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1. Introduction

The subject of fractional calculus, which has a long history more than three hundred years, generalizes and includes
the concepts of classical derivative and integral of integer order. Recently, the advantage and importance of employing the
fractional derivative to model several physical phenomena in a variety of disciplines were realized [1-7]. Since its theory is
much richer than the theory of classical ordinary differential equations, the theory of fractional differential equations have
attracted considerable interest. There has been a growing interest in this new area and a significant development in the study
of fractional differential equations in recent years; see the monographs of [8-10], and the survey by Agarwal et al. [11].

In the past decades, some work has been done in the field of basic theoretical concepts like differential and integral
inequalities, existence and uniqueness results concerning the fractional differential equations. For some recent contributions
on fractional differential equations, see [12-23] and the references therein.

We now consider the initial value problem (IVP)

Dix(t) = f(t,x), te]=1[t,T] and x(t)(t — to)" i, = x°, (1.1)

where f € C[J] x R, R] and DY is Riemann-Liouville (R-L) fractional derivative of orderq, 0 < q < 1.
The corresponding Volterra fractional integral equation is defined as

B X0(t — tg)T !
=70

Assume that f (¢, x) has the splitting f (t, x) = F(t, x, x) where F € C[J x R?, R]. Then, problem (1.1) takes the following
form:

Dix(t) = F(t,x,x),  x(t)(t — o) "¢, = x°. (1.3)

In this paper, by considering the IVP (1.3), we intend to study and develop some comparison results given in [8]. Also we
shall extend this idea to the finite systems of fractional differential equations.

t
+ qu)/to(t—s)q—lf(s,x(s))ds. (1.2)
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2. Preliminaries

In this section, we present some basic definitions and theorems which are used throughout the paper. We first give a
variety of possible definitions of lower and upper solutions relative to (1.3).

Definition 2.1. Letv, w € G[J,R],p =1 —¢q, 0 < g < 1 be locally Hélder continuous with exponent A > g and D% and
Dw existand F € C[J x R?, R].
Then v and w are said to be

(i) natural lower and upper solutions of (1.3) respectively if

Dl < F(t,v,v), v° <O,

Diw > F(t,w,w), w’=>x" te], (2.1)
(ii) coupled lower and upper solutions of type I of (1.3) respectively if

Dl < F(t,v, w), v°<x°,

Diw > F(t,w,v), w’=>x te]. (2.2)
(iii) coupled lower and upper solutions of type II of (1.3) respectively if

Dl < F(t,w,v), v°<x°,

Dlw > F(t,v,w), w’>2x" te]. (2.3)
(iv) coupled lower and upper solutions of type III of (1.3) respectively if

Dlv < F(t,w,w), v°<x°,

Diw > F(t,v,v), w’=>x" te]. (2.4)
where v0 = v(t)(t — to) ' |i—¢, and w® = w(t)(t — to) " r—¢,-

Lemma 2.1. Let m € G,([to, T1, R) be locally Hélder continuous with exponent A > q and for any t, € (to, T, we have
m(t;)) =0 and m(t) <0 fortg <t <ty. (2.5)
Then it follows that
Dim(t;) > 0. (2.6)

Proof. For the proof please see [8]. O

The explicit solution of the nonhomogeneous linear fractional differential equation involving R-L fractional differential
operator of order ¢ (0 < q < 1) is necessary for further development of our main results. So, we now consider the
nonhomogeneous IVP for linear fractional differential equation

Dlx =Ax+f(6),  x° =x(O)( = to)' =gy (2.7)

where A is a real number and f € G,([to, T], R).
The equivalent Volterra fractional integral equation forto <t < T, is

x(t) = x (r)+mf (t —s)7" lx(s)ds—i—m/ (t — )T f(s)ds, (2.8)
where x0(t) = Xo(tr—(t;;q‘l

When we apply the method of successive approximations [8] to find the solution x(t) = x(t, to, x°) explicitly for the
given nonhomogeneous IVP (2.7), we obtain

t
x(t):xo(t—ro)q—lEq,q(x(t—to)q)+/ (t — )T 'Eg (M (t — )Df (s)ds, t € [to, T], (2.9)
£

where E; ; denotes the two parameter Mittag-Leffler function.
Iff(t) = 0, we get, as the solution of the corresponding homogeneous IVP
x(t) = X°(t — to) T 'Eqq(A(t — to)D), t € [to, T (2.10)

Next theorem relative to strict fractional differential inequalities includes Theorem 2.3 in [12] as a special case.
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Theorem 2.1. Let v, w € Gp[J, R],p = 1—¢q, 0 < q < 1be natural lower and upper solutions of (1.3) respectively and assume
that one of the inequalities in (2.1) to be strict.

Then
V0 < w (2.11)
implies that
v(t) < w(t) on]. (2.12)

Proof. Suppose that v(t) < w(t) on] is false. Then there would exist a t; € (to, T] such that
v(t)) =w(t)) and v(t) <w(t), o <t<t.

Now, setting m(t) = v(t) — w(t) on [ty, T], we obtain
m(t;) =0 and m(t) <0, to<t<t.

Hence, employing Lemma 2.1 we get DYm(t) > 0. Assuming the first inequality in (2.1) being strict, we arrive at the
contradiction

F(t1, v(t1), v(t1)) > DT (t1) > DTw(tr) > F(ty, w(tr), w(t))
which proves the conclusion of the theorem.

Therefore, the proof is complete. O

Remark 2.1. Instead of choosing natural lower and upper solution, one can use the coupled lower and upper solutions of
all type of (1.3). Then, the conclusion of Theorem 2.1 remains valid.

3. Main results
We will give some comparison results in terms of lower and upper solutions of the problem (1.3).

Theorem 3.1. Let v and w be natural lower and upper solutions of (1.3). Assume further that F satisfy the following condition

F(t,x1,91) — F(t. 0. y2) < LG — %) + 01 —y2)]. L= 0, (3.1
whenever x; > x; and y; > y,.

Then v° < w® implies v(t) < w(t) forty <t <T.

Proof. Let us first set w.(t) = w(t) + €A(t) for small ¢ > 0, where A(t) = (t — t())q_]Eq_q(BL(t — tp)) and E, 4 denotes two
parameter Mittag-Leffler function. This implies that w (¢) (¢ —to) ™| i—¢, = w? = w(t)(t—t0) "¢ty +€A(E) (E—t0) ™| r—¢,-
So we find w? = w® + €A which gives w? > w® > v® and w.(t) > w(t) on . Then, we get
Diw,(t) = Drw(t) + eDIA(t)
> F(t, w, w) 4+ 3eLA(t).

Here, we have utilized the fact that A(t) is the solution of IVP

DIA(t) = 3LA(t),  A(E)(t —to)' iy, = A° > O.
Also, using the inequality (2.1), we obtain

Diw,(t) > F(t, we, we) — 2L(we — w) + 3€LA(t)
= F(t, we, we) + €LA(L)
>F(tvw€»w€)a tOStET

Therefore, employing Theorem 2.1 to the functions v(t) and w(t), we get v(t) < w,(t) onJ and letting ¢ — 0, we arrive at
v(t) < w(t) on],

which completes the proof. O

Remark 3.1. Theorem 3.1 includes Theorem 2.2.3 in [8] as a special case.
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Theorem 3.2. Let v and w be coupled lower and upper solutions of type 1 of (1.3). Moreover, assume that F satisfy the following
inequalities
F(t’xlvy)_l:(tax25y)fL(Xl_XZ)a LZOa (3'2)
F(t,x,y1) — F(t,x,¥2) = —L(y1 — ¥2), (3.3)

whenever x; > x, and y; > y,.
Then v° < w® implies v(t) < w(t) forto <t <T.

Proof. To prove the conclusion of the theorem, we set, for small € > 0,
we(t) = w(t) + er(t) and v (t) = v(t) — eA(t), (3.4)
where A(t) = (t — to)q*1Eq,q(3L(t — to)) and Eq 4 is two parameter Mittag-Leffler function. It is clear that w.(t) >
w(t), ve(t) < v(t)and v? < w?.
Then using (3.2) and (3.3), we get
DIv(t) = DIv(t) — eDIA(L)
F(t, v, w) — 3eLA(t)
F(t, v, we) + €LA(t) — 3€LA(t)
F(t, ve, we) + 2€LA(t) — 3€LA(t)
< F(t, ve, We).

INIAIA

Similarly, we obtain
Dw,(t) = DIw(t) + eDIA(t)
> F(t, w, v) 4+ 3eLA(t)
> F(t, we, v) — €LA(t) + 3€LA(t)
> F(t, we, ve) — 2€LA(t) + 3eLA(t)
> F(t, we, ve).

Hence, employing Theorem 2.1 to v.(t) and w,(t), we get v.(t) < wc(t) on J. Finally, taking limit as € — 0, we get
v(t) < w(t)on].
Therefore, the proof is complete. O

Theorem 3.3. Let v and w be coupled lower and upper solutions of type Il of (1.3). Moreover, F satisfy the following inequalities
F(taX,Yl)_F(t»X,yz)fL(yl_y2)7 LZO» (3'5)
F(t,x1,y) — F(t,x2,y) > —L(x1 — X2), (3.6)

whenever x; > x, and y; > y.
Then v° < w® implies v(t) < w(t) forty <t <T.

Proof. For the proof, we define, as before, for small € > 0,
we(t) = w(t) +eA(t) and v (t) = v(t) — eA(t),

then we use the same way as in Theorem 3.2. So we omit the details. O

Theorem 3.4. Let v and w be coupled lower and upper solutions of type Il of (1.3). Also F satisfy the following condition
F(t,x1,y1) — F(t,X2,¥2) = —L[(x1 — %) + 1 —y2)], L=0, (3.7)

whenever x; > x, and y; > y».
Then v° < w® implies v(t) < w(t) fortg <t <T.

Proof. In this case, we need to set v (t) = v(t) — eA(t). Then we proceed, as before, to get the claim of the theorem. The
proof being similar is omitted.

We can generalize this idea to finite systems of fractional differential equations. For this aim, consider the following
fractional differential system

Dx(t) = f(t,x),  x(O)(t — )" Veqy = x°, (3.8)

where f € C[J x R", R"] and DY is Riemann-Liouville (R-L) fractional derivative of orderq, 0 < q < 1.
Also, the corresponding systems of fractional differential equations for (1.3) is given by

DIx(t) = F(t,x,x),  x(O)(t — to)' 1=, = x°, (3.9)
where F € C[J x R?", R"].
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At this point, we shall need an important property, known as quasimonotone nondecreasing relative to systems of
inequalities. O

Definition 3.1. A function f € C[J x R", R"] is said to be possess quasimonotone nondecreasing property if for each i such
that 1 <i <n, u <vandu; = v; implies f;(t, u) <fi(t, v).

Theorem 3.5. Let v,w € G[J,R], p = 1—¢q, 0 < q < 1 be locally Hélder continuous with exponent > > q and
F e C[J x R?", R"]. Suppose that one of the following conditions holds:

(Hy) v and w are natural lower and upper solutions of (3.9) respectively and F(t, x, y) is quasimonotone nondecreasing in x and
yforeacht € J and for each i,

n
Fi(tax1sy1)_Fi(t»x25y2) SLZ[(XU_XZJ)—'—(‘YU_}/Z])]’ LZO, (3.]0)
=1
whenever x; > x, and y; > y»;

(Hp) v and w are coupled lower and upper solutions of type 1 of (3.9) respectively and F(t, x, y) is quasimonotone nondecreasing
in x for each (t, y) and nonincreasing in y for each (t, x) and for each i,

n
Fi(t.x1.y) — Fi(t.x2.y) <L) (xj—xy), L >0, foreach (t,y), (3.11)
j=1

Fi(t, %, y1) = Fi(t, %, y2) = =L (3 —y)), foreach (t,x), (312)

=1
whenever X1 > X, and y; > y»;

(H3) v and w are coupled lower and upper solutions of type Il of (3.9) respectively and F(t, x, y) is quasimonotone nonincreasing
in x for each (t,y) and nondecreasing in y for each (t, x) and for each i,

n
Fi(t,x1,y) — Fi(t, %2, y) = =LY (x1j — %), L >0, foreach (t,y), (3.13)
j=1

Fi(t, %, y1) = Fi(t, %, y2) <Ly _(y1j —y3), foreach (¢, ), (3.14)
j=1

whenever X1 > X, and y; > y»;

(Hy) v and w are coupled lower and upper solutions of type Il of (3.9) respectively and F(t, x, y) is quasimonotone in x and y
foreacht € J and for each i,

n
Fi(t, x1,y1) = Filt, X2, y2) = =LY _[(xyj = x3) + (3 — y)], L= 0, (3.15)
j=1
whenever x; > X, and y; > y,.
Then v° < w? implies v(t) < w(t) on].
Proof. To prove the conclusion of the theorem when (H;) holds, we define w, (t) = w(t) + €A (t) for some € > 0 where
€=(e,6,...,e)and A(t) = (t — t)" 'Eg4[(2n + 1)(t — tp)9]. So one can have w,(t) > w(t) and w? > v°. Then, using
(Hy), we find for each i,
DIw,i(t) = DIw;(t) + eDIA(t)
Fi(t, w, w) + (2n + 1)Le A (t)
Fi(t, we, we) — 2nLe () + (2n + 1)Le A (t)
> Fi(t, We, we)'

vV v

We shall show that v(t) < w,(t) onJ, which proves the conclusion as making € — 0. Suppose that v(t) < w.(t) onJ
is not true, then there would exist an indexj, 1 <j < nandat; € (ty, T] such that

Vi(t) = wej(tr), vi(t) < wg(t), to <t <t; and vi(t1) < wei(ty) fori#j. (3.16)

Setting m(t) = vj(t) — w;(t), we get m(t;) = 0and m(t) < Oforty < t < t;. We then deduce from Lemma 2.1 that
D%m(t;) > 0 which, in view of (3.16), yields a contradiction

Fi(ty, v(t1), v(t) = vj(t1) = wej(ty) > Fi(ty, we (t1), we(t1)) (3.17)

proving the theorem.
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The other cases can be proved by using similar discussions in this proof given above and following the proof of previous
theorems with suitable changes. We omit the details.
Therefore, the proof is complete. O

4. Conclusion

In this work, some current comparison theorems in literature have been generalized in the framework of
Riemann-Liouville fractional differential operators of order g, 0 < q < 1. Here, we have utilized the technique of upper
and lower solutions together with the theory of strict and nonstrict fractional differential inequalities. For the further
improvement in applications of dynamical systems, we have extended these results to the finite systems of fractional
differential equations.
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