
Ain Shams Engineering Journal 15 (2024) 102804

Available online 16 April 2024
2090-4479/© 2024 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Task planning and formal control of robotic assembly systems: A Petri
net-based approach

Gökhan Gelen a,*, Yasemin İçmez b

a Department of Mechatronics Engineering, Faculty of Natural Science, Architecture and Engineering, Bursa Technical University, Bursa, Türkiye
b Department of Electronics and Automation, Niksar Vocational School of Technical Sciences, Tokat Gaziosmanpasa University, Niksar, Tokat, Türkiye

A R T I C L E I N F O

Keywords:
Robotic assembly
Robot control
Robot programming
Petri nets
Formal control
Task planning

A B S T R A C T

In modern industrial production, robotic assembly systems play a crucial role. As robots take on more tasks, the
need for formal methods arises to define, control, and execute these tasks. This paper introduces a comprehensive
approach to designing and generating control code for robotic assembly systems, taking task sequence planning
into account. This methodology utilizes Petri nets (PNs) as a formal modeling and synthesis tool for the
controller. Initially, the task sequences for assembly operations are represented using PN formalism. Supervisors
are then synthesized for task sequence control specifications. Finally, the control code is obtained by the pro
posed methodology for industrial robots. By implementing this supervisory control structure, real-time control of
the robotic assembly system is achieved. Experimental studies were conducted using an assembly cell equipped
with an industrial robot. This methodology bridges the gap between the design and implementation of formal
controllers for industrial robots. The proposed approach integrates formal methods into robot programming to
leverage several advantages, including correctness assurance, complexity handling, improved documentation
and clarity, enhanced safety and reliability, property verification, and scalability.

1. Introduction

In today’s manufacturing systems, industrial robots are widely used
for putting parts together. This operation is called assembly and this type
of robot is named assembly robot which moves faster and with greater
precision than a human. The synthesis and implementation of control
structures for assembly operations are difficult issues involving assem
bly planning and task planning. To specify a feasible and optimal
sequence of required operations to assemble a product is denoted as
assembly planning. In addition to this, the translation of assembly plans
into robotic operations is called task planning [1,2]. Task planning deals
with sensory operations and motion planning of robots. As the number
and complexity of tasks performed by robots used in today’s assembly
processes increase, it is necessary to use formal methods for task
planning.

Formal methods provide a systematic approach to specifying, con
trolling, and implementing robotic tasks [3]. Finite State Automata
(FSA) and Petri nets (PN) are popular formal methods to control Discrete
Event Systems (DESs)[4]. Petri nets have some advantages over FSA: in a
Petri net model, the states of the system can be presented by the number
of tokens in places. However, in an automaton model, a different

automaton state must be used for each state of the system. Although the
number of tokens in PN places has increased, the Petri net model pro
vides more compact and simple models. FSA [5–7] and PN-based
methods [8–11] are preferred by the robotic community for the as
sembly and task planning, trajectory control, code analysis, and
verification.

A Petri net-based method for feedback controller design for a robotic
assembly cell was proposed by Moody et al [12]. By using this method,
the controllers can be easily synthesized by considering constraints and
incidence matrix. A framework is introduced for the modeling, analysis,
and execution of robot tasks based on Petri nets [3]. The control of an
autonomous mobile platform equipped with a manipulator is studied by
[13,14]. Petri nets are also used for multi-task, multi-robot control,
planning, and programming [15–17]. The mentioned works focus on the
design of a Petri net-based controller for solving the robot task sched
uling problem but do not consider the realization of the controller. After
obtaining the desired controller (supervisor) for the system, a control
code realization is required for the physical robot controller. Although
there are many ways [18–22] to convert PNs into code for program
mable logic controllers (PLCs), which are the main controllers of in
dustrial automation systems, efficient methods to convert PNs into robot

* Corresponding author.
E-mail addresses: gokhan.gelen@btu.edu.tr (G. Gelen), yasemin.icmez@gop.edu.tr (Y. İçmez).

Contents lists available at ScienceDirect

Ain Shams Engineering Journal

journal homepage: www.sciencedirect.com

https://doi.org/10.1016/j.asej.2024.102804
Received 20 August 2023; Received in revised form 12 November 2023; Accepted 3 April 2024

mailto:gokhan.gelen@btu.edu.tr
mailto:yasemin.icmez@gop.edu.tr
www.sciencedirect.com/science/journal/20904479
https://www.sciencedirect.com
https://doi.org/10.1016/j.asej.2024.102804
https://doi.org/10.1016/j.asej.2024.102804
https://doi.org/10.1016/j.asej.2024.102804
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asej.2024.102804&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ain Shams Engineering Journal 15 (2024) 102804

2

programming languages have not yet been studied.
The main contribution of this paper is to propose a methodology for

converting PN models into control code for industrial robots. This
method uses Petri nets and supervisory control theory as formal tools for
controller modeling and synthesis. Initially, the task sequence for the
assembly process is modeled using Petri net formalism. A supervisor is
then synthesized using a place invariant-based method considering task
control specifications. The obtained PN-based supervisory structure is
implemented to perform real-time control of robotic assembly cells. An
assembly cell consisting of a Mitsubishi Robot manipulator is used to
perform experimental studies.

The rest of the paper is organized as follows. The notations and basic
concepts about Petri nets and place invariant-based supervisor synthesis
methods are briefly reviewed in Section 2. In Section 3, the robotic as
sembly cell is introduced. PN model of the task sequence and supervisor
synthesis is presented in Section 4. The implementation methodology is
proposed in Section 5. In Section 6, the test applications carried out to
verify the obtained code are explained. Finally, some conclusions are
given in Section 6.

2. Background

In this work, Petri nets are used to model assembly system operation
and task sequence control specifications. A brief introduction about Petri
nets is presented here. For a detailed introduction to Petri nets in the
context of DES, see [4,23]. An ordinary Petri net comprises four com
ponents denoted N = (P,T, F,W), where P and T are finite, nonempty,
and distinct sets that represents the set of places and the set of transi
tions, respectively. The flow relation of the net, denoted by F is depicted
by arcs with arrows connecting places to transitions or transitions to
places. W is a mapping that assigns a weight to each arc. Ordinary Petri
nets do not incorporate actuators or sensors. Consequently, it becomes
essential to define a controller based on Petri nets that can encompass
both actuators and sensors within an extended Petri net framework
known as Automation Petri Net (APN). In APN, sensor readings can
serve as firing conditions for transitions. The presence or absence of
sensor readings can be combined with extended Petri net preconditions
to trigger transitions. Formally, an APN can be described as follows:

APN = (N,X,Q,M0) (1)

where,
N = (P, T, F, W) is a Petri net,
X = {χ1, χ2, ..., χm} is the set of firing conditions associated with the

transitions,
Q = {q1, q2, ..., qn} is the set of actions that might be assigned to the

places,
M0 : P→N is the initial marking.
An APN is graphically represented by using circles for places, squares

for transitions, and black dots for tokens as shown in Fig. 1. The number
of tokens present in places reflects the current system state, while
transitions represent events. Each transition has a set of input and output
places, representing the preconditions and post-conditions of the tran
sition. In the APN, firing conditions (represented by the variable χ) are
considered external events, such as sensor readings. A firing condition is
a Boolean variable that can take the value 1 or 0 indicating that the
transition should or should not be triggered. The APN’s marking illus
trates how tokens are distributed in each place. The progress of the APN
is characterized by the transfer of tokens between places, which happens
when enabled transitions are triggered. In this paper, APN is used to
model the task sequence of a robot for assembly operation in the system.

The concept of place invariants (PIs) based supervisor computation
method is briefly reviewed here. For more information, consult a stan
dard reference such as [24]. The system to be controlled is modeled by a
Petri net N with n places and m transitions. Let [N] be the incidence
matrix of the plant net N. The supervisor consists of the transitions of the

plant net and a set of control places, whose incidence matrix is denoted
as [Ns]. The controlled net with the incidence matrix [Nc] consists of
both the original plant net and the supervisor. The control goal is to
enforce the plant net to satisfy the following constraint

∑n

i=1
li.μi⩽β (2)

where μi denotes the marking of place pi, and li and β are non-negative
integer constants. After the introduction of a non-negative slack vari
able μc, the above constraint can be transformed as follows:

∑n

i=1
li.μi + μc = β (3)

where μi denotes the marking of control place pc. All constraints can be
grouped as follows,

[L].μp⩽b (4)

where μp is the marking vector of the plant net, [L] is an nc × n integer
matrix, b is an nc × 1 integer vector, and nc is the number of the con
straints. All PIs can be rewritten as follows:

[L].μp + μs = b (5)

where μs is an nc × 1 integer vector, representing the marking of the
control places. Finally, given a plant Petri net [N] and the constraints [L]
and b, the supervisor [Ns] can be computed as follows:

[Ns] = − [L].[N] (6)

The initial marking of the supervisor μs0 is calculated as follows:

μs0 = b − [L].μp0 (7)

where μp0 is the initial marking of the plant net N.

Fig. 1. An automation Petri net (APN) model.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

3

3. Robotic assembly system

A robotic assembly system [25] produced by FESTO Didactic con
sisting of a Mitsubishi RV-2SDB Robot is considered in experimental
studies. This cell produces a small pneumatic cylinder as an assembled
good consisting of a body, piston, spring, and cover. The block diagram
of the robotic assembly cell is illustrated in Fig. 2.a. In this setup, cyl
inder bodies can have one of three colors: black, red, or metallic, and,
pistons can be two types black or metal. If the body color is red or
metallic, then the piston must be black; on the opposite, if the body is
black, the piston must be metallic as shown in Fig. 2.b.

The bodies of the pneumatic cylinders are fed to the robot via an
input slide. The availability of a body in the input slide is sensed by an
infrared sensor. The robot carries the body from the input slide to color
test area and determines the color via color sensor mounted to the
gripper. Then, the body is moved to the orientation test point. After the
orientation test, body is placed in the assembly holder in the correct
orientation. The robot takes the piston from the pallet and placed it into
the body. The piston springs and the cylinder caps are fed to the robot
from controlled magazines. The fully assembled pneumatic cylinder is
then placed on the output slide. The control of the robot and other pe
ripherals is performed by a CR1-571 robot controller located in the as
sembly station. Melfa Basic language and RT Toolbox program is used to
code robot. Fig. 3 shows the all system connections.

4. Modelling of assembly task sequences and synthesis of
supervisors

In this section, the APN model of assembly task sequences and syn
thesis of supervisors are presented. The required operations for assem
bling are classified into seven different tasks. These assembly tasks are
labeled as TASKi (i = 1,2, …, 7) and tabulated in Table 1. The APN
model of assembly task sequence is presented in Fig. 4. Tasks are
assigned to places of the APN as actions. If there is a token in the action
assigned place, this means that the assigned task will be performed.
When the task is completed, the token is removed from the place. The
meaning of places and firing conditions of transitions are provided in
Table 2 and Table 3. In the APN model, there are 12 places labeled as p1,
p2, …, p12 and 10 transitions labeled as t1, t2, …, t10. Initially, there
are four black and four metal pistons, eight springs, and eight covers in
the system. The number of tokens in p9, p10, p11, and p12 places rep
resents the number of black pistons, metal pistons, and capacities of
spring and cover magazines, respectively.

If a cylinder body is detected, i.e. χ1 = part_av = 1, the transition t1

fires, and a token is deposited into p1. While a token is placed in p1, the
assigned action, i.e. TASK1, starts to run. In TASK1, robot picks a body
from the input slide and places in the color test area. If there is a token in
p1 and then the TASK1 is finished, i.e. χ2 = tsk1_fnsh = 1, transition t2
fires by removing the token from p1 and by depositing a token in p2.
This means that there is a token in p2 and the assigned action TASK2
starts to run. The color and orientation tests are performed and the body
is placed in the assembly holder as TASK2, If the color of the body is
metal or red the variable CYLTYPE is set to zero, if the color of the
cylinder body is black the variable CYLTYPE is set to one. If there is a
token in p2 and then the TASK2 is finished, transition t3 fires by
removing the token from p2 and by depositing a token in p3. This means
that there is a body in the assembly holder and it is ready for assembling.
When there is a token in place p3, transitions t4 or t5 can be fired by
considering firing conditions and the number of tokens in the places p9
and p10. If the transition t4 fires, the token in p3 and a token from p9 is
removed and a token is added to p4. A token in p4 means that TASK3
starts to run. By TASK3, a black piston is taken from the pallet and
placed in the body; on the contrary, if the transition t5 fires, a token is
transferred to p5 and TASK4 starts to run, i.e. a metal piston is taken
from the pallet and placed in the body. For the rest of the model, token
flow occurs similarly and related robotic tasks are operated sequentially.
For the remainder of the model, token flow occurs similarly to the
number of tokens and trigger conditions at the entry sites. Several
constraints must be imposed by the controller to ensure physical limi
tations are obeyed. In this work, five constrained called control speci
fications are considered and tabulated in Table 4.

The computation of control places for the above specifications is
performed by using the place invariant-based method that is explained
in Section 2. A separate supervisory structure (control place and related
arcs) will be calculated for each of the control specifications. The inci
dence matrix and initial marking used in each calculation are the same
for the APN model shown in Fig. 4. The incidence matrix [N] of any Petri
net is a matrix where its rows represent places, and its columns represent
transitions within the Petri net. The entry at position (i, j) of the matrix
indicates the relationship between place i and transition j. A value of 1
signifies an arc from transition j to place i (tj→pi) and − 1 signifies an arc
from place i to transition j (pi→tj). If there is no direct connection be
tween place i and transition j, the entry at position (i, j) is equal to 0. The
incidence matrix [N] of the plant APN model is as follows:

Fig. 2. A) block diagram of the assembly station. b) assembly sequence of the cylinder’s parts.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

4

[N] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 − 1 0 0 0 0 0 0 0 0
0 +1 − 1 0 0 0 0 0 0 0
0 0 +1 − 1 − 1 0 0 0 0 0
0 0 0 +1 0 − 1 0 0 0 0
0 0 0 0 +1 0 − 1 0 0 0
0 0 0 0 0 +1 +1 − 1 0 0
0 0 0 0 0 0 0 +1 − 1 0
0 0 0 0 0 0 0 0 +1 − 1
0 0 0 − 1 0 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0 0
0 0 0 0 0 − 1 − 1 0 0 0
0 0 0 0 0 0 0 − 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A column of incidence matrix indicates that firing of j-th transition. For

example, the second column of matrix [N], indicates that firing of
transition t2 consists of removing a token from place p1 and adding a
token to place p2. The initial marking in a Petri net represents the
number of tokens in each place at the beginning of the system’s opera
tion. The initial marking is typically depicted as a vector or a set of
values that correspond to each place in the Petri net. Each value in the
vector represents the number of tokens in the corresponding place when
the system begins its operation. For APN model depicted in Fig. 4, the
number of tokens in places are μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0,
μ6 = 0, μ7 = 0, μ8 = 0, μ9 = 4, μ10 = 4, μ11 = 8, and μ12 = 8 where μi is
the number of tokens in place pi. The initial marking vector µp0 μp0 of the
plant APN model is as follows:

μp0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ1
μ2
μ3
μ4
μ5
μ6
μ7
μ8
μ9
μ10
μ11
μ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0
0
4
4
8
8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For the first specification, there is only one robot available for the as
sembly operation, thus only one task can be performed at any given
time. Robotic tasks are assigned to places p1, p2, p4, p5, p6, p7, and p8
of the APN model shown in Fig. 4. If the related places are considered,
the total number of tokens in these places should be less than or equal to
one token. This place invariant can be written in the inequality form as
μ1 + μ2 + μ4 + μ5 + μ6 + μ7 + μ8⩽1. Considering equation (4), the
inequality belonging to first control specification
μ1 +μ2 +μ4 +μ5 +μ6 +μ7 +μ8⩽1 can be converted to L1 vector as follows
and b is 1 for this constraint.

L1 = [1 1 0 1 1 1 1 1 0 0 0 0]

The incidence matrix of control place C1 that provides the first control
specification can be calculated by using Equations (6). According to
Equation (6),

[Ns] = − [L].[N]

By substituting the vector [L] and the incidence matrix [N] into equation
(6)

the incidence matrix of the control place C1 is obtained as follows

[Ns] = [− 1 0 +1 − 1 − 1 0 0 0 0 +1]

The initial marking of control place C1 can be calculated using Equa
tions (7). According to Equation (7),

μs0 = b − [L].μp0

By substituting the vector [L] and the initial marking vector μp0, initial
marking of C1 place is computed as follows

μs0 = 1 − [1 1 0 1 1 1 1 1 0 0 0 0].

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0
0
4
4
8
8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1

The [Ns] vector is the incidence matrix of the C1 control place. As can be
seen from the vector, t3, and t10 are the input transition of C1, and t4
and t5 are the output transitions of C1. C1 has one token as initial
marking. The PN representation of this control place is depicted in Fig. 5.

The computation of control places for the other control specifications
can be performed as computation of the first CP by following the above
steps. All control specifications are expressed as place invariants, and
these invariants are written in the form of inequalities. The created place
invariants for each specification are converted to vectors, and control
places are calculated using Equation (6) and Equation (7). Place In
variants for specification, related vectors for computations, obtained
Incidence matrix, initial markings, and control places are presented in
Table 5. The final closed-loop (controlled) model for the task sequence

[Ns] = − [1 1 0 1 1 1 1 1 0 0 0 0].

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 − 1 0 0 0 0 0 0 0 0
0 +1 − 1 0 0 0 0 0 0 0
0 0 +1 − 1 − 1 0 0 0 0 0
0 0 0 +1 0 − 1 0 0 0 0
0 0 0 0 +1 0 − 1 0 0 0
0 0 0 0 0 +1 +1 − 1 0 0
0 0 0 0 0 0 0 +1 − 1 0
0 0 0 0 0 0 0 0 +1 − 1
0 0 0 − 1 0 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0 0
0 0 0 0 0 − 1 − 1 0 0 0
0 0 0 0 0 0 0 − 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

5

of the robotic assembly system is obtained by coupling all computed CPs
to the APN model as shown in Fig. 6.

5. The implementation methodology

The implementation methodology employed in this approach utilizes
the concept of tokens from Petri nets as the primary mechanism for
controlling the flow of the control logic. Each place in the Petri net
corresponds to a variable in the robot language. To emulate the behavior
of tokens in the Petri net, the implementation maps actions in the Petri
net places to conditional subroutine calls in the robot program. When
ever a transition in the Petri net involves the movement of tokens, a
simulated movement of tokens between variables is performed. To
achieve this simulated token movement, separate variables are assigned
to each place in the robot program. During the execution of the robot
program, these variables are incremented or decremented to simulate
the flow of tokens within the Petri net.

The state of these variables reflects the current state of the control
logic and helps guide the robot’s actions and decisions. By adopting this
approach, the control logic of the robot system is structured using Petri

net concepts, enabling a clear mapping between Petri net elements and
robot programming elements. The use of simulated token movement
through dedicated variables facilitates the coordination of actions, de
cisions, and transitions within the control logic, enhancing the control
capabilities of the robot. By changing the values of these variables, the
program can emulate the movement of tokens between different states
of the system. The firing conditions of transitions are considered as
sensor readings from inputs of controllers and some events that are used
for detecting the end of the related task subroutine. It is essential to
arrange the MELFA BASIC code for the robot in the following order to
ensure proper functioning: first, the variable definitions and initial
marking is written; next, the actions are implemented by calling related
task subroutines. After this, the transition mechanism of APN is coded by
considering related firing conditions, and finally, the task-finished data
are reset. As mentioned before, the task-finished data are used as firing
conditions and are generated in the related subroutine by setting tsk_fns
variables to “1″. The task-finished data must be reset at the bottom of the
main program to re-detection of task finishing. The program organiza
tion for the proposed implementation methodology is presented in
Fig. 7.

A simple APN model shown in Fig. 8 is considered to explain the
proposed implementation methodology. In this APN, there are a place
p1 and two transitions t1 and t2. It is assumed that a sample robotic task
is assigned to place p1. The firing conditions of transitions t1 and t2 are
χ1 and χ2, respectively. It is assumed that χ1 is an external event (sensor
information) and χ2 is an event related to task finish data of the task
subroutine. Initially, it is assumed that there is no token in the place p1.
If the firing condition χ1 occurs, t1 can be fired and a token is deposited
to place p1. While there is a token in place p1 and the firing conditions
χ2 occurs, in this case, the transition t2 can be fired and the token is
removed from place p1.

The MELFA BASIC code implementation of the sample APN model is
shown in Appendix A. In the obtained code, variables are defined in lines
between 1 and 4. In lines 6 and 7, initial values are assigned to related
variables. A loop is created between lines 8 and 23 by using the “Start”
label and “GoTo Start” command. In the model, there is only one action
assigned to place p1. In line 11, the TASK1 subroutine is called by using

Fig. 3. Schematic of the system.

Table 1
List of robotic tasks.

Task Explanations

TASK
1

A body is picked from the input slide and placed in the color test area

TASK
2

The body is placed in the assembly holder after color and orientation tests.

TASK
3

A black piston is taken from the pallet and placed in the body

TASK
4

A metal piston is taken from the pallet and placed into the body

TASK
5

A spring is taken from the spring magazine and placed into a body

TASK
6

A cover is taken from the cover magazine and assembled to the body after
the orientation test.

TASK
7

A finished part is placed on the output slide.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

6

the “GoSub” code if there is a token in p1 i.e. P1 = 1. The transitions of
APN are implemented between lines 11 and 19. The “T1_FNS” data are
reset, i.e. T1_FNS = 0 in line 21 for re-detection of the task finished of the
TASK1 subroutine. After this code block, the TASK1 subroutine should
be implemented. As shown in the code, in the task subroutine firstly the

T1_FNS data should reset, i.e. T1_FNS = 0, and at the end of this sub
routine, this data should be set i.e. T1_FNS = 1. The validation of this
sample code is tested by using sample input–output assignments. By
using a PC software called ‘‘RT ToolBox2’’, this code was programmed
on a robot controller. Test results show that the obtained code fully
reflects the functions of the APN model.

6. Applications and tests

The controlled APN model of the robotic assembly cell shown in
Fig. 6 is implemented on the robot controller using the above proced
ures. The obtained robot code can be verified by timing diagrams
showing the occurrence of tasks. To perform the verification process,
some assembly scenarios that take into account control specifications
are created and the related data in the robotic assembly system is
accused to draw a timing diagram. In the graphs, the vertical axis dis
plays the status of task execution, while the horizontal axis represents
time in seconds. In the first scenario, the bodies of red, black, and
metallic colors are sequentially placed into the system. The addition of
each body is performed while waiting for the assembly of the other
bodies to be completed. The timing diagram belongs to the part avail
able sensor that detects a body at the input and activities of the tasks
during the experiment is presented in Fig. 9. As a result of this experi
ment, it is observed that all the bodies are successfully assembled. In
addition, it can be seen from the timing diagram that there is no active
task at the same time, so only one task occurs at any given time during
assembly. This verifies that the computed controller structure satisfies

Fig. 4. APN model of the robotic task sequence.

Table 2
Meaning of places and assigned tasks.

Places Assigned action (task) or meaning

p1 TASK1
p2 TASK2
p3 A base is in the assembly holder and ready for assembling
p4 TASK3
p5 TASK4
p6 TASK5
p7 TASK6
p8 TASK7
p9 The number of black pistons in the pallet (max. cap. 4)
p10 The number of metal pistons in the pallet (max. cap 4)
p11 The number of springs in the magazine (max. cap. 8)
p12 The number of covers in the magazine (max. cap. 8)

Table 3
Transitions and firing conditions.

Trans. Firing conditions Explanations

t1 χ1={Part_Av = 1} A cylinder is available at the input.
t2 χ2 = tsk1_fnsh TASK1 is finished.
t3 χ3 = tsk2_fnsh TASK2 is finished.
t4 χ4={CYLTYPE = 0} The color of the cylinder is metal or red.
t5 χ5={CYLTYPE = 1} The color of the cylinder is black.
t6 χ6 = tsk3_fnsh TASK3 is finished.
t7 χ7 = tsk4_fnsh TASK4 is finished.
t8 χ8 = tsk5_fnsh TASK5 is finished.
t9 χ9 = tsk6_fnsh TASK6 is finished.
t10 χ10 = tsk7_fnsh TASK7 is finished.

Table 4
Control specifications for assembly.

#SPEC Explanation

1 There is only one robot available for the assembly operation, thus only one
task can be performed at any given time.

2 The capacity of the assembly holder is one-cylinder body. Therefore, it can
be only one part can be assembled at any time

3 It can be used only one type of piston (metal or black) in the same assembly
operation because of assembly holder capacity.

4 If there is no available black piston, a new cylinder body should not be put
into operation.

5 If there is no available metallic-colored piston, a new cylinder body should
not be put into operation.

Fig. 5. PN representation of this control place C1.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

7

Table 5
Place invariants and computed control places (CP).

CP Place Invariants and related vectors for computation Obtained Incidence matrix [Ns], initial markings μs0, and Control Places

C2 μ1 + μ2 + μ3 + μ4 + μ5 + μ6 + μ7 + μ8⩽1L2 = [1 1 1 1 1 1 1 1 0 0 0 0]b2 = 1
[Ns] = [− 1 0 0 0 0 0 0 0 0 +1]

μs0 = b2 − [L2].μp0 = 1

C3 μ4 + μ5⩽1L3 = [0 0 0 1 1 0 0 0 0 0 0 0]b3 = 1
[Ns] = [0 0 0 − 1 − 1 1 1 0 0 0]

μs0 = b3 − [L3].μp0 = 1

C4 μ1 − μ9⩽0L4 = [1 0 0 0 0 0 0 0 − 1 0 0 0]b4 = 0
[Ns] = [− 1 1 0 − 1 0 0 0 0 0 0]

μs0 = b4 − [L4].μp0 = 4

C5 μ1 − μ10⩽0L5 = [1 0 0 0 0 0 0 0 0 − 1 0 0]b5 = 0 [Ns] = [− 1 1 0 0 − 1 0 0 0 0 0]

μs0 = b5 − [L5].μp0 = 4

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

8

the first specification i.e., only one task can be performed at any given
time.

To test the second control specification (SPEC2), a new body is
placed into the system while the assembly of the previous one has not
been completed. As can be seen in Fig. 10, the robot does not pick the
new part before completing the required tasks for the existing assembly.
Therefore, only one part is assembled at any given time.

According to SPEC3, one piston type (metal or black) should be used
in the same assembly operation, i.e., only one of Task 3 or Task 4 should
be active during any assembly operation. This means that Task 3 and
Task 4 cannot be active simultaneously. Fig. 9 presents a timing diagram
for the assembly of red, black, and metallic parts. As seen in the figure,
only one of Task 3 or Task 4 is executed during the assembly of each
part. Four red-bodied products were assembled in the cell to use up all

the black pistons on the piston pallet. As there is no piston to be mounted
for the new body added to the system after the fourth body, a new
cylinder body should not be put into operation by the robot as stated in
SPEC 4. In the timing diagram shown in Fig. 11, TASK1 is not operated
for the new body added to the system after the assembly of the 4th part is
completed, that is, the robot does not process the new part. A similar
scenario has been tested for the black body and metallic-colored piston
(Fig. 12) and it has been seen that in case there is no available metallic-
colored piston, a new cylinder body should not be put into operation. It
is observed that the computed control places and generated code pro
vide the desired behavior. The supplementary materials include ani
mation videos demonstrating considered scenarios created with the
CIROS Studio FESTO program.

Fig. 6. The controlled model for the task sequence.

Fig. 7. Program organization for the proposed implementation methodology.

Fig. 8. A sample APN.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

9

Fig. 9. Timing diagram for the first assembly scenario.

Fig. 10. Timing diagram for the second assembly scenario.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

10

7. Conclusions

This paper introduces a novel approach for obtaining control codes
for industrial robots by employing supervisory control theory and Petri
nets. The proposed methodology offers a general framework, allowing
the computation of control places (supervisors) based on the task
sequence model and control constraints. To demonstrate the effective
ness of this implementation approach, an experimental assembly cell
featuring an industrial robot has been used. The results showed that the
robotic assembly cell achieved excellent performance under the pro
posed control strategy. In practical terms, incorporating a Petri net su
pervisor into a robot controller allows for the utilization of formal
methods in robot programming. By employing this approach, the pro
gramming process becomes more systematic and rigorous, following

established principles of formal methods. This brings several benefits to
the development and maintenance of robot systems. Additionally, the
code becomes more comprehensible and modifiable if necessary. This
paper primarily focuses on high-level control, where the supervisor’s
role involves coordinating robotic tasks. Future research will concen
trate on investigating low-level control, in which the supervisor or
chestrates interactions between control devices and tasks.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 11. Timing diagram for the third assembly scenario.

Fig. 12. Timing diagram for the fourth assembly scenario.

G. Gelen and Y. İçmez

Ain Shams Engineering Journal 15 (2024) 102804

11

Appendix A:. MELFA BASIC code for simple APN model presented in Fig. 10

.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.asej.2024.102804.

References

[1] Alatartsev S, Stellmacher S, Ortmeier F. Robotic task sequencing problem: a survey.
J Intell Robot Syst 2015;80:279–98. https://doi.org/10.1007/s10846-015-0190-6.

[2] Rosell J. Assembly and task planning using petri nets: a survey. Proc Inst Mech Eng
B J Eng Manuf 2004;218:987–94. https://doi.org/10.1243/0954405041486019.

[3] Costelha H, Lima P. Robot task plan representation by petri nets: modelling,
identification, analysis and execution. Auton Robot 2012;33:337–60. https://doi.
org/10.1007/s10514-012-9288-x.

[4] Cassandras CG, Lafortune S. Introduction to discrete event systems. Cham: Springer
International Publishing; 2021. DOI: 10.1007/978-3-030-72274-6.

[5] Deplano D, Franceschelli M, Ware S, Rong S, Giua A. A discrete event formulation
for multi-robot collision avoidance on pre-planned trajectories. IEEE Access 2020;
8:92637–46. https://doi.org/10.1109/ACCESS.2020.2994472.

[6] Hussain R, Zielinska T, Hexel R. Finite state automaton based control system for
walking machines. Int J Adv Rob Syst 2019;16. https://doi.org/10.1177/
1729881419853182. 1729881419853182.

[7] Tatsumoto Y, Shiraishi M, Cai K, Lin Z. Application of online supervisory control of
discrete-event systems to multi-robot warehouse automation. Control Eng Pract
2018;81:97–104. https://doi.org/10.1016/j.conengprac.2018.09.003.

[8] Da Mota FAX, Rocha MX, Rodrigues JJPC, De Albuquerque VHC, De
Alexandria AR. Localization and navigation for autonomous mobile robots using
petri nets in indoor environments. IEEE Access 2018;6:31665–76. https://doi.org/
10.1109/ACCESS.2018.2846554.

[9] Figat M, Zieliński C. Methodology of designing multi-agent robot control systems
utilising hierarchical petri nets. International Conference on Robotics and
Automation (ICRA) 2019;2019:3363–9. https://doi.org/10.1109/
ICRA.2019.8794201.

[10] Figat M, Zieliński C. Robotic system specification methodology based on
hierarchical petri nets. IEEE Access 2020;8:71617–27. https://doi.org/10.1109/
ACCESS.2020.2987099.

[11] Lacerda B, Lima PU. Petri net based multi-robot task coordination from temporal
logic specifications. Rob Auton Syst 2019;122:103289. https://doi.org/10.1016/j.
robot.2019.103289.

[12] Moody JO, Antsaklis PJ. Petri net supervisors for DES with uncontrollable and
unobservable transitions. IEEE Trans Autom Control 2000;45:462–76. https://doi.
org/10.1109/9.847725.

[13] Filipescu A, Petrea G, Filipescu A, Filipescu S. Modeling and control of a
mechatronics system served by a mobile platform equipped with manipulator.
Proceedings of the 33rd Chinese Control Conference, Nanjing, China: IEEE; 2014,
p. 6577–82. DOI: 10.1109/ChiCC.2014.6896078.

[14] Filipescu A, Mincă E, Filipescu A, Coandă H-G. Manufacturing technology on a
mechatronics line assisted by autonomous robotic systems, robotic manipulators
and visual servoing systems. Actuators 2020;9:127. https://doi.org/10.3390/
act9040127.

[15] Caloini A, Magnani G, Pezze M. A technique for designing robotic control systems
based on petri nets. IEEE Trans Contr Syst Technol 1998;6:72–87. https://doi.org/
10.1109/87.654878.

[16] Yasuda G. Implementation of Distributed Control Architecture for Multiple Robot
Systems Using Petri Nets. In: Pawlewski P, editor. Petri Nets - Manufacturing and
Computer Science, InTech; 2012. DOI: 10.5772/50577.

[17] Ziparo VA, Iocchi L, Lima PU, Nardi D, Palamara PF. Petri net plans: a framework
for collaboration and coordination in multi-robot systems. Auton Agent Multi-
Agent Syst 2011;23:344–83. https://doi.org/10.1007/s10458-010-9146-1.

[18] Azkarate I, Ayani M, Mugarza JC, Eciolaza L. Petri net-based semi-compiled code
generation for programmable logic controllers. Appl Sci 2021;11:7161. https://
doi.org/10.3390/app11157161.

[19] Gelen G, Uzam M. The synthesis and PLC implementation of hybrid modular
supervisors for real time control of an experimental manufacturing system. J Manuf
Syst 2014;33:535–50. https://doi.org/10.1016/j.jmsy.2014.04.008.

[20] Hellgren A, Fabian M, Lennartson B. On the execution of sequential function
charts. Control Eng Pract 2005;13:1283–93. https://doi.org/10.1016/j.
conengprac.2004.11.011.

[21] Moreira MV, Basilio JC. Bridging the gap between design and implementation of
discrete-event controllers. IEEE Trans Automat Sci Eng 2014;11:48–65. https://
doi.org/10.1109/TASE.2013.2281733.

[22] Uzam M, Gelen G. The real-time supervisory control of an experimental
manufacturing system based on a hybrid method. Control Eng Pract 2009;17:
1174–89. https://doi.org/10.1016/j.conengprac.2009.05.004.

G. Gelen and Y. İçmez

https://doi.org/10.1016/j.asej.2024.102804
https://doi.org/10.1007/s10846-015-0190-6
https://doi.org/10.1243/0954405041486019
https://doi.org/10.1007/s10514-012-9288-x
https://doi.org/10.1007/s10514-012-9288-x
https://doi.org/10.1109/ACCESS.2020.2994472
https://doi.org/10.1177/1729881419853182
https://doi.org/10.1177/1729881419853182
https://doi.org/10.1016/j.conengprac.2018.09.003
https://doi.org/10.1109/ACCESS.2018.2846554
https://doi.org/10.1109/ACCESS.2018.2846554
https://doi.org/10.1109/ICRA.2019.8794201
https://doi.org/10.1109/ICRA.2019.8794201
https://doi.org/10.1109/ACCESS.2020.2987099
https://doi.org/10.1109/ACCESS.2020.2987099
https://doi.org/10.1016/j.robot.2019.103289
https://doi.org/10.1016/j.robot.2019.103289
https://doi.org/10.1109/9.847725
https://doi.org/10.1109/9.847725
https://doi.org/10.3390/act9040127
https://doi.org/10.3390/act9040127
https://doi.org/10.1109/87.654878
https://doi.org/10.1109/87.654878
https://doi.org/10.1007/s10458-010-9146-1
https://doi.org/10.3390/app11157161
https://doi.org/10.3390/app11157161
https://doi.org/10.1016/j.jmsy.2014.04.008
https://doi.org/10.1016/j.conengprac.2004.11.011
https://doi.org/10.1016/j.conengprac.2004.11.011
https://doi.org/10.1109/TASE.2013.2281733
https://doi.org/10.1109/TASE.2013.2281733
https://doi.org/10.1016/j.conengprac.2009.05.004

Ain Shams Engineering Journal 15 (2024) 102804

12

[23] Uzam M, Jones AH. Discrete event control system design using automation petri
nets and their ladder diagram implementation. Int J Adv Manuf Technol 1998;14:
716–28. https://doi.org/10.1007/BF01438224.

[24] Hrúz B, Zhou M. Modeling and control of discrete-event dynamical systems: with
petri nets and other tool. London: Springer; 2007.

[25] Ebel F, Ersoy M, Pensky D. Robot station with MPS modules. 73770. Denkendorf,
Germany: Festo Didactic GmbH & Co. KG,; 2015.

Gökhan GELEN received the B.Sc. degree in electrical and
electronics engineering from İnönü University, Malatya,
Turkey, 2003. He received the M.Sc. and Ph. D. degrees from
Nigde University, Nigde, Turkey, 2006 and 2010, respectively.
He was with Nigde University, from 2004 to 2011. He was with
Gaziosmanpaşa University, Turkey, from 2011 to 2015. He is
currently an Assocciated Professor in the Department of
Mechatronics Engineering, at Bursa Technical University,
Bursa, Turkey, since 2015. His research interests include design
and implementation of Supervisory controller for Discrete
Event Control Systems.

Yasemin İçmez received the B.Sc. degree in electrical and electronics engineering from
Karadeniz Technical University, Trabzon, Turkey, 2012. She received the M.Sc. degree
from Tokat Gaziosmanpaşa University, Tokat, Turkey, 2015. She is currently pursuing a
Ph.D. degree in Electrical and Electronics Engineering at Tokat Gaziosmanpaşa University.
Her research interests include control an automation systems.

G. Gelen and Y. İçmez

https://doi.org/10.1007/BF01438224
http://refhub.elsevier.com/S2090-4479(24)00179-5/h0120
http://refhub.elsevier.com/S2090-4479(24)00179-5/h0120
http://refhub.elsevier.com/S2090-4479(24)00179-5/h0125
http://refhub.elsevier.com/S2090-4479(24)00179-5/h0125

	Task planning and formal control of robotic assembly systems: A Petri net-based approach
	1 Introduction
	2 Background
	3 Robotic assembly system
	4 Modelling of assembly task sequences and synthesis of supervisors
	5 The implementation methodology
	6 Applications and tests
	7 Conclusions
	Declaration of competing interest
	Appendix A: MELFA BASIC code for simple APN model presented in Fig. 10
	Appendix B Supplementary data
	References

