[l_{p}]_{e.r} Euler-Riesz Difference Sequence Spaces     
Yazarlar (2)
Hacer Bilgin Ellidokuzoğlu
Türkiye
Prof. Dr. Serkan DEMİRİZ Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Özgün Makale
Makale Alt Türü ESCI dergilerinde yayınlanan tam makale
Dergi Adı Analysis in Theory and Applications
Dergi ISSN 1672-4070 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler Emerging Sources Citation Index
Makale Dili İngilizce
Basım Tarihi 12-2021
Cilt No 37
Sayı 4
Sayfalar 557 / 571
DOI Numarası 10.4208/ata.OA-2017-0068
Makale Linki https://doc.global-sci.org/uploads/Issue/ATA/v37n4/374_557.pdf?1637638803
Özet
Baar and Braha [1], introduced the sequence spaces l(infinity), C and C-0 of Euler- Cesaro bounded, convergent and null difference sequences and studied their somere properties. Then, in [2], we introduced the sequence spaces [l(infinity)] and [c](e.r) and [c(0)](e.r), of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E-1 and Riesz mean R-q with backward difference operator Delta. The main purpose of this study is to introduce the sequence space [l(p)](e.r), of Euler-Riesz p absolutely convergent series, where 1 <= p < infinity, difference sequences by using the composition of the Euler mean El and Riesz mean R-q with backward difference operator Delta. Furthermore, the inclusion l(p) subset of [(p)](e.r), hold, the basis of the sequence space [l(p)](e.r) is constucted and alpha, -beta- and gamma- duals of the space are determined. Finally, the classes of matrix transformations from the [l(p)](e.r) Euler-Riesz difference sequence space to the spaces l(infinity),,c and c(0) are characterized. We devote the final section of the paper to "examine some geometric properties of the space [l(p)](e.r.)
Anahtar Kelimeler
Composition of summability methods | Riesz mean of order one | Euler mean of order one | backward difference operator | sequence space | BK space | Schauder basis | beta-duals | matrix transformations
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
WoS 2
Google Scholar 18
[l_{p}]_{e.r} Euler-Riesz Difference Sequence Spaces

Paylaş