Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)       
Yazarlar (2)
Doç. Dr. Cem EMEKSİZ Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Mustafa Tan
Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Energy
Dergi ISSN 0360-5442 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q1
Makale Dili Türkçe
Basım Tarihi 06-2022
Cilt No 249
Sayı 1
DOI Numarası 10.1016/j.energy.2022.123785
Makale Linki http://dx.doi.org/10.1016/j.energy.2022.123785
Özet
Estimating the wind speed correctly and reliably plays a key role in managing and operating wind energy power systems. Therefore an novelty adaptive estimation model (NAEM) combined with deep learning-based mode discretization has been developed for use in wind speed estimation in this study. This developed model consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the continuous wavelet transforms (CWT), the contrast limited adaptive histogram equalization (CLAHE), the particle swarm optimization (PSO), and convolutional neural network (CNN). Adaptive estimation model using decomposition method was presented as an alternative to the traditional data matrix transformation used in data preprocessing stage. Thus, both the usage firstly of this model in the data preprocessing stage and the creation of a hybrid structure by combining the methods included in this model for the first time constitute the most important innovative aspect of the study. Proposed model (NAEM) was tested in different case studies and RMSE, MAPE, and R2 were used as performance metrics. In the comparison with commonly used deep learning models (CNN-RNN, GRU, LSTM) the root means square error (RMSE) values decrease by 25.80%, 61.17% and 63.60% respectively. In addition, the power density value of the actual wind speeds was approached by 95.1% with the proposed NAEM.
Anahtar Kelimeler
Adaptif estimation model | CNN | Hybrid deep learning | ICEEMDAN | Wind speed estimation