A Novel Ensemble Framework for Multi-Classification of Brain Tumors Using Magnetic Resonance Imaging       
Yazarlar (2)
Doç. Dr. Yasemin ÇETİN KAYA Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Doç. Dr. Mahir KAYA Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Diagnostics
Dergi ISSN 2075-4418 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 02-2024
Cilt No 14
Sayı 4
DOI Numarası 10.3390/diagnostics14040383
Makale Linki http://dx.doi.org/10.3390/diagnostics14040383
Özet
Brain tumors can have fatal consequences, affecting many body functions. For this reason, it is essential to detect brain tumor types accurately and at an early stage to start the appropriate treatment process. Although convolutional neural networks (CNNs) are widely used in disease detection from medical images, they face the problem of overfitting in the training phase on limited labeled and insufficiently diverse datasets. The existing studies use transfer learning and ensemble models to overcome these problems. When the existing studies are examined, it is evident that there is a lack of models and weight ratios that will be used with the ensemble technique. With the framework proposed in this study, several CNN models with different architectures are trained with transfer learning and fine-tuning on three brain tumor datasets. A particle swarm optimization-based algorithm determined the optimum weights for combining the five most successful CNN models with the ensemble technique. The results across three datasets are as follows: Dataset 1, 99.35% accuracy and 99.20 F1-score; Dataset 2, 98.77% accuracy and 98.92 F1-score; and Dataset 3, 99.92% accuracy and 99.92 F1-score. We achieved successful performances on three brain tumor datasets, showing that the proposed framework is reliable in classification. As a result, the proposed framework outperforms existing studies, offering clinicians enhanced decision-making support through its high-accuracy classification performance.
Anahtar Kelimeler
brain tumor classification | computer-aided diagnosis | convolutional neural network | deep learning | particle swarm optimization