Some Algebraic and Topological Properties of New Lucas Difference Sequence Spaces    
Yazarlar (2)
Hacer Bilgin Ellidokuzoğlu
Recep Tayyip Erdoğan Üniversitesi, Türkiye
Prof. Dr. Serkan DEMİRİZ Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü Diğer hakemli uluslarası dergilerde yayınlanan tam makale
Dergi Adı Turkish Journal of Mathematics and Computer Science
Dergi ISSN 2148-1830 Scopus Dergi
Dergi Tarandığı Indeksler Google Scholar
Makale Dili İngilizce
Basım Tarihi 12-2018
Cilt No 10
Sayı 10
Sayfalar 144 / 152
Özet
Karakas¸ and Karabudak [22], introduced the Lucas sequence spaces X(E) and studied their someproperties. The main purpose of this study is to introduce the Lucas difference sequence spaces c0(Lˆ, ∆) and c(Lˆ, ∆)by using the Lucas sequence. Also, we prove that the spaces c0(Lˆ, ∆) and c(Lˆ, ∆), are linearly isomorphic to spacesc0 and c, respectively. Besides this, the α−, β− and γ−duals of this spaces have been computed, their bases havebeen constructed and some topological properties of these spaces have been studied. Finally, the classes of matrices(c0(Lˆ, ∆) : µ) and (c(Lˆ, ∆) : µ) have been characterized, where µ is one of the sequence spaces `∞, c and c0 andderives the other characterizations for the special cases of µ.
Anahtar Kelimeler
BM Sürdürülebilir Kalkınma Amaçları
Atıf Sayıları
TRDizin 1
Google Scholar 10

Paylaş