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Analytical solution for bending and buckling response of laminated
non-homogeneous plates using a simplified-higher order theory
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ABSTRACT

ARTICLE INFO

In this study, analytical solutions for the bending and buckling analysis of simply sup-
ported laminated non-homogeneous composite plates based on first and simplified-
higher order theory are presented. The simplified-higher order theory assumes that
the in-plane rotation tensor is constant through the thickness. The constitutive equa-
tions of these theories were obtained by using principle of virtual work. Numerical
results for the bending response and critical buckling loads of cross-ply laminates are
presented. The effect of non-homogeneity, lamination schemes, aspect ratio, side-to-
thickness ratio and in-plane orthotropy ratio on the bending and buckling response
were analysed. The obtained results are compared with available elasticity and
higher order solutions in the literature. The comparison studies show that simplified-
higher order theory can achieve the same accuracy of the existing higher order the-
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ory for non-homogeneous thin plate.

1. Introduction

Laminated composite plates are used in air craft in-
dustry, defense industry and especially structural
strengthening applications. Usage of composite plates
have been expanded due to their light-weight, high stiff-
ness and high strength features compared to classical
structural materials. For using them efficiently in above
fields, their structural and dynamical behavior and also
an accurate knowledge of their characteristic behaviors
under various loading and boundary conditions are re-
quested (Patel, 2014; Sadoune et al., 2014; Zerin et al,,
2016).

Kinematic approaches for first-order shear defor-
mation theory (FSDT) are an extension of the classical
plate theory by including linear transverse shear defor-
mation occurred through the plate thickness. However,
the classical elasticity theory represents that transverse
shear stress is distributed parabolically through the
plate thickness. Because of that, FSDT requires a shear
correction factor (K) to modify this parabolic shear
stress distribution. Higher-order shear deformation
theories (HSDTs) contain higher order variations of the

displacement through the thickness and perform the
equilibrium conditions obtained from elasticity theory
on the top and bottom surface of the plate without using
any shear correction factors.

Materials are generally considered as homogeneous
and isotropic in classical elasticity theory because of
simplicity in calculation. On the contrary, material aniso-
tropic properties should be included to be able to obtain
more accurate and sensitive analysis results. However,
number of elastic constants increase in an anisotropic
body. In such a body should be analysed by utilizing ani-
sotropic elasticity theory in order to determine stress
and strain (Kolpakov, 1999; Lal, 2007).

The linear elasticity theory of non-homogeneous ma-
terials is based on Hooke Law, and material elastic prop-
erties differ functionally through the thickness of the
plate. This is more realistic in terms of mathematical and
physical modeling. In this case, the physical characteris-
tic of the material changes point to point continually and
it becomes the continuous function of the point coordi-
nates (Beena and Parvathy, 2014; Fares and Zenkour,
1999; He et al, 2013; Kolpakov, 1999; Leknitskii and
Fern, 1963; Schmitz and Horst, 2014; Sofiyev and
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Kuruoglu, 2014; Sofiyev et al., 2008; Stiirzenbecher and
Hofstetter, 2011; Zenkour and Fares, 1999).

A new simple first order shear deformation theory al-
most the same as CLPT was derived in terms of parame-
ters such as equation of motion and boundary conditions
(Thai and Choi, 2013a). Lots of theories acceptable for
homogeneous laminated plates were modified into the
behaviours of buckling and free vibration of non-homo-
geneous rectangle plates. The effects of non-homogene-
ity and thickness ratio on natural vibration and critical
buckling load were determined. In this study, it is ex-
pressed that CLPT is not convenient method to investi-
gate the structural behaviours of non-homogeneous
plates (Fares and Zenkour, 1999). The non-homogeneity
effects on free vibration of non-homogeneous isotropic
circular plates of non-linear thickness were analysed.
The non-homogeneity was related to variation of
Young’s modulus and density of plate material (Gupta et
al.,, 2006). The non-homogeneity behaviours of non-ho-
mogeneous rectangle plates were pointed out by means
of small parameter method, and the effects of non-ho-
mogeneity and material anisotropy on deflection and
stress values were evaluated (Zenkour and Fares,
1999).

Zenkour (2011) investigated bending of exponen-
tially graded sandwich plate by using HSDT and Sinusoi-
dal Shear Deformation Theory (SSDT) and Zenkour et al.
(2007) presented an exact solution for linear bending
analysis of non-homogeneous variable thickness ortho-
tropic plates. Librescu and Khdeir (1988) analysed
stresses and displacements of symmetric cross-ply lam-
inated elastic plates using HSDT. Gupta et al. (2007) pre-
sented variations of vibration based on thermal effects
at non-homogeneous orthotropic rectangular plate hav-
ing parabolically varying thickness. Kim et al. (2009)
suggested a two variable refined plate theory without
using shear correction factor for laminated composite
plates. Fares and Zenkour (1999) analysed the buckling
and free vibration response of non-homogeneous plates
with various plate theories, and they deduced that non-
homogeneity effect on the plate stability is significant.
Neves and Ferreira (2016) examined the free vibration
and buckling problem of composite plate using by global
meshless method. Vescovini and Dozio (2016) devel-
oped an approximate method to analyse the vibration
and buckling problem of plates. The method based on
Ritz solution and a variable kinematic approach. Yu et al.
(2016) investigated the thermal buckling for function-
ally graded plates (FGPs) with internal cracks using a
new numerical method based on the first-order shear
deformation theory. They assumed that the mechanical
properties of FGPs varied through the thickness as a
power function. Mojahedin et al. (2016) analysed the sta-
bility problem of functionally graded circular plate con-
sisted of porous materials using higher-order plate the-
ory. They assumed that the porosity varies as a function
through the thickness. Saheb and Aruna (2015) devel-
oped a coupled displacement field method to investigate
the buckling response of moderately thick plates. Komur
and Sonmez (2015) analysed the effect of cut-outs or
openings on the plate stability. They assumed that per-

forated plates may lose their stability under axial com-
pression. So, they considered perforated square and rec-
tangular plates to study the buckling behavior of plates
using finite element method. Sreehari and Maiti (2015)
developed a finite element formulation for buckling and
post-buckling response of laminated composite plates.
This formulation based on inverse hyperbolic shear de-
formation theory and satisfied that non-linear shear
stress distributions and zero shear stress on the top and
bottom surfaces of the plate. Papkov and Banerjee (2015)
presented a new method to analyse the free vibration
and buckling problems of rectangular orthotropic plates.
They simplified the boundary value problem by develop-
ing the superposition principle. So, the exact results for
free vibration and buckling of orthotropic plates can be
practically obtained by using this method. Kulkarni et al.
(2015) investigated bending and buckling behavior of
FGPs by using inverse trigonometric shear deformation
theory. The material properties of plates considered as
an exponential variation through the thickness. Reddy et
al. (2015) studied the buckling analysis of FGPs had var-
iable material properties through the thickness. They in-
vestigated the thickness stretching effect on the buckling
of plates and the study considered non-zero shear stress
on the top and bottom surfaces of plates.

2. Mathematical Model

Consider a fiber - reinforced rectangular laminated
plate with aspectratio a/b and total thickness h and, con-
sisted of N orthotropic non-homogeneous layers with
orientation angles 8, ,6, ,....,08y as shown in Fig. 1. The
coordinate system is assumed that the middle plane of
the plate coincides with xy plane, and z axis is perpendic-
ular to the middle plane.

(a)

4
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Fig. 1. Coordinate system (a) and lamination scheme (b)
used for a typical laminate.
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The first- and simplified higher-order theories used in
the present study is based on the following displacement
field (Reddy, 2004; Senthilnathan et al., 1988);

4z2% owS

(03, 2) = ugley) - z[a 2 — B, +y L2
ux,y,z) = ug\x,y Z|a ox Dy y3h2 ax |’
4-226w5]

(03, 2) = vo(y) — z[a 2 — By, +y 520
v(x,y,2) = vo(x,y) —z|a— R vl

w(x,y,z) = Bw+aw? +yws, @8]

where (uo, vo, w) are the displacement functions of the
plate’s mid-plane, ¢« and ¢y are the slopes in the xz and
yz planes by reason of bending only and («, 3, y) are ar-
bitrary coefficients defined as;

1. Higher-order shear deformation theory (HSDT):

a=1,4=0,y=1.
2. First-order shear deformation theory (FSDT):
a=0,=1,y=0.

In this study, simplified Reddy’s theory is considered
for HSDT. This theory is assumed that the slopes in the
xz and yz planes (¢~ and ¢) remains constant through
the thickness and the transverse displacement w can be
divided into bending (w’) and shear (ws) parts
(Senthilnathan et al., 1988);

a dp
Px — Y , w = Wb + WS
ady ox

@ =-rwb. 2)

The strains for FSDT and HSDT related to the dis-
placements (1) can be presented as (Fares and Zenkour,
1999; Mojahedin et al, 2016; Reddy et al, 2015;
Senthilnathan et al., 1988; Shahbaztabar and Ranji, 2016;
Zenkour, 2011; Zenkour and Fares, 1999);
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The material elastic properties of the non-homogene-
ous laminates can be expressed as;

EY (@) =By [1+uf9@)],
E)(2) = By [1+uf9@)],
G (2) = Gy [1+u fO@)],
6P (2) =G\ L+ ufP@)],
G (2) = Gy L+ u fO ()],

max|uf®@)| <1, k=12,...,N), f®@) =z, (5)
where EéI;), Eég), Géf)z, Gég and Gg) are the material
elastic properties of homogeneous orthotropic lami-
nates. N is total laminate number, y is a parameter that
represents the variation of elasticity modulus through
the plate thickness (non-homogeneous coefficient) and
f®(z) is the continuous functions which express the
variation of the elastic properties (Mojahedin etal., 2016;
Reddy et al., 2015; Schmitz and Horst, 2014; Sofiyev,
2016; Sofiyev and Kuruoglu, 2014; Sofiyev and Kuruoglu,
2016; Sofiyev et al., 2008).

In the shear deformation theory (SDT), stress-strain
expressions of kth non-homogeneous laminate can be
given as (Gosling and Polit, 2014; Mojahedin et al., 2016;
Reddy et al., 2015; Reddy, 2004; Thai and Choi, 2013a;
Zenkour, 2011; Zhen and Lo, 2015);

(G9)

(Oxx) [?11 ?12 0 0 ?16] (Exx)

Loy, | Ile @z 9 9 Q26| Leyy |
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where Qi]- are the transformed material properties ex-
pressed as (Fares, 1999; Reddy, 2004; Thai and Choi,
2013b; Zenkour and Fares, 1999; Zerin et al.,, 2016);
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Q11 = Q;1c05*0 + Q,,sin*0 + 2(Q,, + 2Qg¢)sin?fcos?0

Q1, = (Q11 + Qy, — 4Q4s)sin?Acos?6 + Q,,(sin*@ + cos*H),

Q16 = (Q11 — Q12 — 2Q¢4)sinfcos®0 + (Q1, — @z + 2Q44)sin>Hcosh,
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Q26 = (Q11 — Q13 — 2Qg6)c0s0sin®8 + (Q15 — Qyy + 2Qs)c0s3Hsing,
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Qe = (Q11 + Qup — 204, — 2Q46)sin?0cos?6 + Qg4 (sin*6 + cos*), (7)

in which 6 is the angle between global x-axis and local x-axis of each laminate. The material properties of the laminate
Ql(] Dare given by;

0 _ B i+u O @)1 () _ B 1+ur P 2] 0 _ E®nur @)

o ®y iz e 0, W B

k k k k k k
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where E and E (k) are modulus of elasticity of homogeneous case in 1 and 2 material-principal directions, respec-

tively; Ggfz, G013and Gézgare shear modulus of homogeneous case in the 1-2, 1-3 and 2-3 surfaces, respectively and

v;j are Poisson’s ratio.

3. Equations of Motion

To obtain the equation of motion, the principle of virtual work are written as;

{ h,:/zz[ (k)(&(o) + 258(1) + 2358(3)) +0 (k)(&(o) + 265(1) (3)) +- ]dz} dxdy - fA qé (w? +ws)dA, (9)
or
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where N, M, Q are the stress resultants and P and R are the higher order stress resultants defined by;

N
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én

Note that £ and 7 take the symbols x and y. Substituting Eq.(9) into Eq.(11) the stress resultants are obtained as
(Phan and Reddy, 1985; Reddy, 1984; Reddy, 2004; Reissner, 1975; Thai and Choi, 2013a, 2013b; Yin et al.,, 2014);
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(Ayj, Dy, Fiy) = Shea [1F QP (72,29 dz (i,j = 4,5) . (12b)
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4. Analytical Solution

The determination of transverse deflection and
stresses are the fundamental process in the design of
many constructional components. Non-homogeneous
function and non-homogeneous coefficients are used to
analyse the non-homogeneous laminated plate.

Boundary conditions of a simply supported rectangu-
lar plate are;

x=0a , u=w=¢,=0.

y=0b ,v=w=¢,=0. (13)

The considered transverse distribution load can be
expanded in a double Fourier series

46 Y) = Zinrs, Zias, Qn sin (2 sin (22), - (14)
and

9o for sinusoidal load, m=n =1

Qmn = ’ (15)

16qo .
> foruniformload, m,n = 1,3,5, ...
mni

where g, represents the load at the center of the plate.
Navier approach is considered for the analytical solu-
tion of the problems. So, it can be assumed that;

(B Winpsin(—)sin(=>)
{gvv:b} aWnﬁ’nsm(M)ﬂ (nny)
bows b =5z 32 Ly waasin@sin2) b q6)
Ujgyj ﬁxmncos(—>s n("”y>

B Yrnnsin(")cos(“2)

where W,..., Xpuns Yon, W2, and W,3, are the arbitrary
coefficients. Substituting Eqgs. (4), (15a) and (16) into the
Eg. (12) and substituting Egs. (4), (12a) and (16) into the
Eg. (9), we get for the bending problem;

[SHLnn} = {F}, (17)
and for the buckling problem, we can get

([P] = [LD{Fn} = {03, (18)
where

L} =BWp aWh, YWy BXpn BYnd', (19)

is the solution vector. The elements of the coefficient ma-
trices [P], [L] and [S] are defined in Appendix A. For so-
lution of Eq. (17), the following determinant should be
zero and this equation gives the critical buckling loads;

I[P]—[L]l = 0. (20)

5. Numerical Results and Discussion

In this section, various numerical examples are ana-
lyzed and discussed to confirm the accuracy of the pre-
sent study for bending and buckling analysis of non-ho-
mogeneous composite plates. For all problems a simply
supported plate is considered for analysis. The trans-
verse loading considered is sinusoidal for bending prob-
lems. Results of analysis are obtained in closed form us-
ing Navier’s solution procedure for the above geometry
and loading and the accuracy of the numerical results is
confirmed by comparing results with their counterparts
in the literature (Librescu and Khdeir, 1988; Noor, 1973;
Pagano, 1970; Pagano and Hatfield, 1972; Putcha and
Reddy, 1986; Reddy, 2004).

Note that Model-1, Model-2 and Model-3 represents
the displacement fields of Zenkour and Fares (1999),
simplified-higher order theory and first order theory, re-
spectively, for bending analysis of plates. Displacement
fields of simplified-higher order theory and first order
theory is also considered for buckling analysis of the
laminated plates. Also, shear correction factor is deter-
mined as 5/6 for FSDT.

It is assumed that the thickness and the material are
same for all laminates and the following sets of data and
non-dimensionalizations are used to present results;

Material 1 (bending):

Eqy = 25Ey,, Gorp = Goi3 = 0.5E; ,

6023 e O'ZEOZ » Vlz e 0.25 .

Material 2 (buckling):

Egy = 40E,, Goip = Goy3 = 0.6Ey; ,

6023 = O'SEOZ N Vlz = 0.25 . (21)

and

_ 100h3Ey, (a b)
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0.

h a
ys = 7 0y(5.0.0)

— h b
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— _ Nga?
cr T E02h3 .

(22)
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5.1. Example 1

A simply supported four-layered symmetric cross-ply
(0°/900/90°/0°) non-homogeneous rectangular plate
subjected to sinusoidal transverse load is considered.
The layers have equal thickness. The numerical results
of deflection and stresses are given in Table 1.

The results show that the values obtained from HSDT
(present) and Zenkour and Fares (1999) present good
agreement based on increasing of a/h ratios. For a/h ra-
tio equal to 4, deflection of Model-1 by 18.63%, Model-2
by 24.78%, Model-3 by 13.42% compared to the results
of elasticity solution. Fig. 8 shows the variation of trans-
verse displacement versus a/h ratios. It demonstrates
that the results obtained from Model-2 and Model-3 are
in good agreement by increasing a/h ratios and shows
that transverse displacement values decrease based on
increase of non-homogeneous coefficients. The results

show that Model-2 gives better accuracy in thin plates
(a/h=100) compared to other models whereas Model-1
gives better accuracy in thick plates (a/h=4). The in-
plane stress values of all models increase with the in-
creasing a/h ratios. Fig. 9 shows the variation of trans-
verse displacement versus a/b ratios for a/h ratio equal
to 10. It shows that the transverse displacement values
obtained by using Model-2 and Model-3 are in excellent
agreement for a/b ratio equal to 2 and shows that trans-
verse displacement values decrease with increasing of
non-homogeneous coefficients. Fig. 10 shows the varia-
tion of &, through the thickness of symmetric cross-ply
(0°/9009/90°/0°) square plate for a/h ratio equal to 4.
Figs. 11 and 12 contain similar plots of d,, and d,, for
a/b ratio of 1 and 3 and a/h ratio equal to 4. They show
that the stress values obtained by using Model-2 and
Model-3 decrease with the increasing of non-homogene-
ous coefficients.

Table 1. Non-dimensionalized deflections and stresses in four-layer cross-ply
(0/90/90/0) square laminates under sinusoidal transverse loads.

a/h Source w Oy ay Oxs Oy Oy
Elasticity 1.9540 0.7200 0.6630 0.2910 0.2920 0.0467
Zenkour 1.8937 0.6651 0.6322 0.2064 0.2389 0.0440
u=0.01 1.5899 0.6345 0.6033 0.1834 0.2106 0.0372

4 HSDT (present) 1.4858 0.7584 0.1116 0.3312 0.1325 0.0300
u=0.01 1.4698 0.7503 0.1110 0.3310 0.1324 0.0302
FSDT (present) 1.7101 0.4064 0.5410 0.3495 0.0785 0.0308
u=0.01 1.6917 0.4020 0.5361 0.3493 0.0784 0.0311
Elasticity 0.7430 0.5590 0.4010 0.3010 0.1960 0.0275
Zenkour 0.7147 0.5456 0.3888 0.2640 0.1531 0.0268
u=0.01 0.6049 0.5242 0.3711 0.2339 0.1352 0.0228

10 HSDT (present) 0.6046 0.5752 0.1634 0.3395 0.1358 0.0227
u=0.01 0.5981 0.5690 0.1624 0.3393 0.1357 0.0229
FSDT (present) 0.6632 0.4994 0.3647 0.4165 0.0517 0.0242
u=0.01 0.6560 0.4941 0.3614 0.4162 0.0516 0.0244
Elasticity 0.5170 0.5430 0.3080 0.3280 0.1560 0.0230
Zenkour 0.5060 0.5393 0.3043 0.2825 0.1234 0.0228
u=0.01 0.4310 0.5187 0.2918 0.2499 0.1096 0.0195

20 HSDT (present) 0.4751 0.5483 0.1710 0.3408 0.1363 0.0217
u=0.01 0.4700 0.5424 0.1700 0.3405 0.1362 0.0219
FSDT (present) 0.4916 0.5279 0.3108 0.4370 0.0435 0.0221
u=0.01 0.4863 0.5222 0.3079 0.4366 0.0434 0.0223
Elasticity 0.4385 0.5390 0.2760 0.3370 0.1410 0.0216
Zenkour 0.4343 0.5387 0.2708 0.2897 0.1117 0.0213
u=0.01 0.3713 0.5187 0.2605 0.2561 0.0995 0.0183

100 HSDT (present) 0.4334 0.5396 0.1734 0.3412 0.1365 0.0213
u=0.01 0.4288 0.5338 0.1724 0.3409 0.1364 0.0215
FSDT (present) 0.4341 0.5388 0.1741 0.4448 0.0403 0.0213
u=0.01 0.4295 0.5330 0.1731 0.4445 0.0403 0.0215

5.2. Example 2

A simply supported three-layered symmetric cross-
ply (09/909/09) non-homogeneous rectangular plate
subjected to sinusoidal transverse load is considered.
The layers have equal thickness. The numerical results of
transverse displacement and stresses for various side-
to-thickness ratios (a/h) and aspect ratio of 3 are given
in Table 2. The results show that the values obtained
from HSDT (present) and Zenkour and Fares (1999) dis-
play good agreement with increasing of a/h ratios. It is
understood from the results that, the deflection and
stresses diminish by increasing the non-homogeneity

coefficient. This results imply that the laminated compo-
site plate become more rigid due to inclusion of non-ho-
mogeneous elastic properties. The results show that the
error achieved by using the Model-3 is very large com-
pared to other models and the error reduces with in-
creasing of slenderness ratio (a/h). For a/h equal to 4,
10 and 20, Model-2 gives better result of in-plane stress
0, whereas Model-3 gives more accurate results of in-
plane shear stress than the other models for the above
side-to-thickness ratios. For very thin non-homogeneous
plates (a/h=100) Model-2 gives more accurate results of
0, and in-plane shear stress than the other models. Fig.
2 shows the variation of transverse displacements of
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non-homogeneous laminated square plate versus side-
to-thickness ratio and Fig. 3 shows the variation of trans-
verse displacement of non-homogeneous laminated
plate with aspect ratio for a/h=10. It can be seen from
these figures that the transverse displacement values de-
crease with increasing of a/h ratios and non-homogene-
ous coefficients for both Model-2 and Model-3, and these
values increase with increasing of a/b ratios for both
Model-2 and Model-3. The transverse displacement
value obtained by using Model-2 and Model-3 are in ex-
cellent agreement for a/h ratio of 10. It is understood

from Figs. 3, 5 and 7 that the effect of non-homogeneity
is substantial for rectangular plates due to high aspect
ratio, while it becomes less remarkable for symmetric
and antisymmetric square plates. Fig. 4 shows that the
discrepancy of in-plane stress g, between Model-2 and
Model-3 diminish by increasing of a/h ratio and Fig. 5
shows that the variation of in-plane stress d,, is minimum
for aspect ratio of 3 for both Model-2 and Model-3. Figs. 6
and 7 shows that the discrepancy of in-plane shear stress
between Model-2 and Model-3 diminish with increasing
of a/h and a/b ratios for side-to-thickness ratio of 10.

Table 2. Non-dimensionalized deflections and stresses in rectangular (a=3b),
three-layer cross-ply (0/90/0) laminates under sinusoidal transverse loads.

a/h Source w Oy Oy Oz Oy Tyy
Elasticity 2.8200 1.1000 0.1190 0.3870 0.0334 0.0281
Zenkour 2.6411 1.0356 0.1028 0.0348 0.2724 0.0263
u=0.01 2.2148 0.9884 0.0971 0.2414 0.0314 0.0221

4 HSDT (present) 3.1942 1.1541 0.0255 0.8522 0.1136 0.0154
u=0.01 3.1599 1.1417 0.0253 0.8515 0.1135 0.0155
FSDT (present) 2.3631 0.6095 0.0054 0.4698 0.0123 0.0205
p = 0.01 2.3378 0.6030 0.0054 0.4694 0.0123 0.0207
Elasticity 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123
Zenkour 0.8622 0.6924 0.0398 0.0170 0.2859 0.0115
u=0.01 0.7309 0.6664 0.0380 0.2531 0.0155 0.0098

10 HSDT (present) 0.9560 0.7121 0.0392 0.8951 0.1193 0.0095
u=0.01 0.9458 0.7045 0.0389 0.8944 0.1192 0.0096
FSDT (present) 0.8035 0.6204 0.0354 0.4735 0.0064 0.0105
u = 0.01 0.7949 0.6138 0.0351 0.4731 0.0064 0.0106
Elasticity 0.6100 0.6500 0.0299 0.4340 0.0119 0.0093
Zenkour 0.5937 0.6407 0.0289 0.0139 0.2880 0.0091
u=0.01 0.5073 0.6180 0.0278 0.2529 0.0128 0.0078

20 HSDT (present) 0.6177 0.6453 0.0413 0.9016 0.1202 0.0086
u=0.01 0.6111 0.6384 0.0410 0.9008 0.1201 0.0087
FSDT (present) 0.5789 0.6222 0.0403 0.4741 0.0054 0.0088
u=0.01 0.5727 0.6156 0.0400 0.4737 0.0054 0.0089
Elasticity 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083
Zenkour 0.5077 0.6240 0.0253 0.2886 0.0129 0.0083
u=0.01 0.4350 0.6024 0.0244 0.2555 0.0119 0.0071

100 HSDT (present) 0.5085 0.6238 0.0420 0.9037 0.1205 0.0083
u=0.01 0.5030 0.6171 0.0417 0.9029 0.1204 0.0084
FSDT (present) 0.5069 0.6228 0.0419 0.4743 0.0051 0.0083
u=0.01 0.5015 0.6162 0.0416 0.4739 0.0051 0.0084

5.3. Example 3 13 and 14 show that the results of critical buckling load

A simply supported three- and four-layered symmet-
ric cross-ply non-homogeneous rectangular plate sub-
jected to biaxial or uniaxial compressive load is consid-
ered. Tables 3 and 4 present the dimensionless critical
buckling loads of cross-ply square plates for orthotropy
ratios (E1/E2) and for various values of non-homogeneity
coefficient p. It can be seen that the present numerical
results of critical buckling loads for the homogeneous
(u=0) plates obtained through the present HSDT are in
good agreement with the corresponding results above.
The discrepancy between critical buckling loads pre-
dicted by FSDT and HSDT increases with increase of non-
homogeneity coefficients. The numerical results show
that the critical buckling loads increase with increasing
of the orthotropy ratio of individual layer and non-homo-
geneity coefficient. Furthermore, the number of layers
has not a significant effect on critical buckling loads. Figs.

obtained through the present theories are in good
agreement for orthotropy ratio of 16, and Tables 3 and
4 confirm that HSDT gives more accurate results than
FSDT compared to Three-dimensional elasticity solu-
tion and higher-order theory solution. Figs. 15-17 illus-
trate the variation of the dimensionless critical buckling
loads versus the plate side-to-thickness ratio and the
plate aspect ratio, respectively. It can be seen in corre-
sponding figures that the non-homogeneity effect is
more significant in thin (high side-to-thickness ratio)
laminated plates with high aspect ratio. This means that
the plate stability is strengthened with increasing these
ratios. Figs. 18 and 19 display the variation of the di-
mensionless critical buckling loads vs. compressing ra-
tio (k) for (0/90/0) and (0/90/90/0) square plates.
These figures represent that the non-homogeneity ef-
fect on the stability process is weak for high ratios of (k)
and a/h.
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Table 3. Non-homogeneity effects on the biaxial critical buckling loads
(N, = N_..a?/E,,h3) of (0/90/0) square plates (a/h=10, k=1).

- 1 = 0.00 1 = 0.02 1= 0.04
EUEGEL e FSDT HSDT FSDT HSDT FSDT HSDT
2 2.3640 2.9279 2.3076 2.9913 23576 3.0548 2.4076
10 4.9630 5.4722 5.0925 5.5908 5.2028 5.7094 53131
200 5.5160 7.9683 7.8343 8.1410 8.004 8.3136 8.1738
300 9.0560 9.5439 9.4369 9.7507 9.6414 9.9574 9.8459
40 10.2590 10.7091 108887  10.9411 11.1246 111732 11.3605

aThe lowest critical buckling occurs at mode numbers m=1, n=2, otherwise the critical buckling occurs at mode numbers m=1, n=1.

Table 4. The effect of the orthotropy on the uniaxial buckling load
(N, = N_.a?/Ey,h®) of cross-ply square plates (a/h=10, k=0).

- E1/E2
Source Lamination scheme 3 10 20 30 40
Putcha & Reddy 5.3933 9.9406 15.2980 19.6740 23.3400
Noor 5.3044 9.7621 15.0191 19.3040 22.8807
Zenkour 5.3899 9.8325 14.8896 18.8776 22.1207
u = 0.05 0/90/0 5.5635 10.0866 15.2113 19.2358 22.4985
HSDT (present) 5.3526 10.1849 16.2233 21.4351 25.9817
u = 0.05 5.6425 10.7366 17.1021 22.5962 27.389
FSDT (present) 6.5594 10.9445 15.9366 19.8796 23.0869
u = 0.05 6.9147 11.5373 16.7999 20.9564 24.3374
Reddy 5.1140 9.7770 15.2980 19.9570 23.3400
Noor 5.3040 9.7620 15.0190 19.3040 22.8810
HSDT (present) 0/90/90/0 5.3526 10.1849 16.2233 21.4351 25.9817
u = 0.05 5.6425 10.7366 17.1021 22.5962 27.389
FSDT (present) 6.5612 11.0325 16.2911 20.5926 24.2037
u = 0.05 6.9166 11.6301 17.1736 21.708 25.5147
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Fig. 2. Non-dimensional center deflection (w) versus side-to-thickness ratio of a (0/90/0) square plate

under sinusoidal load for various values of u.
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Fig. 3. Effect of the aspect ratio on the center deflection (w) of a (0/90/0) plate
under sinusoidal load for various values of u (a/h = 10).
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Fig. 6. Non-dimensional tangential stress (,, ) versus side-to-thickness ratio ofa (0/90/0) square plate

under sinusoidal load for various values of u.
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under sinusoidal load for various values of u (a/h = 10).
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Fig. 10. Variation of non-dimensional normal stress (7,) through the laminate thickness of a (0/90/90/0) square
plate under sinusoidal load for various values of u (a/h = 4).
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Fig. 11. Variation of non-dimensional normal stress (7,,) through the laminate thickness of a (0/90/90/0) square
plate under sinusoidal load for various values of u (a/h = 4).
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Fig. 12. Variation of non-dimensional normal stress (7,,,) through the laminate thickness of a (0/90/90/0) square
plate under sinusoidal load for various values of u (a/h = 4).
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Fig. 13. Effect of the orthotropy ratio on the biaxial critical buckling load of a (0/90/0) square plate
for various values of u (a/h = 10, k = 1).
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Fig. 14. Effect of the orthotropy ratio on the biaxial critical buckling load of a (0/90/90/0) square plate
for various values of u (a/h = 10, k = 1).
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Fig. 15. Effect of the side-to-thickness ratio on the axial critical buckling load of a (0/90/90/0) square plate
for various values of u (a/h = 10, k = 0).
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Fig. 16. Effect of the aspect ratio on the axial critical buckling load of a (0/90/0) plate
for various values of u (a/h = 10, k = 0).
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Fig. 17. Effect of the aspect ratio on the axial critical buckling load of a (0/90/90/0) plate
for various values of u (a/h = 10, k = 1).
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Fig. 18. Effect of the k (compression ratio) on the critical buckling load of a (0/90/0) square plate
for various values of u (a/h = 10).
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Fig. 19. Effect of the k (compression ratio) on the critical buckling load of a (0/90/90/0) square plate
for various values of u (a/h = 4).

6. Conclusions

Analytical solutions for the bending analysis of simply
supported laminated non-homogeneous composite
plates based on first and simplified-higher order theory
are presented. The displacement field of simplified-
higher order theory assumes that the in-plane rotation
tensor is constant through the thickness. For thin and
very thin non-homogeneous laminated plates the solu-
tion of the simplified-higher order theory (Model-2) is
found a good agreement with the elasticity solution and
percentage error with respect to elasticity solution is
much less compared to other shear deformation theories
used for comparison in this study. For thick non-homo-
geneous laminated plates the results of Model-1 is in
good agreement with the elasticity solution. The main
aim of this study is to reveal the accuracy of the various

Appendix A.

The elements Sj = S;i of the coefficient matrix [S]:

shear deformation theory for bending analysis of non-
homogeneous laminated plates.

The buckling problems of non-homogeneous rectan-
gular plates are investigated. Numerical results for the
critical buckling loads of symmetric cross-ply laminates
are predicted by both of first- and higher-order theories.
The effects of non-homogeneity, aspect ratio, side-to-
thickness ratio, compressing ratio and in-plane or-
thotropy ratio on critical buckling loads are illustrated.
The numerical results are compared with corresponding
results similar studies. The study concludes that the pre-
sent first- and higher-order theories predict reasonable
accuracy the buckling response of non-homogeneous
plates. Furthermore, the non-homogeneity, aspect ratio
and in-plane orthotropy ratio have a significant effect
on the stability process and buckling response of lami-
nates.

S11 = K(AssA?B? + Agapt®B?) , S12=0, Si3= K(Ass By + Asatt®By ) — ¢ (DssA?By + Dyatt®By)
S1a = KAB?Ass , Sis = Kup?Ass o Sy = 2*a?Dyy + 22212 a®(Dyp + 2Dg6) + p*aDy;

Sa3 = cidtayFyy + 2, A% 1P ay (Fip + 2Fge) + ciptayFy, , Spu = —AafDyy — Ap*af(Dyp + 2Dge) |

Sy5 = —22uaf (D, + 2Dgg) — 1P aBD,,

&
w
|

+ /12)/21455 + #2V2A44 ,

&
=
|

= cfA*Y?Hyy + 2¢A%uPy? (Hyp + 2Hge) + cfpy? Hyp + c5 (APY?Fss + 12y 2 Fuy) — 2¢,(A%Y?Dis + U2y ?Dys)

= —c;(BPByFy1 + AP By (Fi; + 2Fs) — ¢, ABYDss + KAByAss

S35 = —¢; (A2uBy(Fip + 2Fg6) + 1P BYFyz) — couPfyDyy + KupyAyy, |

Ssa = A*B?Dy; + u?B?Des + K% Ass

Sss = AuB?(D1; + Deg), Sss = U?B?Dyy + A2 B?Dgg + KB Ay
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and the elements Pj = P;ji of the coefficient matrix [P]:

Py =811+Lyy , P =8+,

P53 =513+ L3

Py =581 Pis =815, Py = S50 + Ly,

Py3 =Sy3+Lyz , Poy =524, Pos =So5 , P33 =833+ Las , P3yg =834, P35 =535 , Py = Sau,

Pys =S45 , Pss = Sss5 -

where
Ly, = NOAZBZ + kNoﬂzﬁz ,
Ly, = NoA?a? + kNyu2a?
mmx nmy 4 4

A== H=ETT L a=g35

L1, = NoA2af + kNyp2ap

L3 = NoA2ay + kNyu2ay

, Lz = Nolzﬁy + kNo.UZ.BV ,
, Lz = NOAZVZ + kNo.UZVZ ,

and K is shear correction factor and it is determined as 5/6 for FSDT.
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