Predicting reference evapotranspiration based on hydro-climatic variables: comparison of different machine learning models      
Yazarlar (5)
Arş. Gör. Dilek SABANCI Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Prof. Dr. Kadri YÜREKLİ Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Dr. Öğr. Üyesi Mehmet Murat CÖMERT Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Serhat Kilicarslan
Bandırma Onyedi Eylül University, Türkiye
Dr. Öğr. Üyesi Müberra ERDOĞAN KARAAĞAÇLI Tokat Gaziosmanpaşa Üniversitesi, Türkiye
Makale Türü Özgün Makale
Makale Alt Türü SSCI, AHCI, SCI, SCI-Exp dergilerinde yayınlanan tam makale
Dergi Adı Hydrological Sciences Journal
Dergi ISSN 0262-6667 Wos Dergi Scopus Dergi
Dergi Tarandığı Indeksler SCI-Expanded
Dergi Grubu Q2
Makale Dili İngilizce
Basım Tarihi 01-2023
Cilt No 68
Sayı 7
Sayfalar 1050 / 1063
DOI Numarası 10.1080/02626667.2023.2203824
Makale Linki http://dx.doi.org/10.1080/02626667.2023.2203824
Özet
This paper aimed to estimate the reference evapotranspiration (ET0) due to some limitations of the Food and Agriculture Organization-56 Penman-Monteith (FAO 56-PM) approach by using five alternative machine learning models. The study makes an important contribution to the ET0 estimation success for of the ET0 of 12 stations with variable climate characteristics in the Central Anatolian Region (CAR). The performances of the models were compared with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) metrics that are frequently cited in the literature, and also with the performance index (PI). Long short-term memory (LSTM), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS) models provided the best performance in eight, three, and one stations, respectively. The R2, MAE, RMSE, and PI values of the selected models from each station vary in the range of 0.987-0.999, 1.948-4.567, 2.671-6.659, and 1.544-4.018, respectively.
Anahtar Kelimeler
reference evapotranspiration (ET0) | FAO-56 Penman-Monteith (FAO 56-PM) approach | machine learning approaches | performance measures