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1. Introduction

Fractional calculus, which includes differentiation and integration has a history dating back over three
centuries [1]. It has extended integration and differentiation operations to any fractional orders that
might take any real or complex value. Thus, it is possible to think of the order of the fractional
integrals and derivatives as a function of time or another variable. In this context, Samko and Ross
examined the first study regarding the idea of variable order (VO) differentiation in [2,3]. Based on
using the R-L derivative and the Fourier transform, they have defined and interpreted the integration

and differentiation of functions to a variable order (%)a(t) f(x). The notion of variable and distributed
order fractional operators is then developed by Lorenzo and Hartley. They reviewed the VO fractional
operator research results and then studied the concepts of variable order fractional operators in various
forms [4,5].

The memory and heredity aspects of numerous physical processes and events can be used to char-
acterize by the variable order fractional operators thanks to their non-stationary power-law kernel. As
a result, fractional calculus with variable order was used as a prospective option to provide an appro-
priate mathematical framework for precisely modelling complicated physical systems and processes.
Having followed that, VO-FDEs have attracted increasing attention, owing to their compatibility with
describing a wide range of phenomena, including anomalous diffusion, medicine, viscoelasticity, control
system, and many other branches of physics and engineering, to name a few [6-13]. Many publications
have been devoted to finding numerical solutions for fractional differential equations of VO due to the
difficulty in obtaining explicit solutions. See also [14-18] and the references therein. Nonetheless,
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some recent publications discuss the existence, uniqueness, and stability features of variable fractional
order differential equations [19-32].

We aim to study following fractional boundary value problem (BVP) of variable order in Riemann-
Liouville sense (VORLFDE) with fractional variable order boundary conditions as well.

DY Oy(t) = g(t, y(t)), teJ
I2—w(t)y(0) — aOIQ_w(t)y(a), Dw(t)—ly(o) — aerw(t)—ly(a)

where J = [0,a], 0 < a < oo, w(t) : J — (1,2] is the variable order of the fractional derivatives,
g:J xR — Ris a given function and D¥(), 1*(*) denotes the Riemann-Liouville fractional derivative
and integral of order w(t) respectively and ag, o real numbers such that ap # 1 and ag # 1.

We will be concerned with the existence and uniqueness of solution of problem 1 and further study
the stability of the obtained solution of problem 1 in the Ulam-Hyers-Rassias (UHR) sense.

(1)

2. Mathematical Preliminaries

This section introduces several important notions and lemmas that are required to grasp the main
theorems covered in the next parts. We also present additional features for variable order operators.

Let C(J, R) be the set of all continuous real-valued functions from J into R. Setting the standard
norm ||s|| = sup{|s(t)| : t € J} for an element in C(J,R), then C(J,R) has become a Banach space
with such a norm.

For —oo < t; < t3 < 400, we consider the mappings w(t) : [t1,t2] — (0,4+00) and 6(t) : [t1,t2] —
(n — 1,n). Then, the left Riemann-Liouville fractional integral (RLFI) of variable-order w(t) for
function y(t) is given [3] by

L(t—g w(t)—1
1w = [ %ms)ds, > a (@)

and the left Riemann-Liouville fractional derivative (RLFD) of variable-order 6(t) for function y(t) is
defined by

o(t) _ d\n n—0(t) . d\m t(t—s)”_e(t)—l
Do = () 1" = ()" [ T oy v ¢ 0 @)

As expected, RLFI and RLFD coincide with the conventional Riemann-Liouville fractional derivative
and integral, respectively [1, 3], when replacing constant values by w(t) and 6(t).

Remark 2.1. [28] It should be emphasized that for R-L fractional integrals with constant orders,
the semi-group property is satisfied, but not for those with variable orders, i.e.,

01Oy (o) # 10Oy )

Definition 2.2. [18] Let I be a subset of R. Then we define the followings:
- If the set [ is an interval, a point or an empty set, it is referred to as a generalized interval.

- If each x in I lies in precisely one of the generalized intervals F in P, then the finite set P of
generalized intervals is known as a partition of

- If for any E € P, g is constant on F, the function g : I — R is said to be piecewise constant
with regard to partition P of I

Theorem 2.3. [34] Suppose E is a Banach space. If T': E — FE' is a completely continuous operator
and Q ={z € F:x=nTxz,0 <n <1} is bounded, then T has a fixed point in E.
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Definition 2.4. [33] BVP 1 is said to be Hyers-Ulam-Rassias stable (UHR) with regard to the
function k € C(J,R4) if a constant ¢, > 0 exists such that for any € > 0 and for each function
z € C(J,R) satisfying

Dy 2(8) — glt, 2(1)] < en(t), t€ T (4)

there exists a solution y € C(J,R) of BVP 1 with

2(t) = y(t)| < cgen(t), t €T

3. Existence of Solutions

Let us proceed by stating the following hypothesis:

(H1) Assume that {ay}}_, is the finite sequence of points such that 0 = ap < a < ap = a, k =
1,...,n—1where n € N. Let J, := (ar—1,ax), k=1,2,...,n. Then, P =U}_,J} is a partition
of the interval J.
For each m = 1,...,n, the symbol E,, = C(Jn,R), indicates the Banach space of continuous

functions y : J,, — R equipped with sup-norm ||y||g,, = sup;cz, |y(t)|-

Let w(t) : J — (1,2] be a piecewise constant function with respect to P, i.e.,

= wnln(t)
m=1

where 1 < w,, < 2 are constants, and I,, stands for the indicator of the interval 7,,, m =
1,2,...,n, that is,
1, tedn
1, = ’
m(t) { 0, elsewhere

For any t € J,,, m = 1,...,n, one can represent R-L fractional variable-order derivative w(t) of the
function y(t) € C(J,R), deﬁned by (3), as the sum of left R-L fractional derivatives of integer orders
wg, k=1,...,m

Dw(t) (t) . 1 d? /t(t . )1—w(t) ( )d
ot YT P (»ﬁ2 i yie)as
1 1 d2 t L
ey dtz/ Vst g [ =) 0
As a consequence, BVP 1 can be expressed on 7, for each m = 1,...,n in the manner shown below

m—1 2

: e (L / (t— )"~y (s)ds + o /t<t—s>1—wmy<s>ds)=g<t,y<t>> ©)

Let the function g € C(Jm, R) be such that g(t) = 0 on t € [0, a,,—1] and it solves integral Equation
6. Then, it is reduced to
D g(t) =gt §(t)), t € Tm

Am—1

We consider the auxiliary BVP given below for integer order Riemann-Liouville fractional differential

equations while regarding the aforementioned statement above for any m =1,2,...,n
D y(t) = g(ty(t)), t € Im
mfl (7)

Dwm 2y(am—1) —OéoD “2y(am), Dwm Yy(am-1) —OqD " y(am)

—1 mfl Ap—1 mfl
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Lemma 3.1. Let ag, a1 # 1, g € C(Jm X R,R) for m =1,...,n, and v € (0,1) be a number such
that t7g € C(Jm x R, R).
Then, the function x € E,, satisfies problem 7 iff y solves the integral equation

t a Wy —1 A
z(t) = / (t—s)UmLg(s,z(s))ds + ﬂ—imw / g(s,x(s))ds

F(’U}m) Am—1

twme
(1 — ao)(l — 041>

Tlwn — 1) /:;[(agam — a1am—1 — ap(l —aq)sg(s,x(s))ds  (8)

PROOF. Let x € E,, be a solution of BVP 7. Using the operator I:T on each sides of BVP 7, we

find "
x(t) = MtV + At 4+ I;’T g(t,x(t)) (9)

m—1

where Ag, A1 are constants.
Using funciton 9, we have

DU a(t) = MT(wm) + Tg(t, 2(t))
In view of assumptions on the function g and by the boundary condition

Dgf_lx(am,l) = alD;Uf“laz(am)

m—1 m—1

we conclude that
aq

o, o

since I27%m (wm=1) = I'(wy,)t and I>~¥n (¥m~2) = I'(w,, — 1), from the boundary condition

A=

D;‘Tﬁx(am_l) = aoDr 2x(am)

m—1 m—1

where Gy, (t, s) is Green’s function defined by:

twm—1 Y =2 (g — Q1 G —1 —p (1—r1) 8] 1 m—1
Teantom T+ o) (—aT@me T T & —9)"
Om-1<s<t< am
Gt 5) = 2
aqtwm—1 + tYm =2 [agam —a1am—1—oo(l—a1)s]
(1—a1)(wm) (1—ao)(1—a1)T(wm—1)
am-1 <t<s<apm

where m =1,2,...,n.

Then, we get x that solves Integral Equation (8).

In contrast, consider x € E,, to be a solution of Integral Equation 8. We conclude that x is the
solution to the BVP 7 by virtue of the continuity of function ¢7g. O

We shall demonstrate the existence result for the BVP of R-L fractional differential equations of
constant order (7). The proof will be carried out by the aid of Theorem 2.3.
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Theorem 3.2. Suppose that the conditions of Lemma 3.1 hold and there exists a constant N > 0
such that
tg(t,y)| < N, Vte Tn,yeR

with v =2 — w. Then, BVP 7 for Riemann-Liouville fractional differential equations of integer order
has at least one solution in C, [@m—1, Qm).

ProoF. For any function y € C[am—1,an], we construct the operator

1 Oéltwmfl

SU0 = g [ =9l ptends + e [ gy

['(wm)
twm—Q

T ag) (= a)T(wn —1)

/am [(apam — a1am—1 — ap(l — a1)slg(s, y(s))ds (10)

Am—1
It results in immediately by the properties of fractional integrals and the continuity of function t7g
that the operator S : C,am—1, am] = Cylam—1, am] given by equality 10 is well defined. Let

N(an " — a}{j )T .

(1- 7)1“(wm)1 A (am — am_1)"" " + ‘1

e —n)um — (1 =) )
(1 — ap)(1 — a1)(2 = 7)(am ¥ = apm_1)'7

Consider the set

(@m — 1am—1) (W, — 1)

Fom (1= a0)(1 — )

Bpr,, =1{y € C,y[am,l,am], ||yH'y < Rpn}
For all m € {1,2,...,n}, the ball Bg,, is a nonempty closed convex subset of Cy[am—1, am].
We are in position to examine the assumption of the Theorem 3.2 for the operator S. We shall
demonstrate it in three stages.
Step 1: Let Bpg,, be a bounded set in C,[am—1, am]. Hence, BRm is bounded on Clay,—1, a,,] and
there exists a constant N such that t7|g(¢,y(¢))| < N,Vy € Br,,,t € [am—1, am). Thus,

Ntv [t olet
t7 1) < V(- s)mT 1 ’ ‘/ ~d
SOl < gy [ 57 [ | [ s

O‘l

QO — Q1am—1 — ap(l — al)s’sfvds

N
+‘ (1 — ao)(l — Oél)r(wm — 1) ’ /am_l
N(ainiv a:n ) [
(1 =) (wm)
+‘ ao(1 — ay)(wy — 1)1 =) (am " — am-1)>"" H
(1= )1 — an)(2 — (@b — am1)1

10, ’ (@ — c1am—1) (W, — 1) ‘

Y _ Wy —1 ‘
(@ = m=2)™ [ 1—ao)(l—a)

which implies that

( a71n_—71) Wy —1 10m (aOam - O‘lamfl)(wm — 1)
5l < s (o = amea) ! | [

’Oc (1 —ap)(wy, —1)(1 - 'y)(a?n_v —pm1)*7 H
(1—a0)(1 —a1)(2 =) (am " = am-1)17

Hence, S(Bg,,) is uniformly bounded.
Step 2: Let t1,t2 € T, t1 < toand y € Bg,,. Then, we have

Sy (t) —SY(E)] = |rgimy fi, [0 = 5" =t (82 = ) g(s.y(s)ds
— iy S (ks — 8) g5, uls))ds + Bt [ (s, y(s))ds
N ([ S [0 = )t = (1 — sy s

Wy — aq(t1—t
_F(ul)m) t12 tg(t2 —s) lds‘ + ‘(l—all()f‘l(wfn)—l) fa -1 dSD

IN
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Hence, |t] (Sy)(t1)—t3(Sy)(t2)| — 0 as [t —t2| — 0. Thus, t7S(Bg,,) is equicontinuous. Consequently,
the operator S is compact.
Step3: Consider the set
Q={yeR\y=nSy,0<n<1}

and show that the set 2 is bounded. Let y € Q, then y = nSy,0 < n < 1. For any t € [am — 1, an],
we have

a wm, —1
O < 0y [, 106 = 5" lgs, y(s))lds + | 285

Jam
Am—1

Jam 19(s,y(s))lds

QO — Q1am—1 — ap(l — al)s‘ds]

twm72

+‘ 1—ap)(1—a) T (wm—1

We have
(a,ln_v _ al_jl) 1 a1Qm, (@oam — a1am—1)(wp, — 1)
< = ) o
1(Sy)lly < (T — )T (wn) [am( — Qm-1) + ‘ 1—a ’ (1—ao)(l—ar)

ao(1 = ar)(wm — D(1 =) (am " = am—1)*7" H
(1= ao)(1 = a1)(2 = 7)(am " = am—1)'~
This implies that the set © is bounded independently of n € (0,1). On account of Theorem 2.3, we

find that the operator S has at least one fixed point, which follows that problem 7 possesses at least
one solution. O

Consider the next assumption:

(H2) Let g € C(J x R,R) and there exist a constant K > 0 such that
t’Y’g<t7u) - g(ta U)| < K|u - U|
forany u, veR, te€e Jandy=2—w

Theorem 3.3. Assume that conditions (H1) and (H2) hold. Then, problem 7 has a unique solution
in Cylam—1,an) if

1
K<~ 11
p (11)

where

2 1-2
(am T —a, )

P = 029 (wm) { i m(@m — Qm—1)

aalﬂMmefn‘<u 27)(ar > —a izb)}
(1—ao)(1—a1) |\ (2-2v)(am " —a,,2])

Am—1

(apam—a1am—1)(wm—1)
(1—ao)(1—a1)

Qm +

1—aq

_l’_

PROOF. In view of (H2), for every ¢ € [am—1, am], we have

1(Su)(t) = (S0) (O] < whiey fo,_y (= )" Hg(s,u(s)) — g(s,v(s))|ds

S Na(s. uls) = g(s.v(s))lds
Jurl

<K [ fo 57— ) u(s) = o(s)lds + | S

gt
+’ 1—a1) 11—‘(u)m)

(s,u(s)) — g(s,v(s))lds

QG — Q1am—1 — (1l — a1)s

1
*’ (—a0) T—anT(wm—1)

Jar 57 uls) — v(s)lds

(s) —v(s)|ds

Am—1

*’ (1—a0)(1—il)r(wm—1) fam Sﬂ"loam —a1am-1 —ag(l —a1)s
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By the definition of ||.||,, we obtain

[om 57214

Am—1

; t - Win— ai
I(Su)(t) = (SOl < K [ 145720 = )" s + | =

[om s_QV‘aoam —aqam—_1 — ap(l — al)s’ds} lu— vl

Am—1

1
+‘ T—a0)d—a) T (wn—T)

1-24  1-2y
K(a,, A —1

) Wm —
< i |@h(n = an1)on 7

co(l—an)(wn—1) | (1=20)(@3 2 =2 2D\ T,
st (et )l = vl

(5}
17041 am +

(apam—a1am—1)(wm—1) ‘
(I-ao)(1—a1)

+

O]

From the above estimate, it follows by condition 11 that the operator S is a contraction. As a result
of the Banach fixed point theorem, we may derive that S has a unique fixed point, which corresponds
to a unique solution to problem 7.

Now, we will prove the existence result for problem 1.

Theorem 3.4. Let the assumptions (H1), (H2) and inequality 11 hold for all m € {1,2,...,n}. Then,
problem 1 has unique solution in C,[0, a].

PRrROOF. For each m € {1,2,...,n}, owing to Theorem 3.3 the BVP 7 for R-L fractional differential

equations of integer order possesses unique solution ¥, € Cy[am—1,an]. For any m € {1,2,...,n}, we
define the function [ |
0, t €0, am_1
=9 ~ 12
Ym { YUm, tE€TIm ( )

As a result, the function y,, € C,lam—1,an] satisfies the integral problem 6 on J,,, implying that
Ym(0) = 0, Ym(am) = Ym(am) = 0 and solves problem 6 for t € J,,, m € {1,2,...,n}. Then, the
function

yit),t € 7
0, teh
t) =9 ~
y2( ) { Y2, t e \72
y(t) =1 .
B 0, t e [0, an_l]
is a solution of BVP 1 in C,[0, a]. O

4. Ulam-Hyers-Rassias Stability of VORLFDE

Theorem 4.1. Let the conditions (H1), (H2) and inequality 11 be satisfied. Further assume that

(H3) x € C(J,Ry) is increasing and there exists A\, > 0 such that

I k(t) < \g k(1)

am—1t
hold for t € J,n, m = 1,2,.... Then, BVP 1 is UHR stable with respect to k.

PROOF. Let € > 0 be an arbitrary number and the function z(t) from C(J7,R) satisfy inequality 4.
For any m € {1,2,...,n} we define the functions z;(t) = 2(t), t € [0,a1] and for m = 2,3,...,n:

|0, t€[0,am—1]
Zm(t> - { Z(t), t e jm !

For any m € {1,2,...,n} according to equality 3 for t € J,, we get

2 t (s
DY) = gy (=9 s (13)
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we take the RLFI I;”m + of both sides of the inequality 4, apply (H3) and obtain

m—1

aptwm—1 am
Zm(t) = Ty Ja (6= 8 g (s, 2m(5))ds — T2 Jor | 9(s, 2m(s))ds

_ twm—2 fam

N(eoam — aram—1 — ao(1 — a1)slg(s, zm(s))ds| <e ™ k()

(1—ao)(1—a1)T(wm—1) Jam—
< e A\ K(t)
According to Theorem 3.4, BVP 1 has a solution y € C(J,R) defined by y(t) = y,(t) for t € T, m =
1,2,...,n, where
. 0, t e [0, am,l]
m={ % e (1)

and ¥, € E,, is a solution of problem 7. According to Lemma 3.1, the integral equation

~ o 1 t s wm—l s " . . mel QAm, . " . .
)=ty [ = gt TnlNds + s [ gt intea
Wy —2 am
)T a1/, (0t = amer a0l = anslgls,dm(s)ds (1)

holds. Let t € J,,, where m € {1,2,...,n}. Then, we obtain
2(t) = y(t)] = |2(t) — ym(1)]

= |Zm(t) - ij(t)l

twm—Q

e T T . (00 s — o1~ 1)l 2 (3))ds

m—1

ds

9(8, 2m(s)) = (5, Ym (5))

1 t L
t—s)om
T T wm) /( i

alt’u)mfl /am
J’_—
(1 —a)l(wm) Ja,,_,

m—

9(8, 2m(8)) — g(8,Ym(s))|ds

twm72

(1 — Oé())<1 — al)F(wm — 1) g(S, Zm(S)) - g(s,gm(s)) ds

+

/ [(@o@m — a1am—1 — ap(l — a)s]

m—1

1

< er(t)+ Tlwn)

t
/ (= 8O (K zn(5) — Fon(s) )
O[ltw’"il

T () / o) =i

twm—2 A
m m—1 = 1- 7 K m _~m d
! T (wy, —1) /a,,”““"a 1am—1 = ao(1 = a1)s]s™ (K [zm(s) = Gm(s)[)ds

(1—ap)(l—aq)

(t — am,l)wm_l(tl_'y — am,ll_W)(
(1 - 'Y)F(wm)
art®mYal=" —a;,_1177)
=) — an)T(wn)

< A€ R(t) + Kl|zm = Yml £,,)

+

(Kllzm = yml 2,.)

i twm—2a;7_1(am — Q1)
2(1 — ag)(1 — aq) T (wy, — 1

) 2(a0am — aram—1) — ao(l — a1)(am — am-1)|(K|2m = Yml|£,.)

< e e k(t) +nllz —ylls
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Then,
lz=yls(1-n) < Acen®

or for any t € J

2() —y(®) < llz —yllg < 7=en(t)

Therefore, BVP 1 is UHR stable with respect to k. ]

5. Example

Let J :=1[0,4], ap = 0, a1 = 2, aa = 4. Consider the following fractional problem with fractional
boundary conditions of variable order

D(ﬁ(t) ( ) _ siny(t);i;?cos(t)7 teJ,

(16)
DY 2y(0) = apDA I Py(4), DY y(0) = ar DDy (4)
where 5 [ ]
s, teJ:=10,2
w(t) =14 * ' (17)
1§707 te j2 :]274]
Denote ) 2 cos (1)
sy + 2 cos
glt.y) = T (hy) € 0,4 xR

Taking into account function 17, we can construct two auxiliary BVPs by means of problem 7 for
Riemann-Liouville fractional differential equations of integer order

D y _ siny(t)+2cos(t), te,
0+ ( ) 1 (18)
D0+ y(O) = 040'D0+ y( ) D0+y(0) = a1D0+y( )
and
D y( ) _ 51ny(t)+22005(t) te g
2+ ) )
' (19)

=8 1
D2+ y(2) = oD, y(4), D2+y( ) = 1D, y(4)
For m = 1. Clearly,

1(siny(t) + 2 cos(t) 3
ﬂ} t, ’ Bt (< - N
g(t,y)| < 2 <55
Let x(t) = ¢2. Then, we obtain
w1 1 t L1
Itk(t) = ey Jo(t —s)2s2ds
2 rt 1

< F\é) Jo(t —s)zds
< 3%@)/‘6@) = Aeyk(t)

where A\, 3?‘([) Thus, it implies that condition (H3) holds.

By Theorem 3.2, BVP 18 has a solution y; € E;. For m = 2. Clearly,

s |sin y(t) + 2 cos(t) ~10
t2 -

t”‘g(ty)‘ <
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Let x(t) = t3. Then, we obtain

w 11
I2R(t) = @f;(t—s)gszds
1
< F(Z%O) f;(t—s)sads
< 5F(9%)/-@(t) = Ay R(t)

where \,, = ﬁlﬁ)' Thus, condition (H3) is satisfied.
9
According to Theorem 3.2, BVP 19 possesses a solution yo € Fo. Thus, according to Theorem 3.4

the BVP 16 has a solution _

y?(t), te j2

where
(t) = { 0, te
PUZ wt), ted

In view of Theorem 4.1, BVP 16 is also UHR stable with respect to k.

6. Conclusion

This study examines the necessary and sufficient conditions for the existence and uniqueness of a class
of variable order differential equations with fractional boundary conditions. Combining the ideas of
generalized intervals and piecewise constant functions, the problem is transformed into differential
equations of constant orders. Using the Banach fixed point theorem, we develop the conditions for
guaranteeing the problem’s uniqueness. We also discuss the stability of the obtained solution in the
Ulam-Hyers-Rassias (UHR) sense.

For the future investigations, one can study to get similar results by considering systems of differ-
ential equations as well as employing variable order fractional operators in Caputo’s sense. Moreover,
the obtained results may be extended to variable order fractional boundary or initial value problems
in which the non-linear term may have discontinuities at some interior points.

Author Contributions

All the authors contributed equally to this work. They all read and approved the last version of the
paper.

Conflicts of Interest

All authors declare no conflict of interest.

References

[1] A. A. Kilbas, H. M Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.

[2] S. G. Samko, B. Boss, Integration and Differentiation to a Variable Fractional Order, Integral
Transforms and Special Functions 1 (1993) 277-300.

[3] S. G. Samko, Fractional Integration and Differentiation of Variable Order, Analysis Mathematica
21 (1995) 213-236.

[4] C. F. Lorenzo, T. T. Hartley, Variable Order and Distributed Order Fractional Operators, Non-
linear Dynamics 29 (2002) 57-98.



Journal of New Theory 41 (2022) 82-93 / Existence, Uniqueness, and Stability of Solutions to Variable ... 92

[5]

[12]

[13]

[14]

C. F. Lorenzo, T. T. Hartley, Initialization, Conceptualization, and Application in the Generalized
(Fractional) Calculus, Critical Reviews in Biomedical Engineering 356 (2007) 447-553.

A. Abirami, P. Prakash, Y-K. Ma, Variable-Order Fractional Diffusion Model-Based Medical
Image Denoising, Mathematical Problems in Engineering (2021) Article ID 8050017 10 pages.

J. F. Gémez-Aguilar, Analytical and Numerical Solutions of Nonlinear Alcoholism Model via
Variable-Order Fractional Differential Equations, Physica A: Statistical Mechanics and its Appli-
cations 494 (2018) 52-57.

C. F. M. Coimbra, Mechanics with Variable-Order Differential Operators, Annalen der Physik 12
(11-12) (2003) 692-703.

M. Di Paola, G. Alotta, A. Burlon, G. Failla, A Novel Approach to Nonlinear Variable-Order
Fractional Viscoelasticity, Philosophical Transactions of the Royal Society A 378 (2020) 20190296.

M. H. Heydari, Z. Avazzadeh, A New Wavelet Method for Variable-Order Fractional Optimal
Control Problems, Asian Journal of Control 20 (5) (2018) 1804-1817.

A. D. Obembe, M. D. Hossain, S. A. Abu-Khamsin, Variable-Order Derivative Time Fractional
Diffusion Model for Heterogeneous Porous Media, Journal of Petroleum Science and Engineering
152 (2017) 391-405.

H. Sun, A. Chang, Y. Zhang, W. Chen, A Review on Variable-Order Fractional Differential
Equations: Mathematical Foundations, Physical Models, Numerical Methods and Applications,
Fractional Calculus and Applied Analysis 22 (2019) 27-59.

H. Sun, W. Chen, Y. Chen, Variable-Order Fractional Differential Operators in Anomalous Diffu-
sion Modeling, Physica A: Statistical Mechanics and Its Applications 388 (21) (2009) 4586-4592.

A. Akgiil, M. Inc, D. Baleanu, On Solutions of Variable-Order Fractional Differential Equations,
An International Journal of Optimization and Control: Theories and Applications (IJOCTA) 7
(1) (2017) 112-116.

R. Lin, F. Liu, V. Anh, I. Turner, Stability and Convergence of a New Explicit Finite-Difference
Approximation for the Variable-Order Nonlinear Fractional Diffusion Equation, Applied Mathe-
matics and Computation 212 (2) (2009) 435-445.

D. Tavares, R. Almeida, D. F. M. Torres, Caputo Derivatives of Fractional Variable Order Numer-
ical Approzimations, Communications in Nonlinear Science and Numerical Simulation 35 (2016)
69-87.

D. Valerio, J. S. Costa, Variable-Order Fractional Derivatives and Their Numerical Approxima-
tions, Signal Process 91 (3) (2011) 470-483.

S. Zhang, S. Sun, L. Hu, Approxzimate Solutions to Initial Value Problem for Differential Equation
of Variable Order, Journal of Fractional Calculus and Applications 9 (2) (2018) 93-112.

A. Refice, M. S. Souid, A. Yakar, Some Qualitative Properties of Nonlinear Fractional Integro-
Differential Equations of Variable Order, An International Journal of Optimization and Control:
Theories and Applications (IJOCTA) 11 (3) (2021) 68-78.

A. Benkerrouche, D. Baleanu, M. S. Souid, A. Hakem, M. Inc, Boundary Value Problem for
Nonlinear Fractional Differential Equations of Variable Order via Kuratowski Mnc Technique,
Advances in Difference Equations 365 (2021) 19 pages.

A. Benkerrouche, M. S. Souid, S. Chandok, A. Hakem, Ezistence and Stability of a Caputo
Variable-Order Boundary Value Problem, Journal of Mathematics Article ID 7967880 (2021) 16

pages.



Journal of New Theory 41 (2022) 82-93 / Existence, Uniqueness, and Stability of Solutions to Variable ... 93

[22]

[23]

[24]

[25]

[32]

[33]

[34]

A. Benkerrouche, M. S. Souid, K. Sitthithakerngkiet, A. Hakem, Implicit Nonlinear Fractional
Differential Equations of Variable Order, Boundary Value Problems 2021 (64) (2021) 16 pages.

Z. Bouazza, S. Etemad, M. S. Souid, S. Rezapour, F. Martinez, M. K. A. Kaabar, A Study on
the Solutions of a Multiterm Fractional Boundary Value Problem of Variable Order, Journal of
Function Spaces Article ID 9939147 (2021) 9 pages.

Z. Bouazza, M. S. Souid, H. Giinerhan, Multiterm Boundary Value Problem of Caputo Fractional
Differential Equations of Variable Order, Advances in Difference Equations 400 (2021) 17 pages.

A. Benkerrouche, M. S. Souid, F. Jarad, A. Hakem, On Boundary Value Problems of Caputo
Fractional Differential Equation of Variable Order via Kuratowski Mnc Technique, Advances in
Continuous and Discrete Models 43 (2022) 19 pages.

A. Razminia, A. F. Dizaji, V. J. Majd, Solution FExistence for Nonautonomous Variable-Order
Fractional Differential Equations, Mathematical and Computer Modelling 55 (3-4) (2012) 1106—
1117.

A. Yakar, M. E. Koksal, Ezistence Results for Solutions of Nonlinear Fractional Differential
Equations, Abstract and Applied Analysis Article ID 267108 (2012) 12 pages.

S. Zhang, Ezistence of Solutions for Two Point Boundary Value Problems with Singular Dif-
ferential Equations of Variable Order, Electronic Journal of Differential Equations 245 (2013)
1-16.

Z. Akdogan, A. Yakar, M. Demirci, Discontinuous Fractional Sturm—liouville Problems with
Transmission Conditions, Applied Mathematics and Computation 350 (2019) 1-10.

A. Yakar, H. Kutlay, A Note on Comparison Results for Fractional Differential Equations, AIP
Conference Proceedings 1676 (2015) Article ID 020064 5 pages.

H. Afshari, M. S. Abdo, J. Alzabut, Further Results on Fxistence of Positive Solutions of Gen-
eralized Fractional Boundary Value Problems, Advances In Difference Equations 600 (2020) 13

pages.

A. Seemab, M. Ur Rehman, J. Alzabut, A. Hamdi, On the Ezistence of Positive Solutions for
Generalized Fractional Boundary Value Problems, Boundary Value Problems 186 (2019) 20 pages.

I. A. Rus, Ulam Stabilities of Ordinary Differential Equations in a Banach Space, Carpathian
Journal of Mathematics 26 (1) (2010) 103-107.

D. R. Smart, Fixed Point Theorems, Cambridge University Press, 66, 1980.



	Introduction
	Mathematical Preliminaries
	Existence of Solutions
	Ulam-Hyers-Rassias Stability of VORLFDE
	Example
	Conclusion

