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Öz 

Bir datumdan diğer bir datuma olan koordinat dönüşümü jeodezinin temel problemlerinden bir tanesidir. Genel 

olarak problem, bir sistemde tanımlı koordinatların, matematiksel eşitlikler kullanılarak farklı bir başlangıç 

noktasına sahip sisteme dönüşümüdür. Dönüşüm parametrelerinin hesaplanması için, her iki sistemde 

koordinatları bilinen yeterli sayıdaki ortak noktanın olması gerekmektedir. Problem iki boyutlu (2B) ya da üç 

boyutlu (3B) koordinat sistemlerinin dönüşümünü içerir. Koordinat dönüşümünde yaygın olarak kullanılan 

yöntem, Helmert Dönüşümü olarak da adlandırılan En Küçük Kareler (EKK) yaklaşımıdır. Son yıllarda, 

Toplam En Küçük Kareler (TEKK) olarak adlandırılan yeni bir yaklaşım, deformasyon analizi, koordinat 

dönüşümü vb. gibi jeodezik çalışmalarda kullanılmaya başlanmıştır. EKK yaklaşımda, sadece ölçü vektörü 

hatalı kabul edilirken, TEKK yaklaşımında ölçü vektörünün yanında katsayılar matrisi de hatalı kabul 

edilmektedir.   Bu çalışmanın amacı, farklı dönüşüm parametreleri kullanarak bu iki yöntemin koordinat 

dönüşümü problemlerinde performanslarını karşılaştırmak ve 2B  ağlarda değişen her bir parametrenin etkisini 

araştırmaktır. Bu amaçla, jeodezik bir ağ yapay olarak üretilmiş ve farklı senaryolarda dönüşüm parametreleri 

hesaplanmıştır. Yöntemlerin performanslarına ait karşılaştırmalar, kestirilen dönüşüm parametrelerinin norm 

değerleri dikkate alınarak yapılmıştır. Yöntemleri karşılaştırmak için, dönüşüm parametrelerinin ortalamalarına 

ait norm değerleri 10000 farklı durum için hesaplanmıştır. Elde edilen sonuçlar, TEKK yaklaşımının 

hesaplanan norm değerlerine göre daha güvenilir sonuçlar verdiğini göstermiştir.  

 

Anahtar Kelimeler: Toplam En Küçük Kareler (TEKK), En Küçük Kareler (EKK), Koordinat Dönüşümü, 

Dönüşüm Parametreleri, Norm 

 

Performance of the Least Squares and Total Least Squares 

Methods on Two Dimensional Coordinate Transformation 

 

Abstract 

Coordinate transformation from one datum to another is one of the basic problems in geodesy. Generally, the 

problem is to transform the coordinates defined in a coordinate system into a coordinate system with defined 

another origin by using mathematical equations. To compute the transformation parameters between two 

coordinate systems, sufficient number of coordinates of the common points should be known in both systems. 

The problem involves either two dimensional (2D) or three dimensional (3D) coordinate systems. 
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Traditionally, common model used for coordinate transformation is the Least Squares (LS) method known as 

Helmert Transformation. Recently, a new approach so called Total Least Squares (TLS) has become used in 

application areas in geodetic studies, such as deformation analysis, coordinate transformation etc. Although 

only the observation vector is assumed as erroneous according to LS approach, design matrix besides 

observation vector is assumed as erroneous in TLS approach. The aims of this study were to compare the 

performance of these two methods in coordinate transformation problems in terms of altering transformation 

parameters and to investigate the effects of each parameters change to the model in 2D networks. For these 

aims, the geodetic networks were simulated and transformation parameters were computed under different 

scenarios. The comparisons of performance of the methods are considered with the norm of the estimated 

translation parameters. To compare the methods, the norm criteria of mean of transformation parameters were 

computed for 10000 different cases. The results showed that TLS estimates more reliable solutions in terms of 

norm values. 

 

Keywords:  Total Least Squares (TLS) Method, Least Square (LS), Coordinate Transformation, 

Transformation Parameter, Norm 

 

1. GİRİŞ 

Koordinat dönüşümü, jeodezinin en yaygın 

konularından birisidir. Klasik anlamda iki 

boyutlu koordinat dönüşümü, öteleme 

elemanları, ölçek faktörü ve dönme açısından 

oluşan dönüşüm parametreleri yardımıyla bir 

datumdan diğer bir datuma koordinatların 

aktarılması için kullanılır. Mühendislik 

ölçmelerinde uygulama alanlarındaki artış ve 

farklı datumlara sahip paftaların birleştirilmesi 

gibi nedenlerden dolayı, hassas datum 

dönüşümünün gerekliliği de artmıştır. Datum 

dönüşümündeki problem, iki farklı datumda 

bulunan koordinatları bilinen ortak noktaları 

kullanarak dönüşüm parametrelerinin 

hesaplanması olarak tanımlanabilir.  

Literatürde yapılan pek çok çalışmada, 

dönüşüm parametrelerinin kestirimi için farklı 

stratejiler kullanılmıştır. Bunların arasında, 2 

boyutlu ağlarda Helmert Dönüşümü en yaygın 

uygulanan yöntemdir (Guobin vd., 2018). 

Helmert Dönüşümünde dönüşüm elemanları, 

iki eksen boyunca alınan iki adet öteleme 

elemanı, bir ölçek faktörü ve iki koordinat 

sisteminin eksenleri arasındaki bir dönüklük 

açısıdır. Helmert Dönüşümünde, her iki 

datumda ortak olacak şekilde koordinatları 

bilinen en az iki noktaya ihtiyaç vardır. İki 

nokta, çözüm için gerekli olan minimum ortak 

nokta sayısını ifade etmektedir. Helmert 

Dönüşümü, bu ortak noktaların koordinatlarını 

kullanarak En Küçük Kareler (EKK) 

prensibine dayalı olarak kestirim yapar. 

EKK yaklaşımında, sadece ölçü vektörü hatalı 

kabul edilir. Ancak, koordinat dönüşümünde 

olduğu gibi bazı durumlarda, katsayılar 

matrisini oluşturan parametreler de hatalı 

olabilir. Bu nedenle, bu gibi durumlarda, 

katsayılar matrisinin de hatalı kabul edildiği 

Toplam En Küçük Kareler (TEKK) yaklaşımı 

kullanılmalıdır (Golub ve Van Loan, 1980; 

Van Huffel ve Vandewalle, 1991; Felus, 2004; 

Schaffrin vd., 2006; Markovsky ve Van 

Huffel, 2007; Akyılmaz, 2007; Akyılmaz vd., 

2007; Schaffrin ve Wieser, 2008). TEKK, 

katsayılar matrisinin de rasgele hata içerdiği 

(Errors-in-Variables, EIV) dengeleme 

modelini önermektedir. Farklı koordinat 

sistemlerindeki noktaların koordinatları, 

dönüşüm eşitliklerindeki katsayılar matrisinde 

kendi hata bileşenleri ile değerlendirilmektedir. 

Jeodezinin en yaygın olarak kullanılan ve 

araştırılan konularından birisi olan koordinat 

dönüşümü, güncelliğini ve uygulama alanlarını 

koruyan bir problemdir. Dönüşüme etki eden 

her bir parametrenin araştırılması ve kullanılan 

yaklaşımların performans değerlendirmeleri ise 

elde edilen sonuçların güvenilirliği için 

önemlidir.  

2. YÖNTEM 

2.1. İki Boyutlu EKK Yaklaşımı 

(Helmert Dönüşümü)  

Sadece bir sisteme ait stokastik modelin hata 

içerdiğini kabul eden ve günümüzde Helmert 

Dönüşümü olarak adlandırılan 2 boyutlu 

koordinat dönüşümü, F.R. Helmert tarafından 

formüle edilmiştir. Bu yaklaşımda, dönüşüm 

parametreleri EKK yaklaşımı ile 

kestirilmektedir. 2 Boyutlu Helmert dönüşüm 

problemi, iki öteleme elemanı, bir dönüklük 

bileşeni ve bir ölçek faktörü olmak üzere dört 
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adet dönüşüm parametresini içermektedir. 

Parametrelerin kestirimi için, iki farklı 

sistemde ortak olan noktalar kullanılır. İki 

boyutlu Helmert Dönüşüm problemine ait 

eşitlikler, (1) ve (2)’ de verilmiştir. 

 ksin-kcos+t=x                              

(1) 

 kcosksin+t=y                             (2) 

Burada χ ve γ  birinci sistemdeki koordinatları, 

x ve y ikinci sistemdeki koordinatları, t  ve 

t  öteleme elemanlarını, k ölçek faktörünü,  ε 

dönüklük bileşenini ifade etmektedir. A 

katsayılar matrisinin elemanları aşağıdaki gibi 

yazılır, 

𝐀𝐢 = [
1 0 𝜒𝑖

0 1 𝛾𝑖
     

−𝛾𝑖

  𝜒𝑖
]i=1,…..,n                 (3) 

Burada, n her iki sistemde ortak olan nokta 

sayısıdır. 𝐥 = [𝑥 𝑦]𝑇 dönüşüm problemindeki 

ölçü vektörünü göstermektedir. Ölçü vektörü 

ikinci sistemdeki tüm eşlenik noktaların 

koordinatlarını içerir. Dönüşüm 

parametrelerini 𝛃 =
[𝑡𝜒 𝑡𝛾 𝑘𝑐𝑜𝑠𝜀    𝑘𝑠𝑖𝑛𝜀  ]𝑇 kestirmek için, tek 

bir ortak nokta için düzeltme denklemleri 

aşağıdaki gibi oluşturulur: 

𝐯𝐋𝐒 = 𝐀𝛃 − 𝐥                                                  

(4) 

[
𝑣𝜒

𝑣𝛾
] = [

1 0 𝜒
0 1 𝛾

     
−𝛾
  𝜒 ] [

𝑡𝜒

𝑡𝛾

𝑘𝑐𝑜𝑠𝜀
𝑘𝑠𝑖𝑛𝜀

] − [
𝑥
𝑦]         

(5) 

Ortak noktalar yardımı ile iki sistem arasındaki 

dönüşüm parametreleri kestirildikten sonra  

ve  koordinatları, ikinci sistemde x ve y 

olarak adlandırılan nokta koordinatlarına 

dönüştürülürler (Şekil 1). 

 

Şekil 1. İki Boyutlu Koordinat Dönüşümü 

2.2. Toplam En Küçük Kareler (TEKK) 

Golub ve Van Loan (1980) tarafından ortaya 

atılan TEKK yöntemi, ölçü vektörü ve 

katsayılar matrisinin her ikisinin de rasgele 

hata (aynı varyans değerine sahip ve sıfır 

ortalamalı) içerdiği EIV dengeleme modeli 

olarak tanımlanmaktadır. TEKK 

yaklaşımındaki fonksiyonel model, genel 

haliyle aşağıda verildiği gibi yazılabilir, 

𝐥 + 𝐞 = (𝐀 − 𝐄)𝛃;𝐥 + 𝐞 = 𝐥;𝐀 − 𝐄 = 𝐀̃               

(6) 

Burada, A (𝑚 × 𝑛) boyutlarında (rank(𝐀) =
𝑚 < 𝑛) olan katsayılar matrisini; l (𝑚 × 1) 

boyutundaki ölçü vektörünü; e, l vektörüne ait 

hata vektörünü; E A matrisine ait hata 

matrisini; 𝛃 (𝑚 × 1) boyutundaki 

bilinmeyenler vektörünü ifade etmektedir. 

min[𝐞; 𝐄] ‖[𝐄; 𝐞]‖𝐹 → 𝐥 + 𝐞 = (𝐀 − 𝐄)𝛃        

(7) 

Burada, ‖𝐇‖𝐹 𝑛 × 𝑚 boyutundaki H 

matrisinin Frobenius normunu, [𝐄; 𝐞] 𝑛 ×
(𝑚 + 1) boyutlu her iki sistemdeki hata 

matrisini ifade eder ve aşağıda verildiği haliyle 

tanımlanır;  

‖𝐇‖𝐹 = √∑ ∑ ℎ𝑖𝑗
2𝑚

𝑗=1
𝑛
𝑖=1 = √𝑡𝑟(𝐇𝑇𝐇)           

(8) 

Burada, 𝑡𝑟 matrisin izini ifade eder. [𝐄̃; 𝐞̃] 
matrisinin minimum değere sahip olmasına 

dayalı olarak 𝛃 hesaplanır. 

(𝐀 − 𝐄̃)𝛃 = 𝐥 + 𝐞̃                                          

(9) 
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Burada; dönüşümde her iki sistemdeki hataları 

da içeren genişletilmiş [𝐀; 𝐥] matrisi;  [𝐄; 𝐞]’ 
nin Frobenius normunu minimum yapacak 

şekilde değiştirilir. Bu değişiklik genişletilmiş  
[𝐀; 𝐥] matrisinin sütunları arasında lineer bir 

ilişki doğurur. Ayrıca, (m+1) rank değerine 

sahip [𝐀; l] matrisi; m rank değerine sahip 

[𝐀 − 𝐄;  𝐥 + 𝐞] = [𝐀̂; 𝐥̂] matrisi ile değiştirilir.  

Bu durum, 𝐥̂ nin sütunlarının 𝐀̂ ’nın sütunları 

ile lineer bağımlı olduğu anlamına gelmektedir 

(Felus, 2004). 

Genişletilmiş [𝐀; 𝐥] matrisinin tekil değer 

ayrışımı (TDA) (Singular Value 

Decomposition – SVD) gerçekleştirilirse; 

[𝐀; 𝐥] = 𝐔𝚺𝐕𝑇                                               
(10) 

𝐔 = [𝑢1,⋯,𝑢2] ∈ 𝑅𝑛×𝑛;𝐕 = [𝑣1,⋯,𝑣𝑚+1] ∈

𝑅(𝑚+1)×(𝑚+1); 𝚺 = diag(𝜎1, ⋯ , 𝜎𝑚+1) ∈

𝑅𝑛×(𝑚+1)şeklinde hesaplanır. Burada 𝚺 

matrisinin köşegen elemanları tekil değerlere, 

[𝜎𝑖𝑗 = 𝜎𝑖;  𝑖 = 1, ⋯ , (𝑚 + 1); 𝑖 = 𝑗], köşegen 

dışındaki elemanları da 0’ a eşit olur [𝜎𝑖𝑗 =

0; 𝑖 ≠ 𝑗] (Felus, 2004). 

Teorem 1 

(10) denkleminde [𝐀; 𝐥] matrisinin TDA’ sında 

𝜎𝑚 > 𝜎𝑚+1𝑣𝑒 𝑣𝑚+1,𝑚+1 ≠ 0 olduğu 

varsayılır. Bu durumda, genişletilmiş [𝐀; 𝐥] 
matrisinin TEKK kestirimi aşağıdaki şekilde 

gerçekleştirilir: 

[𝐀̂; 𝐥̂] = 𝐔𝚺̂𝐕𝐓,𝚺̂ = diag(σ1, … , σ𝑚, 0)        

(11) 

𝜎𝑚 > 𝜎𝑚+1 ve 𝑣𝑚+1,𝑚+1 ≠ 0 koşulları A 

matrisi tam ranka sahip olduğunda genellikle 

sağlanır. Burada  𝐥̂ = 𝐥 + 𝐞 ve 𝐀̂ = 𝐀 + 𝐄  

şeklinde ifade edilirse (6) nolu denklem 

aşağıdaki şekilde tekrar yazılabilir. 

[𝐀̂; 𝐥̂] [
𝛃

−1
] = 0                                              

(12) 

[𝛃; −1]𝑇 vektörü genişletilmiş [𝐀̂; 𝐥̂] matrisinin 

soldan sıfır uzayıdır; TEKK problemi TDA 

kullanılarak çözülebilir.  Bunun yanında, v𝑚+1 

(V’ nin son sütunun son bileşeni), -1 değerine 

sahip oluncaya kadar ölçeklendirilerek 

[𝛃; −1]𝑇 vektörü elde edilir (Felus, 2004). 

Teorem 2 

(7) nolu denklemde verilen koşula göre 

parametreler vektörü aşağıdaki şekilde 

hesaplanabilir:  

𝛃̂ = −
1

𝑣𝑚+1,𝑚+1
[𝑣1,𝑚+1, … , 𝑣𝑚,𝑚+1]

𝑇
         (13) 

TEKK probleminin tek çözümü; en küçük tekil 

değer ve [𝐀; 𝐥] matrisinin sağ tekil vektörüyle 

ilişkilendirilir. TEKK düzeltme matrisini 
[∆𝐀; ∆𝐥] hesaplayabilmek için,  Teorem 1 ve 

(13) nolu denklem birlikte düşünülürse, 

aşağıdaki denklem elde edilir: 

[∆𝐀; ∆𝐥] = [𝐀; 𝐥] − [𝐀̂; 𝐥̂] = 𝜎𝑚+1𝑢𝑚+1𝑣𝑚+1
𝑇      

(14) 

Burada, [𝛃̂; −1]
T

 vektörü, [𝐀; 𝐥]𝑇[𝐀; 𝐥]’ nin 

özdeğeri ile ilgili özvektördür. Sonuç olarak, 

özvektör denklemi aşağıdaki gibi yazılabilir:  

[𝐀; 𝐥]𝑇[𝐀; 𝐥] [ 𝛃̂
−1

] = [𝐀𝑇𝐀 𝐀𝑇𝐥
𝐥𝑇𝐀 𝐥𝑇𝐥

] [ 𝛃̂
−1

] =

𝜎𝑚+1
2 [ 𝛃̂

−1
]                                                                  

(15) 

𝛃̂ bilinmeyen parametrelerin kestirimi (15) 

nolu denklemin ilk satırı göz önünde 

bulundurularak (16) nolu eşitlikte 

hesaplanabilir. 

(𝐀𝑇𝐀 − 𝜎𝑚+1
2 𝐼)𝛃̂ = 𝐀𝑇𝐥                               

(16) 

(16) nolu eşitlik TEKK çözümünün normal 

denklemleri olarak kabul edilebilir. 𝜎𝑚 >
𝜎𝑚+1 ve 𝑣𝑚+1,𝑚+1 ≠ 0, olduğu için (𝐀𝑇𝐀 −

𝜎𝑚+1
2 𝐈) matrisi pozitiftir; bu şekilde 𝛃̂ (17) 

nolu denklem ile hesaplanır. 

𝛃̂ = (𝐀𝑇𝐀 − 𝜎𝑚+1
2 𝐈)−1𝐀𝑇𝐥                           

(17) 

TEKK yönteminde katsayılar matrisinin sabit 

sütunları 

TEKK yönteminde hem ölçülerin hem de 

katsayılar matrisinin (A) hatalı olarak 

düşünülmesine karşın; TEKK çözümlerinden 

sonra bazı değerler değişmez, sabit kalır. Bu 

duruma koordinat dönüşüm problemlerinde 

öteleme parametrelerinin katsayıları örnek 

verilebilir. Bu durumda A katsayılar matrisi ve  

𝛃 bilinmeyen vektörü alt kısımlara ayrılır 

(Akyılmaz, 2007). 

𝐀 = [𝐀𝟏; 𝐀𝟐]; 
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𝐀𝟏 ∈ 𝑅𝑛×𝑚1ve𝐀𝟐 ∈ 𝑅𝑛×𝑚2                          

(18) 

𝛃 = [𝜷1
𝑇;  𝜷2

𝑇]𝑇; 

𝛃𝟏 ∈ 𝑅𝑚1×1ve𝛃𝟐 ∈ 𝑅𝑚2×1                           

(19) 

Burada𝐀𝟏, 𝐀𝟐, 𝛃𝟏, 𝛃𝟐 sırasıyla A katsayılar 

matrisinin ve 𝛃  bilinmeyen parametre 

vektörünün alt kısımlara bölünmüş halidir. 𝐀𝟏 

matrisinin sütunlarının bilindiği kabul edilirse; 

TEKK problemi aşağıdaki şekilde 

oluşturulabilir:  

min[Â;l]‖[𝐀𝟐; 𝐥] − [𝐀̂𝟐; 𝐥̂]‖
𝐹

→ 𝑨̂𝛃̂ =

[𝐀𝟏; 𝐀̂𝟐] [
𝛃̂𝟏

𝛃̂𝟐

] = 𝐥̂                                                     

(20) 

Bu problemin çözülebilmesi için bilinen 

sütunlarla diğerlerini ayırmak gerekir. Bu 

işlem QR çarpanlarına ayırma yöntemi ile 

gerçekleştirilebilir.  QR çarpanlarına ayırma 

yöntemi dörtgen matrisleri bir ortogonal matris 

çarpımı  Q ve bir de üst üçgen matris R olarak 

ifade etmemizi sağlar (Felus, 2004). 

Genişletilmiş matrisin QR çarpanlara ayrılması 

aşağıdaki şekilde gerçekleştirilir.   

[𝐀; 𝐥] = 𝐐𝐑                                                   

(21) 

𝐐𝐓[𝐀𝟏; 𝐀𝟐; 𝐥] = [
𝐑𝟏𝟏 𝐑𝟏𝟐 𝐑𝟏𝐛

𝟎 𝐑𝟐𝟐 𝐑𝟐𝐛
]             

(22) 

Ortogonal Q matrisinin sütunlarının öklit 

formu 1’ e ve Frobenius normu  √𝑛,’ ye eşittir.  

Ayrıca, R matrisi 𝐑𝟏𝟏, 𝐑𝟏𝟐, 𝐑𝟐𝟐, 𝐑𝟏𝐛 ve 𝐑𝟐𝐛 

şeklinde alt matrislere ayrılabilir. Bu 

matrislerin boyutları sırasıyla (𝑚1 × 𝑚1), 

(𝑚1 × 𝑚 − 𝑚1), (𝑛 − 𝑚1 × 𝑚 − 𝑚1), (𝑚1 ×
1), (𝑛 − 𝑚1 × 1) şeklindedir.   

Felus (2004)’ te verildiği şekilde karma EKK-

TEKK probleminin çözümü iki adımdan 

oluşmaktadır:  

1. 𝛃̂𝟐  parametre vektörü indirgenmiş 

sistem için Teorem 2 kullanılarak hesaplanır:  

𝐑𝟐𝟐𝛃𝟐 ≈ 𝐑𝟐𝒃                                                

(23) 

 𝐑̂𝟐𝟐  ve 𝐑̂𝟐𝒃 Teorem 1 kullanılarak 

hesaplanabilir. 

2. 𝛃̂𝟏 parametre vektörü aşağıdaki 

denklemlerde yerine koyma tekniği 

kullanılarak hesaplanabilir.  

𝐑𝟏𝟏𝛃̂𝟏 = 𝐑𝟏𝒃 − 𝐑𝟏𝟐𝛃̂𝟐                                

(24) 

Buraya kadar anlatılan yöntemler tüm 

değerlere ait varyans değerlerinin aynı kabul 

edildiği klasik TEKK çözümünü içermektedir. 

Buna karşın, katsayılar matrisinin ve ölçülerin 

varyans değerleri farklı olabilir. Bu tür 

problemlerin çözümünde Genelleştirilmiş 

TEKK (GTEKK) yöntemi uygulanır (Felus, 

2004; Neitzel, 2010). 

GTEKK yönteminde D ve C olarak iki 

köşegen ağırlık matrisi tanımlanır. D, 𝑛 × 𝑛 

boyutunda ölçülerin ağırlık matrisini ifade 

etmektedir (𝐃 = diag(𝐝𝟏, … , 𝐝𝐧)). Ayrıca C, 

(m + 1) × (m + 1) boyutunda A2 sütunundaki 

katsayılar matrisine ilişkin ağırlık matrisini 

ifade etmektedir (𝐂 = diag(𝐜𝟏, … , 𝐜𝐦+𝟏)). Bu 

tanımlara göre GTEKK probleminin çözümü 

aşağıdaki şekilde verilebilir:  

min[e;𝐸𝐴2]‖𝐃[𝑬𝑨𝟐; e]𝐂‖𝐹 → 𝐛 + 𝐞 =

(𝐀𝟏; 𝐀𝟐 + 𝐄𝑨𝟐) [
𝛃̂𝟏

𝛃̂𝟐

]                                               

(25) 

Felus (2004) GTEKK probleminin çözümünü 

3 adımda ortaya koymaktadır:  

1. Genişletilmiş 𝐃[𝐀; 𝐥] matrisi QR 

çarpanlarına ayrılır. 

𝐐𝐓𝐃[𝐀𝟏; 𝐀𝟐; 𝐥] = [
𝐑𝟏𝟏 𝐑𝟏𝟐 𝐑𝟏𝐛

𝟎 𝐑𝟐𝟐 𝐑𝟐𝐛
]          

(26) 

2. İndirgenmiş sistem için  𝛃̂𝟐 parametre 

vektörü klasik TEKK yöntemine göre 

hesaplanır.  

[𝐑𝟐𝟐; 𝐑𝟐𝒃]𝐂 (𝐂−𝟏 [
𝛃𝟐

−𝟏
]) ≈ 𝟎                     (27) 

(27) nolu eşitliği çözümü için [𝐑𝟐𝟐; 𝐑𝟐𝒃]𝐂 =
𝐔𝚺𝐕𝐓 eşitliğinin TDA’ sı hesaplanır. 

𝛃̂ = −
1

𝐜𝑚+1.𝐯𝑚+1,𝑚+1
𝐂1…𝑚[𝑣1,𝑚+1, … , 𝑣𝑚,𝑚+1]

𝑇
         

(28)                    

Burada, 𝐂1…𝑚 = diag(𝑐1, … , 𝑐𝑚) 
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3. 𝛃̂𝟏 parametresi, ikinci adımda hesaplanan 

𝛃̂𝟐 parametresinin yardımıyla aşağıdaki 

gibi hesaplanır.  

𝐑𝟏𝟏𝛃𝟏 = 𝐑𝟏𝒃 − 𝐑𝟏𝟐𝛃̂𝟐                               (29) 

3. BULGULAR 

Son yıllarda koordinat dönüşümü ile ilgi pek 

çok çalışma yapılmasına karşın, TEKK 

yöntemi kullanılarak koordinat dönüşümünün 

güvenirliği ile ilgili çalışma yapılmamıştır. Her 

iki yöntem, doğrultu-kenar ölçülerine dayalı 

olarak yapay olarak oluşturulmuş ağlarda 

(Şekil 2) test edilmiştir. Kenar uzunlukları 212 

m ile 370 m aralığında değişen 9 noktalı test 

ağında, kullanılan alet doğruluğu kenar 

ölçümünde ±(3 + 2 𝑝𝑝𝑚) ve doğrultu 

ölçümünde ±2𝑐𝑐 olarak kabul edilmiştir. 

Yöntemlerin performanslarına ait 

karşılaştırmalar, kestirilen dönüşüm 

parametrelerinin norm değerleri dikkate 

alınarak yapılmıştır. Norm değeri, analiz 

yönteminin performans ölçümünde kullanılan 

bir değerdir (Hekimoglu ve Erenoglu 2013). 

Çalışmada, birinci ve ikinci datumlar 100 × 

100 kez üretilmiştir. Burada, ikinci datum, 

Tablo 1, 2, 3 ve 4' te verilen durumlar göz 

önüne alınarak orijinal dönüşüm parametreleri 

kullanılarak üretilmiştir. Simülasyon, 10000 

kez çalıştırılmış ve dönüşüm parametreleri 

10000 tekrar için hesaplanmıştır. Norm 

değerleri, orijinal dönüşüm parametreleri ile 

kestirilen değerlerin arasındaki farkların 

mutlak değerlerine ait ortalama değerden 

hesaplanmıştır (Hekimoglu ve Erenoglu, 

2013). 

 

Şekil 2. 2B yapay olarak üretilmiş ağ 

(Doğrultu-Kenar) 

2 Boyutlu ağda, dört adet dönüşüm parametresi 

(iki öteleme, bir dönüklük ve bir ölçek faktörü) 

sırasıyla 𝑡𝑥, 𝑡𝑦, 𝜀 ve 𝑘 olarak gösterilmiştir 

(Tablo 1-4). Her durumda, ölçek faktörü sabit 

(“1”) olarak alınmıştır. Tablolarda farklı 

senaryolara ait 2 Boyutlu ağ çözümleri 

verilmiştir. Farklı senaryolardaki durumlar, 

öteleme elemanları ile dönüklük bileşeni 

arasındaki ilişkiyi ortaya koymak için 

oluşturulmuş ve bu sayede EKK ile TEKK 

çözümlerinin güvenilirliği araştırılmıştır.  

Tablo 1' de, dönüklük bileşeni 0o ile 10o 

arasında arttırılırken, öteleme elemanları 

değiştirilmeyerek 10 cm gibi küçük 

değişimlerdeki durum dikkate alınmıştır. 

Helmert dönüşümünden elde edilen sonuçlar 

incelendiğinde, parametrelere ait norm 

değerlerinin 2.3556 ve 2.3598 arasında 

birbirine yakın değerlerde değiştiği ve anlamlı 

bir farkın olmadığı görülmüştür. Ancak, 

dönüklük açısının 10o olduğu durumda norm 

değerlerinde farklılıklar bulunmuştur. 

Dönüklük açısı 10o olduğunda hesaplanan 

norm değeri diğer durumlardan daha küçük 

sonuç vermiştir. Bu durum, EKK yaklaşımının 

2 Boyutlu ağlarda dönüklük açısının büyük 

olduğu durumlar için güvenilir sonuçlar 

verdiğini göstermektedir. Küçük dönüklük 

açıları için daha az hassas sonuçlara 

ulaşılmıştır. 

Benzer sonuçlar, TEKK yaklaşımı ile elde 

edilen çözümlerde de görülmüştür. 

Parametrelere ait norm değerleri 1.2128 ve 

1.2145 arasında değişmektedir. Dönüklük 

açısının 10o olduğu durumda ise en küçük 

norm değerleri elde edilmiştir. 

EKK ve TEKK çözümleri karşılaştırıldığında, 

TEKK yaklaşımı ile elde edilen norm 

değerinin EKK çözümünden elde edilen 

değerden iki kat daha küçük olduğu 

görülmektedir. Tablo 2 ve 3' te, dönüklük 

bileşeni 0o' dan 10o' ye çıkarılırken, x ve y 

yönlerindeki öteleme elemanları aynı anda 1 

m' den 100 m' ye arttırılmıştır. Bu durumda, 

her bir senaryo için EKK ve TEKK sonuçları 

incelendiğinde, Tablo 1' de elde edilen 

sonuçlara benzer olarak dönüklük açısının 10o 

olduğu durumda norm değerlerinde 

değişmenin olduğu görülmektedir. Tablo 4' te 

verildiği gibi öteleme elemanları 1000 m 

olarak alınmış ve son senaryodaki durum 

değerlendirilmiştir. Burada, en yüksek öteleme 

değerleri verilmiş olmasına rağmen diğer 
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durumlarda elde edilen sonuçlarla benzer 

sonuçlar elde edilmiştir. 

Tablo 1. 𝑡𝑥= 𝑡𝑦= 10 cm için 2B ağda elde 

edilen sonuçlar 
Senaryolar EKK  TEKK  

 Ortalama Norm Ortalama Norm 

𝑡𝑥 (m) 𝑡̂𝑥 (m)  𝑡̂𝑥 (m)  

𝑡𝑦 (m)  𝑡̂𝑦 (m)   𝑡̂𝑦 (m)   

𝑘 𝑘̂  𝑘̂  

𝜀 (o) 𝜀̂ (o)  𝜀̂ (o)  

10 cm  0.5071 2.3556 0.3817 1.2128 

10 cm -2.2201  -1.0796  
1 0.9999  0.9999  

0″ 0.0004  0.0004  

10 cm 0.5072 2.3556 0.3818 1.2128 

10 cm -2.2202  -1.0796  
1 0.9999  0.9999  

0.00278o (10″) 0.0028  0.0028  

10 cm 0.5142 2.3598 0.3919 1.2145 
10 cm  -2.2231  -1.0789  

1 0.9999  0.9999  

0.16667o (10′) 0.1667  0.1667  

10 cm 0.8056 1.9799 1.0297 1.0808 

10 cm -1.7499  -0.4511  

1 0.9999  0.9999  

10o 10.0000  10.0000  

 

Tablo 2. 𝑡𝑥= 𝑡𝑦= 1 m için 2B ağda elde edilen 

sonuçlar 
Senaryolar EKK  TEKK  

 Ortalama Norm Ortalama Norm 

𝑡𝑥 (m) 𝑡̂𝑥 (m)  𝑡̂𝑥 (m)  

𝑡𝑦 (m)  𝑡̂𝑦 (m)   𝑡̂𝑦 (m)   

𝑘 𝑘̂  𝑘̂  

𝜀 (o) 𝜀̂ (o)  𝜀̂ (o)  

1 m 1.4071 2.3556 1.2817 1.2128 

1 m -1.3201  -0.1796  

1 0.9999  0.9999  
0″ 0.0004  0.0004  

1 m 1.4072 2.3556 1.2818 1.2129 

1 m -1.3202  -0.1796  

1 0.9999  0.9999  

0.00278o (10″) 0.0028  0.0028  

1 m 1.4142 2.3598 1.2919 1.2145 

1 m -1.3231  -0.1789  
1 0.9999  0.9999  

0.16667o (10′) 0.1667  0.1667  

1 m 1.7056 1.9799 1.9297 1.0808 

1 m -0.8499  0.4489  

1 0.9999  0.9999  

10o 10.0000  10.0000  

 

Tablo 3. 𝑡𝑥= 𝑡𝑦= 100 m için 2B ağda elde 

edilen sonuçlar 
Senaryolar EKK  TEKK  

 Ortalama Norm Ortalama Norm 

𝑡𝑥 (m) 𝑡̂𝑥 (m)  𝑡̂𝑥 (m)  

𝑡𝑦 (m)  𝑡̂𝑦 (m)   𝑡̂𝑦 (m)   

𝑘 𝑘̂  𝑘̂  

𝜀 (o) 𝜀̂ (o)  𝜀̂ (o)  

100  100.4071 2.3556 100.2816 1.2128 

100 97.6799  98.8204  

1 0.9999  0.9999  
0″ 0.0004  0.0004  

100  100.4072 2.3556 100.2818 1.2128 

100 97.6798  98.8204  
1 0.9999  0.9999  

0.00278o (10″) 0.0028  0.0028  

100  100.4142 2.3598 100.2919 1.2145 
100 97.6769  98.8211  

1 0.9999  0.9999  

0.16667o (10′) 0.1667  0.1667  

100  100.7056 1.9799 100.9297 1.0807 

100 98.1501  99.4489  

1 0.9999  0.9999  

10o 10.0000  10.0000  

 

Tablo 4. 𝑡𝑥= 𝑡𝑦= 1000 m için 2B ağda elde 

edilen sonuçlar 
Senaryolar EKK  TEKK  

 Ortalama Norm Ortalama Norm 

𝑡𝑥 (m) 𝑡̂𝑥 (m)  𝑡̂𝑥 (m)  

𝑡𝑦 (m)  𝑡̂𝑦 (m)   𝑡̂𝑦 (m)   

𝑘 𝑘̂  𝑘̂  

𝜀 (o) 𝜀̂ (o)  𝜀̂ (o)  

1000   1000.4071 2.3556 1000.2816 1.2128 

1000  997.6799  998. 8203  

1 0.9999  0.9999  
0″ 0.0004  0.0004  

1000   1000.4072 2.3556 1000.2818 1.2128 

1000  997.6798  998.8204  
1 0.9999  0.9999  

0.00278o (10″) 0.0028  0.0028  

1000   1000.4142 2.3598 1000.2919 1.2145 

1000  997.6769  998.8211  
1 0.9999  0.9999  

0.16667o (10′) 0.1667  0.1667  

1000   1000.7056 1.9799 1000.9297 1.0808 

1000  998.1501  999.4489  

1 0.9999  0.9999  

10o 10.0000  10.0000  

 

4. SONUÇLAR ve TARTIŞMA 

 

Bu çalışmada, önemli jeodezik problemlerden 

bir tanesi olan koordinat dönüşüm problemi 

EKK ve TEKK yaklaşımları kullanılarak 

incelenmiştir. Bunun için problem, yapay 

olarak üretilmiş 2 boyutlu ağlarda test 

edilmiştir. 2 boyutlu ağa ait nokta koordinatları 

doğrultu-kenar ölçülerinden hesaplanmıştır. 

İkinci datuma ait koordinatlar, her bir durum 

için tablolarda verilen değerler kullanılarak 

orijinal dönüşüm parametrelerinden 

üretilmiştir. Koordinat dönüşümü jeodezik 

problemlere sıklıkla uygulanmasına rağmen, 

son yıllarda yaygın olarak kullanılmaya 

başlayan TEKK yöntemine ait doğruluk 

analizleri henüz incelenmemiştir. Modele ait 

doğruluk analizlerinin tek bir üretilen ağdan 

yapılması yeterli olmayacağından dolayı, 

yöntemin performansını değerlendirmek için 

10 000 adet ağ oluşturulmuştur. Her durum 

için, kestirilen parametreler orijinal 
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parametrelerle karşılaştırılmış ve norm 

değerleri hesaplanmıştır. TEKK yaklaşımında, 

ölçüler ve katsayılar matrisi hatalı alınırsa, 

daha güvenilir sonuçlara ulaşılmaktadır. 

Ancak, EKK kestiriminde, sadece ölçü 

vektörünün hatalı olduğu kabul edilmektedir. 

Bu durum, katsayılar matrisinin ve ölçü 

vektörünün hata içerdiği bu deneysel 

çalışmada da gözlemlenmiştir. Bu bağlamda, 

TEKK yaklaşımının, koordinat dönüşümü için 

parametre kestiriminde uygulanmasının 

gerekliliği ortaya çıkmaktadır.  
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