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Abstract. In this study, we define the paranormed sequence spaces M̃u(t),

C̃p(t), C̃0p(t), C̃r(t), C̃bp(t) and L̃u(t) of double sequences whose double Cesàro

mean transforms are bounded, convergent in the Pringsheim’s sense, null in the

Pringsheim’s sense, both convergent in the Pringsheim’s sense and bounded,

regularly convergent and absolutely summable, respectively. Furthermore, we

examine some properties of the double sequence spaces M̃u(t), C̃p(t), C̃0p(t),

C̃r(t), C̃bp(t) and L̃u(t) .

Key words. Double sequence spaces, the double Cesáro matrix of order one,

paranormed double sequence spaces.

Cesàro matrisinin bazı paranormlu çift dizi uzaylarındaki etki
alanı

Özet. Bu çalışmada; sırasıyla double Cesàro dönüşümleri sınırlı, Pringsheim

anlamında yakınsak, Pringsheim anlamında sıfıra yakınsak, hem Pringsheim

anlamında yakınsak hem de sınırlı, regüler yakınsak ve mutlak toplanabilir

olan dizilerin M̃u(t), C̃p(t), C̃0p(t), C̃bp(t), C̃r(t) ve L̃u(t) paranormlu dizi uzay-

larını tanımlıyoruz. Ayrıca, M̃u(t), C̃p(t), C̃0p(t), C̃r(t), C̃bp(t) ve L̃u(t) double

dizi uzaylarının bazı özelliklerini inceliyoruz.

Anahtar kelimeler. Çift dizi uzayları, birinci mertebeden çift indisli Cesáro

matrisi, paranormlu çift dizi uzayları.
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Cesáro paranormed double sequence spaces

1 Preliminaries, background and notation

By ω and Ω, we denote the sets of all real-valued single and double sequences which are the

vector spaces with coordinatewise addition and scalar multiplication, respectively. Any

vector subspaces of ω and Ω are called as the single sequence space and double sequence

space, respectively.

By Mu, we denote the space of all bounded double sequences, that is,

Mu :=

{
x = (xmn) ∈ Ω : ∥x∥∞ = sup

m,n∈N
|xmn| <∞

}
which is a Banach space with the norm ∥x∥∞, where N denotes the set of all positive

integers.

Consider a sequence x = (xmn) ∈ Ω. If for every ε > 0 there exists n0 = n0(ε) ∈ N

and l ∈ R such that |xmn− l| < ε for all m,n > n0, then we call that the double sequence

x is convergent in the Pringsheim’s sense to the limit l and write p− limxmn = l, where

R denotes the real field. By Cp, we denote the space of all convergent double sequences

in the Pringsheim’s sense. It is well-known that there are such sequences in the space Cp
but not in the space Mu. Indeed, following Boos [1], if we define the sequence x = (xmn)

by

xmn :=

 n, m = 1, n ∈ N,

0, m ≥ 2, n ∈ N,

then it is trivial that x ∈ Cp\Mu, since p − limxmn = 0 but ∥x∥∞ = ∞. So, we

may mention the space Cbp of the double sequences which are both convergent in the

Pringsheim’s sense and bounded, i.e., Cbp = Cp ∩ Mu. Following Hardy [6], a double

sequence x = (xmn) is said to converge regularly if it converges in Prinsheim’s sense and,

in addition, the following finite limits exist:

lim
n→∞

xmn = km (m = 1, 2, ...),

lim
m→∞

xmn = ln (n = 1, 2, ...).

For more details, see also [5]. Obviously, the regular convergence of x implies the conver-

gence in Prinsheim’s sense as well as the boundedness of the terms of x, but the converse

implication fails. Also by Cbp0 and Cr0, we denote the spaces of all double sequences con-

verging to 0 contained in the sequence spaces Cbp and Cr, respectively. Móricz [7] proved

that Cbp, Cbp0, Cr and Cr0 are Banach spaces with the norm ∥.∥∞.

Let us consider a double sequence x = (xmn) and define the sequence s = (smn) which
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will be used throughout via x by

smn :=
m∑
i=0

n∑
j=0

xij (1.1)

for all m,n ∈ N . For the sake of brevity, here and in what follows, we abbreviate the

summation
∑∞

i=0

∑∞
j=0 by

∑
i,j and we use this abbreviation with other letters. Let λ

be a space of a double sequences converging with respect to some linear convergence rule

v− lim : λ→ R. The sum of a double series
∑

i,j xij with respect to this rule is defined by

v−
∑

i,j xij = v− limm,n→∞ smn. Let λ, µ be two spaces of double sequences converging

with respect to the linear convergence rules v1 − lim and v2 − lim, respectively, and let

A = (amnkl) be a four dimensional infinite matrix over the real or complex field.

The v−summability domain λ
(v)
A of the four dimensional infinite matrix A = (amnkl)

in the space λ of a double sequences is defined by

λ
(v)
A =

{
x = (xkl) ∈ Ω : Ax =

(
v −

∑
k,l

amnklxkl

)
m,n∈N

exists and is in λ

}
. (1.2)

A linear topological space X over the real field R is said to be a paranormed space if

there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x) and scalar

multiplication is continuous, i.e., |αn−α| → 0 and g(xn−x) → 0 imply g(αnxn−αx) → 0

for all α′s in R and all x’s in X, where θ is the zero vector in the linear space X.

Now, following Zeltser [9], we note the terminology for double sequence spaces. A

locally convex double sequence space λ is called a DK−space, if all of the seminorms

rkl : λ→ R, x = (xkl) 7→ |xkl| for all k, l ∈ N are continuous. A DK−space with a Fréchet

topology is called an FDK−space. A normed FDK−space is called a BDK−space. We

record that Cr endowed with the norm ∥.∥∞ : Cr → R, x = (xkl) 7→ supk,l∈N |xkl| is a

BDK−space.

Let us define the following sets of double sequences:

Mu(t) : =

{
(xmn) ∈ Ω : sup

m,n∈N
|xmn|tmn <∞

}
,

Cp(t) : =

{
(xmn) ∈ Ω : ∃l ∈ C ∋ p− lim

m,n→∞
|xmn − l|tmn = 0

}
,

C0p(t) : =

{
(xmn) ∈ Ω : p− lim

m,n→∞
|xmn|tmn = 0

}
,

Lu(t) : =

{
(xmn) ∈ Ω :

∑
m,n

|xmn|tmn <∞
}
,

Cbp(t) : = Cp(t) ∩Mu(t) and C0bp(t) := C0p(t) ∩Mu(t),

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N. In the case
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Cesáro paranormed double sequence spaces

when tmn = 1 for all m,n ∈ N, Mu(t), Cp(t), C0p(t), Lu(t), Cbp(t) and C0bp(t) reduce to

the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively.

Now, we can summarize the knowledge given in some document related to the double

sequence spaces. Gökhan and Çolak [10–12] have proved that Mu(t), Cp(t), Cbp(t) and

Lu(t) are complete paranormed spaces of double sequences and given the alpha-, beta-,

gamma-duals of the spaces Mu(t) and Cbp(t). Quite recently, Zeltser [8] essentially stud-

ied both the theory of topological double sequence spaces and the theory of summability

of double sequences. Mursaleen and Edely [13] introduced the statistical convergence

and statistical Cauchy for double sequences, and gave the relation between statistically

convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [14] and

Mursaleen and Edely [15] have defined the almost strong regularity of matrices for dou-

ble sequences and applied these matrices to establish a core theorem and introduced the

M−core for double sequences and determined those four dimensional matrices transform-

ing every bounded double sequence x = (xjk) into the one whose core is a subset of the

M−core of x. Altay and Başar [16] defined the spaces BS, BS(t), CSbp, CSr and BV of

double series whose sequence of partial sums are in the spaces Mu, Mu(t), Cp, Cbp, Cr
and Lu, respectively, and also examined some properties of those sequence spaces and

determined the alpha-duals of the spaces BS, BV, CSbp and the β(v)−duals of the spaces

CSbp and CSr of double series. More recently, Başar and Sever [17] introduced the Ba-

nach space Lq of double sequences corresponding to the well-known space ℓq of absolutely

q−summable single sequences and examine some properties of the space Lq.

A two dimensional matrix transformation is said to be regular if it maps every conver-

gent sequence into a convergent sequence with the same limit. Robinson [19] presented

a four dimensional analogue of regularity for double sequences in 1926. Accordingly, a

four dimensional matrix A is said to be bounded-regular or RH-regular if it maps every

bounded p-convergent sequence into a p-convergent sequence with the same p-limit, i.e,

a matrix A = (amnkl) is said to be RH−regular if Ax ∈ Cbp and p − limAx = p − limx

for each x ∈ Cbp. The Cesàro matrix is well-known RH−regular matrix which is defined

below.

The four-dimensional Cesàro matrix C = (cmnkl) of order one is defined by

cmnkl :=


1

(m+ 1)(n+ 1)
, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N. In this paper, we assume that the terms of the double sequences
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x = (xmn) and y = (ymn) are connected with the relation

ymn = (Cx)mn =
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

for all m,n ∈ N. Quite recently, Mursaleen and Başar [18] defined the spaces M̃u, C̃p,

C̃0p, C̃bp, C̃r and L̃q of double sequences whose Cesàro mean transforms are bounded, con-

vergent in the Pringsheim’s sense, null in the Pringsheim’s sense, both convergent in the

Pringsheim’s sense and bounded, regularly convergent and Cesàro absolutely q−summable,

respectively, that is,

M̃u : =

{
(xij) ∈ Ω : sup

m,n∈N

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij

∣∣∣∣ <∞
}
,

C̃p : =

{
(xij) ∈ Ω : ∃ l ∈ C ∋ p− lim

m,n→∞

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij − l

∣∣∣∣ = 0

}
,

C̃0p : =

{
(xij) ∈ Ω : p− lim

m,n→∞

1

(m+ 1)(n+ 1)

∣∣∣∣ m∑
i=0

n∑
j=0

xij

∣∣∣∣ = 0

}
,

L̃q : =

{
(xij) ∈ Ω :

∑
m,n

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣q <∞
}
.

Furthermore, they studied some topological properties of these spaces and characterized

some matrix classes.

In the present paper, we introduce the new double paranormed Cesàro sequence spaces

M̃u(t), C̃p(t), C̃0p(t) and L̃u(t), that is,

M̃u(t) : =

{
(xmn) ∈ Ω : sup

m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

<∞
}
,

C̃p(t) : =

{
(xmn) ∈ Ω : ∃ l ∈ C ∋ p− lim

m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij − l

∣∣∣∣tmn

= 0

}
,

C̃0p(t) : =

{
(xmn) ∈ Ω : p− lim

m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

= 0

}
,

L̃u(t) : =

{
(xij) ∈ Ω :

∑
m,n

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

<∞
}
.

Also, by C̃bp(t) and C̃r(t), we denote the sets of all the paranormed Cesàro convergent and

bounded, and the paranormed Cesàro regularly convergent double sequences, respectively.

When all terms of (tmn) are constant and all are equal to t > 0, then we obtain M̃u(t) =

M̃u, L̃u(t) = L̃q and when all terms of (tmn), excluding the first finite number of m and

n, are constant and all are equal to t > 0, then we obtain C̃p(t) = C̃p and C̃0p(t) = C̃0p,
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see [18]. One can easily see that the spaces M̃u(t), C̃p(t), C̃0p(t), C̃r(t), C̃bp(t) and L̃u(t)

are the domain of the double Cesàro matrix C in the spaces Mu(t), Cp(t), C0p(t), Cr(t),

Cbp(t) and Lu(t), respectively.

2 Some new paranormed spaces of double sequences

In the present section, we give some topological and algebraical properties of the spaces

M̃u(t), C̃p(t), C̃0p(t), C̃bp(t) and L̃u(t).

Firstly, let’s give the following theorems which state under which conditions our spaces

are linear space and complete paranormed space.

Theorem 2.1 The space M̃u(t) is a linear space if and only if H = supm,n tmn <∞.

Proof. Suppose that H < ∞, M = max{1,H} and x, y ∈ M̃u(t). Then, there exist

some Kx and Ky such that∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

≤ KM
x and

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

yij

∣∣∣∣tmn

≤ KM
y

for all m,n ∈ N. Since tmn/M < 1 for all m,n ∈ N, one can see that∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

(xij + yij)

∣∣∣∣tmn/M

≤
∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn/M

+

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

yij

∣∣∣∣tmn/M

≤ Kx +Ky

which leads to x+ y ∈ M̃u(t).

Now, suppose that λ ∈ C and x ∈ M̃u(t). Then since the inequality

|λ|tmn ≤ max{1, |λ|M}

holds for all m,n ∈ N, it is easily obtained that∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

λxij

∣∣∣∣tmn

= |λ|tmn

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

≤ max{1, |λ|M}
∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

which means that λx ∈ M̃u(t).

252



Serkan Demiriz, Osman Duyar

Conversely, suppose that M̃u(t) be a linear space and H = supm,n tmn = ∞. Then,

there exist the sequences (m(i)) and (n(j)), one of them is strictly increasing and the

other one is non-decreasing, such that

tm(i),n(j) > i+ j (2.1)

for all positive integers i, j. Now, we consider the sequence

x =

∞∑
i=0

∞∑
j=0

1

2
bm(i)n(j),

where bmn = (bmn
ij )ij defined by

bmn
ij =



(m+ 1)(n+ 1), i = m, j = n,

−(m+ 1)(n+ 1), i = m+ 1, j = n,

−(n+ 1)(m+ 1), i = m, j = n+ 1,

(m+ 1)(n+ 1), i = m+ 1, j = n+ 1,

0, otherwise

(2.2)

for all m,n ∈ N. Then, we have the sequence y = (ymn), where

ymn =
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij =


1

2
, m = m(i), n = n(j),

0, otherwise

for all m,n ∈ N. Therefore, it follows by (2.1) that

sup
m,n∈N

|ymn|tmn = sup
i,j∈N

|ym(i),n(j)|tm(i),n(j) = sup
i,j∈N

2−tm(i),n(j)

≤ sup
i,j∈N

2−i−j ≤ 1

2
.

Hence, x ∈ M̃u(t) but it is clearly that 4x /∈ M̃u(t) which contradicts the fact that M̃u(t)

is a linear space. So, H must be finite.

Theorem 2.2 C̃bp(t) and L̃u(t) are linear spaces if and only if H = supm,n tmn <∞.

Proof. The proof of this theorem is similar to Theorem 2.1. So, we omit the detail.

Theorem 2.3 The space C̃p(t) is a linear space if and only if

T = lim
N→∞

sup
m,n≥N

tmn <∞.
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Proof. Let x, y ∈ C̃p(t) and T <∞. Then there exist some complex numbers L1, L2 such

that

p− lim
m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij − L1

∣∣∣∣tmn

= 0,

and

p− lim
m,n→∞

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

yij − L2

∣∣∣∣tmn

= 0.

Also there exists τ > 0 such that tmn < τ for all sufficiently large m,n. Then, we consider

the inequality∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

(xij + yij) − (L1 + L2)

∣∣∣∣tmn/τ

≤
∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij − L1

∣∣∣∣tmn/τ

+

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

yij − L2

∣∣∣∣tmn/τ

.

We have that x+y ∈ C̃p(t). Furthermore, let γ ∈ C and x ∈ C̃p(t). Then, by the inequality∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

γxij−γL1

∣∣∣∣tmn

≤ max{1, |γ|τ}
∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij−L1

∣∣∣∣tmn

,

we obtain γx ∈ C̃p(t).

Conversely, let C̃p(t) be a linear space and suppose that T = ∞. Then, there exists a

strictly increasing sequence (N(i, j)) of positive integers such that tm(i),n(j) > i+ j for

all i, j ∈ N, where m(i), n(j) ≥ N(i, j) > 1. So, we consider the sequence

x =

∞∑
i=0

∞∑
j=0

1

2
bm(i)n(j).

Then, it is clear that x = (xmn) ∈ C̃p(t). But since

|ym(i),n(j)| =

∣∣∣∣ 1

(m(i) + 1)(n(j) + 1)

m(i)∑
i=0

n(j)∑
j=0

4xij

∣∣∣∣tm(i),n(j)

= 2tm(i),n(j) > 2i+j ,

then 4x /∈ C̃p(t). Hence T <∞.

Theorem 2.4 The space C̃0p(t) is a linear space if and only if

T = lim
N→∞

sup
m,n≥N

tmn <∞.

Proof. The proof of this theorem is similar to Theorem 2.3. So, we omit the detail.
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Theorem 2.5 Let H = supm,n tmn, M = max{1,H}. Then, the space M̃u(t) is a

complete paranormed space with g defined by

g(x) = sup
m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn/M

if and only if h = infm,n tmn > 0.

Proof. Let M̃u(t) be a paranormed space with the paranorm g and let h = 0. Consider

the sequence (xl) = (xij) ⊂ M̃u(t) (l ∈ N) defined by

xij =

 (m+ 1)(n+ 1) , i = 0, j = 0,

0 , otherwise,

and the sequence γ = (γl) = (1/(1 + l)) of scalars such that

γl → 0 as l → ∞ and
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij = 1

for all m,n ∈ N. Since

g(γlx
l) = sup

m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

γlx
l
ij

∣∣∣∣tmn/M

= sup
m,n∈N

|γl|tmn/M = 1,

we obtain a contradiction with g(γlx
l) → 0 as l → ∞. Therefore, h > 0.

Conversely, let h > 0. It is trivial that g(θ) = 0 and g(−x) = g(x) for all x ∈ M̃u(t).

Also, it is clear that g(x+ y) ≤ g(x) + g(y) for all x, y ∈ M̃u(t).

Moreover, let (xl) be any sequence in M̃u(t) such that g(xl −x) → 0 (l → ∞) and let

(γl) be any sequence of scalars such that γl → γ (l → ∞). Then, there exists a positive

real number K such that |γl| ≤ K for all l ∈ N. Thus, we have

g(γlx
l − γx) = sup

m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

(γlx
l
ij − γxij)

∣∣∣∣tmn/M

≤ sup
m,n∈N

(
|γl|
∣∣∣∣ 1

(m+ 1)(n+ 1)

 m∑
i=0

n∑
j=0

xlij −
n∑

j=0

xij

∣∣∣∣)tmn/M

+ sup
m,n∈N

(
|γl − γ|

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣)tmn/M

≤ Kg(xl − x) + |γl − γ|tmn/Mg(x).

Therefore, it is easy to see that g(γlx
l−γx) → 0 as l → ∞, so (M̃u(t), g) is a paranormed

space.
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Now, we prove the completeness of the space (M̃u(t), g). Let (xr) be any Cauchy

sequence in the space M̃u(t). Then, for a given ε > 0, there exists a positive integer

N = N(ε) such that

g(xr − xs) = sup
m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

(xrij − xsij)

∣∣∣∣tmn/M

< ε

for all r, s > N . Hence, we have that∣∣∣∣ 1

(m+ 1)(n+ 1)

 m∑
i=0

n∑
j=0

xrij −
m∑
i=0

n∑
j=0

xsij

∣∣∣∣tmn/M

≤ sup

∣∣∣∣ 1

(m+ 1)(n+ 1)

 m∑
i=0

n∑
j=0

xrij −
m∑
i=0

n∑
j=0

xsij

∣∣∣∣tmn/M

< ε

which shows that

(
1

(m+1)(n+1)

∑m
i=0

∑n
j=0 x

r
ij

)
r∈N

is a Cauchy sequence of complex num-

bers. Then, from completeness of C, this sequence converges, say∣∣∣∣ 1

(m+ 1)(n+ 1)

 m∑
i=0

n∑
j=0

xrij −
m∑
i=0

n∑
j=0

xsij

∣∣∣∣tmn/M

→ 0 as r → ∞.

We now show that x ∈ M̃u(t). Since (xr) is a Cauchy sequence in the space M̃u(t), there

exists a positive number K such that g(xr) < K. Also, since

g(x) = sup
m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn/M

≤ g(xr) + sup
m,n∈N

∣∣∣∣ 1

(m+ 1)(n+ 1)

 m∑
i=0

n∑
j=0

xij −
m∑
i=0

n∑
j=0

xrij

∣∣∣∣tmn/M

,

then by passing to limit as r → ∞, we have that

g(x) ≤ K + ε

which leads to the fact that x ∈ M̃u(t).

Theorem 2.6 Let

N1 = min{n0 : sup
m,n≥n0

|ymn|tmn <∞}, N2 = min{n0 : sup
m,n≥n0

tmn <∞},

and N = max{N1, N2}. Then, the spaces C̃p(t) and C̃0p(t) are complete paranormed spaces

with g defined by

g(x) = lim
N→∞

sup
m,n≥N

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn/M

if and only if µ > 0, where µ = limN→∞ infm,n≥N tmn and M = max{1, supm,n≥N tmn}.
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Proof. The proof of this theorem is similar to the proof of Theorem 2.5. So, we omit the

detail.

Theorem 2.7 The space L̃u(t) is a complete paranormed space with g defined by

g(x) =

[ ∞∑
m,n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn
]1/M

,

where M = max{1,H} and H = supm,n tmn <∞.

Proof. It is clear that g(θ) = 0, g(−x) = g(x). Let x, y ∈ L̃u(t), then we have that

g(x) ≤
[ ∞∑
m,n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn
]1/M

+

[ ∞∑
m,n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

yij

∣∣∣∣tmn
]1/M

≤ g(x) + g(y).

Furthermore, for any λ ∈ C, we have g(λx) ≤ max{1, |λ|}g(x). Hence, (λ, x) → λx is

continuous at λ = 0, x = θ, and that the function x→ λx is continuous at x = θ whenever

λ is a fixed scalar. If x ∈ L̃u(t) is fixed, and ε > 0, we can choose M,N > 0 such that

R(x) =

M∑
m=0

∞∑
n=N+1

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

+
∞∑

m=M+1

N∑
n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

+

∞∑
m=M+1

∞∑
n=N+1

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

< ε/2.

Therefore, R(λx) < ε/2 since |λ| < 1 and δ > 0, so that |λ| < δ gives

M,N∑
m,n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

λxij

∣∣∣∣tmn

< ε/2.

Thus, |λ| < min{1, δ} implies that g(λx) < ε. Hence, the function λ → λx is continuous

at λ = 0. So, L̃u(t) is a paranormed space.

Now, we show that the space (L̃u(t), g) is complete. Let (xr) be any Cauchy sequence

in the space L̃u(t). Then, for a given ε > 0, there exists a positive integer N = N(ε) such
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that

g(xr − xs) =

[ ∞∑
m,n=0

∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

(xrij − xsij)

∣∣∣∣tmn
]1/M

=

[ ∞∑
m,n=0

|yrmn − ysmn|tmn

]1/M
< ε (2.3)

for all r, s > N . Thus, we have that

|yrmn − ysmn| ≤ g(xr − xs) < ε

which shows that yr = (yrmn)r∈N =

(
1

(m+1)(n+1)

∑m
i=0

∑n
j=0 x

r
ij

)
r∈N

is a Cauchy sequence

of complex numbers for every fixed m,n ∈ N. Then, from completeness of C, this sequence

converges, say (yrmn) is convergent to ymn, namely,

lim
r→∞

yrmn = ymn (2.4)

for all m,n ∈ N. So we can define the sequence y = (ymn). Furthermore, one can see by

(2.3) that
∞∑

m=0

∞∑
n=0

|yrmn − ysmn|tmn < εM ,

for r, s > N . If we pass to the limit as s→ ∞, then we get

∞∑
m=0

∞∑
n=0

|yrmn − ymn|tmn < εM ,

for r > N by (2.4). Thus, the last inequality leads to the fact that g(xr − x) ≤ ε for

r > N which gives the required result.

Now, we give some inclusion theorems with related to our new double sequence spaces.

Theorem 2.8 We have the following statements:

(i) M̃u(t) ⊂ M̃u if and only if h = infm,n tmn > 0.

(ii) M̃u ⊂ M̃u(t) if and only if H = supm,n tmn <∞.

(iii) M̃u = M̃u(t) if and only if 0 < h ≤ H <∞.

Proof. (i) Let M̃u(t) ⊂ M̃u and let h = 0. Then, there exist the sequences (m(i)) and

(n(j)) such that, one of them is strictly increasing and the other one is non-decreasing,

and

tm(i),n(j) <
1

i+ 1
(2.5)

258



Serkan Demiriz, Osman Duyar

for all positive integers i, j. Let us define the sequence

x =

∞∑
i=0

∞∑
j=0

ibminj .

Then, we have the sequence y = (ymn), where

ymn =
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij =

 i, m = m(i), n = n(j), 0,

0, otherwise

for all m,n ∈ N. Hence, we obtain

sup
m,n∈N

|ymn|tmn = sup
i,j∈N

|ym(i),n(j)|tm(i),n(j) = sup
i,j∈N

itm(i),n(j)

≤ sup
i,j∈N

i
1

1+i ≤ 2.

Therefore, x ∈ M̃u(t), but it is clear that x /∈ M̃u, which is a contradiction. Hence,

h > 0.

Conversely, let x ∈ M̃u(t) and h > 0. Then, there exists a positive real number Kx

such that ∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣tmn

≤ Kx

for all m,n ∈ N. So, we have that∣∣∣∣ 1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij

∣∣∣∣ ≤ K1/tmn
x ≤ max{1,K1/t

x }

which lead us to the consequence that x ∈ M̃u.

(ii) Suppose that M̃u ⊂ M̃u(t) and let H = ∞. Then there exist the sequences (m(i))

and (n(j)) such that, one of them is strictly increasing and the other one is nondecreasing,

and

tm(i),n(j) > i+ j

for all i, j ∈ N. In this case if we consider the sequence x =
∑∞

i=0

∑∞
j=0 2bminj for which

ymn =
1

(m+ 1)(n+ 1)

m∑
i=0

n∑
j=0

xij =

 2, m = m(i), n = n(j), 0,

0, otherwise

for all m,n ∈ N, we obtain that x ∈ M̃u. However since |ymn|tmn = 2tm(i),n(j) > 2i+j ,

x /∈ M̃u(t), which is a contradiction, i.e., H < 0 .

Conversely, let x ∈ M̃u and H < 0. Then, there exists a positive real number Kx

such that |ymn| ≤ Kx for all m,n ∈ N. Hence we have that

|ymn|tmn ≤ Ktmn
x ≤ max{1,KH

x }.
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Therefore, x ∈ M̃u(t).

(iii) The proof of (iii) follows from (i) and (ii).

Lemma 2.1 [18] Cp is the subspace of the space C̃p.

Theorem 2.9 We have the following statements:

(i) C̃p ⊂ C̃p(t) if and only if µ = limN→∞ infm,n≥N tmn > 0.

(ii) C̃p(t) ⊂ C̃p if and only if T = limN→∞ supm,n≥N tmn <∞.

(iii) C̃p(t) = C̃p if and only if 0 < µ ≤ T <∞.

Proof. We only prove (i) because the proofs of (ii) and (iii) are the same of the proof

of (i). Suppose that µ > 0 and x ∈ C̃p. Then, there exists L ∈ C such that

lim
m,n

|ymn − L| = 0.

Since µ > 0, we may find a γ > 0 such that tmn > γ for all sufficiently large m,n ∈ N.

Moreover, since for every 0 < ε < 1 and all sufficiently large m,n ∈ N, |ymn − L| < ε1/γ ,

we have

|ymn − L|tmn < |ymn − L|γ < ε,

that is, x ∈ C̃p(t).

Conversely, let C̃p ⊂ C̃p(t) and suppose that µ = 0. Then there exists a strictly

increasing sequence (N(i)) of positive integers such that tm(i),n(i) < 1/i for all i ∈ N,

where m(i), n(i) ≥ N(i) > 1. If we consider the sequence x = (xmn) which is defined

in [10, Section 2, Theorem 1], by

xmn =


n1/tmn , m = 1, n = 1, 2, ...,[
zmn + 1

4

]1/tmn

, m = m(i), n = n(i),

0, otherwise,

where each zmn is either 0 or 1 for every m,n ∈ N. In [10], it is shown that x ∈ Cp but

x /∈ Cp(t). Furthermore, Cp(t) ⊂ C̃p(t) since C is RH−regular. Hence, x /∈ C̃p(t). Then,

we obtain, by Lemma 2.1, x ∈ C̃p but x /∈ C̃p(t). Hence, µ > 0.

3 Conclusion

In [18], Mursalaen and Başar introduced the spaces M̃u, C̃p, C̃0p, C̃bp, C̃r and L̃q of double

sequences whose Cesàro mean transforms are bounded, convergent in the Pringsheim’s
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sense, null in the Pringsheim’s sense, both convergent in the Pringsheim’s sense and

bounded, regularly convergent and Cesàro absolutely q−summable, respectively. If we

define the four dimensional matrix C = (cmnkl) by

cmnkl :=


1

(m+ 1)(n+ 1)
, 0 ≤ k ≤ m, 0 ≤ l ≤ n,

0 , otherwise

for all m,n, k, l ∈ N, then one can consider the spaces M̃u, C̃p, C̃0p, C̃bp, C̃r and L̃q as

the domain of the four dimensional matrix C in the spaces Mu, Cp, C0p, Cbp, Cr and L1,

respectively.

In spite of the domain of certain triangle matrices in the normed or paranormed space

of the single sequences are studied by several researches, the corresponding problems

remain open for the four dimensional matrices and the double sequence spaces. As a

natural continuation of [16,18], we have worked on the domain of Cesàro mean C of order

one in the spaces Mu(t), Cp(t), C0p(t), Cbp(t), Cr(t) and Lq(t). As a beginning of the

domain of a four dimensional matrix in some paranormed double sequence spaces, the

main result of the present paper are meaningful and have an advantage among the papers

related to the double sequence spaces.
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[18] M. Mursaleen, F. Başar, Domain of Cesàro mean of order one in some spaces of double

sequences, Studia Scientiarum Mathematicarum Hungarica 51 (3) (2014) 335-356.

[19] G. M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28

(1926) 50-73.

262


