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Research Article

Abstract − This paper investigates the sufficient conditions for the existence
and uniqueness of a class of Riemann-Liouville fractional differential equations of
variable order with fractional boundary conditions. The problem is converted into
differential equations of constant orders by combining the concepts of generalized
intervals and piecewise constant functions. We derive the required conditions for
ensuring the uniqueness of the problem in order to utilize the Banach fixed point
theorem. The stability of the obtained solution in the Ulam-Hyers-Rassias (UHR)
sense is also investigated, and we finally provide an illustrative example.
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1. Introduction

Fractional calculus, which includes differentiation and integration has a history dating back over three
centuries [1]. It has extended integration and differentiation operations to any fractional orders that
might take any real or complex value. Thus, it is possible to think of the order of the fractional
integrals and derivatives as a function of time or another variable. In this context, Samko and Ross
examined the first study regarding the idea of variable order (VO) differentiation in [2, 3]. Based on
using the R-L derivative and the Fourier transform, they have defined and interpreted the integration

and differentiation of functions to a variable order ( d
dx)

α(t)
f(x). The notion of variable and distributed

order fractional operators is then developed by Lorenzo and Hartley. They reviewed the VO fractional
operator research results and then studied the concepts of variable order fractional operators in various
forms [4, 5].

The memory and heredity aspects of numerous physical processes and events can be used to char-
acterize by the variable order fractional operators thanks to their non-stationary power-law kernel. As
a result, fractional calculus with variable order was used as a prospective option to provide an appro-
priate mathematical framework for precisely modelling complicated physical systems and processes.
Having followed that, VO-FDEs have attracted increasing attention, owing to their compatibility with
describing a wide range of phenomena, including anomalous diffusion, medicine, viscoelasticity, control
system, and many other branches of physics and engineering, to name a few [6–13]. Many publications
have been devoted to finding numerical solutions for fractional differential equations of VO due to the
difficulty in obtaining explicit solutions. See also [14–18] and the references therein. Nonetheless,
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some recent publications discuss the existence, uniqueness, and stability features of variable fractional
order differential equations [19–32].

We aim to study following fractional boundary value problem (BVP) of variable order in Riemann-
Liouville sense (VORLFDE) with fractional variable order boundary conditions as well.{

Dw(t)y(t) = g(t, y(t)), t ∈ J

I2−w(t)y(0) = α0I
2−w(t)y(a), Dw(t)−1y(0) = α1Dw(t)−1y(a)

(1)

where J = [0, a], 0 < a < ∞, w(t) : J → (1, 2] is the variable order of the fractional derivatives,
g : J ×R → R is a given function and Dw(t), Iw(t) denotes the Riemann-Liouville fractional derivative
and integral of order w(t) respectively and α0, α1 real numbers such that α0 ̸= 1 and α1 ̸= 1.

We will be concerned with the existence and uniqueness of solution of problem 1 and further study
the stability of the obtained solution of problem 1 in the Ulam-Hyers-Rassias (UHR) sense.

2.Mathematical Preliminaries

This section introduces several important notions and lemmas that are required to grasp the main
theorems covered in the next parts. We also present additional features for variable order operators.

Let C(J , R) be the set of all continuous real-valued functions from J into R. Setting the standard
norm ∥κ∥ = sup{|κ(t)| : t ∈ J } for an element in C(J ,R), then C(J ,R) has become a Banach space
with such a norm.

For −∞ < t1 < t2 < +∞, we consider the mappings w(t) : [t1, t2] → (0,+∞) and θ(t) : [t1, t2] →
(n − 1, n). Then, the left Riemann-Liouville fractional integral (RLFI) of variable-order w(t) for
function y(t) is given [3] by

I
w(t)

t+1
y(t) =

∫ t

t1

(t− s)w(t)−1

Γ(w(t))
y(s)ds, t > a1 (2)

and the left Riemann-Liouville fractional derivative (RLFD) of variable-order θ(t) for function y(t) is
defined by

Dθ(t)

t+1
y(t) =

( d

dt

)n
I
n−θ(t)

t+1
y(t) =

( d

dt

)n ∫ t

t1

(t− s)n−θ(t)−1

Γ(n− θ(t))
y(s)ds, t > t1 (3)

As expected, RLFI and RLFD coincide with the conventional Riemann-Liouville fractional derivative
and integral, respectively [1, 3], when replacing constant values by w(t) and θ(t).

Remark 2.1. [28] It should be emphasized that for R-L fractional integrals with constant orders,
the semi-group property is satisfied, but not for those with variable orders, i.e.,

I
w(t)

t+1
I
θ(t)

t+1
y(t) ̸= I

w(t)+θ(t)

t+1
y(t)

Definition 2.2. [18] Let I be a subset of R. Then we define the followings:

- If the set I is an interval, a point or an empty set, it is referred to as a generalized interval.

- If each x in I lies in precisely one of the generalized intervals E in P, then the finite set P of
generalized intervals is known as a partition of I

- If for any E ∈ P, g is constant on E, the function g : I → R is said to be piecewise constant
with regard to partition P of I

Theorem 2.3. [34] Suppose E is a Banach space. If T : E → E is a completely continuous operator
and Ω = {x ∈ E : x = ηTx, 0 < η < 1} is bounded, then T has a fixed point in E.
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Definition 2.4. [33] BVP 1 is said to be Hyers-Ulam-Rassias stable (UHR) with regard to the
function κ ∈ C(J ,R+) if a constant cg > 0 exists such that for any ϵ > 0 and for each function
z ∈ C(J ,R) satisfying

|Dw(t)
0+

z(t)− g(t, z(t))| ≤ ϵκ(t), t ∈ J (4)

there exists a solution y ∈ C(J ,R) of BVP 1 with

|z(t)− y(t)| ≤ cgϵκ(t), t ∈ J

3. Existence of Solutions

Let us proceed by stating the following hypothesis:

(H1) Assume that {ak}nk=0 is the finite sequence of points such that 0 = a0 < ak < an = a, k =
1, . . . , n− 1 where n ∈ N. Let Jk := (ak−1, ak], k = 1, 2, . . . , n. Then, P = ∪n

k=1Jk is a partition
of the interval J .

For each m = 1, . . . , n, the symbol Em = C(Jm,R), indicates the Banach space of continuous
functions y : Jm → R equipped with sup-norm ∥y∥Em = supt∈Jm

|y(t)|.
Let w(t) : J → (1, 2] be a piecewise constant function with respect to P, i.e.,

w(t) =
n∑

m=1

wmIm(t)

where 1 < wm ≤ 2 are constants, and Im stands for the indicator of the interval Jm, m =
1, 2, . . . , n, that is,

Im(t) =

{
1, t ∈ Jm

0, elsewhere

For any t ∈ Jm, m = 1, . . . , n, one can represent R-L fractional variable-order derivative w(t) of the
function y(t) ∈ C(J ,R), defined by (3), as the sum of left R-L fractional derivatives of integer orders
wk, k = 1, . . . ,m

Dw(t)
0+

y(t) =
1

Γ(2− w(t))

d2

dt2

∫ t

0
(t− s)1−w(t)y(s)ds

=
1

Γ(2− w(t))

(
m−1∑
k=1

d2

dt2

∫ ak

ak−1

(t− s)1−wky(s)ds+
d2

dt2

∫ t

am−1

(t− s)1−wmy(s)ds

)
(5)

As a consequence, BVP 1 can be expressed on Jm for each m = 1, . . . , n in the manner shown below

1

Γ(2− w(t))

(m−1∑
k=1

d2

dt2

∫ ak

ak−1

(t− s)1−wky(s)ds+
d2

dt2

∫ t

am−1

(t− s)1−wmy(s)ds
)
= g(t, y(t)) (6)

Let the function ỹ ∈ C(Jm,R) be such that ỹ(t) ≡ 0 on t ∈ [0, am−1] and it solves integral Equation
6. Then, it is reduced to

Dwm

a+m−1

ỹ(t) = g(t, ỹ(t)), t ∈ Jm

We consider the auxiliary BVP given below for integer order Riemann-Liouville fractional differential
equations while regarding the aforementioned statement above for any m = 1, 2, . . . , n. Dwm

a+m−1

y(t) = g(t, y(t)), t ∈ Jm

Dwm−2

a+m−1

y(am−1) = α0Dwm−2

a+m−1

y(am), Dwm−1

a+m−1

y(am−1) = α1Dwm−1

a+m−1

y(am)
(7)
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Lemma 3.1. Let α0, α1 ̸= 1, g ∈ C(Jm × R,R) for m = 1, . . . , n, and γ ∈ (0, 1) be a number such
that tγg ∈ C(Jm × R,R).

Then, the function x ∈ Em satisfies problem 7 iff y solves the integral equation

x(t) =
1

Γ(wm)

∫ t

am−1

(t− s)wm−1g(s, x(s))ds+
α1t

wm−1

(1− α1)Γ(wm)

∫ am

am−1

g(s, x(s))ds

twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]g(s, x(s))ds (8)

Proof. Let x ∈ Em be a solution of BVP 7. Using the operator Iwm

a+m−1

on each sides of BVP 7, we

find
x(t) = λ1t

wm−1 + λ0t
wm−2 + Iwm

a+m−1

g(t, x(t)) (9)

where λ0, λ1 are constants.
Using funciton 9, we have

Dwm−1x(t) = λ1Γ(wm) + I1g(t, x(t))

In view of assumptions on the function g and by the boundary condition

Dwm−1

a+m−1

x(am−1) = α1Dwm−1

a+m−1

x(am)

we conclude that

λ1 =
α1

(1− α1)Γ(wm)

∫ am

am−1

g(s, x(s))ds

since I2−wm(twm−1) = Γ(wm)t and I2−wm(twm−2) = Γ(wm − 1), from the boundary condition

Dwm−2

a+m−1

x(am−1) = α0Dwm−2

a+m−1

x(am)

we get

λ0 =
α1(α0am − am−1)

(1− α1)(1− α0)Γ(wm − 1)

∫ am

am−1

g(s, x(s))ds+
α0

(1− α0)Γ(wm − 1)

∫ am

am−1

(am − s)g(s, x(s))ds

Thus,

x(t) =

∫ am

am−1

Gm(t, s)g(s, x(s))ds

where Gm(t, s) is Green’s function defined by:

Gm(t, s) =



α1twm−1

(1−α1)Γ(wm) +
twm−2[α0am−α1am−1−α0(1−α1)s]

(1−α0)(1−α1)Γ(wm−1) + 1
Γ(wm)(t− s)wm−1

am−1 ≤ s ≤ t ≤ am

α1twm−1

(1−α1)Γ(wm) +
twm−2[α0am−α1am−1−α0(1−α1)s]

(1−α0)(1−α1)Γ(wm−1)

am−1 ≤ t ≤ s ≤ am

where m = 1, 2, ..., n.
Then, we get x that solves Integral Equation (8).
In contrast, consider x ∈ Em to be a solution of Integral Equation 8. We conclude that x is the

solution to the BVP 7 by virtue of the continuity of function tγg.

We shall demonstrate the existence result for the BVP of R-L fractional differential equations of
constant order (7). The proof will be carried out by the aid of Theorem 2.3.
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Theorem 3.2. Suppose that the conditions of Lemma 3.1 hold and there exists a constant N > 0
such that

tγ |g(t, y)| ≤ N, ∀t ∈ Jm, y ∈ R
with γ = 2− w. Then, BVP 7 for Riemann-Liouville fractional differential equations of integer order
has at least one solution in Cγ [am−1, am].

Proof. For any function y ∈ Cγ [am−1, am], we construct the operator

Sy(t) =
1

Γ(wm)

∫ t

am−1

(t− s)wm−1g(s, y(s))ds+
α1t

wm−1

(1− α1)Γ(wm)

∫ am

am−1

g(s, y(s))ds

+
twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]g(s, y(s))ds (10)

It results in immediately by the properties of fractional integrals and the continuity of function tγg
that the operator S : Cγ [am−1, am] → Cγ [am−1, am] given by equality 10 is well defined. Let

Rm ≥
N(a1−γ

m − a1−γ
m−1)

(1− γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1am
1− α1

∣∣∣+ ∣∣∣(α0am − α1am−1)(wm − 1)

(1− α0)(1− α1)

∣∣∣
+
∣∣∣α0(1− α1)(wm − 1)(1− γ)(a2−γ

m − am−1)
2−γ

(1− α0)(1− α1)(2− γ)(a1−γ
m − am−1)1−γ

∣∣∣]
Consider the set

BRm = {y ∈ Cγ [am−1, am], ∥y∥γ ≤ Rm}
For all m ∈ {1, 2, ..., n}, the ball BRm is a nonempty closed convex subset of Cγ [am−1, am].

We are in position to examine the assumption of the Theorem 3.2 for the operator S. We shall
demonstrate it in three stages.

Step 1: Let BRm be a bounded set in Cγ [am−1, am]. Hence, BRm is bounded on C[am−1, am] and
there exists a constant N such that tγ |g(t, y(t))| ≤ N, ∀y ∈ BRm , t ∈ [am−1, am]. Thus,

tγ |(Sy)(t)| ≤ Ntγ

Γ(wm)

∫ t

am−1
s−γ(t− s)wm−1ds+

∣∣∣ α1Nt

(1− α1)Γ(wm)

∣∣∣ ∫ am

am−1

s−γds

+
∣∣∣ N

(1− α0)(1− α1)Γ(wm − 1)

∣∣∣ ∫ am

am−1

∣∣∣α0am − α1am−1 − α0(1− α1)s
∣∣∣s−γds

≤
N(a1−γ

m − a1−γ
m−1)

(1− γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1am
1− α1

∣∣∣+ ∣∣∣(α0am − α1am−1)(wm − 1)

(1− α0)(1− α1)

∣∣∣
+
∣∣∣α0(1− α1)(wm − 1)(1− γ)(a2−γ

m − am−1)
2−γ

(1− α0)(1− α1)(2− γ)(a1−γ
m − am−1)1−γ

∣∣∣]
which implies that

∥(Sy)∥γ ≤
N(a1−γ

m − a1−γ
m−1)

(1− γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1am
1− α1

∣∣∣+ ∣∣∣(α0am − α1am−1)(wm − 1)

(1− α0)(1− α1)

∣∣∣
+
∣∣∣α0(1− α1)(wm − 1)(1− γ)(a2−γ

m − am−1)
2−γ

(1− α0)(1− α1)(2− γ)(a1−γ
m − am−1)1−γ

∣∣∣]
Hence, S(BRm) is uniformly bounded.

Step 2: Let t1, t2 ∈ Jm, t1 < t2and y ∈ BRm . Then, we have∣∣∣tγ1(Sy)(t1)− tγ2(Sy)(t2)
∣∣∣ = ∣∣∣ 1

Γ(wm)

∫ t1
am−1

[
tγ1(t1 − s)wm−1 − tγ2(t2 − s)wm−1

]
g(s, y(s))ds

− 1
Γ(wm)

∫ t2
t1

tγ2(t2 − s)wm−1g(s, u(s))ds+ α1(t1−t2)
(1−α1)Γ(wm−1)

∫ am
am−1 g(s, y(s))ds

∣∣∣
≤ N

(∣∣∣ 1
Γ(wm)

∫ t1
am−1

[
tγ1(t1 − s)wm−1 − tγ2(t2 − s)wm−1

]
ds

− 1
Γ(wm)

∫ t2
t1

tγ2(t2 − s)wm−1ds
∣∣∣+ ∣∣∣ α1(t1−t2)

(1−α1)Γ(wm−1)

∫ am
am−1 ds

∣∣∣)
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Hence,
∣∣∣tγ1(Sy)(t1)−tγ2(Sy)(t2)

∣∣∣→ 0 as |t1−t2| → 0. Thus, tγS(BRm) is equicontinuous. Consequently,

the operator S is compact.
Step3: Consider the set

Ω = {y ∈ R \ y = ηSy, 0 < η < 1}

and show that the set Ω is bounded. Let y ∈ Ω, then y = ηSy, 0 < η < 1. For any t ∈ [am − 1, am],
we have

|y(t)| ≤ η
[

1
Γ(wm)

∫ t
am−1(t− s)wm−1|g(s, y(s))|ds+

∣∣∣ α1twm−1

(1−α1)Γ(wm)

∣∣∣ ∫ am
am−1

|g(s, y(s))|ds

+
∣∣∣ twm−2

(1−α0)(1−α1)Γ(wm−1

∣∣∣ ∫ am
am−1

∣∣∣α0am − α1am−1 − α0(1− α1)s
∣∣∣ds]

We have

∥(Sy)∥γ ≤
N(a1−γ

m − a1−γ
m−1)

(1− γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1am
1− α1

∣∣∣+ ∣∣∣(α0am − α1am−1)(wm − 1)

(1− α0)(1− α1)

∣∣∣
+
∣∣∣α0(1− α1)(wm − 1)(1− γ)(a2−γ

m − am−1)
2−γ

(1− α0)(1− α1)(2− γ)(a1−γ
m − am−1)1−γ

∣∣∣]
This implies that the set Ω is bounded independently of η ∈ (0, 1). On account of Theorem 2.3, we
find that the operator S has at least one fixed point, which follows that problem 7 possesses at least
one solution.

Consider the next assumption:

(H2) Let g ∈ C(J × R,R) and there exist a constant K > 0 such that

tγ |g(t, u)− g(t, v)| ≤ K|u− v|

for any u, v ∈ R, t ∈ J and γ = 2− w.

Theorem 3.3. Assume that conditions (H1) and (H2) hold. Then, problem 7 has a unique solution
in Cγ [am−1, am] if

K <
1

ρ
(11)

where

ρ =
(a1−2γ

m −a1−2γ
m−1 )

(1−2γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1
1−α1

∣∣∣am +
∣∣∣ (α0am−α1am−1)(wm−1)

(1−α0)(1−α1)

∣∣∣
+
∣∣∣α0(1−α1)(wm−1)

(1−α0)(1−α1)

∣∣∣( (1−2γ)(a2−2γ
m −a2−2γ

m−1 )

(2−2γ)(a1−2γ
m −a1−2γ

m−1 )

)]
Proof. In view of (H2), for every t ∈ [am−1, am], we have

tγ |(Su)(t)− (Sv)(t)| ≤ tγ

Γ(wm)

∫ t

am−1
(t− s)wm−1|g(s, u(s))− g(s, v(s))|ds

+
∣∣∣ α1t
(1−α1)Γ(wm)

∣∣∣ ∫ am

am−1
|g(s, u(s))− g(s, v(s))|ds

+
∣∣∣ 1
(1−α0)(1−α1)Γ(wm−1)

∣∣∣ ∫ am

am−1

∣∣∣α0am − α1am−1 − α0(1− α1)s
∣∣∣|g(s, u(s))− g(s, v(s))|ds

≤ K
[

tγ

Γ(wm)

∫ t

am−1
s−γ(t− s)wm−1|u(s)− v(s)|ds+

∣∣∣ α1t
(1−α1)Γ(wm)

∣∣∣ ∫ am

am−1
s−γ |u(s)− v(s)|ds

+
∣∣∣ 1
(1−α0)(1−α1)Γ(wm−1)

∣∣∣ ∫ am

am−1
s−γ

∣∣∣α0am − α1am−1 − α0(1− α1)s
∣∣∣|u(s)− v(s)|ds

]
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By the definition of ∥.∥γ , we obtain

∥(Su)(t)− (Sv)(t)∥γ ≤ K
[

tγ

Γ(wm)

∫ t

am−1
s−2γ(t− s)wm−1ds+

∣∣∣ α1t
(1−α1)Γ(wm)

∣∣∣ ∫ am

am−1
s−2γds

+
∣∣∣ 1
(1−α0)(1−α1)Γ(wm−1)

∣∣∣ ∫ am

am−1
s−2γ

∣∣∣α0am − α1am−1 − α0(1− α1)s
∣∣∣ds]∥u− v∥γ

≤ K(a1−2γ
m −a1−2γ

m−1 )

(1−2γ)Γ(wm)

[
aγm(am − am−1)

wm−1 +
∣∣∣ α1

1−α1

∣∣∣am +
∣∣∣ (α0am−α1am−1)(wm−1)

(1−α0)(1−α1)

∣∣∣
+
∣∣∣α0(1−α1)(wm−1)

(1−α0)(1−α1)

∣∣∣( (1−2γ)(a2−2γ
m −a2−2γ

m−1 )

(2−2γ)(a1−2γ
m −a1−2γ

m−1 )

)]
∥u− v∥γ

From the above estimate, it follows by condition 11 that the operator S is a contraction. As a result
of the Banach fixed point theorem, we may derive that S has a unique fixed point, which corresponds
to a unique solution to problem 7.

Now, we will prove the existence result for problem 1.

Theorem 3.4. Let the assumptions (H1), (H2) and inequality 11 hold for all m ∈ {1, 2, . . . , n}. Then,
problem 1 has unique solution in Cγ [0, a].

Proof. For each m ∈ {1, 2, . . . , n}, owing to Theorem 3.3 the BVP 7 for R-L fractional differential
equations of integer order possesses unique solution ỹm ∈ Cγ [am−1, am]. For any m ∈ {1, 2, . . . , n}, we
define the function

ym =

{
0, t ∈ [0, am−1]
ỹm, t ∈ Jm

(12)

As a result, the function ym ∈ Cγ [am−1, am] satisfies the integral problem 6 on Jm, implying that
ym(0) = 0, ym(am) = ỹm(am) = 0 and solves problem 6 for t ∈ Jm, m ∈ {1, 2, . . . , n}. Then, the
function

y(t) =



y1(t), t ∈ J1

y2(t) =

{
0, t ∈ J1

ỹ2, t ∈ J2
...

yn(t) =

{
0, t ∈ [0, an−1]
ỹn, t ∈ Jn

is a solution of BVP 1 in Cγ [0, a].

4.Ulam-Hyers-Rassias Stability of VORLFDE

Theorem 4.1. Let the conditions (H1), (H2) and inequality 11 be satisfied. Further assume that

(H3) κ ∈ C(J ,R+) is increasing and there exists λκ > 0 such that

Iwm

am−1
+κ(t) ≤ λκ κ(t)

hold for t ∈ Jm, m = 1, 2, . . . . Then, BVP 1 is UHR stable with respect to κ.

Proof. Let ϵ > 0 be an arbitrary number and the function z(t) from C(J ,R) satisfy inequality 4.
For any m ∈ {1, 2, . . . , n} we define the functions z1(t) ≡ z(t), t ∈ [0, a1] and for m = 2, 3, . . . , n:

zm(t) =

{
0, t ∈ [0, am−1]
z(t), t ∈ Jm

For any m ∈ {1, 2, . . . , n} according to equality 3 for t ∈ Jm we get

Dw(t)
0+

zm(t) =
1

Γ(2− w(t))

d2

dt2

∫ t

am−1

(t− s)1−wm
z(s)

s
ds (13)
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we take the RLFI Iwm

am−1
+ of both sides of the inequality 4, apply (H3) and obtain∣∣∣∣zm(t)− 1

Γ(wm)

∫ t
am−1

(t− s)wm−1g(s, zm(s))ds− α1twm−1

(1−α1)Γ(wm)

∫ am
am−1

g(s, zm(s))ds

− twm−2

(1−α0)(1−α1)Γ(wm−1)

∫ am
am−1

[(α0am − α1am−1 − α0(1− α1)s]g(s, zm(s))ds

∣∣∣∣ ≤ ϵ Iwm

am−1
+κ(t)

≤ ϵ λκ κ(t)

According to Theorem 3.4, BVP 1 has a solution y ∈ C(J ,R) defined by y(t) = ym(t) for t ∈ Jm, m =
1, 2, . . . , n, where

ym =

{
0, t ∈ [0, am−1]
ỹm, t ∈ Jm

(14)

and ỹm ∈ Em is a solution of problem 7. According to Lemma 3.1, the integral equation

ỹm(t) =
1

Γ(wm)

∫ t

am−1

(t− s)wm−1g(s, ỹm(s))ds+
α1t

wm−1

(1− α1)Γ(wm)

∫ am

am−1

g(s, ỹm(s))ds

+
twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]g(s, ỹm(s))ds (15)

holds. Let t ∈ Jm where m ∈ {1, 2, . . . , n}. Then, we obtain

|z(t)− y(t)| = |z(t)− ym(t)|

= |zm(t)− ỹm(t)|

≤
∣∣∣∣zm(t)− 1

Γ(wm)

∫ t

am−1

(t− s)wm−1g(s, zm(s))ds− α1t
wm−1

(1− α1)Γ(wm)

∫ am

am−1

g(s, zm(s))ds

− twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]g(s, zm(s))ds

∣∣∣∣
+

1

Γ(wm)

∫ t

am−1

(t− s)wm−1

∣∣∣∣g(s, zm(s))− g(s, ỹm(s))

∣∣∣∣ds
+

α1t
wm−1

(1− α1)Γ(wm)

∫ am

am−1

∣∣∣∣g(s, zm(s))− g(s, ỹm(s))

∣∣∣∣ds
+

twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]

∣∣∣∣g(s, zm(s))− g(s, ỹm(s))

∣∣∣∣ds
≤ λκ ϵ κ(t) +

1

Γ(wm)

∫ t

am−1

s−γ(t− s)wm−1(K|zm(s)− ỹm(s)|)ds

+
α1t

wm−1

(1− α1)Γ(wm)

∫ am

am−1

s−γ(K|zm(s)− ỹm(s)|)ds

+
twm−2

(1− α0)(1− α1)Γ(wm − 1)

∫ am

am−1

[(α0am − α1am−1 − α0(1− α1)s]s
−γ(K|zm(s)− ỹm(s)|)ds

≤ λκ ϵ κ(t) +
(t− am−1)

wm−1(t1−γ − am−1
1−γ)

(1− γ)Γ(wm)
(K∥zm − ỹm∥Em

)

+
α1t

wm−1(a1−γ
m − am−1

1−γ)

(1− γ)(1− α1)Γ(wm)
(K∥zm − ỹm∥Em

)

+
twm−2a−γ

m−1(am − am−1)

2(1− α0)(1− α1)Γ(wm − 1)
[2(α0am − α1am−1)− α0(1− α1)(am − am−1)](K∥zm − ỹm∥Em

)

≤ λκ ϵ κ(t) + η∥z − y∥J
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Then,

∥z − y∥J
(
1− η

)
≤ λκ ϵ κ(t)

or for any t ∈ J
|z(t)− y(t) ≤ ∥z − y∥J ≤ λκ

1− η
ϵκ(t)

Therefore, BVP 1 is UHR stable with respect to κ.

5. Example

Let J := [0, 4], a0 = 0, a1 = 2, a2 = 4. Consider the following fractional problem with fractional
boundary conditions of variable order Dw(t)

0+
y(t) = sin y(t)+2 cos(t)

t2
, t ∈ J ,

Dw(t)−2
0+

y(0) = α0Dw(t)−2
0+

y(4), Dw(t)−1
0+

y(0) = α1Dw(t)−2
0+

y(4)
(16)

where

w(t) =

{
3
2 , t ∈ J1 := [0, 2]

10
9 , t ∈ J2 :=]2, 4]

(17)

Denote

g(t, y) =
sin y + 2 cos(t)

t2
, (t, y) ∈ [0, 4]× R

Taking into account function 17, we can construct two auxiliary BVPs by means of problem 7 for
Riemann-Liouville fractional differential equations of integer order D

3
2

0+
y(t) = sin y(t)+2 cos(t)

t2
, t ∈ J1,

D
−1
2

0+
y(0) = α0D

−1
2

0+
y(2), D

1
2

0+
y(0) = α1D

1
2

0+
y(2)

(18)

and  D
10
9

2+
y(t) = sin y(t)+2 cos(t)

t2
, t ∈ J2,

D
−8
9

2+
y(2) = α0D

−8
9

2+
y(4), D

1
9

2+
y(2) = α1D

1
9

2+
y(4)

(19)

For m = 1. Clearly,

tγ
∣∣∣g(t, y)∣∣∣ ≤ t

1
2

∣∣∣sin y(t) + 2 cos(t)

t2

∣∣∣ ≤ 3

2
√
2
= N

Let κ(t) = t
1
2 . Then, we obtain

Iw1

0+
κ(t) = 1

Γ( 3
2
)

∫ t
0 (t− s)

1
2 s

1
2ds

≤
√
2

Γ( 3
2
)

∫ t
0 (t− s)

1
2ds

≤ 2
√
2

3Γ( 3
2
)
κ(t) := λκ(t)κ(t)

where λκ = 2
√
2

3Γ( 3
2
)
. Thus, it implies that condition (H3) holds.

By Theorem 3.2, BVP 18 has a solution ỹ1 ∈ E1. For m = 2. Clearly,

tγ
∣∣∣g(t, y)∣∣∣ ≤ t

8
9

∣∣∣sin y(t) + 2 cos(t)

t2

∣∣∣ ≤ 3.4
−10
9 = N



Journal of New Theory 41 (2022) 82-93 / Existence, Uniqueness, and Stability of Solutions to Variable ... 91

Let κ(t) = t
1
2 . Then, we obtain

Iw2

2+
κ(t) = 1

Γ( 10
9
)

∫ t
2 (t− s)

1
9 s

1
2ds

≤ 2
Γ( 10

9
)

∫ t
2 (t− s)

1
9ds

≤ 9
5Γ( 10

9
)
κ(t) := λκ(t)κ(t)

where λκ = 9
5Γ( 10

9
)
. Thus, condition (H3) is satisfied.

According to Theorem 3.2, BVP 19 possesses a solution ỹ2 ∈ E2. Thus, according to Theorem 3.4
the BVP 16 has a solution

y(t) =

{
ỹ1(t), t ∈ J1

y2(t), t ∈ J2

where

y2(t) =

{
0, t ∈ J1

ỹ2(t), t ∈ J2

In view of Theorem 4.1, BVP 16 is also UHR stable with respect to κ.

6. Conclusion

This study examines the necessary and sufficient conditions for the existence and uniqueness of a class
of variable order differential equations with fractional boundary conditions. Combining the ideas of
generalized intervals and piecewise constant functions, the problem is transformed into differential
equations of constant orders. Using the Banach fixed point theorem, we develop the conditions for
guaranteeing the problem’s uniqueness. We also discuss the stability of the obtained solution in the
Ulam-Hyers-Rassias (UHR) sense.

For the future investigations, one can study to get similar results by considering systems of differ-
ential equations as well as employing variable order fractional operators in Caputo’s sense. Moreover,
the obtained results may be extended to variable order fractional boundary or initial value problems
in which the non-linear term may have discontinuities at some interior points.
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