study and planning stages to perform the best estimation
process of deep learning applications, which are increasingly
used in agricultural areas. To realize the correct and clear use
of artificial intelligence algorithms in agricultural areas, the
features that reveal the differences can show great changes
depending on the climate and environmental conditions, the
natural growth periods of the plant, or the occurrence of
weather events where image acquisition becomes
impossible and may prevent the system from being properly
trained. For this reason, it is an important issue for the health
of the studies to be taken before the laboratory studies, on
time and in the correct number. Studies such as this study
will reveal the relationship between the number of images in
the data set and the result should be tried on different objects,
as they may differ according to the variety of the item used.
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