Equilibrium Optimization-Based Ensemble CNN Framework for Breast Cancer Multiclass Classification Using Histopathological Image       
Yazarlar (1)
Doç. Dr. Yasemin ÇETİN KAYA Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Diagnostics
Dergi ISSN 2075-4418 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili İngilizce
Basım Tarihi 10-2024
Cilt No 14
Sayı 19
DOI Numarası 10.3390/diagnostics14192253
Makale Linki https://doi.org/10.3390/diagnostics14192253
Özet
Background: Breast cancer is one of the most lethal cancers among women. Early detection and proper treatment reduce mortality rates. Histopathological images provide detailed information for diagnosing and staging breast cancer disease. Methods: The BreakHis dataset, which includes histopathological images, is used in this study. Medical images are prone to problems such as different textural backgrounds and overlapping cell structures, unbalanced class distribution, and insufficiently labeled data. In addition to these, the limitations of deep learning models in overfitting and insufficient feature extraction make it extremely difficult to obtain a high-performance model in this dataset. In this study, 20 state-of-the-art models are trained to diagnose eight types of breast cancer using the fine-tuning method. In addition, a comprehensive experimental study was conducted to determine the most successful new model, with 20 different custom models reported. As a result, we propose a novel model called MultiHisNet. Results: The most effective new model, which included a pointwise convolution layer, residual link, channel, and spatial attention module, achieved 94.69% accuracy in multi-class breast cancer classification. An ensemble model was created with the best-performing transfer learning and custom models obtained in the study, and model weights were determined with an Equilibrium Optimizer. The proposed ensemble model achieved 96.71% accuracy in eight-class breast cancer detection. Conclusions: The results show that the proposed model will support pathologists in successfully diagnosing breast cancer.
Anahtar Kelimeler
breast cancer classification | deep learning | ensemble learning | equilibrium optimizer | histopathological image