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1. Preliminaries, background and notation

By w, we shall denote the space of all real valued sequences. Any vector subspace of w is called as a sequence space. We
shall write £, ¢ and ¢, for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, £1 and £,
we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, 1 < p < oo.

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function
g : X — Rsuchthatg(d) = 0, g(x) = g(—x) and scalar multiplication is continuous, i.e., |, — | — Oand g(x, —x) — 0
imply g(apx, — ax) — 0 for all «’s in R and all x's in X, where 6 is the zero vector in the linear space X.

Assume here and after that (py) be a bounded sequences of strictly positive real numbers with supp, = H and
M = max{1, H}. Then, the linear spaces c(p), co(p), £ (p) and £(p) were defined by Maddox [1,2] (see also [3,4]) as follows:

c(p) = {X =X) Ew: klim |x¢ — I|Px = 0 for some | € (C} ,
—> 00

co(p) = {X = (x) € w: lim |x | = 0} ,
k— 00

Lo(p) = {X = (X¢) € w : sup |x [P < oo}

keN

and

tp) = {x= ) €w: Y |xl* < oo},

k
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which are the complete spaces paranormed by

1/M
hi(x) = sup |x¢|P*™ iff inf> 0 and hz(x):<z |x,<|1"<> ,
keN Pk ’

respectively. We shall assume throughout that pk_l + (pjc)*1 = 1provided 1 < infp, < H < oo. For simplicity in notation,
here and in what follows, the summation without limits runs from 0 to co. By & and Ny, we shall denote the collection of
all finite subsets of N and the set of all n € N such that n > k, respectively.

For the sequence spaces X and Y, define the set S(X, Y) by

SX,Y) ={z = (z) : xz = (x¢z¢) € Y forall x € X}. (1)

With the notation of (1), the «-, 8- and y-duals of a sequence space X, which are respectively denoted by X%, X# and X7,
are defined by

X% =S(X, £7), X? =S(X,cs) and X” = S(X, bs).

Let (X, h) be a paranormed space. A sequence (by) of the elements of X is called a basis for X if and only if, for each x € X,
there exists a unique sequence () of scalars such that

n
h(x—Zozkbk) — 0 asn — oo.

k=0

The series > oxby which has the sum x is then called the expansion of x with respect to (b,) and written asx = Y _ aby. Let
X, Y be any two sequence spaces and A = (a,¢) be an infinite matrix of real numbers a,;, where n, k € N. Then, we say that
A defines a matrix mapping from X into Y, and we denote it by writing A : X — Y, if for every sequence x = (x;) € X the
sequence Ax = ((Ax),), the A-transform of x, is in Y, where

(An =) auxi, (n€N). )
k

By (X : Y), we denote the class of all matrices A such thatA : X — Y. Thus, A € (X : Y) if and only if the series on the
right-hand side of (2) converges for eachn € N and every x € X, and we have Ax = {(AX),}nen € Y forall x € X. A sequence
x is said to be A-summable to « if Ax converges to o which is called as the A-limit of x. If X and Y are equipped with the limits
X —limand Y — lim, respectively,A € (X : Y) and Y — lim,, A,(x) = X — limy x; for all x € X, then we say that A regularly
maps X into Y and write A € (X : Y)reg.

Let x = (x;) be a sequence in C, the set of all complex numbers, and Ry be the least convex closed region of complex
plane containing X, Xy+1, Xk+2, - - . . The Knopp Core (or K -core) of x is defined by the intersection of all Ry (k = 1,2, ...),
(see [5, pp. 137]). In [6], it is shown that

JK-core(x) = ﬂ By (2)

zeC

for any bounded sequence x, where B, (z) = {w € C: |w —z| <limsup |x; — z| }
Let E be a subset of N. The natural density § of E is defined by

1
S(E) = lim —|{k <n:k e E}|
non

where |{k < n : k € E}| denotes the number of elements of E not exceeding n. A sequence x = (xy) is said to be statistically
convergent to a number I, if 5({k : |x, — I| > €}) = 0 for every &. In this case we write st — limx = [, [7]. By st we denote
the space of all statistically convergent sequences.

In [8], the notion of the statistical core (or st-core) of a complex valued sequence has been introduced by Fridy and Orhan
and it is shown for a statistically bounded sequence x that

st-core(x) = ﬂ Cy(2),

zeC

where Gy (z) = {w € C: |w—z| < st— limsupy |x — z|}. The core theorems have been studied by many authors. For
instance, see [9-13] and the others.

We write by U for the set of all sequences u = (up) such thatu, # Oforalln € N.Foru € U, let 1/u = (1/u,). Let
u, v € U and let us define the matrix G(u, v) = (gu) and A = (8,) as follows:

_Juve O<k=m. oDV -1s<ks=mn),
&k =10, (k > n), k=10, (0O<k<n—1lork>n),

for all n, k € N, where u, depends only on n and v, only on k. The matrix G(u, v), defined above, is called as generalized
weighted mean or factorable matrix.
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The main purpose of this study is to introduce the sequence spaces cy(u, v; p, A), c(u, v; p, A), £o(u, v; p, A) and
£(u, v; p, A) which are the set of all sequences whose G(u, v; A)-transforms are in the spaces co(p), c(p), £~ (p) and £(p),
respectively, where G(u, v; A) denotes the matrix G(u, v; A) = G(u, v)A = (g,ﬁ{) defined by

Un(vk — v+1), (0 <k=<n-—1),
Sk = 1 Uk, (k=n),
0, (k > n).

Also, we have investigated some topological structures, which have completeness, the «-, 8- and y-duals, and the bases
of these sequence spaces. Besides this, we characterize some matrix mappings on these spaces. Finally, we have defined
Weighted Core (Z-core) of a sequence and characterized some class of matrices for which Z-core(Ax) € X -core(x) and
Z-core(Ax) C sty-core(x) forall x € £.

2. The paranormed sequence spaces A (u, v; p, A) for A € {co(p), c(p), L (P), L(P)}

In this section, we define the new sequence spaces A(u, v; p, A) for & € {co(p), c(p), Lo (), £(p)} derived by using the
generalized weighted mean and difference operator, and prove that these sequence spaces are the complete paranormed
linear metric spaces and compute their a-, 8- and y-duals. Moreover, we give the basis for the spaces A(u, v; p, A) for

A € {co(p), c(p), L(p)}.
For a sequence space X, the matrix domain X4 of an infinite matrix A is defined by

Xa=1{x= () € w:Ax € X}. (3)
In [14], Choudhary and Mishra have defined the sequence space £(p) which consists of all sequences such that S-transforms
are in £(p), where S = (s,) is defined by

_J1, (0=<k=n),
Sk =10, (k> n).

Basar and Altay [15] have recently examined the space bs(p) which is formerly defined by Basar in [16] as the set of all series
whose sequences of partial sums are in £ (p). More recently, Altay and Basar have studied the sequence spaces r* (p), r’, (p)
in [17] and r{(p), r§(p) in [18] which are derived by the Riesz means from the sequence spaces £(p), £oo(p), c(p) and ¢o(p)

of Maddox, respectively. With the notation of (3), the spaces £(p), bs(p), r(p), r’, (p)., r(p) and r}(p) may be redefined by

{p) =[®)s,  bs(p) = Uoe®)]s,  1°(P) = [ED)]r:
oo = Uoo@gts 1) =[cDe,  15() = [co(P)]ge-
Following [14,15,17,18], we define the sequence spaces A(u, v; p, A) for A € {co(p), c(p), Lec(p), £(p)} by

AMu,v;p, A) = {x =) Ew: (Z unvaxk> S A}.

k=1

With notation (3), we may redefine the spaces co(u, v; p, A), c(u, v; p, A), €so(u, v; p, A) and £(u, v; p, A) as follows:

co(u, v; p, A) = {co(®)}ou,v;4) c(u, vy p, A) = {c®)}ou,v; 4
eoo(u’ v;p, A) = {eoc(p)}c(u,v;A% Z(us v; p, A) = {E(p)}G(u,v;A)-
This definition includes the following special cases.
(i) If p = e, then A(u, v; p, A) = A(u, v, A) (cf. [19]).
(i) Ifv=14+r5u=1/(n+1),p=e r =cand A = g, then A(u, v; p, A) = ap(4) and A(u, v; p, A) = a.(A)
(cf. [20]).
(i) fv =1+, u= (1/(n + 1)),p = e, A = €w, then A(u, v; p, A) = d’ (A) (cf. [21]).
(V) Ifo=14+rfu=1/(n+1),p=e, 1= £y, then A(u, v; p, A) = a;(A) (cf. [22]).
W) Ifv=q,u=(1/Y;_oq) * = Los(p), c(p) and A = co(p), then A(u, v; p, A) = r(p, A), A(u, v; p, A) = r(p, A)
and A(u, v; p, A) = r4(p, A) (cf. [23]).
(vi) Ifv =gy, u=(1/ ZLO qy) and A = £(p), then A(u, v; p, A) = ri(p, A) (cf. [24]).

Define the sequence y = (yx), which will be frequently used as the G(u, v; A)-transform of a sequence x = (xy), i.e.

k k—1
Yk = Z leUjAXj = Z uvajxj + upvexe; (k€ N), (4)
j=0 Jj=0

where Vv; = (vj — vj41). Since the proof may also be obtained in the similar way as for the other spaces, to avoid the
repetition of the similar statements, we give the proof only for one of those spaces. Now, we may begin with the following
theorem which is essential in the study.
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Theorem 1. (i) The sequence spaces A(u, v; p, A) for & € {co(p), c(p), £ (p)} are the complete linear metric spaces para-
normed by g, defined by

E UV AX;

pr/M

g(x) = sup
keN

g is a paranorm for the spaces c(u, v; p, A) and € (u, v; p, A) only in the trivial case infp, > 0 when c(u, v; p, A) =
c(u, v; A) and Loo (U, v; p, A) = Lo (U, v; A).
(ii) £(u, v; p, A) is a complete linear metric space paranormed by

k pk\ /M
g*(x) = <Z Zukvijj ) .
k |j=0

Proof. We prove the theorem for the space cy(u, v; p, A). The linearity of co(u, v; p, A) with respect to the coordinatewise
addition and scalar multiplication follows from the following inequalities which are satisfied for s,x € co(u, v; p, A)
(see [25, p. 30]):

pk/M k pk/M k pk/M
sup Zukv]A(s] + X;) <sup Z UV As; + sup Z UV AX; (5)
keN keN =0 keN
and for any o € R (see [2]),
P < max({1, ™). (6)

It is clear that g(f) = 0 and g(x) = g(—x) for all x € co(u, v; p, A). Again inequalities (5) and (6) yield the subadditivity of
g and

g(ox) < max({1, |er|}g(x).
Let {x"} be any sequence of the points x" € cy(u, v; p, A) such that g(x" — x) — 0 and («;,) also be any sequence of scalars
such that o, — «. Then, since the inequality

g(x") < g(x) +g&x" —x)
holds by the subadditivity of g, {g(x")} is bounded and we thus have

pr/M

g(apX" — ax) = sup ZukaA(anx — oxj)
keN =0

< lom — | g(x") + o (X" — X),

which tends to zero as n — oo. That is to say that the scalar multiplication is continuous. Hence, g is a paranorm on the
space co(u, v; p, A). _
It remains to prove the completeness of the space co(u, v; p, A). Let {x'} be any Cauchy sequence in the space

co(u, v; p, A), where x' = {xg), x(]’), ...}. Then, for a given & > 0 there exists a positive integer ny(¢) such that

: . e
x =X -
&( ) < >
forall i, j > ng(e). We obtain by using definition of g for each fixed k € N that
G, v; A)X'} — {Gu, v; AW} < sup [{G(u, v; A} — {Gu, v; AW}

keN
€
< = 7
3 (7
for every i,j > no(e), which leads us to the fact that {(G(u, v; A)x°)y, (G(u, v; A)x')y, ...} is a Cauchy sequence of real
numbers for every fixed k € N. Since R is complete, it converges, say

{Gu, v; A)x'h — {Gu, v; A)x}k

asi — oo. Using these infinitely many limits (G(u, v; A)X)o, (G(u, v; A)x)1, ..., we define the sequence {(G(u, v; A)xX)q,
(G(u, v; A)X)1, ...}. We have from (7) with j — oo that
) £
{G(u, v; A} — {G(u, v; A)xhP™ < = (i > no(e)) (8)

2
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for every fixed k € N. Since ' = {x"} € co(u, v; p, A),
: &
GG, v; BN < o

for all k € N. Therefore, we obtain (8) that

HG(u, v; A)x}P™ < [{G(u, v; A)xh — {Gu, v; A)x }P™ + [{G(u, v; A)x}[PK/M
< ¢ (i>ng(e)).

This shows that the sequence {G(u, v; A)x} belongs to the space co(p). Since {x} was an arbitrary Cauchy sequence, the
space co(u, v; p, A) is complete and this concludes the proof. O

Theorem 2. The sequence spaces £, (u, v; p, A), c(u, v; p, A), co(u, v; p, A) and £(u, v; p, A) are linearly isomorphic to the
spaces £ (p), c(p), co(p) and £(p), respectively, where 0 < p, < H < oc.

Proof. We establish this for the space ¢, (u, v; p, A). To prove the theorem, we should show the existence of a linear
bijection between the spaces £, (u, v; p, A) and £ (p) for 0 < py < H < oo. With the notation of (4), define the
transformations T from £, (i, v; p, A) to £ (p) by x > y = Tx. The linearity of T is trivial. Further, it is obvious that
x = 60 whenever Tx = 6 and hence T is injective.

Lety = (yir) € £ (p) and define the sequence x = (xi) by

k r
1y oy
xk:E il [B/ /e ;o (keN).
vi | U
=0 U|Y

Uj—1
Then, since
1| _
(AX) = — AL ; (keN),
Uk _Uk Ug—1
we get that

pr/M

k
g(x) = sup Zukvijj
keN =0

pr/M

k
L1y Y-
= sup Zu’{vjv-[uj- — 17
=0 i | Wi

keN Uj—q

= sup [yx[*M = hy(y) < oco.
keN

Thus, we deduce that x € ¢, (u, v; p, A) and consequently T is surjective and is paranorm preserving. Hence, T is a linear
bijection and this says us that the spaces ¢, (u, v; p, A) and £, (p) are linearly isomorphic, as desired. O

We shall quote some lemmas which are needed in proving related to the duals our theorems.

Lemma 1 ([26, Theorem 5.1.3 with q, = 1]). A € (Lo (p) : £1) if and only if

sup Z Z ankgl/Pk

Ke¥ 5 |'kek

< oo forallintegers B > 1. 9

Lemma 2 (/26, Corollary for Theorem 3]). Let p; > 0 for every k. Then A € (Lo (p) : ¢) if and only if

Z lank|BYP%  converges uniformly in n for all integers B > 1, (10)
3

lim an = o  forall k. (11)

n—oo

Lemma 3 (/27, Theorem 3]). Let px > 0 for every k. Then A € (£, (p) : £oo) if and only if

supZ lan|B"/P < oo for all integers B > 1. (12)
neN K
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Lemma 4 ([26, Theorem 5.1.0 with q, = 1]).

(i) Let 1 < px <H < oo forallk € N. Then, A € (£(p) : £1) if and only if there exists an integer B > 1 such that

/

Py
< OQ.

sup Z Z ankB_1

nek

(ii) Let 0 < px < 1forallk € N. Then, A € (£(p) : £,) if and only if

Pk

sup sup Zank < 0.

Ke¥F keN

nek

Lemma 5 ([26, Theorem 1(i)-(ii)]).

(i) Let 1 < px <H < oo forallk € N.Then, A € (£(p) : L) if and only if there exists an integer B > 1 such that

1 p/
sup laB™ " |Pk < o0.
k

neN

(ii) Let 0 < px < 1forallk € N. Then, A € (£(p) : £~ ) if and only if

sup |an|P* < oo.
n,keN

1731

(13)

(15)

(16)

Lemma 6 ([26, Corollary for Theorem 1]). Let 0 < p, < H < oo forallk € N. Then, A € (£(p) : ¢) if and only if (15), (16) hold,

and
lim ap = Be, (k€N)
n—oo

also holds.

(17)

Theorem 3. Let K* = {k e N:0 < k < n}NK for K € £ and B € N,. Define the sets G{(p), G2(p), G3(p), G4(p), G5(p),

Gs(p), G7(p) and Gg(p) as follows:

Gﬂp):U{a:(a,&ean;ugZ

B>1

2

k

G (p) = ia =@ ew:y.

Gﬂp):ﬂ{a:(a@ew:;ugz

B>1

cm):U{a:(ak)ew:Z
B>1 k
Gs(p) =) {az @) ew: )
B>1 k
GG(P)=m[a= (ay) € w: (
B>1 Uk

G7(P)=m{a=(ak)ew:z

B>1 k

k 1 7]
Z |:/Z (_1)k ]ﬂan_

keKk* | j=k—1

k
|:/Z (_1)k—jlan:|
. Ujvg

=k—1

k 1 7]
k—
ZLZ (-1) fman_

keK* |_j=k—1

n

< 0

n

1| q 1 1 1
Hor(toh) s
Up | Vk Uk Uk+1 =kt 1

1]a 1 1 -
alot () 2
Uk | Uk Ve Vi1 )55

1

aB'P ) € coy,
Uk
1 Ay
— | —+
Uk | Uk

1 1 .
(vk Uk+1 ) jzzk;

4
4

4

B~ 1/Pk

B]/Pk

<oo},
<4,

B~ 'Pk < oo} ,

B'/Px converges uniformly in n} ,

B/Pr OO} ,

— — R r_1 - . 1/p
Gg(p)—ﬂ{a—(ak)ea).{u Lk+(vk vk+l>j;1aj:|>3 kezoo}.

B>1 k

Then,
{co(u, v; p, A)}* = Gi(p),

{co(u, v; p, MY = {co(u, v; p, 4)}" = Ga(p),

{c(u, v; p, A)}* = G1(p) N G2 (p),
{c(u, v; p, A)} = Ga(p) Ncs,

{Zoo(us v; D, A)}a = G3(p)

{€oo(u, v; p, A)}F = G5(p) N Gs(p), {c(u, v; p, A)} = Ga(p) Nbs, {Loo(u, v; p, A)} = G;(p) N Gg(p).
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Proof. We give the proof for the space £, (u, v; p, A). Let us take any a = (a,) € w and define the matrix D = (d,;) via the
sequence a = (a,) by

1(1 1
—|———), 0<k<n-—1,
U \ Vi Uk+1

an

) k=n,
unvn
0, k > n,

where n, k € N. Bearing in mind (4) we immediately derive that

Xy = ZZ( 1)"f—any] (Dy)n; (n€N). (18)

k=0 j=k—

We therefore observe by (18) that ax = (a,x,) € £1 wheneverx € ¢, (u, v; p, A) ifand onlyif Dy € £; whenevery € £, (p).
This means thata = (a,) € {£x(u, v; p, A)}* wheneverx = (x,,) € £ (u, v; p, A)ifand only if D € (€ (p) : £1). Then, we
derive by Lemma 1 that

{los (U, v; p, A)}* = G3(p).

Consider the equation forn € N,

ay 1 1 i 1
k

E akXy = E +——— E a; +

Kk = uk|:vk (Uk ) ]:|yk unv,

k= j=k+1 nn

anyn = (Ey)n (19)

where E = (e, is defined by

1]a 1 1 .
—| x4 —-— > g|. 0<k=n-1,
Uk [ Uk Ve Vkert [ 555

Enk = 1
——dy, k =n,
unvn
0, k > n,

where n, k € N. Thus, we deduce from Lemma 2 with (19) that ax = (agxx) € cs whenever x = (x;) € £ (U, v;p, A)
if and only if Ey € ¢ whenever y = (yx) € £oo(p). This means that a = (a,) € {€so(u, v; p, A)}f whenever x = (x,) €
Loo (U, v; p, A) ifand only if E € (£ (p) : c). Therefore we derive from (10) and (11) that

1|a 1 1 &
Sl o) 2e
| Uk | Uk Ve Ukt ) 555

k

B'/Px  converges uniformly in n

and

1
lim — a;B/Px = 0.
k ULk

This shows that
{loo(u, v; p, A)}F = Gs5(p) N Ge(p).

As this, we deduce from Lemma 3 with (19) that ax = (aix;) € bs whenever x = (x;) € £ (u, v; p, A) if and only if
Ey € o whenevery = (yx) € £o(p). This means that a = (a,) € {€(u, v; p, A)}” whenever x = (x,) € (U, v; p, A)
ifand only if E € (£ (pP) : £o0). Therefore we obtain Lemma 3 that

{€oo(u, v; p, A)} = G7(p) N Gs(p)
and this completes the proof. O

Theorem 4. Let 1 < p, < H < oo for every k € N. Define the sets Go(p), G1o(p) and G11(p) as follows:

Gop) = Jya=(@ cow:sup )" ZLZ( 1)kfan:| -

B>1 €F "k |nek* Li=k—1
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1(a 1 1 1
- l +{— - Z a; Bil
Uk | Uk Uk Ykt [ 53,
1 &
Gn(P)ZU a=(@)ew: | —aB™! €lot.
B>1 UgVk

Then, {£(u, v; p, A)}* = Go(p), {£(u, v; p, A)}F = Gio(P) N G11(p) N s, {£(u, v; p, )} = Gio(P) N 11 (p).

Proof. This may be obtained in the similar way, as mentioned in the proof of Theorem 3 with Lemmas 4(i), 5(i), 6 instead
of Lemmas 1-3. So, we omit the details. O

’
Pk

Gw(p)ZU a:(ak)Ew:Z

B>1 k

<0y,

Theorem 5. Let 0 < p, < 1 for every k € N. Define the sets G12(p), G13(p) and G14(p) as follows:

k 1 Pk
|y ental <),
nek | j=k—1 uka

n Pk
1 Ay 1 1
L& (2o ) Y g <o,
U | Uk Ve o Ukt f 5
1 Pk
<X¢.
Uk Uk

Then, {£(u, v; p, A)}* = Gp2(p), {£(u, v; p, )} = Gi3(p) N Gra(p) Ncs, {£(u, v; p, A)} = Gi3(p) N Gra(p).

Proof. This may be obtained in the similar way, as mentioned in the proof of Theorem 3 with Lemmas 4(ii), 5(ii), 6 instead
of Lemmas 1-3. So, we omit the details. O

Gi2(p) = {a= () € w : supsup
KeF keK

Gi3(p) = ja= () € w: sup

n,keN

Gia(p) = 1a = (@) € w : sup

keN

Qg

Now, we may give the sequence of the points of the spaces co(u, v; p, A), £(u, v; p, A) and c(u, v; p, A) which forms a
Schauder basis for those spaces. Because of the isomorphism T, defined in the proof of Theorem 2, between the sequence
spaces co(u, v; p, A) and co(p), £(u, v; p, A) and £(p), c(u, v; p, A) and c(p) is onto, the inverse image of the basis of
the spaces co(p), £(p) and c(p) is the basis for our new spaces cy(u, v; p, 4), £(u, v; p, A) and c(u, v; p, A), respectively.
Therefore, we have the following theorem.

Theorem 6. Let j1i = (G(u, v; A)X) for all k € N. We define the sequence b® = (b}, for every fixed k € N by

1] 1 1
— — - , 0<k<n-1,
U | Uk Uk+1

1

UpUp '
0, k > n.

br(lk) —
k =n,

Then,

(a) The sequence {b®}.cy is a basis for the space co(u, v; p, A) and any x € co(u, v; p, A) has a unique representation in the
form

X = Z Mkb(k).
k

(b) The sequence {b™ }cy is a basis for the space £(u, v; p, A) and any x € £(u, v; p, A) has a unique representation in the
form

x= 3 ub®.
k

(c) The set {z,b®} is a basis for the space c(u,v;p, A) and any x € c(u, v;p, A) has a unique representation in the
form

x=lz+» (u—HH®
k

where | = limy_, o (G(u, v; A)x) and z = (z;) with

k
1] 1 1
Z=E - 1.
k |:Uj :|

j=0 Y Uj—1
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3. Some matrix mappings on the sequence spaces A (u, v; p, A)

In this section, we characterize the matrix mappings from the sequence spaces A (u, v; p, A) into any given sequence
space. We shall write throughout for brevity that

- 1| ane 1 1 L
g = — | —+|——— nj
U [ Uk Ve Ukl ) 5T

for all n, k € N. We will also use the similar notation with other letters and we the convention that any term with negative
subscript is equal to naught.
Suppose throughout that the terms of the infinite matrices A = (ayx) and C = (cp;) are connected with the relation

o0
Cnk = Qng (or equivalently a,, = Z ukvkcnj> (n, k € N). (20)
=k

Now, we may give our basic theorem.

Theorem 7. Let u be any given sequence space. Then, A € (co(u, v; p, A) : w) ifand only if C € (co(p) : 1) and

1
{—ankBl/pk} €cy, (VneN, IBeN,). (21)
Uk Vg keN

Proof. Suppose that (21) holds and u be any given sequence space. Let A € (co(u, v;p, A) : n) and take any y € co(p).
Then, (am)ken € [co(u, v; p, A)]P which yields that (21) is necessary and (cax)ken € €1 for each n € N. Hence, Cy exists and
thus letting m — o¢ in the equality

m m m
D cuyie= )Y uuicyX, (n,meN)
k=0

k=0 j=k

we have that Cy = Ax which leads us to the consequence C € (co(p) : w).
Conversely, let C € (co(p) : 1) and (21) holds, and take any x € ¢y (u, v; p, A). Then, we have (@ )ren € [co(u, v; p, A)]P
for each n € N. Hence, Ax exists. Therefore, we obtain from the equality

m m—1 1
Y G =) G+ ——Gunymi  (,m € N)
k=0 k=0 UmUm

as m — oo that Ax = Cy and this shows that A € (co(u, v; p, 4) : w). This completes the proof. O

Theorem 8. Let u be any given sequence space. Then,

(i) A€ (c(u,v;p, A) : wifand only if C € (c(p) : ) and (21) holds.

(ii) A € (boo(u, v; p, A) : ) ifand only if C € (Loo(p) : 1) and (21) holds.

Proof. This may be obtained by proceedings as in Theorem 7. So, we omit the details. O

Now, we may quote our corollaries on the characterization of some matrix classes concerning with the sequence spaces

co(u, v; p, A), c(u, v; p, A) and £ (u, v; p, A). Prior to giving the corollaries, let us suppose that (g,) is a non-decreasing
bounded sequence of positive real numbers and consider the following conditions:

qn
sup [Z |a,,k|B””kj| <00, (VBeN), (22)
neN k
qn
sup Z Z&nkB]/p" <00, (VBeN), (23)
KeF 7 |kek
supZ |dw| BV < 00, (VB € N), (24)
neN K
qn

J(ax) CR > lim [Z | — oue] B1/p’<:| =0, (VBeN), (25)

n—oo X

dn
sup [Z |n B”P"i| <00, (IBeN), (26)
k

neN
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qn

sup | < o0, (27)
neN K
Aan
sup Z Z&nkB’””k <00, (@BeN), (28)
KeF 707 |kek
qn
Z Z&nk < 00, (29)
n k
Aan
Jo eRanl_i)rgo Zank—a =0, (30)
k
J() CR> lim |G — o] =0, (VkeN), (31)
n—oo
Hew) CR 3 supK"/™ Y " |y — o | B7/P < 00, (YK, 3B € N). (32)
neN

k

Corollary 1.
(i) A€ (boo(u, v; p, A) : £oo(q)) if and only if (21) and (22) hold.
(ii) A € (bxo(u, v; p, A) : £(q)) if and only if (21) and (23) hold.
(iii) A € (boo(u, v; p, A) : c(q)) if and only if (21), (24) and (25) hold.
(iv) A € (bo(u, v; p, A) : co(q)) if and only if (21) holds and (25) also holds with o, = 0 for all k € N.

Corollary 2.
(i) A € (c(u, v; p, A) : Lo (q)) if and only if (21), (26) and (27) hold.
(ii) A € (c(u, v; p, A) : £(q)) ifand only if (21), (28) and (29) hold.
(iii) A € (c(u, v; p, Q) : c(q)) ifand only if (21), (30), (31) and (32) hold, and (26) also holds with q, = 1 foralln € N.
(iv) A € (c(u, v; p, A) : co(q)) if and only if (21) holds, and (30)-(32) also hold with @ = 0, oy = O for all k € N, respectively.

Corollary 3.
(i) A € (co(u, v; p, Q) : Lo (q)) if and only if (21) and (26) hold.
(ii) A € (co(u, v; p, A) : £(q)) if and only if (21) and (28) hold.
(iii) A € (co(u, v; p, A) : c(q)) ifand only if (21), (31) and (32) hold and (26) also holds with q, = 1 foralln € N.
(iv) A € (co(u, v; p, A) : co(q)) if and only if (21) holds and (25) also holds with o), = 0 for all k € N.

Finally, we shall present Theorems 9 and 10 that characterize some matrix mappings on the sequence space ¢(u, v; p, A)
without proofs.

Theorem 9. (i) Let 1 < py < H < oo forallk € N. Then, A € (£(u, v; p, A) : £s) if and only if there exists an integer B > 1
such that

su B~ 1Pk < o0, 33
nell\!)Xk:| nk | ( )
1 Pk
[ankB‘l] €ly, (MeN). (34)
Uk Vg
keN
(ii) Let 0 < pr < 1forallk € N. Then, A € (£(u, v; p, A) : £x) if and only if
sup |an|P* < oo, (35)
n,keN
1 Pk
[ ank:| €ly, (neN). (36)
Uk Uk
keN

Theorem 10. Let 0 < py < H < oo forallk € N. Then, A € (£(u, v; p, A) : c¢) if and only if (33)-(36) hold, and there is a
sequence (o) of the scalars such that

lim Gy = a;  (k € N). (37)
n—oo

If the sequence space c is replaced by the space cy, then Theorem 10 is reduced.
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Corollary 4. Let 0 < p, < H < ooforallk € N.Then, A € (£(u, v; p, A) : co) if and only if (33)—(36) hold, and (37) also holds
with o = 0 forall k € N.

4. Weighted core

Using the converge domain of the matrix G(u, v), the new sequence spaces Z(u, v,c) and Z(u, v, ¢y) have been
constructed in [28] and their some properties have been investigated. In the present section, we first introduce a new type
core, Z-core, of a complex valued sequence and also determine the necessary and sufficient conditions on a matrix B for
which Z-core(Bx) C K-core(x) and Z-core(Bx) C st4-core(x) for all x € €.

To do these, we need to characterize the classes (¢ : Z(u, v, €))reg and (st(A) N Lo : Z(u, v, €))reg. For brevity, in what

follows we write Bnk in place of

Uy Y Vb (n.k € N).

k=0

Lemma?7. B € (Yo, : Z(u, v, ¢)) if and only if

1B = sup Y _ b < oo, (38)
ok
lim by, = a  foreach k, (39)
n
lim ) B — ol = 0. (40)
n
k

Proof. Let x € £, and consider the equality

n

m m n
Un E v; E bjxx = E Up E vibjkX;  (m,n € N)
k=0 =0  j=0

=0

which yields as m — oo that

un Y vi(Bx); = (DX)n; (N E€N), (41)
j=0

where D = (d) is defined by

n
U, Zvjbjk 0<k=<n,
=0
0 k > n.

dnk =

Therefore, one can easily see that B € (£ : Z(u, v, ¢)) ifand only if D € (£, : ¢) (see [29]) and this completes the proof. O

Lemma 8. B € (c : Z(u, v, ¢))reg if and only if (38) and (39) of the Lemma 7 hold with ot = 0 for all k € N and

lim X’: b = 1. (42)
K

Proof. Since the proof is easy we omitit. O
Lemma9. B € (st(A) N lo : Z(U, v, C))reg ifand only if B € (¢ : Z(u, v, €))reg and

lign Z by = 0 (43)
keE
forevery E C Nwith §4(E) = 0.

Proof. Because of ¢ C st N €y, B € (¢ : Z(u, v, €))reg. Now, for any x € £, and a set E C N with §(E) = 0, let us define the
sequence z = (zi) by

Xk, keE
Zr =
k=10, kéeE.
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Then, since z € sty, Az € Z(u, v, ¢p), where Z(u, v, cg) is the space of sequences which the G(u, v)- transforms of them in
Co. Also, since

Z bnkzk = Z bnkxka
k keE

the matrix D = (d,;) defined by d,;, = INJ,,,( (k € E)and dp, = 0 (k € E) is in the class (£, : Z(u, v, c)). Hence, the necessity
of (43) follows from Lemma 7.

Conversely, let x € st(A) N £y, with sty — limx = L. Then, the set E defined by E = {k : |x;, — I| > €} has density zero and
|xx — 1| < e ifk & E. Now, we can write

Z Bnkxk = Z Enk(xk -+ IZ Bnk- (44)
k k k

Since

< X1 Bl + & - 1IBIl.

keE

> b — )
k
letting n — oo in (44) and using (42) with (43), we have

lim Z B = L.
K

This implies that B € (st(A) N € : Z(u, v, €))reg and the proof is completed. O

Let us write

n
£a(X) = Un ) Vi

k=0
Then, we can define Z-core of a complex sequence as follows.

Definition 1. Let H, be the least closed convex hull containing g,(x), gn+1(x), 8n+2(x), .... Then, Z-core of x is the
intersection of all Hy, i.e.,

o0
Z-core(x) = ﬂ H,.
n=1

This definition includes the following special cases.

(i) fog =1+ r*and u, = 1/(n+ 1), then Z-core = K.-core (cf. [30]).
(ii) If vy = qrand u, = 1/ )_,_, Gk, then Z-core = K4-core (cf. [31]).

Note that, actually, we define Z-core of x by the K -core of the sequence (g,(x)). Hence, we can construct the following
theorem which is analogue of K -core, (see [6]).

Theorem 11. Forany z € C, let
Gx(2) = [a) € C:|w—z| <limsup|g,(x) —z|] .
n

Then, for any x € £,
Z-core(x) = ﬂ Gx(2).

zeC
Now, we may give some inclusion theorems. First, we need a lemma.

Lemma 10 ([32, Corollary 12]). Let A = (an) be a matrix satisfying ", |an| < oo and lim, a,, = 0. Then, there exists an
y € Ly with ||y|| < 1such that

lim sup Z anYx = lim sup Z |k -
n k n k

Theorem 12. Let B € (¢ : Z(u, v, €))reg. Then, Z-core(Bx) € K-core(x) for all x € £ if and only if

1i£nz |Boe| = 1. (45)
k
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Proof. Since B € (c : Z(u, v, C))reg, the matrix B= (Bnk) satisfies the conditions of Lemma 10. So, there exists ay € £
with |ly|| < 1 such that

w € C: |w| <limsu b =1{weC:|w| <limsu b
o] < np;nm} [ o] < np;m

On the other hand, since K -core(y) C B;(0), by the hypothesis

®eC: || <limsupy |Bnk|} CBi(0)={weC:|w <1}
n k
which implies (45).
Conversely, let w € Z-core(Bx). Then, for any given z € C, we can write

| —z| < limsup |g,(Bx) — z|
n

= limsup |z — Z brkXi
n k

< limsup Z bue(z — x¢)| + limsup |z] |1 — Z Dok
n k n k
= lim su bx(z — x0) | - 46
. p ; nk( k) ( )
Now, let lim sup; |xx — z| = L Then, for any ¢ > 0, |xx — z| < I+ ¢ whenever k > ko. Hence, one can write that
Zgnk(z —X) = Z buk(z — xi0) + Z buk(z — X¢)
k k<kg k>ko
< suplz—x Y bul + I +) D bul
k k<kg k>ko
< supz — x| > " 1buil + A+ ) D 1wl (47)
k<ko k

Therefore, applying lim sup, under the light of the hypothesis and combining (46) with (47), we have

Z Enk (z — xi)
k

which means that w € K -core(x). This completes the proof. O

|w — z| < limsup <l+e
n

Theorem 13. Let B € (st(A) N Lo : Z(u, v, C))reg. Then, Z-core(Bx) C sta-core(x) for all x € £, if and only if (45) holds.

Proof. Since st4-core(x) C K-core(x) for any sequence x [33], the necessity of condition (45) follows from Theorem 12.
Conversely, take w € Z-core(Bx). Then, we can write again (46). Now, if st4 — limsup |x; — z| = s, then for any ¢ > 0,
the set E defined by E = {k : |x; — z| > s + ¢} has density zero, (see [33]). Now, we can write

Z Enk(z - Xk) = Z Bnk(z - Xk) + Z Bnk(z - Xk)
k

keE keE

< suplz—xl Y bl + (5+) ) |bud
k keE keE

= sup [z =Xl D bucl + (s &) 3 Ibul
keE k

Thus, applying the operator lim sup, and using condition (45) with (43), we get that

Z Enk(z - Xk)
k

lim sup <s+e. (48)
n
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Finally, combining (46) with (48), we have

lw — z| < sty — limsup |x, — 2|
k

which means that w € st4-core(x) and the proof is completed. O

As a consequence of Theorem 13, we have the following corollary.

Corollary 5. Let B € (st N €y : Z(U, v, C))reg. Then, Z-core(Bx) C st-core(x) for all x € £, if and only if (45) holds.

5. Conclusion

Recently there has been a lot of interest in investigating geometric properties of sequence spaces besides topological
and some other usual properties. In the literature, there are many papers concerning the geometric properties of different
sequence spaces. For example, see [34-36]. So, from now on some geometric properties of modular sequence space
£, (u, v; p, A) such as Kadec-Klee property and uniform Opial property will be examined in the next paper.
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