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a b s t r a c t

In this study, we define new paranormed sequence spaces by combining a generalized
weighted mean and a difference operator. Furthermore, we compute the α-,β- and
γ - duals and obtain bases for these sequence spaces. Besides this, we characterize
the matrix transformations from the new paranormed sequence spaces to the spaces
c0(q), c(q), ℓ(q) and ℓ∞(q). Finally, weighted core of a complex-valued sequence has been
introduced, and we prove some inclusion theorems related to this new type of core.
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1. Preliminaries, background and notation

By ω, we shall denote the space of all real valued sequences. Any vector subspace of ω is called as a sequence space. We
shall write ℓ∞, c and c0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ1 and ℓp,
we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, 1 < p < ∞.

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function
g : X → R such that g(θ) = 0, g(x) = g(−x) and scalar multiplication is continuous, i.e., |αn − α| → 0 and g(xn − x) → 0
imply g(αnxn − αx) → 0 for all α’s in R and all x’s in X , where θ is the zero vector in the linear space X .

Assume here and after that (pk) be a bounded sequences of strictly positive real numbers with sup pk = H and
M = max{1,H}. Then, the linear spaces c(p), c0(p), ℓ∞(p) and ℓ(p)were defined byMaddox [1,2] (see also [3,4]) as follows:

c(p) =


x = (xk) ∈ ω : lim

k→∞

|xk − l|pk = 0 for some l ∈ C


,

c0(p) =


x = (xk) ∈ ω : lim

k→∞

|xk|pk = 0


,

ℓ∞(p) =


x = (xk) ∈ ω : sup

k∈N
|xk|pk < ∞


and

ℓ(p) =


x = (xk) ∈ ω :


k

|xk|pk < ∞


,
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which are the complete spaces paranormed by

h1(x) = sup
k∈N

|xk|pk/M iff inf
pk

> 0 and h2(x) =


k

|xk|pk
1/M

,

respectively. We shall assume throughout that p−1
k + (p′

k)
−1

= 1 provided 1 < inf pk < H < ∞. For simplicity in notation,
here and in what follows, the summation without limits runs from 0 to ∞. By F and Nk, we shall denote the collection of
all finite subsets of N and the set of all n ∈ N such that n ≥ k, respectively.

For the sequence spaces X and Y , define the set S(X, Y ) by

S(X, Y ) = {z = (zk) : xz = (xkzk) ∈ Y for all x ∈ X}. (1)

With the notation of (1), the α-, β- and γ -duals of a sequence space X , which are respectively denoted by Xα, Xβ and Xγ ,
are defined by

Xα
= S(X, ℓ1), Xβ

= S(X, cs) and Xγ
= S(X, bs).

Let (X, h) be a paranormed space. A sequence (bk) of the elements of X is called a basis for X if and only if, for each x ∈ X ,
there exists a unique sequence (αk) of scalars such that

h


x −

n
k=0

αkbk


→ 0 as n → ∞.

The series


αkbk which has the sum x is then called the expansion of xwith respect to (bn) and written as x =


αkbk. Let
X, Y be any two sequence spaces and A = (ank) be an infinite matrix of real numbers ank, where n, k ∈ N. Then, we say that
A defines a matrix mapping from X into Y , and we denote it by writing A : X → Y , if for every sequence x = (xk) ∈ X the
sequence Ax = ((Ax)n), the A-transform of x, is in Y , where

(Ax)n =


k

ankxk, (n ∈ N). (2)

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y ) if and only if the series on the
right-hand side of (2) converges for each n ∈ N and every x ∈ X , and we have Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X . A sequence
x is said to be A-summable to α if Ax converges to α which is called as the A-limit of x. If X and Y are equippedwith the limits
X − lim and Y − lim, respectively, A ∈ (X : Y ) and Y − limn An(x) = X − limk xk for all x ∈ X , then we say that A regularly
maps X into Y and write A ∈ (X : Y )reg .

Let x = (xk) be a sequence in C, the set of all complex numbers, and Rk be the least convex closed region of complex
plane containing xk, xk+1, xk+2, . . . . The Knopp Core (or K-core) of x is defined by the intersection of all Rk (k = 1, 2, . . .),
(see [5, pp. 137]). In [6], it is shown that

K-core(x) =


z∈C

Bx(z)

for any bounded sequence x, where Bx(z) =

w ∈ C : |w − z| ≤ lim supk |xk − z|


.

Let E be a subset of N. The natural density δ of E is defined by

δ(E) = lim
n

1
n
|{k ≤ n : k ∈ E}|

where |{k ≤ n : k ∈ E}| denotes the number of elements of E not exceeding n. A sequence x = (xk) is said to be statistically
convergent to a number l, if δ({k : |xk − l| ≥ ε}) = 0 for every ε. In this case we write st − lim x = l, [7]. By st we denote
the space of all statistically convergent sequences.

In [8], the notion of the statistical core (or st-core) of a complex valued sequence has been introduced by Fridy and Orhan
and it is shown for a statistically bounded sequence x that

st-core(x) =


z∈C

Cx(z),

where Cx(z) =

w ∈ C : |w − z| ≤ st − lim supk |xk − z|


. The core theorems have been studied by many authors. For

instance, see [9–13] and the others.
We write by U for the set of all sequences u = (un) such that un ≠ 0 for all n ∈ N. For u ∈ U, let 1/u = (1/un). Let

u, v ∈ U and let us define the matrix G(u, v) = (gnk) and ∆ = (δnk) as follows:

gnk =


unvk, (0 ≤ k ≤ n),
0, (k > n), δnk =


(−1)n−k, (n − 1 ≤ k ≤ n),
0, (0 ≤ k < n − 1 or k > n),

for all n, k ∈ N, where un depends only on n and vk only on k. The matrix G(u, v), defined above, is called as generalized
weighted mean or factorable matrix.
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The main purpose of this study is to introduce the sequence spaces c0(u, v; p, ∆), c(u, v; p, ∆), ℓ∞(u, v; p, ∆) and
ℓ(u, v; p, ∆) which are the set of all sequences whose G(u, v; ∆)-transforms are in the spaces c0(p), c(p), ℓ∞(p) and ℓ(p),
respectively, where G(u, v; ∆) denotes the matrix G(u, v; ∆) = G(u, v)∆ = (g∆

nk) defined by

g∆
nk =

un(vk − vk+1), (0 ≤ k ≤ n − 1),
ukvk, (k = n),
0, (k > n).

Also, we have investigated some topological structures, which have completeness, the α-, β- and γ -duals, and the bases
of these sequence spaces. Besides this, we characterize some matrix mappings on these spaces. Finally, we have defined
Weighted Core (Z-core) of a sequence and characterized some class of matrices for which Z-core(Ax) ⊆ K-core(x) and
Z-core(Ax) ⊆ stA-core(x) for all x ∈ ℓ∞.

2. The paranormed sequence spaces λ(u, v;p, ∆) for λ ∈ {c0(p), c(p), ℓ∞(p), ℓ(p)}

In this section, we define the new sequence spaces λ(u, v; p, ∆) for λ ∈ {c0(p), c(p), ℓ∞(p), ℓ(p)} derived by using the
generalized weighted mean and difference operator, and prove that these sequence spaces are the complete paranormed
linear metric spaces and compute their α-, β- and γ -duals. Moreover, we give the basis for the spaces λ(u, v; p, ∆) for
λ ∈ {c0(p), c(p), ℓ(p)}.

For a sequence space X , the matrix domain XA of an infinite matrix A is defined by

XA = {x = (xk) ∈ ω : Ax ∈ X}. (3)

In [14], Choudhary andMishra have defined the sequence space ℓ(p)which consists of all sequences such that S-transforms
are in ℓ(p), where S = (snk) is defined by

snk =


1, (0 ≤ k ≤ n),
0, (k > n).

Başar and Altay [15] have recently examined the space bs(p)which is formerly defined by Başar in [16] as the set of all series
whose sequences of partial sums are in ℓ∞(p). More recently, Altay and Başar have studied the sequence spaces r t(p), r t

∞
(p)

in [17] and r tc (p), r
t
0(p) in [18] which are derived by the Riesz means from the sequence spaces ℓ(p), ℓ∞(p), c(p) and c0(p)

of Maddox, respectively. With the notation of (3), the spaces ℓ(p), bs(p), r t(p), r t
∞

(p), r tc (p) and r t0(p) may be redefined by

ℓ(p) = [ℓ(p)]S, bs(p) = [ℓ∞(p)]S, r t(p) = [ℓ(p)]Rt ,
r t
∞

(p) = [ℓ∞(p)]Rt , r tc (p) = [c(p)]Rt , r t0(p) = [c0(p)]Rt .

Following [14,15,17,18], we define the sequence spaces λ(u, v; p, ∆) for λ ∈ {c0(p), c(p), ℓ∞(p), ℓ(p)} by

λ(u, v; p, ∆) =


x = (xk) ∈ ω :


n

k=1

unvk1xk


∈ λ


.

With notation (3), we may redefine the spaces c0(u, v; p, ∆), c(u, v; p, ∆), ℓ∞(u, v; p, ∆) and ℓ(u, v; p, ∆) as follows:

c0(u, v; p, ∆) = {c0(p)}G(u,v;∆), c(u, v; p, ∆) = {c(p)}G(u,v;∆),

ℓ∞(u, v; p, ∆) = {ℓ∞(p)}G(u,v;∆), ℓ(u, v; p, ∆) = {ℓ(p)}G(u,v;∆).

This definition includes the following special cases.

(i) If p = e, then λ(u, v; p, ∆) = λ(u, v, ∆) (cf. [19]).
(ii) If v = 1 + rk, u = (1/(n + 1)), p = e, λ = c and λ = c0, then λ(u, v; p, ∆) = ar0(∆) and λ(u, v; p, ∆) = arc(∆)

(cf. [20]).
(iii) If v = 1 + rk, u = (1/(n + 1)), p = e, λ = ℓ∞, then λ(u, v; p, ∆) = ar

∞
(∆) (cf. [21]).

(iv) If v = 1 + rk, u = (1/(n + 1)), p = e, λ = ℓp, then λ(u, v; p, ∆) = arp(∆) (cf. [22]).
(v) If v = qk, u = (1/

n
k=0 qk), λ = ℓ∞(p), c(p) and λ = c0(p), then λ(u, v; p, ∆) = rq∞(p, ∆), λ(u, v; p, ∆) = rqc (p, ∆)

and λ(u, v; p, ∆) = rq0(p, ∆) (cf. [23]).
(vi) If v = qk, u = (1/

n
k=0 qk) and λ = ℓ(p), then λ(u, v; p, ∆) = rq(p, ∆) (cf. [24]).

Define the sequence y = ( yk), which will be frequently used as the G(u, v; ∆)-transform of a sequence x = (xk), i.e.

yk =

k
j=0

ukvj1xj =

k−1
j=0

uk∇vjxj + ukvkxk; (k ∈ N), (4)

where ∇vj = (vj − vj+1). Since the proof may also be obtained in the similar way as for the other spaces, to avoid the
repetition of the similar statements, we give the proof only for one of those spaces. Now, we may begin with the following
theorem which is essential in the study.
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Theorem 1. (i) The sequence spaces λ(u, v; p, ∆) for λ ∈ {c0(p), c(p), ℓ∞(p)} are the complete linear metric spaces para-
normed by g, defined by

g(x) = sup
k∈N

 k
j=0

ukvj1xj


pk/M

.

g is a paranorm for the spaces c(u, v; p, ∆) and ℓ∞(u, v; p, ∆) only in the trivial case inf pk > 0 when c(u, v; p, ∆) =

c(u, v; ∆) and ℓ∞(u, v; p, ∆) = ℓ∞(u, v; ∆).
(ii) ℓ(u, v; p, ∆) is a complete linear metric space paranormed by

g∗(x) =


k

 k
j=0

ukvj1xj


pk1/M

.

Proof. We prove the theorem for the space c0(u, v; p, ∆). The linearity of c0(u, v; p, ∆) with respect to the coordinatewise
addition and scalar multiplication follows from the following inequalities which are satisfied for s, x ∈ c0(u, v; p, ∆)
(see [25, p. 30]):

sup
k∈N

 k
j=0

ukvj∆(sj + xj)


pk/M

≤ sup
k∈N

 k
j=0

ukvj1sj


pk/M

+ sup
k∈N

 k
j=0

ukvj1xj


pk/M

(5)

and for any α ∈ R (see [2]),

|α|
pk ≤ max{1, |α|

M
}. (6)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ c0(u, v; p, ∆). Again inequalities (5) and (6) yield the subadditivity of
g and

g(αx) ≤ max{1, |α|}g(x).

Let {xn} be any sequence of the points xn ∈ c0(u, v; p, ∆) such that g(xn − x) → 0 and (αn) also be any sequence of scalars
such that αn → α. Then, since the inequality

g(xn) ≤ g(x) + g(xn − x)

holds by the subadditivity of g, {g(xn)} is bounded and we thus have

g(αnxn − αx) = sup
k∈N

 k
j=0

ukvj∆(αnxnj − αxj)


pk/M

≤ |αn − α| g(xn) + |α| g(xn − x),

which tends to zero as n → ∞. That is to say that the scalar multiplication is continuous. Hence, g is a paranorm on the
space c0(u, v; p, ∆).

It remains to prove the completeness of the space c0(u, v; p, ∆). Let {xi} be any Cauchy sequence in the space
c0(u, v; p, ∆), where xi = {x(i)

0 , x(i)
1 , . . .}. Then, for a given ε > 0 there exists a positive integer n0(ε) such that

g(xi − xj) <
ε

2
for all i, j ≥ n0(ε). We obtain by using definition of g for each fixed k ∈ N that

|{G(u, v; ∆)xi}k − {G(u, v; ∆)xj}k|pk/M ≤ sup
k∈N

|{G(u, v; ∆)xi}k − {G(u, v; ∆)xj}k|pk/M

<
ε

2
(7)

for every i, j ≥ n0(ε), which leads us to the fact that {(G(u, v; ∆)x0)k, (G(u, v; ∆)x1)k, . . .} is a Cauchy sequence of real
numbers for every fixed k ∈ N. Since R is complete, it converges, say

{G(u, v; ∆)xi}k → {G(u, v; ∆)x}k

as i → ∞. Using these infinitely many limits (G(u, v; ∆)x)0, (G(u, v; ∆)x)1, . . . , we define the sequence {(G(u, v; ∆)x)0,
(G(u, v; ∆)x)1, . . .}. We have from (7) with j → ∞ that

|{G(u, v; ∆)xi}k − {G(u, v; ∆)x}k|pk/M ≤
ε

2
(i ≥ n0(ε)) (8)
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for every fixed k ∈ N. Since xi = {x(i)
k } ∈ c0(u, v; p, ∆),

|{G(u, v; ∆)xi}k|pk/M <
ε

2
for all k ∈ N. Therefore, we obtain (8) that

|{G(u, v; ∆)x}k|pk/M ≤ |{G(u, v; ∆)x}k − {G(u, v; ∆)xi}k|pk/M + |{G(u, v; ∆)xi}k|pk/M

< ε (i ≥ n0(ε)).

This shows that the sequence {G(u, v; ∆)x} belongs to the space c0(p). Since {xi} was an arbitrary Cauchy sequence, the
space c0(u, v; p, ∆) is complete and this concludes the proof. �

Theorem 2. The sequence spaces ℓ∞(u, v; p, ∆), c(u, v; p, ∆), c0(u, v; p, ∆) and ℓ(u, v; p, ∆) are linearly isomorphic to the
spaces ℓ∞(p), c(p), c0(p) and ℓ(p), respectively, where 0 < pk ≤ H < ∞.

Proof. We establish this for the space ℓ∞(u, v; p, ∆). To prove the theorem, we should show the existence of a linear
bijection between the spaces ℓ∞(u, v; p, ∆) and ℓ∞(p) for 0 < pk ≤ H < ∞. With the notation of (4), define the
transformations T from ℓ∞(u, v; p, ∆) to ℓ∞(p) by x → y = Tx. The linearity of T is trivial. Further, it is obvious that
x = θ whenever Tx = θ and hence T is injective.

Let y = ( yk) ∈ ℓ∞(p) and define the sequence x = (xk) by

xk =

k
j=0

1
vj


yj
uj

−
yj−1

uj−1


; (k ∈ N).

Then, since

(1x)k =
1
vk


yk
uk

−
yk−1

uk−1


; (k ∈ N),

we get that

g(x) = sup
k∈N

 k
j=0

ukvj1xj


pk/M

= sup
k∈N

 k
j=0

ukvj
1
vj


yj
uj

−
yj−1

uj−1


pk/M

= sup
k∈N

|yk|pk/M = h1( y) < ∞.

Thus, we deduce that x ∈ ℓ∞(u, v; p, ∆) and consequently T is surjective and is paranorm preserving. Hence, T is a linear
bijection and this says us that the spaces ℓ∞(u, v; p, ∆) and ℓ∞(p) are linearly isomorphic, as desired. �

We shall quote some lemmas which are needed in proving related to the duals our theorems.

Lemma 1 ([26, Theorem 5.1.3 with qn = 1]). A ∈ (ℓ∞(p) : ℓ1) if and only if

sup
K∈F


n


k∈K

ankB1/pk

 < ∞ for all integers B > 1. (9)

Lemma 2 ([26, Corollary for Theorem 3]). Let pk > 0 for every k. Then A ∈ (ℓ∞(p) : c) if and only if
k

|ank|B1/pk converges uniformly in n for all integers B > 1, (10)

lim
n→∞

ank = αk for all k. (11)

Lemma 3 ([27, Theorem 3]). Let pk > 0 for every k. Then A ∈ (ℓ∞(p) : ℓ∞) if and only if

sup
n∈N


k

|ank|B1/pk < ∞ for all integers B > 1. (12)



S. Demiriz, C. Çakan / Computers and Mathematics with Applications 64 (2012) 1726–1739 1731

Lemma 4 ([26, Theorem 5.1.0 with qn = 1]).
(i) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if there exists an integer B > 1 such that

sup
K∈F


k


n∈K

ankB−1


p′
k

< ∞. (13)

(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if

sup
K∈F

sup
k∈N


n∈K

ank


pk

< ∞. (14)

Lemma 5 ([26, Theorem 1(i)–(ii)]).
(i) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if there exists an integer B > 1 such that

sup
n∈N


k

|ankB−1
|
p′
k < ∞. (15)

(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if

sup
n,k∈N

|ank|pk < ∞. (16)

Lemma 6 ([26, Corollary for Theorem 1]). Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(p) : c) if and only if (15), (16) hold,
and

lim
n→∞

ank = βk, (k ∈ N) (17)

also holds.

Theorem 3. Let K∗
= {k ∈ N : 0 ≤ k ≤ n} ∩ K for K ∈ F and B ∈ N2. Define the sets G1(p),G2(p),G3(p),G4(p),G5(p),

G6(p),G7(p) and G8(p) as follows:

G1(p) =


B>1


a = (ak) ∈ ω : sup

K∈F


n


k∈K∗


k

j=k−1

(−1)k−j 1
ujvk

an


B−1/pk

 < ∞


,

G2(p) =


a = (ak) ∈ ω :


n


k


k

j=k−1

(−1)k−j 1
ujvk

an

 < ∞


,

G3(p) =


B>1


a = (ak) ∈ ω : sup

K∈F


n


k∈K∗


k

j=k−1

(−1)k−j 1
ujvk

an


B1/pk

 < ∞


,

G4(p) =


B>1


a = (ak) ∈ ω :


k

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj

 B−1/pk < ∞


,

G5(p) =


B>1


a = (ak) ∈ ω :


k

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj

 B1/pk converges uniformly in n


,

G6(p) =


B>1


a = (ak) ∈ ω :


1

ukvk
akB1/pk


∈ c0


,

G7(p) =


B>1


a = (ak) ∈ ω :


k

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj

 B1/pk < ∞


,

G8(p) =


B>1


a = (ak) ∈ ω :


1
uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj


B1/pk ∈ ℓ∞


.

Then,

{c0(u, v; p, ∆)}α = G1(p), {c(u, v; p, ∆)}α = G1(p) ∩ G2(p), {ℓ∞(u, v; p, ∆)}α = G3(p)
{c0(u, v; p, ∆)}β = {c0(u, v; p, ∆)}γ = G4(p), {c(u, v; p, ∆)}β = G4(p) ∩ cs,

{ℓ∞(u, v; p, ∆)}β = G5(p) ∩ G6(p), {c(u, v; p, ∆)}γ = G4(p) ∩ bs, {ℓ∞(u, v; p, ∆)}γ = G7(p) ∩ G8(p).
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Proof. We give the proof for the space ℓ∞(u, v; p, ∆). Let us take any a = (an) ∈ ω and define the matrix D = (dnk) via the
sequence a = (an) by

dnk =


1
uk


1
vk

−
1

vk+1


, 0 ≤ k ≤ n − 1,

an
unvn

, k = n,

0, k > n,

where n, k ∈ N. Bearing in mind (4) we immediately derive that

anxn =

n
k=0

k
j=k−1

(−1)k−j 1
ujvk

anyj = (Dy)n; (n ∈ N). (18)

We therefore observe by (18) that ax = (anxn) ∈ ℓ1 whenever x ∈ ℓ∞(u, v; p, ∆) if and only ifDy ∈ ℓ1 whenever y ∈ ℓ∞(p).
This means that a = (an) ∈ {ℓ∞(u, v; p, ∆)}α whenever x = (xn) ∈ ℓ∞(u, v; p, ∆) if and only if D ∈ (ℓ∞(p) : ℓ1). Then, we
derive by Lemma 1 that

{ℓ∞(u, v; p, ∆)}α = G3(p).

Consider the equation for n ∈ N,

n
k=0

akxk =

n−1
k=0

1
uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj


yk +

1
unvn

anyn = (Ey)n (19)

where E = (enk) is defined by

enk =



1
uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj


, 0 ≤ k ≤ n − 1,

1
unvn

an, k = n,

0, k > n,

where n, k ∈ N. Thus, we deduce from Lemma 2 with (19) that ax = (akxk) ∈ cs whenever x = (xk) ∈ ℓ∞(u, v; p, ∆)
if and only if Ey ∈ c whenever y = ( yk) ∈ ℓ∞(p). This means that a = (an) ∈ {ℓ∞(u, v; p, ∆)}β whenever x = (xn) ∈

ℓ∞(u, v; p, ∆) if and only if E ∈ (ℓ∞(p) : c). Therefore we derive from (10) and (11) that


k

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj

 B1/pk converges uniformly in n

and

lim
k

1
ukvk

akB1/pk = 0.

This shows that

{ℓ∞(u, v; p, ∆)}β = G5(p) ∩ G6(p).

As this, we deduce from Lemma 3 with (19) that ax = (akxk) ∈ bs whenever x = (xk) ∈ ℓ∞(u, v; p, ∆) if and only if
Ey ∈ ℓ∞ whenever y = ( yk) ∈ ℓ∞(p). This means that a = (an) ∈ {ℓ∞(u, v; p, ∆)}γ whenever x = (xn) ∈ ℓ∞(u, v; p, ∆)
if and only if E ∈ (ℓ∞(p) : ℓ∞). Therefore we obtain Lemma 3 that

{ℓ∞(u, v; p, ∆)}γ = G7(p) ∩ G8(p)

and this completes the proof. �

Theorem 4. Let 1 < pk ≤ H < ∞ for every k ∈ N. Define the sets G9(p),G10(p) and G11(p) as follows:

G9(p) =


B>1

a = (ak) ∈ ω : sup
K∈F


k


n∈K∗


k

j=k−1

(−1)k−j 1
ujvk

an


B−1


p′
k

< ∞

 ,
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G10(p) =


B>1

a = (ak) ∈ ω :


k

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj


B−1


p′
k

< ∞

 ,

G11(p) =


B>1


a = (ak) ∈ ω :


1

ukvk
akB−1

p′
k


∈ ℓ∞


.

Then, {ℓ(u, v; p, ∆)}α = G9(p), {ℓ(u, v; p, ∆)}β = G10(p) ∩ G11(p) ∩ cs, {ℓ(u, v; p, ∆)}γ = G10(p) ∩ G11(p).

Proof. This may be obtained in the similar way, as mentioned in the proof of Theorem 3 with Lemmas 4(i), 5(i), 6 instead
of Lemmas 1–3. So, we omit the details. �

Theorem 5. Let 0 < pk ≤ 1 for every k ∈ N. Define the sets G12(p),G13(p) and G14(p) as follows:

G12(p) =


a = (ak) ∈ ω : sup

K∈F
sup
k∈K


n∈K


k

j=k−1

(−1)k−j 1
ujvk

an


pk

< ∞


,

G13(p) =


a = (ak) ∈ ω : sup

n,k∈N

 1uk


ak
vk

+


1
vk

−
1

vk+1


n

j=k+1

aj


pk

< ∞


,

G14(p) =


a = (ak) ∈ ω : sup

k∈N

 1
ukvk

ak

pk < ∞


.

Then, {ℓ(u, v; p, ∆)}α = G12(p), {ℓ(u, v; p, ∆)}β = G13(p) ∩ G14(p) ∩ cs, {ℓ(u, v; p, ∆)}γ = G13(p) ∩ G14(p).

Proof. This may be obtained in the similar way, as mentioned in the proof of Theorem 3 with Lemmas 4(ii), 5(ii), 6 instead
of Lemmas 1–3. So, we omit the details. �

Now, we may give the sequence of the points of the spaces c0(u, v; p, ∆), ℓ(u, v; p, ∆) and c(u, v; p, ∆) which forms a
Schauder basis for those spaces. Because of the isomorphism T , defined in the proof of Theorem 2, between the sequence
spaces c0(u, v; p, ∆) and c0(p), ℓ(u, v; p, ∆) and ℓ(p), c(u, v; p, ∆) and c(p) is onto, the inverse image of the basis of
the spaces c0(p), ℓ(p) and c(p) is the basis for our new spaces c0(u, v; p, ∆), ℓ(u, v; p, ∆) and c(u, v; p, ∆), respectively.
Therefore, we have the following theorem.

Theorem 6. Let µk = (G(u, v; ∆)x)k for all k ∈ N. We define the sequence b(k)
= {b(k)

n }n∈N for every fixed k ∈ N by

b(k)
n =


1
uk


1
vk

−
1

vk+1


, 0 ≤ k ≤ n − 1,

1
unvn

, k = n,

0, k > n.

Then,
(a) The sequence {b(k)

}k∈N is a basis for the space c0(u, v; p, ∆) and any x ∈ c0(u, v; p, ∆) has a unique representation in the
form

x =


k

µkb(k).

(b) The sequence {b(k)
}k∈N is a basis for the space ℓ(u, v; p, ∆) and any x ∈ ℓ(u, v; p, ∆) has a unique representation in the

form

x =


k

µkb(k).

(c) The set {z, b(k)
} is a basis for the space c(u, v; p, ∆) and any x ∈ c(u, v; p, ∆) has a unique representation in the

form

x = lz +


k

(µk − l)b(k)

where l = limk→∞(G(u, v; ∆)x)k and z = (zk) with

zk =

k
j=0

1
vj


1
uj

−
1

uj−1


.
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3. Some matrix mappings on the sequence spaces λ(u, v;p, ∆)

In this section, we characterize the matrix mappings from the sequence spaces λ(u, v; p, ∆) into any given sequence
space. We shall write throughout for brevity that

ãnk =
1
uk


ank
vk

+


1
vk

−
1

vk+1


n

j=k+1

anj


for all n, k ∈ N. We will also use the similar notation with other letters and we the convention that any term with negative
subscript is equal to naught.

Suppose throughout that the terms of the infinite matrices A = (ank) and C = (cnk) are connected with the relation

cnk = ãnk


or equivalently ank =

∞
j=k

ukvkcnj


(n, k ∈ N). (20)

Now, we may give our basic theorem.

Theorem 7. Let µ be any given sequence space. Then, A ∈ (c0(u, v; p, ∆) : µ) if and only if C ∈ (c0(p) : µ) and
1

ukvk
ankB1/pk


k∈N

∈ c0, (∀n ∈ N, ∃B ∈ N2). (21)

Proof. Suppose that (21) holds and µ be any given sequence space. Let A ∈ (c0(u, v; p, ∆) : µ) and take any y ∈ c0(p).
Then, (ank)k∈N ∈ [c0(u, v; p, ∆)]β which yields that (21) is necessary and (cnk)k∈N ∈ ℓ1 for each n ∈ N. Hence, Cy exists and
thus lettingm → ∞ in the equality

m
k=0

cnkyk =

m
k=0

m
j=k

ukvkcnjxk, (n,m ∈ N)

we have that Cy = Axwhich leads us to the consequence C ∈ (c0(p) : µ).
Conversely, let C ∈ (c0(p) : µ) and (21) holds, and take any x ∈ c0(u, v; p, ∆). Then, we have (ank)k∈N ∈ [c0(u, v; p, ∆)]β

for each n ∈ N. Hence, Ax exists. Therefore, we obtain from the equality
m

k=0

ankxk =

m−1
k=0

cnkyk +
1

umvm
anmym; (n,m ∈ N)

asm → ∞ that Ax = Cy and this shows that A ∈ (c0(u, v; p, ∆) : µ). This completes the proof. �

Theorem 8. Let µ be any given sequence space. Then,
(i) A ∈ (c(u, v; p, ∆) : µ) if and only if C ∈ (c(p) : µ) and (21) holds.
(ii) A ∈ (ℓ∞(u, v; p, ∆) : µ) if and only if C ∈ (ℓ∞(p) : µ) and (21) holds.

Proof. This may be obtained by proceedings as in Theorem 7. So, we omit the details. �

Now, we may quote our corollaries on the characterization of some matrix classes concerning with the sequence spaces
c0(u, v; p, ∆), c(u, v; p, ∆) and ℓ∞(u, v; p, ∆). Prior to giving the corollaries, let us suppose that (qn) is a non-decreasing
bounded sequence of positive real numbers and consider the following conditions:

sup
n∈N


k

|ãnk|B1/pk

qn

< ∞, (∀B ∈ N), (22)

sup
K∈F


n


k∈K

ãnkB1/pk


qn

< ∞, (∀B ∈ N), (23)

sup
n∈N


k

ãnk B1/pk < ∞, (∀B ∈ N), (24)

∃(αk) ⊂ R ∋ lim
n→∞


k

ãnk − αk
 B1/pk

qn

= 0, (∀B ∈ N), (25)

sup
n∈N


k

ãnk B−1/pk

qn

< ∞, (∃B ∈ N), (26)
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sup
n∈N


k

ãnk


qn

< ∞, (27)

sup
K∈F


n


k∈K

ãnkB−1/pk


qn

< ∞, (∃B ∈ N), (28)


n


k

ãnk


qn

< ∞, (29)

∃α ∈ R ∋ lim
n→∞


k

ãnk − α


qn

= 0, (30)

∃(αk) ⊂ R ∋ lim
n→∞

ãnk − αk
qn = 0, (∀k ∈ N), (31)

∃(αk) ⊂ R ∋ sup
n∈N

K 1/qn

k

ãnk − αk
 B−1/pk < ∞, (∀K , ∃B ∈ N). (32)

Corollary 1.
(i) A ∈ (ℓ∞(u, v; p, ∆) : ℓ∞(q)) if and only if (21) and (22) hold.
(ii) A ∈ (ℓ∞(u, v; p, ∆) : ℓ(q)) if and only if (21) and (23) hold.
(iii) A ∈ (ℓ∞(u, v; p, ∆) : c(q)) if and only if (21), (24) and (25) hold.
(iv) A ∈ (ℓ∞(u, v; p, ∆) : c0(q)) if and only if (21) holds and (25) also holds with αk = 0 for all k ∈ N.

Corollary 2.
(i) A ∈ (c(u, v; p, ∆) : ℓ∞(q)) if and only if (21), (26) and (27) hold.
(ii) A ∈ (c(u, v; p, ∆) : ℓ(q)) if and only if (21), (28) and (29) hold.
(iii) A ∈ (c(u, v; p, ∆) : c(q)) if and only if (21), (30), (31) and (32) hold, and (26) also holds with qn = 1 for all n ∈ N.
(iv) A ∈ (c(u, v; p, ∆) : c0(q)) if and only if (21) holds, and (30)–(32) also hold with α = 0, αk = 0 for all k ∈ N, respectively.

Corollary 3.
(i) A ∈ (c0(u, v; p, ∆) : ℓ∞(q)) if and only if (21) and (26) hold.
(ii) A ∈ (c0(u, v; p, ∆) : ℓ(q)) if and only if (21) and (28) hold.
(iii) A ∈ (c0(u, v; p, ∆) : c(q)) if and only if (21), (31) and (32) hold and (26) also holds with qn = 1 for all n ∈ N.
(iv) A ∈ (c0(u, v; p, ∆) : c0(q)) if and only if (21) holds and (25) also holds with αk = 0 for all k ∈ N.

Finally, we shall present Theorems 9 and 10 that characterize some matrix mappings on the sequence space ℓ(u, v; p, ∆)
without proofs.

Theorem 9. (i) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(u, v; p, ∆) : ℓ∞) if and only if there exists an integer B > 1
such that

sup
n∈N


k

|ãnkB−1
|
p′
k < ∞, (33)


1

ukvk
ankB−1

p′
k


k∈N

∈ ℓ∞, (n ∈ N). (34)

(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (ℓ(u, v; p, ∆) : ℓ∞) if and only if

sup
n,k∈N

|ãnk|pk < ∞, (35)
1

ukvk
ank

pk
k∈N

∈ ℓ∞, (n ∈ N). (36)

Theorem 10. Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(u, v; p, ∆) : c) if and only if (33)–(36) hold, and there is a
sequence (αk) of the scalars such that

lim
n→∞

ãnk = αk; (k ∈ N). (37)

If the sequence space c is replaced by the space c0, then Theorem 10 is reduced.



1736 S. Demiriz, C. Çakan / Computers and Mathematics with Applications 64 (2012) 1726–1739

Corollary 4. Let 0 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (ℓ(u, v; p, ∆) : c0) if and only if (33)–(36) hold, and (37) also holds
with αk = 0 for all k ∈ N.

4. Weighted core

Using the converge domain of the matrix G(u, v), the new sequence spaces Z(u, v, c) and Z(u, v, c0) have been
constructed in [28] and their some properties have been investigated. In the present section, we first introduce a new type
core, Z-core, of a complex valued sequence and also determine the necessary and sufficient conditions on a matrix B for
which Z-core(Bx) ⊆ K-core(x) and Z-core(Bx) ⊆ stA-core(x) for all x ∈ ℓ∞.

To do these, we need to characterize the classes (c : Z(u, v, c))reg and (st(A) ∩ ℓ∞ : Z(u, v, c))reg . For brevity, in what
follows we write b̃nk in place of

un

n
k=0

vkbnk; (n, k ∈ N).

Lemma 7. B ∈ (ℓ∞ : Z(u, v, c)) if and only if

∥B∥ = sup
n


k

|b̃nk| < ∞, (38)

lim
n

b̃nk = αk for each k, (39)

lim
n


k

|b̃nk − αk| = 0. (40)

Proof. Let x ∈ ℓ∞ and consider the equality

un

n
j=0

vj

m
k=0

bjkxk =

m
k=0

un

n
j=0

vjbjkxk; (m, n ∈ N)

which yields as m → ∞ that

un

n
j=0

vj(Bx)j = (Dx)n; (n ∈ N), (41)

where D = (dnk) is defined by

dnk =

un

n
j=0

vjbjk 0 ≤ k ≤ n,

0 k > n.

Therefore, one can easily see that B ∈ (ℓ∞ : Z(u, v, c)) if and only ifD ∈ (ℓ∞ : c) (see [29]) and this completes the proof. �

Lemma 8. B ∈ (c : Z(u, v, c))reg if and only if (38) and (39) of the Lemma 7 hold with αk = 0 for all k ∈ N and

lim
n


k

b̃nk = 1. (42)

Proof. Since the proof is easy we omit it. �

Lemma 9. B ∈ (st(A) ∩ ℓ∞ : Z(u, v, c))reg if and only if B ∈ (c : Z(u, v, c))reg and

lim
n


k∈E

|b̃nk| = 0 (43)

for every E ⊂ N with δA(E) = 0.

Proof. Because of c ⊂ st ∩ ℓ∞, B ∈ (c : Z(u, v, c))reg . Now, for any x ∈ ℓ∞ and a set E ⊂ N with δ(E) = 0, let us define the
sequence z = (zk) by

zk =


xk, k ∈ E
0, k ∉ E.
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Then, since z ∈ st0, Az ∈ Z(u, v, c0), where Z(u, v, c0) is the space of sequences which the G(u, v)- transforms of them in
c0. Also, since

k

b̃nkzk =


k∈E

b̃nkxk,

the matrix D = (dnk) defined by dnk = b̃nk (k ∈ E) and dnk = 0 (k ∉ E) is in the class (ℓ∞ : Z(u, v, c)). Hence, the necessity
of (43) follows from Lemma 7.

Conversely, let x ∈ st(A) ∩ ℓ∞ with stA − lim x = l. Then, the set E defined by E = {k : |xk − l| ≥ ε} has density zero and
|xk − l| ≤ ε if k ∉ E. Now, we can write

k

b̃nkxk =


k

b̃nk(xk − l) + l

k

b̃nk. (44)

Since 
k

b̃nk(xk − l)

 ≤ ∥x∥

k∈E

|b̃nk| + ε · ∥B∥,

letting n → ∞ in (44) and using (42) with (43), we have

lim
n


k

b̃nkxk = l.

This implies that B ∈ (st(A) ∩ ℓ∞ : Z(u, v, c))reg and the proof is completed. �

Let us write

gn(x) = un

n
k=0

vkxk.

Then, we can define Z-core of a complex sequence as follows.

Definition 1. Let Hn be the least closed convex hull containing gn(x), gn+1(x), gn+2(x), . . . . Then, Z-core of x is the
intersection of all Hn, i.e.,

Z-core(x) =

∞
n=1

Hn.

This definition includes the following special cases.
(i) If vk = 1 + rk and un = 1/(n + 1), then Z-core = Kr -core (cf. [30]).
(ii) If vk = qk and un = 1/

n
k=0 qk, then Z-core = Kq-core (cf. [31]).

Note that, actually, we define Z-core of x by the K-core of the sequence (gn(x)). Hence, we can construct the following
theorem which is analogue of K-core, (see [6]).

Theorem 11. For any z ∈ C, let

Gx(z) =


ω ∈ C : |ω − z| ≤ lim sup

n
|gn(x) − z|


.

Then, for any x ∈ ℓ∞,

Z-core(x) =


z∈C

Gx(z).

Now, we may give some inclusion theorems. First, we need a lemma.

Lemma 10 ([32, Corollary 12]). Let A = (ank) be a matrix satisfying


k |ank| < ∞ and limn ank = 0. Then, there exists an
y ∈ ℓ∞ with ∥y∥ ≤ 1 such that

lim sup
n


k

ankyk = lim sup
n


k

|ank|.

Theorem 12. Let B ∈ (c : Z(u, v, c))reg . Then, Z-core(Bx) ⊆ K-core(x) for all x ∈ ℓ∞ if and only if

lim
n


k

|b̃nk| = 1. (45)
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Proof. Since B ∈ (c : Z(u, v, c))reg , the matrix B̃ = (b̃nk) satisfies the conditions of Lemma 10. So, there exists a y ∈ ℓ∞

with ∥y∥ ≤ 1 such that
ω ∈ C : |ω| ≤ lim sup

n


k

b̃nkyk


=


ω ∈ C : |ω| ≤ lim sup

n


k

|b̃nk|


.

On the other hand, since K-core( y) ⊆ B1(0), by the hypothesis
ω ∈ C : |ω| ≤ lim sup

n


k

|b̃nk|


⊆ B1(0) = {ω ∈ C : |ω| ≤ 1}

which implies (45).
Conversely, let ω ∈ Z-core(Bx). Then, for any given z ∈ C, we can write

|ω − z| ≤ lim sup
n

|gn(Bx) − z|

= lim sup
n

z −


k

b̃nkxk


≤ lim sup

n


k

b̃nk(z − xk)

+ lim sup
n

|z|

1 −


k

b̃nk


= lim sup

n


k

b̃nk(z − xk)

 . (46)

Now, let lim supk |xk − z| = l. Then, for any ε > 0, |xk − z| ≤ l + ε whenever k ≥ k0. Hence, one can write that
k

b̃nk(z − xk) =


k<k0

b̃nk(z − xk) +


k≥k0

b̃nk(z − xk)


≤ sup

k
|z − xk|


k<k0

|b̃nk| + (l + ε)

k≥k0

|b̃nk|

≤ sup
k

|z − xk|

k<k0

|b̃nk| + (l + ε)

k

|b̃nk|. (47)

Therefore, applying lim supn under the light of the hypothesis and combining (46) with (47), we have

|ω − z| ≤ lim sup
n


k

b̃nk(z − xk)

 ≤ l + ε

which means that ω ∈ K-core(x). This completes the proof. �

Theorem 13. Let B ∈ (st(A) ∩ ℓ∞ : Z(u, v, c))reg . Then, Z-core(Bx) ⊆ stA-core(x) for all x ∈ ℓ∞ if and only if (45) holds.

Proof. Since stA-core(x) ⊆ K-core(x) for any sequence x [33], the necessity of condition (45) follows from Theorem 12.
Conversely, take ω ∈ Z-core(Bx). Then, we can write again (46). Now, if stA − lim sup |xk − z| = s, then for any ε > 0,

the set E defined by E = {k : |xk − z| > s + ε} has density zero, (see [33]). Now, we can write
k

b̃nk(z − xk) =


k∈E

b̃nk(z − xk) +


k∉E

b̃nk(z − xk)


≤ sup

k
|z − xk|


k∈E

|b̃nk| + (s + ε)

k∉E

|b̃nk|

≤ sup
k

|z − xk|

k∈E

|b̃nk| + (s + ε)

k

|b̃nk|.

Thus, applying the operator lim supn and using condition (45) with (43), we get that

lim sup
n


k

b̃nk(z − xk)

 ≤ s + ε. (48)
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Finally, combining (46) with (48), we have

|ω − z| ≤ stA − lim sup
k

|xk − z|

which means that ω ∈ stA-core(x) and the proof is completed. �

As a consequence of Theorem 13, we have the following corollary.

Corollary 5. Let B ∈ (st ∩ ℓ∞ : Z(u, v, c))reg . Then, Z-core(Bx) ⊆ st-core(x) for all x ∈ ℓ∞ if and only if (45) holds.

5. Conclusion

Recently there has been a lot of interest in investigating geometric properties of sequence spaces besides topological
and some other usual properties. In the literature, there are many papers concerning the geometric properties of different
sequence spaces. For example, see [34–36]. So, from now on some geometric properties of modular sequence space
ℓσ (u, v; p, ∆) such as Kadec–Klee property and uniform Opial property will be examined in the next paper.
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