Grey Wolf Optimizer-Based Optimal Controller Tuning Method for Unstable Cascade Processes with Time Delay       
Yazarlar (1)
Doç. Dr. Tufan DOĞRUER Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Symmetry
Dergi ISSN 2073-8994 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 01-2023
Cilt No 15
Sayı 1
Sayfalar 1 / 16
DOI Numarası 10.3390/sym15010054
Makale Linki http://dx.doi.org/10.3390/sym15010054
Özet
This paper presents a controller design technique for cascade control systems based on the grey wolf optimization (GWO) algorithm. In the proposed control scheme, the proportional-integral-proportional-derivative (PI-PD) controller structure is used to control both the open-loop unstable process in the primary loop and the stable process in the secondary loop. To determine the optimal controller parameters, a new optimization algorithm is used in which the Euclidean distance function is used as a multi-objective function. A symmetry property of the Euclidean distance function is that its distance does not depend on the starting point and destination. The multi-objective function is designed according to system time response specifications such as settling time, overshoot, and steady-state error. Thus, the optimization algorithm allows the simultaneous determination of all controller parameters according to the desired output response. Three simulation studies are presented in the paper and the results are compared with studies using various methods based on internal model control, a modified Smith predictor, and a genetic algorithm. The simulation results reveal that the proposed method improves the performances of the systems in the control of cascade processes.
Anahtar Kelimeler
cascade processes | cascade systems | control systems | controller design | PI-PD tuning method