Two novel outlier detection approaches based on unsupervised possibilistic and fuzzy clustering        
Yazarlar (4)
Zeynel Cebeci
Çukurova Üniversitesi, Türkiye
Çağatay Cebeci
University Of Strathclyde, Türkiye
Doç. Dr. Yalçın TAHTALI Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Dr. Öğr. Üyesi Lütfi BAYYURT Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Peerj Computer Science
Dergi ISSN 2376-5992 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q3
Makale Dili İngilizce
Basım Tarihi 09-2022
Cilt No 8
Sayı 1
DOI Numarası 10.7717/PEERJ-CS.1060
Makale Linki https://peerj.com/articles/cs-1060/
Özet
Outliers are data points that significantly deviate from other data points in a data set because of different mechanisms or unusual processes. Outlier detection is one of the intensively studied research topics for identification of novelties, frauds, anomalies, deviations or exceptions in addition to its use for data cleansing in data science. In this study, we propose two novel outlier detection approaches using the typicality degrees which are the partitioning result of unsupervised possibilistic clustering algorithms. The proposed approaches are based on finding the atypical data points below a predefined threshold value, a possibilistic level for evaluating a point as an outlier. The experiments on the synthetic and real data sets showed that the proposed approaches can be successfully used to detect outliers without considering the structure and distribution of the features in multidimensional data sets.
Anahtar Kelimeler
Anomaly detection | Data analysis | Fuzzy and possibilistic clustering | Outlier detection | Unsupervised learning