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Abstract

A γ -rigid version (withγ = 0) of the X(5) critical point symmetry is constructed. The model, to be called X(3) since it is proved to c
three degrees of freedom, utilizes an infinite well potential, is based on exact separation of variables, and leads to parameter free (u
scale factors) predictions for spectra andB(E2) transition rates, which are in good agreement with existing experimental data for172Os and186Pt.
An unexpected similarity of theβ1-bands of the X(5) nuclei150Nd, 152Sm,154Gd, and156Dy to the X(3) predictions is observed.
 2005 Elsevier B.V.
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1. Introduction

Critical point symmetries[1,2], describing nuclei at points o
shape phase transitions between different limiting symmet
have recently attracted considerable attention, since they
to parameter independent (up to overall scale factors) pre
tions which are found to be in good agreement with experim
[3–6]. The X(5) critical point symmetry[2], in particular, is
supposed to correspond to the transition from vibrational[U(5)]
to prolate axially symmetric[SU(3)] nuclei, materialized in the
N = 90 isotones150Nd [7], 152Sm[5], 154Gd [8,9], and156Dy
[9,10].

On the other hand, it is known that in the framework
the nuclear collective model[11], which involves the collective

* Corresponding author.
E-mail addresses:bonat@inp.demokritos.gr(D. Bonatsos),

lenis@inp.demokritos.gr(D. Lenis),petrellis@inp.demokritos.gr
(D. Petrellis),terziev@inrne.bas.bg(P.A. Terziev),yigitoglu@istanbul.edu.tr
(I. Yigitoglu).
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.10.060

Open access under CC BY license.
s,
ad
c-
t

variablesβ andγ , interesting special cases occur by “freezin
theγ variable[12] to a constant value.

In the present work we construct a version of the X(5) mo
in which theγ variable is “frozen” toγ = 0, instead of varying
around theγ = 0 value within a harmonic oscillator potentia
as in the X(5) case. It turns out that only three variables
involved in the present model, which is therefore called X
Exact separation of theβ variable from the angles is possibl
Experimental realizations of X(3) appear to occur in172Os and
186Pt, while an unexpected agreement of theβ1-bands of the
X(5) nuclei 150Nd, 152Sm, 154Gd, and156Dy to the X(3) pre-
dictions is observed.

In Section2 the X(3) model is constructed, while numeric
results and comparisons to experiment are given in Sectio3,
and a discussion of the present results and plans for further
in Section4.

2. The X(3) model

In the collective model of Bohr[11] the classical expressio
of the kinetic energy corresponding toβ andγ vibrations of the
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nuclear surface plus rotation of the nucleus has the form[11,13]

(1)T = 1

2

3∑
k=1

Jkω
′2
k + B

2

(
β̇2 + β2γ̇ 2),

whereβ andγ are the usual collective variables,B is the mass
parameter,

(2)Jk = 4Bβ2 sin2(γ − 2
3πk

)
are the three principal irrotational moments of inertia, andω′

k

(k = 1,2,3) are the components of the angular velocity on
body-fixedk-axes, which can be expressed in terms of the t
derivatives of the Euler angleṡφ, θ̇ , ψ̇ [13,14]

ω′
1 = −sinθ cosψφ̇ + sinψθ̇,

ω′
2 = sinθ sinψφ̇ + cosψθ̇,

(3)ω′
3 = cosθφ̇ + ψ̇.

Assuming the nucleus to beγ -rigid (i.e., γ̇ = 0), as in the
Davydov and Chaban approach[12], and considering in par
ticular the axially symmetric prolate case ofγ = 0, we see tha
the third irrotational moment of inertiaJ3 vanishes, while the
other two become equalJ1 = J2 = 3Bβ2, the kinetic energy o
Eq.(1) reaching the form[13,15]

T = 1

2
3Bβ2(ω′2

1 + ω′2
2

) + B

2
β̇2

(4)= B

2

[
3β2(sin2 θφ̇2 + θ̇2) + β̇2].

It is clear that in this case the motion is characterized by th
degrees of freedom. Introducing the generalized coordin
q1 = φ, q2 = θ , and q3 = β, the kinetic energy becomes
quadratic form of the time derivatives of the generalized
ordinates[13,16]

(5)T = B

2

3∑
i,j=1

gij q̇i q̇j ,

with the matrixgij having a diagonal form

(6)gij =
(3β2 sin2 θ 0 0

0 3β2 0
0 0 1

)
.

(In the case of the full Bohr Hamiltonian[11] the square ma
trix gij is 5-dimensional and non-diagonal[13,16].) Following
the general procedure of quantization in curvilinear coordin
one obtains the Hamiltonian operator[13,16]

H = − h̄2

2B
∆ + U(β)

(7)= − h̄2

2B

[
1

β2

∂

∂β
β2 ∂

∂β
+ 1

3β2
∆Ω

]
+ U(β),

where∆Ω is the angular part of the Laplace operator

(8)∆Ω = 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2
.

The Schrödinger equation can be solved by the factorizatio

(9)Ψ (β, θ,φ) = F(β)YLM(θ,φ),
e

e
s

-

s

whereYLM(θ,φ) are the spherical harmonics. Then the angu
part leads to the equation

(10)−∆ΩYLM(θ,φ) = L(L + 1)YLM(θ,φ),

whereL is the angular momentum quantum number, while
the radial partF(β) one obtains

(11)

[
1

β2

d

dβ
β2 d

dβ
− L(L + 1)

3β2
+ 2B

h̄2

(
E − U(β)

)]
F(β) = 0.

As in the case of X(5)[2], the potential inβ is taken to be an
infinite square well

(12)U(β) =
{

0, 0� β � βW ,

∞, β > βW ,

whereβW is the width of the well. In this caseF(β) is a solution
of the equation

(13)

[
d2

dβ2
+ 2

β

d

dβ
+

(
k2 − L(L + 1)

3β2

)]
F(β) = 0

in the interval 0� β � βW , where reduced energiesε = k2 =
2BE/h̄2 [2] have been introduced, while it vanishes outsi
SubstitutingF(β) = β−1/2f (β) one obtains the Bessel equ
tion

(14)

[
d2

dβ2
+ 1

β

d

dβ
+

(
k2 − ν2

β2

)]
f (β) = 0,

where

(15)ν =
√

L(L + 1)

3
+ 1

4
,

the boundary condition beingf (βW ) = 0. The solution of(13),
which is finite atβ = 0, is then

(16)F(β) = FsL(β) = 1√
c
β−1/2Jν(ks,νβ),

with ks,ν = xs,ν/βW andεs,ν = k2
s,ν , wherexs,ν is thesth zero

of the Bessel function of the first kindJν(ks,νβW ) and the nor-
malization constantc = β2

WJ 2
ν+1(xs,ν)/2 is obtained from the

condition
∫ βW

0 F 2
sL(β)β2 dβ = 1. The corresponding spectru

is then

(17)Es,L = h̄2

2B
k2
s,ν = h̄2

2Bβ2
W

x2
s,ν .

It should be noticed that in the X(5) case[2] the same Eq.(14)

occurs, but withν =
√

L(L+1)
3 + 9

4, while in the E(3) Euclidean
algebra in 3 dimensions, which is the semidirect sum of theT3
algebra of translations in 3 dimensions and the SO(3) algebra
of rotations in 3 dimensions[17], the eigenvalue equation of th
square of the total momentum, which is a second-order Cas
operator of the algebra, also leads[17,18] to Eq.(14), but with
ν = L + 1/2.

From the symmetry of the wave function of Eq.(9) with re-
spect to the plane which is orthogonal to the symmetry axi
the nucleus and goes through its center, follows that the ang
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momentumL can take only even non-negative values. The
fore noγ -bands appear in the model, as expected, since tγ

degree of freedom has been frozen.
In the general case the quadrupole operator is

T (E2)
µ = tβ

[
D2∗

µ,0(Ω)cosγ

(18)+ 1√
2

[
D2∗

µ,2(Ω) + D2∗
µ,−2(Ω)

]
sinγ

]
,

whereΩ denotes the Euler angles andt is a scale factor. Fo
γ = 0 the quadrupole operator becomes

(19)T (E2)
µ = tβ

√
4π

5
Y2µ(θ,φ).

B(E2) transition rates

(20)B(E2; sL → s′L′) = 1

2L + 1

∣∣〈s′L′|∣∣T (E2)
∣∣|sL〉∣∣2

are calculated using the wave functions of Eq.(9) and the vol-
ume elementdτ = β2 sinθ dβ dθ dφ, the final result being

(21)B(E2; sL → s′L′) = t2(CL′0
L0,20

)2
I2
sL;s′L′ ,

whereCL′0
L0,20 are Clebsch–Gordan coefficients and the integ

overβ are

(22)IsL;s′L′ =
βW∫
0

βFsL(β)Fs′L′(β)β2 dβ.

The following remarks are now in place.
(1) In both the X(3) and X(5)[2] models,γ = 0 is consid-

ered, the difference being that in the former caseγ is treated as
a parameter, while in the latter as a variable. As a consequ
separation of variables in X(3) is exact (because of the lac
theγ variable), while in X(5) it is approximate.

(2) In both the X(3) and E(5)[1] models a potential depend
ing only onβ is considered and exact separation of variab
is achieved, the difference being that in the E(5) model thγ

variable remains active, while in the X(3) case it is frozen.
a consequence, in the E(5) case the equation involving the
gles results in the solutions given by Bès[19], while in the X(3)
case the usual spherical harmonics occur.

3. Numerical results and comparison to experiment

The energy levels of the ground state band(s = 1), as well
as of theβ1 (s = 2) andβ2 (s = 3) bands, normalized to th
energy of the lowest excited state, 2+

1 , are shown inFig. 1,
together with intrabandB(E2) transition rates, normalized t
the transition between the two lowest states,B(E2;2+

1 → 0+
1 ),

while interband transitions are listed inTable 1.
The energy levels of the ground state band of X(3) are

shown inFig. 2(a), where they are compared to the experim
tal data for172Os [20] (up to the point of bandcrossing) an
186Pt [21]. In the same figure the ground state band of X
along with the experimental data for theN = 90 isotones150Nd
-

s

e,
f

s

n-

o
-

,

Fig. 1. Energy levels of the ground state(s = 1), β1 (s = 2), andβ2 (s = 3)

bands of X(3), normalized to the energy of the lowest excited state, 2+
1 , together

with intrabandB(E2) transition rates, normalized to the transition between
two lowest states,B(E2;2+

1 → 0+
1 ). Interband transitions are listed inTable 1.

See Section3 for further discussion.

[22], 152Sm [23], 154Gd [24], and156Dy [25], which are con-
sidered as the best realizations of X(5)[5,7–10], are shown
for comparison. The energy levels of theβ1-band for the same
models and nuclei are shown inFig. 2(b), while existing intra-
bandB(E2) transition rates for the ground state band are sh
in Fig. 2(c). The following comments are now in place.

(1) The ground state bands of172Os and186Pt are in very
good agreement with the X(3) predictions, while theβ1-bands
are a little lower. Similarly, the ground state bands of150Nd,
152Sm,154Gd, and156Dy are in very good agreement with th
X(5) predictions, while theβ1 bands beyondL = 4 are much
lower. This discrepancy is known to be fixed by consider
[26] a potential with linear sloped walls instead of an infin
well potential. What occurred rather unexpectedly is the
that theβ1 bands of theN = 90 isotones [the best experime
tal examples of X(5)] fromL = 4 upwards agree very well wit
the X(3) predictions. This could be interpreted as indication
the bandhead of theβ1 band is influenced by the presence
theγ degree if freedom, but the excited levels of this band
yondL = 4 are not influenced by it. Detailed measurement
intrabandB(E2) transition rates within theβ1-bands of these
N = 90 isotones could clarify this point.

(2) Existing intrabandB(E2) transition rates for the groun
state band of172Os (below the region influenced by the ban
crossing) are in good agreement with X(3), being quite hig
than the150Nd, 152Sm, and154Gd rates, as they should. [Th
B(E2) rates of156Dy are known[9] to be in less good agree
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r

Fig. 2. (a) Energy levels of the ground state bands of the X(3) and X(5)[2] models, compared to experimental data for172Os[20], 186Pt [21], 150Nd [22], 152Sm
[23], 154Gd [24], and156Dy [25]. The levels of each band are normalized to the 2+

1 state. (b) Same for theβ1-bands, also normalized to the 2+
1 state. (c) Same fo

existing intrabandB(E2) transition rates within the ground state band, normalized to theB(E2;2+
1 → 0+

1 ) rate. The data for156Dy are taken from Ref.[9]. See
Section3 for further discussion.

Table 1
InterbandB(E2;Li → Lf ) transition rates for the X(3) model, normalized to the one between the two lowest states,B(E2;2+

1 → 0+
1 )

Li → Lf X(3) Li → Lf X(3) Li → Lf X(3)

02 →21 164.0
22 →41 64.5 22 →21 12.4 22 →01 0.54
42 →61 42.2 42 →41 8.6 42 →21 0.43
62 →81 31.1 62 →61 6.7 62 →41 0.51
82 →101 24.4 82 →81 5.5 82 →61 0.56

102 →121 19.9 102 →101 4.7 102 →81 0.59
122 →141 16.6 122 →121 4.0 122 →101 0.60
142 →161 14.2 142 →141 3.5 142 →121 0.60
162 →181 12.3 162 →161 3.1 162 →141 0.60
182 →201 10.9 182 →181 2.8 182 →161 0.59
202 →221 9.7 202 →201 2.5 202 →181 0.58

03 →22 209.1
23 →42 92.0 23 →22 16.2 23 →02 0.67
43 →62 65.3 43 →42 12.2 43 →22 0.47
63 →82 50.9 63 →62 10.1 63 →42 0.52
83 →102 41.6 83 →82 8.6 83 →62 0.57

103 →122 35.0 103 →102 7.5 103 →82 0.61
123 →142 30.1 123 →122 6.6 123 →102 0.63
143 →162 26.3 143 →142 5.9 143 →122 0.65
163 →182 23.3 163 →162 5.4 163 →142 0.66
183 →202 20.8 183 →182 4.9 183 →162 0.66
203 →222 18.8 203 →202 4.5 203 →182 0.66
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Table 2
RelativeB(E2) branching ratios for the X(3) model compared to existing experimental data[27] for 186Pt

Li → Lf exp. X(3) Li → Lf exp. X(3)

22 →02 100 100 42 →22 100 100
22 →01 8(1) 0.7 42 →21 2.6(3) 0.3
22 →41 68(7) 80 42 →41 < 12 6
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ment with X(5), as also seen inFig. 2(c).] However, more in-
traband and interband transitions (and with smaller error b
are needed before final conclusions could be drawn. The s
holds for186Pt, for which experimental information onB(E2)s
is missing[21,27]. The relative branching ratios known in186Pt
[27] are given inTable 2, being in good agreement with the X(
predictions.

The placement of the above mentioned nuclei in the s
metry triangle [28] of the interacting boson model (IBM
[29] can be illuminating. All of the above mentionedN = 90
isotones lie close to the phase coexistence and shape
transition region of the IBM, with152Sm being located on
the U(5)–SU(3) side of the triangle[30], while 154Gd and
156Dy gradually move towards the center of the triangle[31].
172Os [32] and 186Pt [27] also appear near the center of t
symmetry triangle and close to the transition region of
IBM.

It should be noticed that the critical character of186Pt is also
supported by the criteria posed in Ref.[33]. In particular, a rel-
atively abrupt change of theR4 = E(4+

1 )/E(2+
1 ) ratio occurs

between186Pt and184Pt, as seen in the systematics presente
Ref. [32], while 0+

2 shows a minimum at186Pt, as seen in th
systematics presented in Ref.[27], especially if the 0+2 energies
are normalized with respect to the 2+

1 state of each Pt isotope
Furthermore,186Pt is located at the point where the crosso
of 0+

2 and 2+γ occurs, as seen in the systematics presente
Ref. [27].

4. Discussion

In summary, aγ -rigid (with γ = 0) version of the X(5)
model is constructed. The model is called X(3), since i
proved that only three variables occur in this case, the
aration of variables being exact, while in the X(5) case
proximate separation of the five variables occurring th
is performed. The parameter free (up to overall scale
tors) predictions of X(3) are found to be in good agr
ment with existing experimental data of172Os and 186Pt,
while a rather unexpected agreement of theβ1-bands of the
X(5) nuclei 150Nd, 152Sm, 154Gd, and 156Dy to the X(3)
predictions is observed. The need for furtherB(E2) mea-
surements in all of the above-mentioned nuclei is emp
sized.
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