Ionospheric TEC forecasting using Gaussian Process Regression (GPR) and Multiple Linear Regression (MLR) in Turkey      
Yazarlar (3)
Prof. Dr. Samed İNYURT Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Mahsa Hasanpour Kashani
University Of Mohaghegh Ardabili, İran
Aliihsan Şekertekin
Çukurova Üniversitesi, Türkiye
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Astrophysics and Space Science
Dergi ISSN 0004-640X Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q4
Makale Dili İngilizce
Basım Tarihi 06-2020
Cilt No 365
Sayı 6
Sayfalar 1 / 17
DOI Numarası 10.1007/s10509-020-03817-2
Makale Linki https://link.springer.com/article/10.1007/s10509-020-03817-2
Özet
This study aims to predict daily ionospheric Total Electron Content (TEC) using Gaussian Process Regression (GPR) model and Multiple Linear Regression (MLR). In this case, daily TEC values from 2015 to 2017 of two Global Navigation Satellite System (GNSS) stations were collected in Turkey. The performance of the GPR model was compared with the classical MLR model using Taylor diagrams and relative error graphs. Six models with various input parameters were performed for both GPR and MLR techniques. The results showed that although the models perform similarly, the GPR model estimated the TEC values more precisely at one and two days ahead. Therefore, the GPR model is recommended to forecast the TEC values at the corresponding GNSS stations over Turkey.
Anahtar Kelimeler
Forecast | Gaussian process regression | Multiple linear regression | TEC