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A B S T R A C T   

In modern industrial production, robotic assembly systems play a crucial role. As robots take on more tasks, the 
need for formal methods arises to define, control, and execute these tasks. This paper introduces a comprehensive 
approach to designing and generating control code for robotic assembly systems, taking task sequence planning 
into account. This methodology utilizes Petri nets (PNs) as a formal modeling and synthesis tool for the 
controller. Initially, the task sequences for assembly operations are represented using PN formalism. Supervisors 
are then synthesized for task sequence control specifications. Finally, the control code is obtained by the pro
posed methodology for industrial robots. By implementing this supervisory control structure, real-time control of 
the robotic assembly system is achieved. Experimental studies were conducted using an assembly cell equipped 
with an industrial robot. This methodology bridges the gap between the design and implementation of formal 
controllers for industrial robots. The proposed approach integrates formal methods into robot programming to 
leverage several advantages, including correctness assurance, complexity handling, improved documentation 
and clarity, enhanced safety and reliability, property verification, and scalability.   

1. Introduction 

In today’s manufacturing systems, industrial robots are widely used 
for putting parts together. This operation is called assembly and this type 
of robot is named assembly robot which moves faster and with greater 
precision than a human. The synthesis and implementation of control 
structures for assembly operations are difficult issues involving assem
bly planning and task planning. To specify a feasible and optimal 
sequence of required operations to assemble a product is denoted as 
assembly planning. In addition to this, the translation of assembly plans 
into robotic operations is called task planning [1,2]. Task planning deals 
with sensory operations and motion planning of robots. As the number 
and complexity of tasks performed by robots used in today’s assembly 
processes increase, it is necessary to use formal methods for task 
planning. 

Formal methods provide a systematic approach to specifying, con
trolling, and implementing robotic tasks [3]. Finite State Automata 
(FSA) and Petri nets (PN) are popular formal methods to control Discrete 
Event Systems (DESs)[4]. Petri nets have some advantages over FSA: in a 
Petri net model, the states of the system can be presented by the number 
of tokens in places. However, in an automaton model, a different 

automaton state must be used for each state of the system. Although the 
number of tokens in PN places has increased, the Petri net model pro
vides more compact and simple models. FSA [5–7] and PN-based 
methods [8–11] are preferred by the robotic community for the as
sembly and task planning, trajectory control, code analysis, and 
verification. 

A Petri net-based method for feedback controller design for a robotic 
assembly cell was proposed by Moody et al [12]. By using this method, 
the controllers can be easily synthesized by considering constraints and 
incidence matrix. A framework is introduced for the modeling, analysis, 
and execution of robot tasks based on Petri nets [3]. The control of an 
autonomous mobile platform equipped with a manipulator is studied by 
[13,14]. Petri nets are also used for multi-task, multi-robot control, 
planning, and programming [15–17]. The mentioned works focus on the 
design of a Petri net-based controller for solving the robot task sched
uling problem but do not consider the realization of the controller. After 
obtaining the desired controller (supervisor) for the system, a control 
code realization is required for the physical robot controller. Although 
there are many ways [18–22] to convert PNs into code for program
mable logic controllers (PLCs), which are the main controllers of in
dustrial automation systems, efficient methods to convert PNs into robot 
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programming languages have not yet been studied. 
The main contribution of this paper is to propose a methodology for 

converting PN models into control code for industrial robots. This 
method uses Petri nets and supervisory control theory as formal tools for 
controller modeling and synthesis. Initially, the task sequence for the 
assembly process is modeled using Petri net formalism. A supervisor is 
then synthesized using a place invariant-based method considering task 
control specifications. The obtained PN-based supervisory structure is 
implemented to perform real-time control of robotic assembly cells. An 
assembly cell consisting of a Mitsubishi Robot manipulator is used to 
perform experimental studies. 

The rest of the paper is organized as follows. The notations and basic 
concepts about Petri nets and place invariant-based supervisor synthesis 
methods are briefly reviewed in Section 2. In Section 3, the robotic as
sembly cell is introduced. PN model of the task sequence and supervisor 
synthesis is presented in Section 4. The implementation methodology is 
proposed in Section 5. In Section 6, the test applications carried out to 
verify the obtained code are explained. Finally, some conclusions are 
given in Section 6. 

2. Background 

In this work, Petri nets are used to model assembly system operation 
and task sequence control specifications. A brief introduction about Petri 
nets is presented here. For a detailed introduction to Petri nets in the 
context of DES, see [4,23]. An ordinary Petri net comprises four com
ponents denoted N = (P,T, F,W), where P and T are finite, nonempty, 
and distinct sets that represents the set of places and the set of transi
tions, respectively. The flow relation of the net, denoted by F is depicted 
by arcs with arrows connecting places to transitions or transitions to 
places. W is a mapping that assigns a weight to each arc. Ordinary Petri 
nets do not incorporate actuators or sensors. Consequently, it becomes 
essential to define a controller based on Petri nets that can encompass 
both actuators and sensors within an extended Petri net framework 
known as Automation Petri Net (APN). In APN, sensor readings can 
serve as firing conditions for transitions. The presence or absence of 
sensor readings can be combined with extended Petri net preconditions 
to trigger transitions. Formally, an APN can be described as follows: 

APN = (N,X,Q,M0) (1)  

where, 
N = (P, T, F, W) is a Petri net, 
X = {χ1, χ2, ..., χm} is the set of firing conditions associated with the 

transitions, 
Q = {q1, q2, ..., qn} is the set of actions that might be assigned to the 

places, 
M0 : P→N is the initial marking. 
An APN is graphically represented by using circles for places, squares 

for transitions, and black dots for tokens as shown in Fig. 1. The number 
of tokens present in places reflects the current system state, while 
transitions represent events. Each transition has a set of input and output 
places, representing the preconditions and post-conditions of the tran
sition. In the APN, firing conditions (represented by the variable χ) are 
considered external events, such as sensor readings. A firing condition is 
a Boolean variable that can take the value 1 or 0 indicating that the 
transition should or should not be triggered. The APN’s marking illus
trates how tokens are distributed in each place. The progress of the APN 
is characterized by the transfer of tokens between places, which happens 
when enabled transitions are triggered. In this paper, APN is used to 
model the task sequence of a robot for assembly operation in the system. 

The concept of place invariants (PIs) based supervisor computation 
method is briefly reviewed here. For more information, consult a stan
dard reference such as [24]. The system to be controlled is modeled by a 
Petri net N with n places and m transitions. Let [N] be the incidence 
matrix of the plant net N. The supervisor consists of the transitions of the 

plant net and a set of control places, whose incidence matrix is denoted 
as [Ns]. The controlled net with the incidence matrix [Nc] consists of 
both the original plant net and the supervisor. The control goal is to 
enforce the plant net to satisfy the following constraint 

∑n

i=1
li.μi⩽β (2)  

where μi denotes the marking of place pi, and li and β are non-negative 
integer constants. After the introduction of a non-negative slack vari
able μc, the above constraint can be transformed as follows: 

∑n

i=1
li.μi + μc = β (3)  

where μi denotes the marking of control place pc. All constraints can be 
grouped as follows, 

[L].μp⩽b (4)  

where μp is the marking vector of the plant net, [L] is an nc × n integer 
matrix, b is an nc × 1 integer vector, and nc is the number of the con
straints. All PIs can be rewritten as follows: 

[L].μp + μs = b (5)  

where μs is an nc × 1 integer vector, representing the marking of the 
control places. Finally, given a plant Petri net [N] and the constraints [L] 
and b, the supervisor [Ns] can be computed as follows: 

[Ns] = − [L].[N] (6)  

The initial marking of the supervisor μs0 is calculated as follows: 

μs0 = b − [L].μp0 (7)  

where μp0 is the initial marking of the plant net N. 

Fig. 1. An automation Petri net (APN) model.  
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3. Robotic assembly system 

A robotic assembly system [25] produced by FESTO Didactic con
sisting of a Mitsubishi RV-2SDB Robot is considered in experimental 
studies. This cell produces a small pneumatic cylinder as an assembled 
good consisting of a body, piston, spring, and cover. The block diagram 
of the robotic assembly cell is illustrated in Fig. 2.a. In this setup, cyl
inder bodies can have one of three colors: black, red, or metallic, and, 
pistons can be two types black or metal. If the body color is red or 
metallic, then the piston must be black; on the opposite, if the body is 
black, the piston must be metallic as shown in Fig. 2.b. 

The bodies of the pneumatic cylinders are fed to the robot via an 
input slide. The availability of a body in the input slide is sensed by an 
infrared sensor. The robot carries the body from the input slide to color 
test area and determines the color via color sensor mounted to the 
gripper. Then, the body is moved to the orientation test point. After the 
orientation test, body is placed in the assembly holder in the correct 
orientation. The robot takes the piston from the pallet and placed it into 
the body. The piston springs and the cylinder caps are fed to the robot 
from controlled magazines. The fully assembled pneumatic cylinder is 
then placed on the output slide. The control of the robot and other pe
ripherals is performed by a CR1-571 robot controller located in the as
sembly station. Melfa Basic language and RT Toolbox program is used to 
code robot. Fig. 3 shows the all system connections. 

4. Modelling of assembly task sequences and synthesis of 
supervisors 

In this section, the APN model of assembly task sequences and syn
thesis of supervisors are presented. The required operations for assem
bling are classified into seven different tasks. These assembly tasks are 
labeled as TASKi (i = 1,2, …, 7) and tabulated in Table 1. The APN 
model of assembly task sequence is presented in Fig. 4. Tasks are 
assigned to places of the APN as actions. If there is a token in the action 
assigned place, this means that the assigned task will be performed. 
When the task is completed, the token is removed from the place. The 
meaning of places and firing conditions of transitions are provided in 
Table 2 and Table 3. In the APN model, there are 12 places labeled as p1, 
p2, …, p12 and 10 transitions labeled as t1, t2, …, t10. Initially, there 
are four black and four metal pistons, eight springs, and eight covers in 
the system. The number of tokens in p9, p10, p11, and p12 places rep
resents the number of black pistons, metal pistons, and capacities of 
spring and cover magazines, respectively. 

If a cylinder body is detected, i.e. χ1 = part_av = 1, the transition t1 

fires, and a token is deposited into p1. While a token is placed in p1, the 
assigned action, i.e. TASK1, starts to run. In TASK1, robot picks a body 
from the input slide and places in the color test area. If there is a token in 
p1 and then the TASK1 is finished, i.e. χ2 = tsk1_fnsh = 1, transition t2 
fires by removing the token from p1 and by depositing a token in p2. 
This means that there is a token in p2 and the assigned action TASK2 
starts to run. The color and orientation tests are performed and the body 
is placed in the assembly holder as TASK2, If the color of the body is 
metal or red the variable CYLTYPE is set to zero, if the color of the 
cylinder body is black the variable CYLTYPE is set to one. If there is a 
token in p2 and then the TASK2 is finished, transition t3 fires by 
removing the token from p2 and by depositing a token in p3. This means 
that there is a body in the assembly holder and it is ready for assembling. 
When there is a token in place p3, transitions t4 or t5 can be fired by 
considering firing conditions and the number of tokens in the places p9 
and p10. If the transition t4 fires, the token in p3 and a token from p9 is 
removed and a token is added to p4. A token in p4 means that TASK3 
starts to run. By TASK3, a black piston is taken from the pallet and 
placed in the body; on the contrary, if the transition t5 fires, a token is 
transferred to p5 and TASK4 starts to run, i.e. a metal piston is taken 
from the pallet and placed in the body. For the rest of the model, token 
flow occurs similarly and related robotic tasks are operated sequentially. 
For the remainder of the model, token flow occurs similarly to the 
number of tokens and trigger conditions at the entry sites. Several 
constraints must be imposed by the controller to ensure physical limi
tations are obeyed. In this work, five constrained called control speci
fications are considered and tabulated in Table 4. 

The computation of control places for the above specifications is 
performed by using the place invariant-based method that is explained 
in Section 2. A separate supervisory structure (control place and related 
arcs) will be calculated for each of the control specifications. The inci
dence matrix and initial marking used in each calculation are the same 
for the APN model shown in Fig. 4. The incidence matrix [N] of any Petri 
net is a matrix where its rows represent places, and its columns represent 
transitions within the Petri net. The entry at position (i, j) of the matrix 
indicates the relationship between place i and transition j. A value of 1 
signifies an arc from transition j to place i (tj→pi) and − 1 signifies an arc 
from place i to transition j (pi→tj). If there is no direct connection be
tween place i and transition j, the entry at position (i, j) is equal to 0. The 
incidence matrix [N] of the plant APN model is as follows: 

Fig. 2. A) block diagram of the assembly station. b) assembly sequence of the cylinder’s parts.  
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[N] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 − 1 0 0 0 0 0 0 0 0
0 +1 − 1 0 0 0 0 0 0 0
0 0 +1 − 1 − 1 0 0 0 0 0
0 0 0 +1 0 − 1 0 0 0 0
0 0 0 0 +1 0 − 1 0 0 0
0 0 0 0 0 +1 +1 − 1 0 0
0 0 0 0 0 0 0 +1 − 1 0
0 0 0 0 0 0 0 0 +1 − 1
0 0 0 − 1 0 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0 0
0 0 0 0 0 − 1 − 1 0 0 0
0 0 0 0 0 0 0 − 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A column of incidence matrix indicates that firing of j-th transition. For 

example, the second column of matrix [N], indicates that firing of 
transition t2 consists of removing a token from place p1 and adding a 
token to place p2. The initial marking in a Petri net represents the 
number of tokens in each place at the beginning of the system’s opera
tion. The initial marking is typically depicted as a vector or a set of 
values that correspond to each place in the Petri net. Each value in the 
vector represents the number of tokens in the corresponding place when 
the system begins its operation. For APN model depicted in Fig. 4, the 
number of tokens in places are μ1 = 0, μ2 = 0, μ3 = 0, μ4 = 0, μ5 = 0, 
μ6 = 0, μ7 = 0, μ8 = 0, μ9 = 4, μ10 = 4, μ11 = 8, and μ12 = 8 where μi is 
the number of tokens in place pi. The initial marking vector µp0 μp0 of the 
plant APN model is as follows: 

μp0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ1
μ2
μ3
μ4
μ5
μ6
μ7
μ8
μ9
μ10
μ11
μ12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0
0
4
4
8
8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

For the first specification, there is only one robot available for the as
sembly operation, thus only one task can be performed at any given 
time. Robotic tasks are assigned to places p1, p2, p4, p5, p6, p7, and p8 
of the APN model shown in Fig. 4. If the related places are considered, 
the total number of tokens in these places should be less than or equal to 
one token. This place invariant can be written in the inequality form as 
μ1 + μ2 + μ4 + μ5 + μ6 + μ7 + μ8⩽1. Considering equation (4), the 
inequality belonging to first control specification 
μ1 +μ2 +μ4 +μ5 +μ6 +μ7 +μ8⩽1 can be converted to L1 vector as follows 
and b is 1 for this constraint. 

L1 = [ 1 1 0 1 1 1 1 1 0 0 0 0 ]

The incidence matrix of control place C1 that provides the first control 
specification can be calculated by using Equations (6). According to 
Equation (6), 

[Ns] = − [L].[N]

By substituting the vector [L] and the incidence matrix [N] into equation 
(6) 

the incidence matrix of the control place C1 is obtained as follows 

[Ns] = [ − 1 0 +1 − 1 − 1 0 0 0 0 +1 ]

The initial marking of control place C1 can be calculated using Equa
tions (7). According to Equation (7), 

μs0 = b − [L].μp0  

By substituting the vector [L] and the initial marking vector μp0, initial 
marking of C1 place is computed as follows 

μs0 = 1 − [ 1 1 0 1 1 1 1 1 0 0 0 0 ].

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0
0
0
4
4
8
8

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1  

The [Ns] vector is the incidence matrix of the C1 control place. As can be 
seen from the vector, t3, and t10 are the input transition of C1, and t4 
and t5 are the output transitions of C1. C1 has one token as initial 
marking. The PN representation of this control place is depicted in Fig. 5. 

The computation of control places for the other control specifications 
can be performed as computation of the first CP by following the above 
steps. All control specifications are expressed as place invariants, and 
these invariants are written in the form of inequalities. The created place 
invariants for each specification are converted to vectors, and control 
places are calculated using Equation (6) and Equation (7). Place In
variants for specification, related vectors for computations, obtained 
Incidence matrix, initial markings, and control places are presented in 
Table 5. The final closed-loop (controlled) model for the task sequence 

[Ns] = − [ 1 1 0 1 1 1 1 1 0 0 0 0 ].

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

+1 − 1 0 0 0 0 0 0 0 0
0 +1 − 1 0 0 0 0 0 0 0
0 0 +1 − 1 − 1 0 0 0 0 0
0 0 0 +1 0 − 1 0 0 0 0
0 0 0 0 +1 0 − 1 0 0 0
0 0 0 0 0 +1 +1 − 1 0 0
0 0 0 0 0 0 0 +1 − 1 0
0 0 0 0 0 0 0 0 +1 − 1
0 0 0 − 1 0 0 0 0 0 0
0 0 0 0 − 1 0 0 0 0 0
0 0 0 0 0 − 1 − 1 0 0 0
0 0 0 0 0 0 0 − 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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of the robotic assembly system is obtained by coupling all computed CPs 
to the APN model as shown in Fig. 6. 

5. The implementation methodology 

The implementation methodology employed in this approach utilizes 
the concept of tokens from Petri nets as the primary mechanism for 
controlling the flow of the control logic. Each place in the Petri net 
corresponds to a variable in the robot language. To emulate the behavior 
of tokens in the Petri net, the implementation maps actions in the Petri 
net places to conditional subroutine calls in the robot program. When
ever a transition in the Petri net involves the movement of tokens, a 
simulated movement of tokens between variables is performed. To 
achieve this simulated token movement, separate variables are assigned 
to each place in the robot program. During the execution of the robot 
program, these variables are incremented or decremented to simulate 
the flow of tokens within the Petri net. 

The state of these variables reflects the current state of the control 
logic and helps guide the robot’s actions and decisions. By adopting this 
approach, the control logic of the robot system is structured using Petri 

net concepts, enabling a clear mapping between Petri net elements and 
robot programming elements. The use of simulated token movement 
through dedicated variables facilitates the coordination of actions, de
cisions, and transitions within the control logic, enhancing the control 
capabilities of the robot. By changing the values of these variables, the 
program can emulate the movement of tokens between different states 
of the system. The firing conditions of transitions are considered as 
sensor readings from inputs of controllers and some events that are used 
for detecting the end of the related task subroutine. It is essential to 
arrange the MELFA BASIC code for the robot in the following order to 
ensure proper functioning: first, the variable definitions and initial 
marking is written; next, the actions are implemented by calling related 
task subroutines. After this, the transition mechanism of APN is coded by 
considering related firing conditions, and finally, the task-finished data 
are reset. As mentioned before, the task-finished data are used as firing 
conditions and are generated in the related subroutine by setting tsk_fns 
variables to “1″. The task-finished data must be reset at the bottom of the 
main program to re-detection of task finishing. The program organiza
tion for the proposed implementation methodology is presented in 
Fig. 7. 

A simple APN model shown in Fig. 8 is considered to explain the 
proposed implementation methodology. In this APN, there are a place 
p1 and two transitions t1 and t2. It is assumed that a sample robotic task 
is assigned to place p1. The firing conditions of transitions t1 and t2 are 
χ1 and χ2, respectively. It is assumed that χ1 is an external event (sensor 
information) and χ2 is an event related to task finish data of the task 
subroutine. Initially, it is assumed that there is no token in the place p1. 
If the firing condition χ1 occurs, t1 can be fired and a token is deposited 
to place p1. While there is a token in place p1 and the firing conditions 
χ2 occurs, in this case, the transition t2 can be fired and the token is 
removed from place p1. 

The MELFA BASIC code implementation of the sample APN model is 
shown in Appendix A. In the obtained code, variables are defined in lines 
between 1 and 4. In lines 6 and 7, initial values are assigned to related 
variables. A loop is created between lines 8 and 23 by using the “Start” 
label and “GoTo Start” command. In the model, there is only one action 
assigned to place p1. In line 11, the TASK1 subroutine is called by using 

Fig. 3. Schematic of the system.  

Table 1 
List of robotic tasks.  

Task Explanations 

TASK 
1 

A body is picked from the input slide and placed in the color test area 

TASK 
2 

The body is placed in the assembly holder after color and orientation tests. 

TASK 
3 

A black piston is taken from the pallet and placed in the body 

TASK 
4 

A metal piston is taken from the pallet and placed into the body 

TASK 
5 

A spring is taken from the spring magazine and placed into a body 

TASK 
6 

A cover is taken from the cover magazine and assembled to the body after 
the orientation test. 

TASK 
7 

A finished part is placed on the output slide.  
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the “GoSub” code if there is a token in p1 i.e. P1 = 1. The transitions of 
APN are implemented between lines 11 and 19. The “T1_FNS” data are 
reset, i.e. T1_FNS = 0 in line 21 for re-detection of the task finished of the 
TASK1 subroutine. After this code block, the TASK1 subroutine should 
be implemented. As shown in the code, in the task subroutine firstly the 

T1_FNS data should reset, i.e. T1_FNS = 0, and at the end of this sub
routine, this data should be set i.e. T1_FNS = 1. The validation of this 
sample code is tested by using sample input–output assignments. By 
using a PC software called ‘‘RT ToolBox2’’, this code was programmed 
on a robot controller. Test results show that the obtained code fully 
reflects the functions of the APN model. 

6. Applications and tests 

The controlled APN model of the robotic assembly cell shown in 
Fig. 6 is implemented on the robot controller using the above proced
ures. The obtained robot code can be verified by timing diagrams 
showing the occurrence of tasks. To perform the verification process, 
some assembly scenarios that take into account control specifications 
are created and the related data in the robotic assembly system is 
accused to draw a timing diagram. In the graphs, the vertical axis dis
plays the status of task execution, while the horizontal axis represents 
time in seconds. In the first scenario, the bodies of red, black, and 
metallic colors are sequentially placed into the system. The addition of 
each body is performed while waiting for the assembly of the other 
bodies to be completed. The timing diagram belongs to the part avail
able sensor that detects a body at the input and activities of the tasks 
during the experiment is presented in Fig. 9. As a result of this experi
ment, it is observed that all the bodies are successfully assembled. In 
addition, it can be seen from the timing diagram that there is no active 
task at the same time, so only one task occurs at any given time during 
assembly. This verifies that the computed controller structure satisfies 

Fig. 4. APN model of the robotic task sequence.  

Table 2 
Meaning of places and assigned tasks.  

Places Assigned action (task) or meaning 

p1 TASK1 
p2 TASK2 
p3 A base is in the assembly holder and ready for assembling 
p4 TASK3 
p5 TASK4 
p6 TASK5 
p7 TASK6 
p8 TASK7 
p9 The number of black pistons in the pallet (max. cap. 4) 
p10 The number of metal pistons in the pallet (max. cap 4) 
p11 The number of springs in the magazine (max. cap. 8) 
p12 The number of covers in the magazine (max. cap. 8)  

Table 3 
Transitions and firing conditions.  

Trans. Firing conditions Explanations 

t1 χ1={Part_Av = 1} A cylinder is available at the input. 
t2 χ2 = tsk1_fnsh TASK1 is finished. 
t3 χ3 = tsk2_fnsh TASK2 is finished. 
t4 χ4={CYLTYPE = 0} The color of the cylinder is metal or red. 
t5 χ5={CYLTYPE = 1} The color of the cylinder is black. 
t6 χ6 = tsk3_fnsh TASK3 is finished. 
t7 χ7 = tsk4_fnsh TASK4 is finished. 
t8 χ8 = tsk5_fnsh TASK5 is finished. 
t9 χ9 = tsk6_fnsh TASK6 is finished. 
t10 χ10 = tsk7_fnsh TASK7 is finished.  

Table 4 
Control specifications for assembly.  

#SPEC Explanation 

1 There is only one robot available for the assembly operation, thus only one 
task can be performed at any given time. 

2 The capacity of the assembly holder is one-cylinder body. Therefore, it can 
be only one part can be assembled at any time 

3 It can be used only one type of piston (metal or black) in the same assembly 
operation because of assembly holder capacity. 

4 If there is no available black piston, a new cylinder body should not be put 
into operation. 

5 If there is no available metallic-colored piston, a new cylinder body should 
not be put into operation.  

Fig. 5. PN representation of this control place C1.  
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Table 5 
Place invariants and computed control places (CP).  

CP Place Invariants and related vectors for computation Obtained Incidence matrix [Ns], initial markings μs0, and Control Places 

C2 μ1 + μ2 + μ3 + μ4 + μ5 + μ6 + μ7 + μ8⩽1L2 = [1 1 1 1 1 1 1 1 0 0 0 0 ]b2 = 1  
[Ns] = [ − 1 0 0 0 0 0 0 0 0 +1 ]

μs0 = b2 − [L2].μp0 = 1  

C3 μ4 + μ5⩽1L3 = [0 0 0 1 1 0 0 0 0 0 0 0 ]b3 = 1  
[Ns] = [0 0 0 − 1 − 1 1 1 0 0 0 ]

μs0 = b3 − [L3].μp0 = 1  

C4 μ1 − μ9⩽0L4 = [1 0 0 0 0 0 0 0 − 1 0 0 0 ]b4 = 0  
[Ns] = [ − 1 1 0 − 1 0 0 0 0 0 0 ]

μs0 = b4 − [L4].μp0 = 4  

C5 μ1 − μ10⩽0L5 = [1 0 0 0 0 0 0 0 0 − 1 0 0 ]b5 = 0 [Ns] = [ − 1 1 0 0 − 1 0 0 0 0 0 ]

μs0 = b5 − [L5].μp0 = 4  
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the first specification i.e., only one task can be performed at any given 
time. 

To test the second control specification (SPEC2), a new body is 
placed into the system while the assembly of the previous one has not 
been completed. As can be seen in Fig. 10, the robot does not pick the 
new part before completing the required tasks for the existing assembly. 
Therefore, only one part is assembled at any given time. 

According to SPEC3, one piston type (metal or black) should be used 
in the same assembly operation, i.e., only one of Task 3 or Task 4 should 
be active during any assembly operation. This means that Task 3 and 
Task 4 cannot be active simultaneously. Fig. 9 presents a timing diagram 
for the assembly of red, black, and metallic parts. As seen in the figure, 
only one of Task 3 or Task 4 is executed during the assembly of each 
part. Four red-bodied products were assembled in the cell to use up all 

the black pistons on the piston pallet. As there is no piston to be mounted 
for the new body added to the system after the fourth body, a new 
cylinder body should not be put into operation by the robot as stated in 
SPEC 4. In the timing diagram shown in Fig. 11, TASK1 is not operated 
for the new body added to the system after the assembly of the 4th part is 
completed, that is, the robot does not process the new part. A similar 
scenario has been tested for the black body and metallic-colored piston 
(Fig. 12) and it has been seen that in case there is no available metallic- 
colored piston, a new cylinder body should not be put into operation. It 
is observed that the computed control places and generated code pro
vide the desired behavior. The supplementary materials include ani
mation videos demonstrating considered scenarios created with the 
CIROS Studio FESTO program. 

Fig. 6. The controlled model for the task sequence.  

Fig. 7. Program organization for the proposed implementation methodology.  

Fig. 8. A sample APN.  
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Fig. 9. Timing diagram for the first assembly scenario.  

Fig. 10. Timing diagram for the second assembly scenario.  
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7. Conclusions 

This paper introduces a novel approach for obtaining control codes 
for industrial robots by employing supervisory control theory and Petri 
nets. The proposed methodology offers a general framework, allowing 
the computation of control places (supervisors) based on the task 
sequence model and control constraints. To demonstrate the effective
ness of this implementation approach, an experimental assembly cell 
featuring an industrial robot has been used. The results showed that the 
robotic assembly cell achieved excellent performance under the pro
posed control strategy. In practical terms, incorporating a Petri net su
pervisor into a robot controller allows for the utilization of formal 
methods in robot programming. By employing this approach, the pro
gramming process becomes more systematic and rigorous, following 

established principles of formal methods. This brings several benefits to 
the development and maintenance of robot systems. Additionally, the 
code becomes more comprehensible and modifiable if necessary. This 
paper primarily focuses on high-level control, where the supervisor’s 
role involves coordinating robotic tasks. Future research will concen
trate on investigating low-level control, in which the supervisor or
chestrates interactions between control devices and tasks. 

Declaration of competing interest 
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interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Fig. 11. Timing diagram for the third assembly scenario.  

Fig. 12. Timing diagram for the fourth assembly scenario.  
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Appendix A:. MELFA BASIC code for simple APN model presented in Fig. 10 

. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.asej.2024.102804. 

References 

[1] Alatartsev S, Stellmacher S, Ortmeier F. Robotic task sequencing problem: a survey. 
J Intell Robot Syst 2015;80:279–98. https://doi.org/10.1007/s10846-015-0190-6. 

[2] Rosell J. Assembly and task planning using petri nets: a survey. Proc Inst Mech Eng 
B J Eng Manuf 2004;218:987–94. https://doi.org/10.1243/0954405041486019. 

[3] Costelha H, Lima P. Robot task plan representation by petri nets: modelling, 
identification, analysis and execution. Auton Robot 2012;33:337–60. https://doi. 
org/10.1007/s10514-012-9288-x. 

[4] Cassandras CG, Lafortune S. Introduction to discrete event systems. Cham: Springer 
International Publishing; 2021. DOI: 10.1007/978-3-030-72274-6. 

[5] Deplano D, Franceschelli M, Ware S, Rong S, Giua A. A discrete event formulation 
for multi-robot collision avoidance on pre-planned trajectories. IEEE Access 2020; 
8:92637–46. https://doi.org/10.1109/ACCESS.2020.2994472. 

[6] Hussain R, Zielinska T, Hexel R. Finite state automaton based control system for 
walking machines. Int J Adv Rob Syst 2019;16. https://doi.org/10.1177/ 
1729881419853182. 1729881419853182. 

[7] Tatsumoto Y, Shiraishi M, Cai K, Lin Z. Application of online supervisory control of 
discrete-event systems to multi-robot warehouse automation. Control Eng Pract 
2018;81:97–104. https://doi.org/10.1016/j.conengprac.2018.09.003. 

[8] Da Mota FAX, Rocha MX, Rodrigues JJPC, De Albuquerque VHC, De 
Alexandria AR. Localization and navigation for autonomous mobile robots using 
petri nets in indoor environments. IEEE Access 2018;6:31665–76. https://doi.org/ 
10.1109/ACCESS.2018.2846554. 
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