| Makale Türü |
|
| Makale Alt Türü | Ulusal alan endekslerinde (TR Dizin, ULAKBİM) yayınlanan tam makale |
| Dergi Adı | Türk Doğa ve Fen Dergisi |
| Dergi ISSN | 2149-6366 |
| Dergi Tarandığı Indeksler | TR DİZİN |
| Makale Dili | İngilizce |
| Basım Tarihi | 03-2023 |
| Cilt No | 12 |
| Sayı | 1 |
| Sayfalar | 37 / 43 |
| DOI Numarası | 10.46810/tdfd.1225756 |
| Makale Linki | https://doi.org/10.46810/tdfd.1225756 |
| Özet |
| Havadan alınan görüntülerin otomatik olarak sınıflandırılması son yıllarda üzerinde yoğun çalışılan konulardan biri haline gelmiştir. Özellikle drone'ların tarımsal uygulamalar, akıllı şehir uygulamaları, gözetleme ve güvenlik uygulamaları gibi farklı alanlarda kullanımı için otonom görev icrası sırasında kamera ile elde edilen görüntülerin otomatik olarak sınıflandırılması gerekmektedir. Bu amaçla araştırmacılar yeni veri setleri oluşturmuş ve yüksek doğruluk elde etmek için bazı bilgisayarla görme yöntemleri geliştirilmiştir. Ancak geliştirilen yöntemlerin doğruluğunun artırılmasının yanı sıra hesaplama karmaşıklığının da azaltılması gerekmektedir. Çünkü drone gibi enerji tüketiminin önemli olduğu cihazlarda kullanılacak yöntemlerin düşük hesaplama karmaşıklığına sahip olması gerekmektedir. Bu çalışmada, öncelikle hava görüntülerinin sınıflandırılmasında yüksek doğruluk değerleri elde etmek için beş farklı derin öğrenme modeli kullanılmıştır. Bu modeller arasında en yüksek doğruluğu %94.21 ile VGG19 modeli elde etmiştir. Çalışmanın ikinci bölümünde bu modelin parametreleri analiz edilerek model yeniden yapılandırılmıştır. VGG19 modelinin 143,6 milyon olan parametre sayısı 34 milyona düşürülmüştür. Parametre sayısının azaltılmasıyla elde edilen modelin doğruluğu aynı test verileri üzerinde %93,56'dır. Böylece parametre oranındaki %66,5'lik azalmaya rağmen doğruluk değerinde sadece %0,7'lik bir azalma olmuştur. Elde edilen sonuçlar önceki çalışmalarla karşılaştırıldığında, daha iyi sonuçların elde edildiği görülmüştür. |
| Anahtar Kelimeler |
| Havasal görüntü sınıflandırma | Derin Öğrenme | ESA budama | VGG19 |
| Atıf Sayıları | |
| Google Scholar | 6 |