Prediction of maximum annual flood discharges using artificial neural network approaches     
Yazarlar (4)
Tuğçe Anılan
Karadeniz Teknik Üniversitesi, Türkiye
Murat Kankal
Bursa Uludağ Üniversitesi, Türkiye
Ömer Yüksek
Karadeniz Teknik Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı GRADEVINAR
Dergi ISSN 0350-2465 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 01-2020
Cilt No 72
Sayı 3
Sayfalar 215 / 224
DOI Numarası 10.14256/JCE.2316.2018
Makale Linki http://dx.doi.org/10.14256/jce.2316.2018
Özet
The applicability of artificial neural network (ANN) approaches for estimation of maximum annual flows is investigated in the paper. The performance of three neural network models is compared: multi layer perceptron neural networks (MLP_NN), generalized feed forward neural networks (GFF_NN), and principal component analysis with neural networks (PCA_NN). The proposed approaches were applied to 33 stream-gauging stations. It was found that the optimal 3-hidden layered PCA_NN method was more appropriate than the optimal MLP_NN and GFF_NN models for the estimation of maximum annual flows.
Anahtar Kelimeler
artificial neural networks | principal component analysis | maximum annual flows