Classification of Sleep Apnea Syndrome From EEG Signals Using Spectrogram-Based Entropy and MLPNN Model   
Yazarlar (2)
Dr. Öğr. Üyesi Kübra TANCI Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Prof. Dr. Mahmut HEKİM Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Özgün Makale
Makale Alt Türü Diğer hakemli uluslarası dergilerde yayınlanan tam makale
Dergi Adı Gaziosmanpasa Journal of Scientific Research
Dergi ISSN 2146-8168
Dergi Tarandığı Indeksler DRJI, ROOTINDEXING, International Innovative Journal Impact Factor (IIJIF)
Makale Dili İngilizce
Basım Tarihi 12-2023
Cilt No 12
Sayı 3
Sayfalar 197 / 207
Makale Linki http://dergipark.gov.tr/gbad
Özet
In this study, we focus on the classification of sleep apnea syndrome from EEG signals by using the spectrogram-based entropy and multilayer perceptron neural network (MLPNN) classifier model. For this aim, EEG signals with different apnea-hypopnea index (AHI) taken from Polysomnography (PSG) recordings are divided into 30 sec windows, the windowed EEG signals are decomposing into frequency sub-bands by using short time Fourier transform (STFT), and then these frequency sub-bands are normalized into the range of [0, 1]. Next, Shannon entropy values of spectrograms obtained from the normalized frequency sub-bands are used as input to the MLPNN model for the classification of sleep apnea syndrome. Finally, although high correct classification ratios were achieved in the implemented classification experiments, the highest success ratio was succeeded in the classification of severe sleep apnea syndrome.
Anahtar Kelimeler
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
Google Scholar 3

Paylaş