gamma rigid solution of the Bohr Hamiltonian for gamma 30 degreescompared to the E 5 critical point symmetry   
Yazarlar (5)
Dennis Bonatsos
Institute Of Nuclear And Particle Physics, Yunanistan
D. Lenis
Institute Of Nuclear And Particle Physics, Yunanistan
D. Petrellis
Institute Of Nuclear And Particle Physics, Yunanistan
P. A. Terziev
Institute For Nuclear Research And Nuclear Energy Bulgarian Academy Of Sciences, Bulgaristan
Prof. Dr. İbrahim YİĞİTOĞLU Institute Of Nuclear And Particle Physics, Yunanistan
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı PHYSICS LETTERS B
Dergi ISSN 0370-2693 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 01-2005
Cilt No 621
Sayı 1
Sayfalar 102 / 108
DOI Numarası 10.1016/j.physletb.2005.06.047
Özet
A γ-rigid solution of the Bohr Hamiltonian for γ=30° is derived, its ground state band being related to the second order Casimir operator of the Euclidean algebra E(4). Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are in close agreement to the E(5) critical point symmetry, as well as to experimental data in the Xe region around A=130. © 2005 Elsevier B.V. All rights reserved.
Anahtar Kelimeler
Z(4) model | E(5) critical point symmetry | E(4) Euclidean algebra | triaxial rotator