Body Weight Estimation in Holstein × Zebu Crossbred Heifers: Comparative Analysis of XGBoost and LightGBM Algorithms       
Yazarlar (9)
Jose Herrera Camacho
Universidad Michoacana De San Nicolás De Hidalgo, Meksika
Cem Tırınk
Iğdır Üniversitesi, Türkiye
Rosa Inés Parra Cortés
Universidad De Ciencias Aplicadas Y Ambientales, Kolombiya
Dr. Öğr. Üyesi Lütfi BAYYURT Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Rashit Uskenov
Saken Seifullin Kazakh Agrotechnical University, Kazakistan
Karlygash Omarova
Saken Seifullin Kazakh Agrotechnical University, Kazakistan
Aizhan Makhanbetova
Saken Seifullin Kazakh Agrotechnical University, Kazakistan
Kadyrbai Chekirov
Kyrgyz-Turkish Manas University, Kırgızistan
Alfonso Juventino Chay-Canul
Universidad Juárez Autónoma De Tabasco, Meksika
Makale Türü Açık Erişim Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Veterinary Medicine and Science
Dergi ISSN 2053-1095 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili Türkçe
Basım Tarihi 05-2025
Cilt No 11
Sayı 4
DOI Numarası 10.1002/vms3.70422
Makale Linki https://doi.org/10.1002/vms3.70422
Özet
This study evaluates the effectiveness of XGBoost and LightGBM algorithms for estimating the live weight of Holstein×Zebu crossbred heifers. The study compares the performance of both algorithms using a wide range of biometric measurements and tests various hyperparameter settings. The research results show that the XGBoost algorithm provides almost perfect agreement with an R2 value of 0.999 on the training set and high performance with an R2 value of 0.986 on the test set. The LightGBM algorithm also achieved effective results with R2 values of 0.986 and 0.981 on both training and test sets. The machine learning algorithms used in the current study stand out as having the potential to provide a practical and economical solution for live weight estimation in livestock enterprises and especially for herd management applications in rural areas through input variables such as body measurements, milk yield, etc. However, the obtained results in the current study reveal the potential of machine learning algorithms for live weight estimation in the livestock sector and indicate that advanced research is needed for the optimisation of these algorithms.
Anahtar Kelimeler
body weight prediction | crossbred heifer | LightGBM | machine learning | XGBoost