Classification of FAMACHA© Scores with Support Vector Machine Algorithm from Body Condition Score and Hematological Parameters in Pelibuey Sheep       
Yazarlar (15)
Oswaldo Margarito Torres-Chable
Universidad Juárez Autónoma De Tabasco, Meksika
Cem Tırınk
Iğdır Üniversitesi, Türkiye
Rosa Inés Parra-Cortés
Universidad De Ciencias Aplicadas Y Ambientales, Kolombiya
Miguel Ángel Gastelum Delgado
Universidad Juárez Autónoma De Tabasco, Meksika
Ignacio Vázquez Martínez
Universidad Juárez Autónoma De Tabasco, Meksika
Armando Gomez Vazquez
Universidad Juárez Autónoma De Tabasco, Meksika
Aldenamar Cruz Hernandez
Universidad Juárez Autónoma De Tabasco, Meksika
Enrique Camacho Pérez
Universidad Autónoma De Yucatán, Meksika
Dany Alejandro Dzib Cauich
Tecnológico Nacional De México, Meksika
Uğur Şen
Ondokuz Mayis Üniversitesi, Türkiye
Hacer Tüfekci
Bozok Üniversitesi, Türkiye
Dr. Öğr. Üyesi Lütfi BAYYURT Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Hilal Tozlu Çelik
Ordu Üniversitesi, Türkiye
Ömer Faruk Yılmaz
Ondokuz Mayis Üniversitesi, Türkiye
Alfonso J Chay Canul
Universidad Juárez Autónoma De Tabasco, Meksika
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Animals
Dergi ISSN 2076-2615 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 03-2025
Cilt No 15
Sayı 5
DOI Numarası 10.3390/ani15050737
Makale Linki https://doi.org/10.3390/ani15050737
Özet
The aim of this study is to evaluate the model performance in the classification of FAMACHA© scores using Support Vector Machines (SVMs) with a focus on the estimation of the FAMACHA© scoring system used for early diagnosis and treatment management of parasitic infections. FAMACHA© scores are a color-based visual assessment system used to determine parasite load in animals, and in this study, the accuracy of the model was investigated. The model’s accuracy rate was analyzed in detail with metrics such as sensitivity, specificity, and positive/negative predictive values. The results showed that the model had high sensitivity and specificity rates for class 1 and class 3, while the performance was relatively low for class 2. These findings not only demonstrate that SVM is an effective method for classifying FAMACHA© scores but also highlight the need for improvement for class 2. In particular, the high accuracy rate (97.26%) and high kappa value (0.9588) of the model indicate that SVM is a reliable tool for FAMACHA© score estimation. In conclusion, this study demonstrates the potential of SVM technology in veterinary epidemiology and provides important information for future applications. These results may contribute to efforts to improve scientific approaches for the management of parasitic infections.
Anahtar Kelimeler
anemia | classification | FAMACHA© | machine learning | support vector machine